NXP LPC3130FET180 Low-cost, low-power arm926ej-s mcus with high-speed usb 2.0 otg, sd/mmc, and nand flash controller Datasheet

LPC3130/3131
Low-cost, low-power ARM926EJ-S MCUs with high-speed
USB 2.0 OTG, SD/MMC, and NAND flash controller
Rev. 1 — 9 February 2009
Preliminary data sheet
1. General description
The NXP LPC3130/3131 combine an 180 MHz ARM926EJ-S CPU core, high-speed USB
2.0 On-The-Go (OTG), up to 192 KB SRAM, NAND flash controller, flexible external bus
interface, four channel 10-bit ADC, and a myriad of serial and parallel interfaces in a single
chip targeted at consumer, industrial, medical, and communication markets. To optimize
system power consumption, the LPC3130/3131 have multiple power domains and a very
flexible Clock Generation Unit (CGU) that provides dynamic clock gating and scaling.
2. Features
2.1 Key features
n CPU platform
u 180 MHz, 32-bit ARM926EJ-S
u 16 kB D-cache and 16 kB I-cache
u Memory Management Unit (MMU)
n Internal memory
u 96 kB (LPC3130) or 192 kB (LPC3131) embedded SRAM
n External memory interface
u NAND flash controller with 8-bit ECC
u 8/16-bit Multi-Port Memory Controller (MPMC): SDRAM and SRAM
n Communication and connectivity
u High-speed USB 2.0 (OTG, Host, Device) with on-chip PHY
u Two I2S-bus interfaces
u Integrated master/slave SPI
u Two master/slave I2C-bus interfaces
u Fast UART
u Memory Card Interface (MCI): MMC/SD/SDIO/CE-ATA
u Four-channel 10-bit ADC
u Integrated 4/8/16-bit 6800/8080 compatible LCD interface
n System functions
u Dynamic clock gating and scaling
u Multiple power domains
u Selectable boot-up: SPI flash, NAND flash, SD/MMC cards, UART, or USB
u DMA controller
u Four 32-bit timers
u Watchdog timer
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
u PWM module
u Random Number Generator (RNG)
u General Purpose I/O (GPIO) pins
u Flexible and versatile interrupt structure
u JTAG interface with boundary scan and ARM debug access
n Operating voltage and temperature
u Core voltage: 1.2 V
u I/O voltage: 1.8 V, 2.8 V, 3.3 V
u Temperature: −40 °C to +85 °C
n TFBGA180 package: 12 × 12 mm2, 0.8 mm pitch
3. Ordering information
Table 1.
Ordering information
Type number
Package
Name
Description
Version
LPC3130FET180 TFBGA180 plastic thin fine pitch ball grid array package, 180 balls, body 12 × 12 × 0.8 mm SOT570-3
LPC3131FET180 TFBGA180 plastic thin fine pitch ball grid array package, 180 balls, body 12 × 12 × 0.8 mm SOT570-3
Table 2.
Ordering options for LPC3130/3131
Type number
Core/bus
frequency
Total
SRAM
High-speed
USB
10-bit
ADC
channels
I2S-bus/
I2C-bus
MCI SDHC/ Temperature
SDIO/
range
CE-ATA
LPC3130FET180
180 MHz/
90 MHz
96 kB
Device/
Host/OTG
4
2 each
yes
−40 °C to +85 °C
LPC3131FET180
180 MHz/
90 MHz
192 kB Device/
Host/OTG
4
2 each
yes
−40 °C to +85 °C
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
2 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
4. Block diagram
JTAG
interface
LPC3130/3131
ARM926EJ-S
INSTRUCTION
CACHE 16 kB
DATA
CACHE 16 kB
TEST/DEBUG
INTERFACE
master
master
USB 2.0
HIGH-SPEED
OTG
DMA
CONTROLLER
master
slave
INTERRUPT
CONTROLLLER
master
slave
slave
ROM
slave
slave
slave
slave
96 kB ISRAM0
MPMC
MULTILAYER AHB MATRIX
96 kB ISRAM1(1)
slave
slave
MCI
SD/SDIO
NAND CONTROLLER
BUFFER
slave
AHB TO
APB
BRIDGE 0
ASYNC
slave
AHB TO
APB
BRIDGE 1
ASYNC
slave
AHB TO
APB
BRIDGE 2
ASYNC
slave
AHB TO
APB
BRIDGE 3
ASYNC
slave
AHB TO
APB
BRIDGE 4
SYNC
APB slave group 0
APB slave group 4
WDT
NAND REGISTERS
SYSTEM CONTROL
DMA REGISTERS
CGU
APB slave group 3
IOCONFIG
I2S0/1
10-bit ADC
APB slave group 2
EVENT ROUTER
UART
RANDOM NUMBER
GENERATOR
LCD
APB slave group 1
TIMER 0/1/2/3
SPI
PWM
PCM
I2C0
I2C1
(1) LPC3131 only
002aae124
Fig 1.
LPC3130/3131 block diagram
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
3 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
5. Pinning information
5.1 Pinning
ball A1
index area
LPC3130/3131
1 2 3 4 5 6 7 8 9 10 11 12 13 14
A
B
C
D
E
F
G
H
J
K
L
M
N
P
002aae130
Transparent top view
Fig 2.
LPC3130/3131 pinning TFBGA180 package
Table 3.
Pin allocation table
Pin Symbol
Pin Symbol
Pin Symbol
Pin Symbol
Row A
1
EBI_D_10
2
EBI_A_1_CLE
3
EBI_D_9
4
mGPIO10
5
mGPIO7
6
mGPIO6
7
SPI_CS_OUT0
8
SPI_SCK
9
VDDI
10
FFAST_IN
11
VSSI
12
ADC10B_GNDA
13
ADC10B_VDDA33
14
ADC10B_GPA1
-
-
-
-
Row B
1
EBI_D_8
2
VDDE_IOA
3
EBI_A_0_ALE
4
mNAND_RYBN2
5
mGPIO8
6
mGPIO5
7
SPI_MOSI
8
SPI_CS_IN
9
PWM_DATA
10
FFAST_OUT
11
GPIO3
12
VSSE_IOC
13
ADC10B_GPA2
14
ADC10B_GPA0
-
-
-
-
Row C
1
EBI_D_7
2
EBI_D_11
3
VSSE_IOA
4
VSSE_IOA
5
mGPIO9
6
VDDI
7
VSSI
8
SPI_MISO
9
VDDI
10
I2C_SDA0
11
GPIO4
12
VDDI
13
VDDE_IOC
14
ADC10B_GPA3
-
-
-
-
Row D
1
EBI_D_5
2
EBI_D_6
3
EBI_D_13
4
mNAND_RYBN3
5
VDDE_IOC
6
VSSE_IOC
7
VDDE_IOC
8
VSSE_IOC
9
VSSE_IOC
10
I2C_SCL0
11
VDDA12
12
VSSI
13
BUF_TCK
14
BUF_TMS
-
-
-
-
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
4 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 3.
Pin allocation table …continued
Pin Symbol
Pin Symbol
Pin Symbol
Pin Symbol
Row E
1
EBI_D_3
2
EBI_D_4
3
EBI_D_14
4
VSSE_IOA
5
VDDE_IOA
6
mNAND_RYBN0
7
mNAND_RYBN1
8
VDDE_IOC
9
VSSA12
10
VDDA12
11
ARM_TDO
12
I2C_SDA1
13
I2C_SCL1
14
I2STX_BCK1
-
-
-
-
4
VSSE_IOA
Row F
1
EBI_D_2
2
EBI_D_1
3
EBI_D_15
5
VDDE_IOA
10
SCAN_TDO
11
BUF_TRST_N
12
I2STX_DATA1
13
I2SRX_WS1
14
I2SRX_BCK1
-
-
-
-
Row G
1
EBI_NCAS_BLOUT_0
2
EBI_D_0
3
EBI_D_12
4
VSSI
5
VDDE_IOA
10
I2STX_WS1
11
VSSE_IOC
12
VDDE_IOC
13
SYSCLK_O
14
I2SRX_DATA1
-
-
-
-
3
VDDI
4
VSSE_IOA
Row H
1
EBI_DQM_0_NOE
2
EBI_NRAS_BLOUT_1
5
VDDE_IOA
10
GPIO12
11
GPIO19
12
CLK_256FS_O
13
GPIO11
14
RSTIN_N
-
-
-
-
2
EBI_NWE
3
NAND_NCS_1
4
CLOCK_OUT
Row J
1
NAND_NCS_0
5
USB_RREF
10
GPIO1
11
GPIO16
12
GPIO13
13
GPIO15
14
GPIO14
-
-
-
-
2
NAND_NCS_3
3
VSSE_IOA
4
USB_VSSA_REF
Row K
1
NAND_NCS_2
5
mLCD_DB_12
6
mLCD_DB_6
7
mLCD_DB_10
8
mLCD_CSB
9
TDI
10
GPIO0
11
VDDE_ESD
12
GPIO17
13
GPIO20
14
GPIO18
-
-
-
-
Row L
1
USB_VDDA12_PLL
2
USB_VBUS
3
USB_VSSA_TERM
4
VDDE_IOB
5
mLCD_DB_9
6
VSSI
7
VDDI
8
mLCD_E_RD
9
VSSE_IOC
10
VDDE_IOC
11
VSSI
12
VDDI
13
VSSE_IOC
14
GPIO2
-
-
-
-
Row M
1
USB_ID
2
USB_VDDA33_DRV
3
VSSE_IOB
4
VSSE_IOB
5
VDDE_IOB
6
VSSE_IOB
7
VDDE_IOB
8
VSSE_IOB
9
VDDE_IOB
10
I2SRX_DATA0
11
mI2STX_WS0
12
mI2STX_BCK0
13
mI2STX_DATA0
14
TCK
-
-
-
-
Row N
1
USB_GNDA
2
USB_DM
3
mLCD_DB_15
4
mLCD_DB_11
5
mLCD_DB_8
6
mLCD_DB_2
7
mLCD_DB_4
8
mLCD_DB_0
9
mLCD_RW_WR
10
I2SRX_BCK0
11
JTAGSEL
12
UART_TXD
13
mUART_CTS_N
14
mI2STX_CLK0
-
-
-
-
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
5 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 3.
Pin allocation table …continued
Pin Symbol
Pin Symbol
Pin Symbol
Pin Symbol
Row P
1
USB_VDDA33
2
USB_DP
3
mLCD_DB_14
4
mLCD_DB_13
5
mLCD_DB_7
6
mLCD_DB_3
7
mLCD_DB_5
8
mLCD_RS
9
mLCD_DB_1
10
TMS
11
I2SRX_WS0
12
UART_RXD
13
TRST_N
14
mUART_RTS_N
-
-
-
-
Table 4.
Pin description
Pin names with prefix m are multiplexed pins. See Table 10 for pin function selection of multiplexed pins.
Pin name
BGA Digital Application
Ball I/O
function
level
[1]
Pin
state
after
reset
Cell
Type [2]
Description
-
AIO2
12 MHz oscillator clock input
Clock Generation Unit
FFAST_IN
A10
SUP1
AI
FFAST_OUT
B10
SUP1
AO
AIO2
12 MHz oscillator clock output
VDDA12
D11;
E10
SUP1
Supply
PS3
12 MHz oscillator/PLLs Analog supply
VSSA12
E9
RSTIN_N
H14
CLK_256FS_O
Ground
-
CG1
12 MHz oscillator/PLLs Analog ground
SUP3
DI
I
DIO2
System Reset Input (active LOW)
H12
SUP3
DO
O
DIO1
Programmable clock output; fractionally
derived from CLK1024FS_BASE clock
domain. Generally used for Audio Codec
master clock.
CLOCK_OUT
J4
SUP3
DO
O
DIO1
Programmable clock output; fractionally
derived from SYS_BASE clock domain.
SYSCLK_O[3]
G13
SUP3
DO
O
DIO1
Programmable clock output. Output one of
seven base/reference input clocks. No
fractional divider.
ADC10B_VDDA33
A13
SUP3
Supply
-
PS3
10-bit ADC Analog Supply
ADC10B_GNDA
A12
Ground
-
CG1
10-bit ADC Analog Ground
ADC10B_GPA0
B14
SUP3
AI
-
AIO1
10-bit ADC Analog Input
ADC10B_GPA1
A14
SUP3
AI
-
AIO1
10-bit ADC Analog Input
ADC10B_GPA2
B13
SUP3
AI
-
AIO1
10-bit ADC Analog Input
ADC10B_GPA3
C14
SUP3
AI
-
AIO1
10-bit ADC Analog Input
10-bit ADC
USB HS 2.0 OTG
USB_VBUS
L2
SUP5
AI
-
AIO3
USB supply detection line
USB_ID
M1
SUP3
AI
-
AIO1
Indicates to the USB transceiver whether in
device (USB_ID HIGH) or host (USB_ID LOW)
mode (contains internal pull-up resistor)
USB_RREF
J5
SUP3
AIO
-
AIO1
USB Connection for external reference resistor
(12 kΩ ± 1 %) to analog ground supply
USB_DP
P2
SUP3
AIO
-
AIO1
USB D+ connection with integrated 45 Ω
termination resistor
USB_DM
N2
SUP3
AIO
-
AIO1
USB D− connection with integrated 45 Ω
termination resistor
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
6 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 4.
Pin description
Pin names with prefix m are multiplexed pins. See Table 10 for pin function selection of multiplexed pins.
Pin name
BGA Digital Application
Ball I/O
function
level
[1]
Pin
state
after
reset
Cell
Type [2]
Description
USB_VDDA12_PLL
L1
SUP1
Supply
-
PS3
USB PLL supply
USB_VDDA33_DRV
M2
SUP3
Supply
-
PS3
USB Analog supply for driver
USB_VDDA33
P1
SUP3
Supply
-
PS3
USB Analog supply for PHY
USB_VSSA_TERM
L3
Ground
-
CG1
USB Analog ground for clean reference for on
chip termination resistors
USB_GNDA
N1
Ground
-
CG1
USB Analog ground
USB_VSSA_REF
K4
Ground
-
CG1
USB Analog ground for clean reference
JTAG
JTAGSEL
N11
SUP3
DI
I
DIO1
JTAG selection. Controls output function of
SCAN_TDO and ARM_TDO signals.
TDI
K9
SUP3
DI
I
DIO1
JTAG Data Input
TRST_N
P13
SUP3
DI
I
DIO1
JTAG Reset Input
TCK
M14
SUP3
DI
I
DIO1
JTAG Clock Input
TMS
P10
SUP3
DI
I
DIO1
JTAG Mode Select Input
SCAN_TDO
F10
SUP3
DO
O/Z
DIO1
JTAG TDO signal from scan TAP controller. Pin
state is controlled by JTAGSEL.
ARM_TDO
E11
SUP3
DO
O
DIO1
JTAG TDO signal from ARM926 TAP
controller.
BUF_TRST_N
F11
SUP3
DO
O
DIO1
Buffered TRST_N out signal. Used for
connecting an on board TAP controller (FPGA,
DSP, etc.).
BUF_TCK
D13
SUP3
DO
O
DIO1
Buffered TCK out signal. Used for connecting
an on board TAP controller (FPGA, DSP, etc.).
BUF_TMS
D14
SUP3
DO
O
DIO1
Buffered TMS out signal. Used for connecting
an on board TAP controller (FPGA, DSP, etc.).
mUART_CTS_N[3][4]
N13
SUP3
DI / GPIO
I
DIO1
UART Clear To Send (active LOW)
mUART_RTS_N[3][4]
P14
SUP3
DO / GPIO
O
DIO1
UART Ready To Send (active LOW)
UART_RXD[3]
P12
SUP3
DI / GPIO
I
DIO1
UART Serial Input
UART_TXD[3]
N12
SUP3
DO / GPIO
O
DIO1
UART Serial Output
UART
I2C
master/slave interface
I2C_SDA0
C10
SUP3
DIO
I
IICD
I2C Data Line
I2C_SCL0
D10
SUP3
DIO
I
IICC
I2C Clock line
I2C_SDA1[3]
E12
SUP3
DIO
O
DIO1
I2C Data Line
I2C_SCL1[3]
E13
SUP3
DIO
O
DIO1
I2C Clock line
Serial Peripheral Interface
SPI_CS_OUT0[3]
A7
SUP3
DO
O
DIO4
SPI Chip Select Output (Master)
SPI_SCK[3]
A8
SUP3
DIO
I
DIO4
SPI Clock Input (Slave) / Clock Output
(Master)
SPI_MISO[3]
C8
SUP3
DIO
I
DIO4
SPI Data Input (Master) / Data Output (Slave)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
7 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 4.
Pin description
Pin names with prefix m are multiplexed pins. See Table 10 for pin function selection of multiplexed pins.
Pin name
BGA Digital Application
Ball I/O
function
level
[1]
Pin
state
after
reset
Cell
Type [2]
Description
SPI_MOSI[3]
B7
SUP3
DIO
I
DIO4
SPI Data Output (Master) / Data Input (Slave)
SPI_CS_IN[3]
B8
SUP3
DI
I
DIO4
SPI Chip Select Input (Slave)
VDDI
H3;
L7;
L12;
C12;
C6
SUP1
Supply
-
CS2
Digital Core Supply
VSSI
A11;
C7;
D12;
G4;
L6;
L11
Ground
-
CG2
Digital Core Ground
Digital power supply
Peripheral power supply
VDDE_IOA
B2;
E5;
F5;
G5;
H5
SUP4
Supply
-
PS1
Peripheral supply for NAND flash interface
VDDE_IOB
L4;
M5;
M7;
M9
SUP8
Supply
-
PS1
Peripheral supply for SDRAM/LCD
VDDE_IOC
C13; SUP3
D5;
D7;
E8;
G12;
L10;
Supply
-
PS1
Peripheral supply
VDDE_ESD
K11
Supply
-
PS1
VSSE_IOA
C3;
C4;
E4;
F4;
H4;
K3
Ground
-
PG1
VSSE_IOB
M3;
M4;
M6;
M8
Ground
-
PG1
SUP8
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
8 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 4.
Pin description
Pin names with prefix m are multiplexed pins. See Table 10 for pin function selection of multiplexed pins.
Pin name
BGA Digital Application
Ball I/O
function
level
Pin
state
after
reset
Cell
Type [2]
Ground
-
PG1
[1]
VSSE_IOC
B12;
D6;
D8;
D9;
G11;
L9;
L13
Description
LCD Interface
mLCD_CSB[3]
K8
SUP8
DO
O
DIO4
LCD Chip Select (active LOW)
mLCD_E_RD[3]
L8
SUP8
DO
O
DIO4
LCD, 6800 Enable, 8080 Read Enable (active
HIGH)
mLCD_RS[3]
P8
SUP8
DO
O
DIO4
LCD, Instruction Register (LOW)/ Data
Register (HIGH) select
mLCD_RW_WR[3]
N9
SUP8
DO
O
DIO4
LCD, 6800 Read/write Select, 8080 Write
Enable (active HIGH)
mLCD_DB_0[3]
N8
SUP8
DIO
O
DIO4
LCD Data 0
mLCD_DB_1[3]
P9
SUP8
DIO
O
DIO4
LCD Data 1
mLCD_DB_2[3]
N6
SUP8
DIO
O
DIO4
LCD Data 2
mLCD_DB_3[3]
P6
SUP8
DIO
O
DIO4
LCD Data 3
mLCD_DB_4[3]
N7
SUP8
DIO
O
DIO4
LCD Data 4
mLCD_DB_5[3]
P7
SUP8
DIO
O
DIO4
LCD Data 5
mLCD_DB_6[3]
K6
SUP8
DIO
O
DIO4
LCD Data 6
mLCD_DB_7[3]
P5
SUP8
DIO
O
DIO4
LCD Data 7
mLCD_DB_8[3]
N5
SUP8
DIO
O
DIO4
LCD Data 8 / 8-bit Data 0
mLCD_DB_9[3]
L5
SUP8
DIO
O
DIO4
LCD Data 9 / 8-bit Data 1
mLCD_DB_10[3]
K7
SUP8
DIO
O
DIO4
LCD Data 10 / 8-bit Data 2
mLCD_DB_11[3]
N4
SUP8
DIO
O
DIO4
LCD Data 11 / 8-bit Data 3
mLCD_DB_12[3]
K5
SUP8
DIO
O
DIO4
LCD Data 12 / 8-bit Data 4 / 4-bit Data 0
mLCD_DB_13[3]
P4
SUP8
DIO
O
DIO4
LCD Data 13 / 8-bit Data 5 / 4-bit Data 1 /
Serial Clock Output
mLCD_DB_14[3]
P3
SUP8
DIO
O
DIO4
LCD Data 14 / 8-bit Data 6 / 4-bit Data 2 /
Serial Data Input
mLCD_DB_15[3]
N3
SUP8
DIO
O
DIO4
LCD Data 15 / 8-bit Data 7 / 4-bit Data 3 /
Serial Data Output
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
9 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 4.
Pin description
Pin names with prefix m are multiplexed pins. See Table 10 for pin function selection of multiplexed pins.
Pin name
BGA Digital Application
Ball I/O
function
level
[1]
Pin
state
after
reset
Cell
Type [2]
Description
I2S/Digital Audio Input
I2SRX_DATA0[3]
M10
SUP3
DI / GPIO
I
DIO1
I2S Serial Data Receive Input
I2SRX_DATA1[3]
G14
SUP3
DI / GPIO
I
DIO1
I2S Serial Data Receive Input
I2SRX_BCK0[3]
N10
SUP3
DIO / GPIO
I
DIO1
I2S Bitclock
I2SRX_BCK1[3]
F14
SUP3
DIO / GPIO
I
DIO1
I2S Bitclock
I2SRX_WS0[3]
P11
SUP3
DIO / GPIO
I
DIO1
I2S Word select
I2SRX_WS1[3]
F13
SUP3
DIO / GPIO
I
DIO1
I2S Word select
mI2STX_DATA0[3]
M13
SUP3
DO / GPIO
O
DIO1
I2S Serial Data Transmit Output
mI2STX_BCK0[3]
M12
SUP3
DO / GPIO
O
DIO1
I2S Bitclock
mI2STX_WS0[3]
M11
SUP3
DO / GPIO
O
DIO1
I2S Word select
mI2STX_CLK0[3]
N14
SUP3
DO / GPIO
O
DIO1
I2S Serial Clock
I2STX_DATA1[3]
F12
SUP3
DO / GPIO
O
DIO1
I2S Serial Data Transmit Output
I2STX_BCK1[3]
E14
SUP3
DO / GPIO
O
DIO1
I2S Bitclock
I2STX_WS1[3]
G10
SUP3
DO / GPIO
O
DIO1
I2S Word select
I2S/Digital Audio Output
General Purpose I/O (IOCONFIG module)
GPIO0
K10
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 0 (Mode pin 0)
GPIO1
J10
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 1 (Mode pin 1)
GPIO2
L14
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 2 (Mode pin 2)
GPIO3
B11
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 3
GPIO4
C11
SUP3
GPI
I
DIO1
General Purpose Input Pin 4
mGPIO5[3]
B6
SUP3
GPIO
I
DIO4
General Purpose I/O Pin 5
mGPIO6[3]
A6
SUP3
GPIO
I
DIO4
General Purpose I/O Pin 6
mGPIO7[3]
A5
SUP3
GPIO
I
DIO4
General Purpose I/O Pin 7
mGPIO8[3]
B5
SUP3
GPIO
I
DIO4
General Purpose I/O Pin 8
mGPIO9[3]
C5
SUP3
GPIO
I
DIO4
General Purpose I/O Pin 9
mGPIO10[3]
A4
SUP3
GPIO
I
DIO4
General Purpose I/O Pin 10
GPIO11
H13
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 11
GPIO12
H10
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 12
GPIO13
J12
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 13
GPIO14
J14
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 14
GPIO15
J13
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 15
GPIO16
J11
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 16
GPIO17
K12
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 17
GPIO18
K14
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 18
GPIO19
H11
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 19
GPIO20
K13
SUP3
GPIO
I
DIO1
General Purpose I/O Pin 20
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
10 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 4.
Pin description
Pin names with prefix m are multiplexed pins. See Table 10 for pin function selection of multiplexed pins.
Pin name
BGA Digital Application
Ball I/O
function
level
[1]
Pin
state
after
reset
Cell
Type [2]
Description
External Bus Interface (NAND flash controller)
EBI_A_0_ALE[3]
B3
SUP4
DO
O
DIO4
EBI Address Latch Enable
EBI_A_1_CLE[3]
A2
SUP4
DO
O
DIO4
EBI Command Latch Enable
EBI_D_0[3]
G2
SUP4
DIO
I
DIO4
EBI Data I/O 0
EBI_D_1[3]
F2
SUP4
DIO
I
DIO4
EBI Data I/O 1
EBI_D_2[3]
F1
SUP4
DIO
I
DIO4
EBI Data I/O 2
EBI_D_3[3]
E1
SUP4
DIO
I
DIO4
EBI Data I/O 3
EBI_D_4[3]
E2
SUP4
DIO
I
DIO4
EBI Data I/O 4
EBI_D_5[3]
D1
SUP4
DIO
I
DIO4
EBI Data I/O 5
EBI_D_6[3]
D2
SUP4
DIO
I
DIO4
EBI Data I/O 6
EBI_D_7[3]
C1
SUP4
DIO
I
DIO4
EBI Data I/O 7
EBI_D_8[3]
B1
SUP4
DIO
I
DIO4
EBI Data I/O 8
EBI_D_9[3]
A3
SUP4
DIO
I
DIO4
EBI Data I/O 9
EBI_D_10[3]
A1
SUP4
DIO
I
DIO4
EBI Data I/O 10
EBI_D_11[3]
C2
SUP4
DIO
I
DIO4
EBI Data I/O 11
EBI_D_12[3]
G3
SUP4
DIO
I
DIO4
EBI Data I/O 12
EBI_D_13[3]
D3
SUP4
DIO
I
DIO4
EBI Data I/O 13
EBI_D_14[3]
E3
SUP4
DIO
I
DIO4
EBI Data I/O 14
EBI_D_15[3]
F3
SUP4
DIO
I
DIO4
EBI Data I/O 15
EBI_DQM_0_NOE[3]
H1
SUP4
DO
O
DIO4
NAND Read Enable (active LOW)
EBI_NWE[3]
J2
SUP4
DO
O
DIO4
NAND Write Enable (active LOW)
NAND_NCS_0[3]
J1
SUP4
DO
O
DIO4
NAND Chip Enable 0
NAND_NCS_1[3]
J3
SUP4
DO
O
DIO4
NAND Chip Enable 1
NAND_NCS_2[3]
K1
SUP4
DO
O
DIO4
NAND Chip Enable 2
NAND_NCS_3[3]
K2
SUP4
DO
O
DIO4
NAND Chip Enable 3
mNAND_RYBN0[3]
E6
SUP4
DI
I
DIO4
NAND Ready/Busy 0
mNAND_RYBN1[3]
E7
SUP4
DI
I
DIO4
NAND Ready/Busy 1
mNAND_RYBN2[3]
B4
SUP4
DI
I
DIO4
NAND Ready/Busy 2
mNAND_RYBN3[3]
D4
SUP4
DI
I
DIO4
NAND Ready/Busy 3
EBI_NCAS_BLOUT_0[3]
G1
SUP4
DO
O
DIO4
EBI Lower lane byte select (7:0)
EBI_NRAS_BLOUT_1[3]
H2
SUP4
DO
O
DIO4
EBI Upper lane byte select (15:8)
DO / GPIO
O
DIO1
PWM Output
Pulse Width Modulation module
PWM_DATA[3]
B9
SUP3
[1]
Digital I/O levels are explained in Table 5.
[2]
Cell types are explained in Table 6.
[3]
Pin can be configured as GPIO pin in the IOCONFIG block.
[4]
The UART flow control lines (mUART_CTS_N and mUART_RTS_N) are multiplexed. This means that if these balls are not required for
UART flow control, they can also be selected to be used for an alternative function: SPI chip select signals (SPI_CS_OUT1 and
SPI_CS_OUT2)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
11 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 5.
Supply domains
Supply
Domain
Voltage range
Related supply pins
SUP1
1.0 V– 1.3 V
VDDI, VDDA12, USB_VDDA12_PLL, Digital core supply
SUP3
2.7 V - 3.3 V
VDDE_IOC, ADC10B_VDDA33,
Peripheral supply
USB_VDDA33_DRV, USB_VDDA33,
SUP4
1.65 V - 1.95 V (in 1.8 V
mode)
2.5 V - 3.1 V (in 2.8 V mode)
VDDE_IOA
Peripheral supply for NAND flash
interface
SUP5
4.5 V– 5.5 V
USB_VBUS
USB VBUS voltage
SUP8
1.65 V - 1.95 V (in 1.8 V
mode)
2.5 V - 3.1 V (in 2.8 V mode)
VDDE_IOB
Peripheral supply for
SDRAM/SRAM/bus-based LCD [1]
[1]
Description
When the SDRAM is used, the supply voltage of the NAND flash, SDRAM, and the LCD Interface must be the same, i.e. SUP4 and
SUP8 should be connected to the same rail. (See also Section 6.26.3.)
Table 6:
I/O pads
Cell type
Pad type
Function
Description
DIO1
bspts3chp
Digital Input/Output Bidirectional 3.3 V; 3-state output; 3 ns slew rate control; plain
input; CMOS with hysteresis; programmable pull-up, pull-down,
repeater
DIO2
bpts5pcph
Digital Input/Output Bidirectional 5 V; plain input; 3-state output; CMOS with
programmable hysteresis; programmable pull-up, pull-down,
repeater
DIO4
mem1
bsptz40pchp
Digital Input/Output Bidirectional 1.8 V or 2.8 V; plain input; 3-state output;
programmable hysteresis; programmable pull-up, pull-down,
repeater
IICC
iic3m4scl
Digital Input/Output I2C-bus; clock signal
IICD
iic3mvsda
Digital Input/Output I2C-bus; data signal
AIO1
apio3v3
Analog Input/Output Analog input/output; protection to external 3.3 V supply rail
AIO2
apio
Analog Input/Output Analog input/output
AIO3
apiot5v
Analog Input/Output Analog input/output; 5 V tolerant pad-based ESD protection
CS1
vddco
Core Supply
-
CS2
vddi
Core Supply
-
PS1
vdde3v3
Peripheral Supply
-
PS2
vdde
Peripheral Supply
-
CG1
vssco
Core Ground
-
CG2
vssis
Core Ground
-
PG1
vsse
Peripheral Ground
-
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
12 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6. Functional description
6.1 ARM926EJ-S
The processor embedded in the LPC3130/3131 is the ARM926EJ-S. It is a member of the
ARM9 family of general-purpose microprocessors. The ARM926EJ-S is intended for
multi-tasking applications where full memory management, high performance, and low
power are important.
This module has the following features:
• ARM926EJ-S processor core which uses a five-stage pipeline consisting of fetch,
decode, execute, memory, and write stages. The processor supports both the 32-bit
ARM and 16-bit Thumb instruction sets, which allows a trade off between high
performance and high code density. The ARM926EJ-S also executes an extended
ARMv5TE instruction set which includes support for Java byte code execution.
• Contains an AMBA BIU for both data accesses and instruction fetches.
• Memory Management Unit (MMU).
• 16 kB instruction and 16 kB data separate cache memories with an 8 word line length.
The caches are organized using Harvard architecture.
• Little Endian is supported.
• The ARM926EJ-S processor supports the ARM debug architecture and includes logic
to assist in both hardware and software debugging.
• Supports dynamic clock gating for power reduction.
• The processor core clock can be set equal to the AHB bus clock or to an integer
number times the AHB bus clock. The processor can be switched dynamically
between these settings.
• ARM stall support.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
13 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.2 Memory map
LPC3130/3131
4 GB
0xFFFF FFFF
reserved
2 GB
reserved
NAND buffer
reserved
interrupt controller
reserved
external SDRAM bank 0
0x8000 0000
0x1700 8000
0x7000 0800
0x7000 0000
APB4 domain
reserved
0x1700 1000
0x6000 1000
0x6000 0000
0x4000 0000
0x3000 0000
NAND flash controller
0x1700 0800
DMA
0x1700 0000
reserved
0x1600 0280
0x2004 0000
external SRAM bank 1
external SRAM bank 0
reserved
USB OTG
reserved
MCI/SD/SDIO
reserved
MPMC configuration registers
APB4 domain
APB3 domain
APB2 domain
reserved
APB1 domain
APB0 domain
I2SRX_1
0x1600 0200
I2SRX_0
0x1600 0180
0x2000 0000
I2STX_1
0x1600 0100
0x1900 1000
I2STX_0
0x1600 0080
0x1900 0000
I2S system config
0x1600 0000
0x2002 0000
APB3 domain
reserved
0x1800 0900
0x1800 0000
APB2 domain
0x1700 9000
0x1700 8000
0x1700 0000
reserved
0 GB
shadow area
0x1500 0800
LCD
0x1500 0400
PCM
I2C1
I2C0
0x1300 A000
0x1300 B000
PWM
0x1300 9000
TIMER 3
0x1300 8C00
TIMER 2
0x1300 8800
TIMER 1
0x1300 8400
0x1300 8000
APB1 domain
0x1300 0000
0x1200 0000
TIMER 0
0x1300 8000
RNG
0x1300 6000
reserved
reserved
96 kB ISRAM0
0x1500 1000
reserved
0x1500 0000
0x1201 0000
96 kB ISRAM1(1)
0x1500 2000
UART
0x1500 0000
0x1300 B000
0x1300 A400
0x1600 0000
reserved
128 kB ISROM
0x1500 3000
SPI
0x1105 8000
CGU
0x1104 0000
IOCONFIG
APB0 domain
0x1102 8000
0x0000 1000
0x0000 0000
0x1300 5000
0x1300 4000
0x1300 3000
SYSCONFIG register 0x1300 2800
WDT
0x1300 2400
ADC 10 bit
0x1300 2000
event router
0x1300 0000
002aae125
(1) LPC3131 only.
Fig 3.
LPC3130/3131 memory map
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
14 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.3 JTAG
The Joint Test Action Group (JTAG) interface allows the incorporation of the
LPC3130/3131 in a JTAG scan chain.
This module has the following features:
• ARM926 debug access
• Boundary scan
6.4 NAND flash controller
The NAND flash controller is used as a dedicated interface to NAND flash devices.
Figure 4 shows a block diagram of the NAND flash controller module. The heart of the
module is formed by a controller block that controls the flow of data from/to the AHB bus
through the NAND flash controller block to/from the (external) NAND flash. An error
correction encoder/decoder (ECC enc/dec) module allows for hardware error correction
for support of Multi-Level Cell (MLC) NAND flash devices.
Before data is written from the buffer to the NAND flash, optionally it is first protected by
an error correction code generated by the ECC module. After data is read from the NAND
flash, the error correction module corrects any errors.
AHB MULTILAYER MATRIX
BUFFER
CONTROLLER
DMA transfer request
ECC
ENCODER/
DECODER
NAND INTERFACE
002aae127
Fig 4. Block diagram of the NAND flash controller
This module has the following features:
• Dedicated NAND flash interface with hardware controlled read and write accesses.
• Wear leveling support with 516 byte mode.
• Software controlled command and address transfers to support wide range of flash
devices.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
15 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
•
•
•
•
•
•
Software control mode where the ARM is directly master of the flash device.
Support for 8 bit and 16 bit flash devices.
Support for any page size from 0.5 kB upwards.
Programmable NAND flash timing parameters.
Support for up to 4 NAND devices.
Error Correction Module (ECC) for MLC NAND flash support:
– Reed-Solomon error correction encoding and decoding.
– Uses Reed-Solomon code words with 9-bit symbols over GF(29), a total codeword
length of 469 symbols, including 10 parity symbols, giving a minimum Hamming
distance of 11.
– Up to 8 symbol errors can be corrected per codeword.
– Error correction can be turned on and off to match the demands of the application.
– Parity generator for error correction encoding.
– Wear leveling information can be integrated into protected data.
– Interrupts generated after completion of error correction task with 3 interrupt
registers.
– Error correction statistics distributed to ARM using interrupt scheme.
– Interface is compatible with the ARM External Bus Interface (EBI).
6.5 Multi-Port Memory Controller (MPMC)
The multi-port memory controller supports the interface to different memory types, for
example:
• SDRAM
• Low-power SDRAM
• Static memory interface
This module has the following features:
• Dynamic memory interface support including SDRAM, JEDEC low-power SDRAM.
• Address line supporting up to 128 MB of dynamic memory.
• The MPMC has two AHB interfaces:
a. an interface for accessing external memory.
b. a separate control interface to program the MPMC. This enables the MPMC
registers to be situated in memory with other system peripheral registers.
• Low transaction latency.
• Read and write buffers to reduce latency and to improve performance, particularly for
un-cached processors.
• Static memory features include:
– asynchronous page mode read
– programmable wait states
– bus turnaround delay
– output enable and write enable delays
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
16 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
– extended wait
• One chip select for synchronous memory and two chip selects for static memory
devices.
•
•
•
•
•
•
Power-saving modes.
Dynamic memory self-refresh mode supported.
Controller support for 2 k, 4 k, and 8 k row address synchronous memory parts.
Support for all AHB burst types.
Little and big-endian support.
Support for the External Bus Interface (EBI) that enables the memory controller pads
to be shared.
6.6 External Bus Interface (EBI)
The EBI module acts as multiplexer with arbitration between the NAND flash and the
SDRAM/SRAM memory modules connected externally through the MPMC.
The main purpose for using the EBI module is to save external pins. However only data
and address pins are multiplexed. Control signals towards and from the external memory
devices are not multiplexed.
Table 7.
Memory map of the external SRAM/SDRAM memory modules
Module
Maximum address space
Data width
Device size
External SRAM0
0x2000 0000
0x2000 FFFF
8 bit
64 kB
0x2000 0000
0x2001 FFFF
16 bit
128 kB
0x2002 0000
0x2002 FFFF
8 bit
64 kB
0x2002 0000
0x2003 FFFF
16 bit
128 kB
External SDRAM0 0x3000 0000
0x37FF FFFF
16 bit
128 MB
External SRAM1
6.7 Internal ROM Memory
The internal ROM memory is used to store the boot code of the LPC3130/3131. After a
reset, the ARM processor will start its code execution from this memory.
The LPC3130/3131 ROM memory has the following features:
• Supports booting from SPI flash, NAND flash, SD/SDHC/MMC cards, UART, and
USB (DFU class) interfaces.
• Supports option to perform CRC32 checking on the boot image.
• Supports booting from managed NAND devices such as moviNAND, iNAND,
eMMC-NAND and eSD-NAND using SD/MMC boot mode.
• Contains pre-defined MMU table (16 kB) for simple systems.
The boot ROM determines the boot mode based on reset state of GPIO0, GPIO1, and
GPIO2 pins. Table 8 shows the various boot modes supported on the LPC3130/3131:
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
17 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 8.
LPC3130/3131 boot modes
Boot mode
GPIO0 GPIO1 GPIO2 Description
NAND
0
0
0
Boots from NAND flash. If proper image is not found,
boot ROM will switch to DFU boot mode.
SPI
0
0
1
Boot from SPI NOR flash connected to SPI_CS_OUT0. If
proper image is not found, boot ROM will switch to DFU
boot mode.
DFU
0
1
0
Device boots via USB using DFU class specification.
SD/MMC
0
1
1
Boot ROM searches all the partitions on the
SD/MMC/SDHC/MMC+/eMMC/eSD card for boot image.
If partition table is missing, it will start searching from
sector 0. A valid image is said to be found if a valid image
header is found, followed by a valid image. If a proper
image is not found, boot ROM will switch to DFU boot
mode.
Reserved 0
1
0
0
Reserved for testing.
NOR flash
1
0
1
Boot from parallel NOR flash connected to
EBI_NSTCS_1.
UART
1
1
0
Boot ROM tries to download boot image from UART
((115200 – 8 – n -1) assuming 12 MHz FFAST clock).
Test
1
1
1
Boot ROM is testing ISRAM using memory pattern test.
After test switches to UART boot mode.
6.8 Internal RAM memory
The ISRAM (Internal Static RAM Memory) controller module is used as controller
between the AHB bus and the internal RAM memory. The internal RAM memory can be
used as working memory for the ARM processor and as temporary storage to execute the
code that is loaded by boot ROM from external devices such as SPI-flash, NAND flash,
and SD/MMC cards.
This module has the following features:
• Capacity of 96 kB (LPC3130) or 192 kB (LPC3131)
• On LPC3131 implemented as two independent 96 kB memory banks
6.9 Memory Card Interface (MCI)
The MCI controller interface can be used to access memory cards according to the
Secure Digital (SD) and Multi-Media Card (MMC) standards. The host controller can be
used to interface to small form factor expansion cards compliant to the SDIO card
standard as well. Finally, the MCI supports CE-ATA 1.1 compliant hard disk drives.
This module has the following features:
•
•
•
•
•
•
One 8-bit wide interface.
Supports high-speed SD, versions 1.01, 1.10 and 2.0.
Supports SDIO version 1.10.
Supports MMCplus, MMCmobile and MMCmicro cards based on MMC 4.1.
Supports SDHC memory cards.
CRC generation and checking.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
18 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
•
•
•
•
•
•
•
•
•
•
Supports 1/4-bit SD cards.
Card detection and write protection.
FIFO buffers of 16 bytes deep.
Host pull-up control.
SDIO suspend and resume.
1 to 65 535 bytes blocks.
Suspend and resume operations.
SDIO Read-wait.
Maximum clock speed of 52 MHz (MMC 4.1).
Supports CE-ATA 1.1:
– 8 bit data width
– Including ATA module
6.10 High-speed Universal Serial Bus 2.0 On-The-Go (OTG)
The USB OTG module allows the LPC3130/3131 to connect directly to a USB host such
as a PC (in device mode) or to a USB device in host mode. In addition, the LPC3130/3131
has a special, built-in mode in which it enumerates as a Device Firmware Upgrade (DFU)
class, which allows for a (factory) download of the device firmware through USB.
This module has the following features:
•
•
•
•
•
•
•
Complies with Universal Serial Bus specification 2.0.
Complies with USB On-The-Go supplement.
Complies with Enhanced Host Controller Interface Specification.
Supports auto USB 2.0 mode discovery.
Supports all high-speed USB-compliant peripherals.
Supports all full-speed USB-compliant peripherals.
Supports software Host Negotiation Protocol (HNP) and Session Request Protocol
(SRP) for OTG peripherals.
• Contains UTMI+ compliant transceiver (PHY).
• Supports interrupts.
• This module has its own, integrated DMA engine.
6.11 DMA controller
The DMA Controller can perform DMA transfers on the AHB bus without using the CPU.
This module has the following features:
• Supported transfer types:
Memory to memory:
– Memory can be copied from the source address to the destination address with a
specified length, while incrementing the address for both the source and
destination.
Memory to peripheral:
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
19 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
– Data is transferred from incrementing memory to a fixed address of a peripheral.
The flow is controlled by the peripheral.
Peripheral to memory:
– Data is transferred from a fixed address of a peripheral to incrementing memory.
The flow is controlled by the peripheral.
• Supports single data transfers for all transfer types.
• Supports burst transfers for memory to memory transfers. A burst always consists of
multiples of 4 (32 bit) words.
• The DMA controller has 12 channels.
• Scatter-gather is used to gather data located at different areas of memory. Two
channels are needed per scatter-gather action.
• Supports byte, half word and word transfers, and correctly aligns it over the AHB bus.
• Compatible with ARM flow control for single requests (sreq), last single requests
(lsreq), terminal count info (tc), and dma clearing (clr).
• Supports swapping in endianess of the transported data.
Table 9:
Peripherals that support DMA access
Peripheral name
Supported Transfer Types
NAND flash controller
Memory to memory
SPI
Memory to peripheral and peripheral to memory
MCI
Memory to peripheral and peripheral to memory
LCD interface
Memory to peripheral
UART
Memory to peripheral and peripheral to memory
I2C0/1-bus master/slave
Memory to peripheral and peripheral to memory
I2S0/1 receive
Peripheral to memory
I2S0/1 transmit
Memory to peripheral
PCM interface
Memory to peripheral and peripheral to memory
6.12 Interrupt controller (INTC)
The interrupt controller collects interrupt requests from multiple devices, masks interrupt
requests, and forwards the combined requests to the processor. The interrupt controller
also provides facilities to identify the interrupt requesting devices to be served.
This module has the following features:
• The interrupt controller decodes all the interrupt requests issued by the on-chip
peripherals.
• Two interrupt lines (Fast Interrupt Request (FIQ), Interrupt Request (IRQ)) to the ARM
core. The ARM core supports two distinct levels of priority on all interrupt sources,
FIQ for high priority interrupts and IRQ for normal priority interrupts.
•
•
•
•
Software interrupt request capability associated with each request input.
Visibility of the interrupt’s request state before masking.
Support for nesting of interrupt service routines.
Interrupts routed to IRQ and to FIQ are vectored.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
20 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
• Level interrupt support.
The following blocks can generate interrupts:
•
•
•
•
•
•
•
•
•
•
•
•
•
NAND flash controller
USB 2.0 high-speed OTG
Event router
10-bit ADC
UART
LCD
MCI
SPI
I2C0 and I2C1 controllers
Timer0, Timer1, Timer2, and Timer3
I2S transmit: I2STX_0 and I2STX_1
I2S receive: I2SRX_0 and I2SRX_1
DMA
6.13 Multi-layer AHB
The multi-layer AHB is an interconnection scheme based on the AHB protocol that
enables parallel access paths between multiple masters and slaves in a system.
Multiple masters can have access to different slaves at the same time.
Figure 5 gives an overview of the multi-layer AHB configuration in the LPC3130/3131.
AHB masters and slaves are numbered according to their AHB port number.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
21 of 68
LPC3130/3131
NXP Semiconductors
masters
0
ARM
926EJ-S
1
D-CACHE
DMA
I-CACHE
Low-cost, low-power ARM926EJ-S microcontrollers
USB-OTG
AHB
MASTER
2
3
slaves
0
asynchronous
bridge
AHB-APB
BRIDGE 0
0
1
EVENT ROUTER
2
10-bit ADC
3
WDT
SYSTEM CONTROL
5
6
asynchronous
bridge
1
AHB-APB
BRIDGE 1
asynchronous
bridge
2
RNG
0
AHB-APB
BRIDGE 2
asynchronous
bridge
3
1
TIMER 0
0
1
PCM
LCD
0
AHB-APB
BRIDGE 3
2
TIMER 1
3
TIMER 2
2
TIMER 3
4
IOCONFIG
CGU
4
5
PWM
I2C0 I2C0
6
3
UART
SPI
I2S0/1
synchronous bridge
4
AHB-APB
BRIDGE 4
0
DMA REGISTERS
5
6
1
NAND REGISTERS
INTERRUPT CONTROLLER
NAND CONTROLLER
BUFFER
7
8
9
10
11
12
13
MCI SD/SDIO
USB HIGH-SPEED OTG
ISRAM 0
ISRAM 1(1)
ISROM
MPMC CONFIG
MPMC CONTROLLER
AHB MULTILAYER MATRIX
= master/slave connection supported by matrix
002aae126
(1) LPC3131 only.
Fig 5.
LPC3130/3131 multi-layer AHB matrix connections
This module has the following features:
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
22 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
• Supports all combinations of 32-bit masters and slaves (fully connected interconnect
matrix).
• Round-robin priority mechanism for bus arbitration: all masters have the same priority
and get bus access in their natural order
• Four devices on a master port (listed in their natural order for bus arbitration):
– DMA
– ARM926 instruction port
– ARM926 data port
– USB OTG
• Devices on a slave port (some ports are shared between multiple devices):
– AHB to APB Bridge 0
– AHB to APB Bridge 1
– AHB to APB Bridge 2
– AHB to APB Bridge 3
– AHB to APB Bridge 4
– Interrupt Controller
– NAND flash controller
– MCI SD/SDIO
– USB 2.0 high-speed OTG
– 96 kB ISRAM
– 96 kB ISRAM (LPC3131 only)
– 128 kB ROM
– MPMC
6.14 APB bridge
The APB bridge is a bus bridge between the AMBA Advanced High-performance Bus
(AHB) and the ARM Peripheral Bus (APB) interface.
The module supports two different architectures:
• Single-clock architecture, synchronous bridge. The same clock is used at the AHB
side and at the APB side of the bridge. The AHB-to-APB4 bridge uses this
architecture.
• Dual-clock architecture, asynchronous bridge. Different clocks are used at the AHB
side and at the APB side of the bridge. The AHB-to-APB0, AHB-to-APB1,
AHB-to-APB2, and AHB-to-APB3 bridges use this architecture.
6.15 Clock Generation Unit (CGU)
The clock generation unit generates all clock signals in the system and controls the reset
signals for all modules. The structure of the CGU is shown in Figure 6. Each output clock
generated by the CGU belongs to one of the domains. Each clock domain is fed by a
single base clock that originates from one of the available clock sources. Within a clock
domain, fractional dividers are available to divide the base clock to a lower frequency.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
23 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Within most clock domains, the output clocks are again grouped into one or more
subdomains. All output clocks within one subdomain are either all generated by the same
fractional divider or they are connected directly to the base clock. Therefore all output
clocks within one subdomain have the same frequency and all output clocks within one
clock domain are synchronous because they originate from the same base clock.
The CGU reference clock is generated by the external crystal. In addition, the CGU has
several Phase Locked Loop (PLL) circuits to generate clock signals that can be used for
system clocks and/or audio clocks. All clock sources, except the output of the PLLs, can
be used as reference input for the PLLs.
This module has the following features:
• Advanced features to optimize the system for low power:
– All output clocks can be disabled individually for flexible power optimization.
– Some modules have automatic clock gating. They are only active when bus access
to the module is required.
– Variable clock scaling for automatic power optimization of the AHB bus (high clock
frequency when the bus is active, low clock frequency when the bus is idle).
– Clock wake-up feature: module clocks can be programmed to be activated
automatically on the basis of an event detected by the event router (see also
Section 6.19). For example, all clocks (including the ARM /bus clocks) are off and
activated automatically when a button is pressed.
• Supports five clock sources:
– Reference clock generated by the oscillator with an external crystal.
– Pins I2SRX_BCK0, I2SRX_WS0, I2SRX_BCK1 and I2SRX_WS1 are used to input
external clock signals (used for generating audio frequencies in I2SRX slave mode,
see also Section 6.4).
• Supports two PLLs:
– System PLL generates programmable system clock frequency from its reference
input.
– I2S PLL generates programmable audio clock frequency (typically 256 × fs) from its
reference input.
Remark: Both the System PLL and the I2S PLL generate their frequencies based
on their (individual) reference clocks. The reference clocks can be programmed to
the oscillator clock or one of the external clock signals.
• Highly flexible switchbox to distribute the signals from the clock sources to the module
clocks:
– Each clock generated by the CGU is derived from one of the base clocks and
optionally divided by a fractional divider.
– Each base clock can be programmed to have any one of the clock sources as an
input clock.
– Fractional dividers can be used to divide a base clock by a fractional number to a
lower clock frequency.
– Fractional dividers support clock stretching to obtain a (near) 50 % duty cycle
output clock.
• Register interface to reset all modules under software control.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
24 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
• Based on the input of the Watchdog timer (see also Section 6.16), the CGU can
generate a system-wide reset in the case of a system stall.
clock resources
subdomain clocks
BASE
EXTERNAL
CRYSTAL
clock outputs
FRACTIONAL
DIVIDER 0
OSCILLATOR
FRACTIONAL
DIVIDER m
I2SRX_BCK0
I2SRX_WS0
I2SRX_BCK1
I2SRX_WS1
SYSTEM
PLL
CLOCK DOMAIN 0
to modules
I2S/AUDIO
PLL
CLOCK DOMAIN n
SWITCHBOX
002aae085
The LPC3130/3131 has 11 clock domains (n = 11). The number of fractional dividers m depends on the clock domain.
Fig 6. CGU block diagram
6.16 Watchdog Timer (WDT)
The watchdog timer can be used to generate a system reset if there is a CPU/software
crash. In addition, the watchdog timer can be used as an ordinary timer. Figure 7 shows
how the watchdog timer module is connected in the system.
This module has the following features:
• In the event of a software or hardware failure, generates a chip-wide reset request
when its programmed time-out period has expired (output m1).
• Watchdog counter can be reset by a periodical software trigger.
• After a reset, a register will indicate whether a reset has occurred because of a
watchdog generated reset.
• Watchdog timer can also be used as a normal timer (output m0).
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
25 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
APB
m0
EVENT ROUTER
m1
CGU
WDT
INTERRUPT
CONTROLLER
FIQ
IRQ
reset
002aae086
Fig 7. Block diagram of the Watchdog timer
6.17 Input/Output configuration module (IOCONFIG)
The General Purpose Input/Output (GPIO) pins can be controlled through the register
interface provided in the IOCONFIG module. Next to several dedicated GPIO pins, most
digital I/O pins can also be used as GPIO if they are not required for their normal,
dedicated function.
This module has the following features:
• Provides control for the digital pins that can double as GPIO (next to their normal
function). The pinning list in Table 4 indicates which pins can double as GPIO.
• Each pin controlled by the IOCONFIG can be configured for four operational modes:
– Normal operation (i.e. controlled by a function block).
– Driven LOW.
– Driven HIGH.
– High impedance/input.
• The GPIO pins can be observed (read) in any mode.
• The register interface provides set and clear access methods for choosing the
operational mode.
6.18 10-bit Analog-to-Digital Converter (ADC10B)
This module is a 10-bit successive approximation Analog-to-Digital Converter (ADC) with
an input multiplexer to allow for multiple analog signals on its input. A common use of this
module is to read out multiple keys on one input from a resistor network.
This module has the following features:
• Four analog input channels, selected by an analog multiplexer.
• Programmable ADC resolution from 2 bit to 10 bit.
• The maximum conversion rate is 400 ksample/s for 10 bit resolution and
1500 ksample/s for 2 bit resolution.
• Single A/D conversion scan mode and continuous A/D conversion scan mode.
• Power-down mode.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
26 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.19 Event router
The event router extends the interrupt capability of the system by offering a flexible and
versatile way of generating interrupts. Combined with the wake-up functionality of the
CGU, it also offers a way to wake up the system from suspend mode (with all clocks
deactivated).
interrupt 0
interrupt 1
APB
EVENT ROUTER
interrupt 2
INTERRUPT
CONTROLLER
interrupt 3
cgu wakeup
CGU
external pins
internal
input signals (GPIO configurable)
002aae087
Fig 8. Event router block diagram
The event router has four interrupt outputs connected to the interrupt controller and one
wake-up output connected to the CGU as shown in Figure 8. The output signals are
activated when an event (for instance a rising edge) is detected on one of the input
signals. The input signals of the event router are connected to relevant internal control
signals in the system or to external signals through pins of the LPC3130/3131.
This module has the following features:
• Provides programmable routing of input events to multiple outputs for use as
interrupts or wake up signals.
• Input events can come from internal signals or from the pins that can be used as
GPIO.
•
•
•
•
•
•
•
•
•
Inputs can be used either directly or latched (edge detected) as an event source.
The active level (polarity) of the input signal for triggering events is programmable.
Direct events will disappear when the input becomes inactive.
Latched events will remain active until they are explicitly cleared.
Each input can be masked globally for all inputs at once.
Each input can be masked for each output individually.
Event detect status can be read for each output separately.
Event detection is fully asynchronous (no active clock required).
Module can be used to generate a system wake-up from suspend mode.
Remark: All pins that can be used as GPIO are connected to the event router (see
Figure 8). Note that they can be used to trigger events when in normal functional mode or
in GPIO mode.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
27 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.20 Random number generator
The Random Number Generator (RNG) generates true random numbers for use in
advanced security and Digital Rights Management (DRM) related schemes. These
schemes rely upon truly random, i.e. completely unpredictable numbers.
This module has the following features:
• True random number generator.
• The random number register does not rely on any kind of reset.
• The generators are free running in order to ensure randomness and security.
6.21 Serial Peripheral Interface (SPI)
The SPI module is used for synchronous serial data communication with other devices
which support the SPI/SSI protocol. Examples are memories, cameras, or WiFi-g.
The SPI/SSI-bus is a 5-wire interface, and it is suitable for low, medium, and high data rate
transfers.
This module has the following features:
• Supports Motorola SPI frame format with a word size of 8/16 bits.
• Texas Instruments SSI (Synchronous Serial Interface) frame format with a word size
of 4 bit to 16 bit.
•
•
•
•
•
•
•
•
Receive FIFO and transmit FIFO of 64 half-words each.
Serial clock rate master mode maximum 45 MHz.
Serial clock rate slave mode maximum 25 MHz.
Support for single data access DMA.
Full-duplex operation.
Supports up to three slaves.
Supports maskable interrupts.
Supports DMA transfers.
6.22 Universal Asynchronous Receiver Transmitter (UART)
The UART module supports the industry standard serial interface.
This module has the following features:
•
•
•
•
•
•
•
•
•
Programmable baud rate with a maximum of 1049 kBd.
Programmable data length (5 bit to 8 bit).
Implements only asynchronous UART.
Transmit break character length indication.
Programmable one to two stops bits in transmission.
Odd/Even/Force parity check/generation.
Frame error, overrun error and break detection.
Automatic hardware flow control.
Independent control of transmit, receive, line status, data set interrupts, and FIFOs.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
28 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
• SIR-IrDA encoder/decoder (from 2400 to 115 kBd).
• Supports maskable interrupts.
• Supports DMA transfers.
6.23 Pulse Code Modulation (PCM) interface
The PCM interface supports the PCM and IOM interfaces.
The IOM (ISDN Oriented Modular) interface is primarily used to interconnect
telecommunications ICs providing ISDN compatibility. It delivers a symmetrical full-duplex
communication link containing user data, control/programming lines, and status channels.
PCM (Pulse Code Modulation) is a very common method used for transmitting analog
data in digital format. Most common applications of PCM are digital audio as in Audio CD
and computers, digital telephony and videos.
This module has the following features:
• Four-wire serial interface.
• Can function in both Master and Slave modes.
• Supports:
– PCM: Single clocking physical format.
– Multi-Protocol (MP) PCM: Configurable directional per slot.
– IOM-2: Extended ISDN-Oriented modular. Double clocking physical format.
•
•
•
•
Twelve eight bit slots in a frame with enabling control per slot.
Internal frame clock generation in master mode.
Receive and transmit DMA handshaking using a request/clear protocol.
Interrupt generation per frame.
6.24 LCD interface
The dedicated LCD interface contains logic to interface to a 6800 (Motorola) or 8080
(Intel) compatible LCD controllers which support 4/8/16 bit modes. This module also
supports a serial interface mode. The speed of the interface can be adjusted in software
to match the speed of the connected LCD display.
This module has the following features:
• 4/8/16 bit parallel interface mode: 6800-series, 8080-series.
• Serial interface mode.
• Supports multiple frequencies for the 6800/8080 bus to support high- and low-speed
controllers.
• Supports polling the busy flag from LCD controller to off-load the CPU from polling.
• Contains an 16 byte FIFO for sending control and data information to the LCD
controller.
• Supports maskable interrupts.
• Supports DMA transfers.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
29 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.25 I2C-bus master/slave interface
The LPC3130/3131 contains two I2C master/slave interfaces.
This module has the following features:
• I2C-bus interface 0 (I2C0): I2C0 is a standard I2C-compliant bus interface with
open-drain pins. This interface supports functions described in the I2C-bus
specification for speeds up to 400 kHz. This includes multi-master operation and
allows powering off this device in a working system while leaving the I2C-bus
functional.
• I2C-bus interface 1 (I2C1): I2C1 uses standard I/O pins and is intended for use with a
single-master I2C-bus and does not support powering off of this device. Standard I/Os
also do not support multi-master I2C implementations.
• Supports normal mode (100 kHz SCL).
• Fast mode (400 kHz SCL with 24 MHz APB clock; 325 kHz with12 MHz APB clock;
175 kHz with 6 MHz APB clock).
• Interrupt support.
• Supports DMA transfers (single).
• Four modes of operation:
– Master transmitter
– Master receiver
– Slave transmitter
– Slave receiver
6.26 LCD/NAND flash/SDRAM multiplexing
The LPC3130/3131 contains a rich set of specialized hardware interfaces but the TFBGA
package does not contain enough pins to allow use of all signals of all interfaces
simultaneously. Therefore a pin-multiplexing scheme is created, which allows the
selection of the right interface for the application.
Pin multiplexing is enabled between the following interfaces:
•
•
•
•
between the dedicated LCD interface and the external bus interface.
between the NAND flash controller and the memory card interface.
between UART and SPI.
between I2STX_0 output and the PCM interface.
The pin interface multiplexing is subdivided into five categories: storage, video, audio,
NAND flash, and UART related pin multiplexing. Each category supports several modes,
which can be selected by programming the corresponding registers in the SysCReg.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
30 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.26.1 Pin connections
Table 10.
Pin descriptions of multiplexed pins
Pin Name
Default Signal
Alternate
Signal
Description
EBI_NSTCS_0
LCD_CSB — LCD chip select for external LCD controller.
Video related pin multiplexing
mLCD_CSB
LCD_CSB
EBI_NSTCS_0 — EBI static memory chip select 0.
mLCD_DB_1
LCD_DB_1
EBI_NSTCS_1
LCD_DB_1 — LCD bidirectional data line 1.
EBI_NSTCS_1 — EBI static memory chip select 1.
mLCD_DB_0
LCD_DB_0
EBI_CLKOUT
LCD_DB_0 — LCD bidirectional data line 0.
EBI_CLKOUT — EBI SDRAM clock signal.
mLCD_E_RD
LCD_E_RD
EBI_CKE
mLCD_RS
LCD_RS
EBI_NDYCS
LCD_E_RD — LCD enable/read signal.
EBI_CKE — EBI SDRAM clock enable.
LCD_RS — LCD register select signal.
EBI_NDYCS — EBI SDRAM chip select.
mLCD_RW_WR
LCD_RW_WR
EBI_DQM_1
LCD_RW_WR — LCD read write/write signal.
EBI_DQM_1 — EBI SDRAM data mask output 1.
mLCD_DB_2
LCD_DB_2
EBI_A_2
LCD_DB_2 — LCD bidirectional data line 2.
EBI_A_2 — EBI address line 2.
mLCD_DB_3
LCD_DB_3
EBI_A_3
LCD_DB_3 — LCD bidirectional data line 3.
mLCD_DB_4
LCD_DB_4
EBI_A_4
LCD_DB_4 — LCD bidirectional data line 4.
EBI_A_3 — EBI address line 3.
EBI_A_4 — EBI address line 4.
mLCD_DB_5
LCD_DB_5
EBI_A_5
LCD_DB_5 — LCD bidirectional data line 5.
EBI_A_5 — EBI address line 5.
mLCD_DB_6
LCD_DB_6
EBI_A_6
LCD_DB_6 — LCD bidirectional data line 6.
EBI_A_6 — EBI address line 6.
mLCD_DB_7
LCD_DB_7
EBI_A_7
LCD_DB_7 — LCD bidirectional data line 7.
mLCD_DB_8
LCD_DB_8
EBI_A_8
LCD_DB_8 — LCD bidirectional data line 8.
EBI_A_7 — EBI address line 7.
EBI_A_8 — EBI address line 8.
mLCD_DB_9
LCD_DB_9
EBI_A_9
LCD_DB_9 — LCD bidirectional data line 9.
EBI_A_9 — EBI address line 9.
mLCD_DB_10
LCD_DB_10
EBI_A_10
LCD_DB_10 — LCD bidirectional data line 10.
EBI_A_10 — EBI address line 10.
mLCD_DB_11
LCD_DB_11
EBI_A_11
mLCD_DB_12
LCD_DB_12
EBI_A_12
LCD_DB_11 — LCD bidirectional data line 11.
EBI_A_11 — EBI address line 11.
LCD_DB_12 — LCD bidirectional data line 12.
EBI_A_12 — EBI address line 12.
mLCD_DB_13
LCD_DB_13
EBI_A_13
LCD_DB_13 — LCD bidirectional data line 13.
EBI_A_13 — EBI address line 13.
mLCD_DB_14
LCD_DB_14
EBI_A_14
LCD_DB_14 — LCD bidirectional data line 14.
EBI_A_14 — EBI address line 14.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
31 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 10.
Pin descriptions of multiplexed pins …continued
Pin Name
Default Signal
Alternate
Signal
Description
mLCD_DB_15
LCD_DB_15
EBI_A_15
LCD_DB_15 — LCD bidirectional data line 15.
EBI_A_15 — EBI address line 15.
Storage related pin multiplexing
mGPIO5
GPIO5
MCI_CLK
mGPIO6
GPIO6
MCI_CMD
GPIO5 — General Purpose I/O pin 5.
MCI_CLK — MCI card clock.
GPIO_6 — General Purpose I/O pin 6.
MCI_CMD — MCI card command input/output.
mGPIO7
GPIO7
MCI_DAT_0
GPIO7 — General Purpose I/O pin 7.
MCI_DAT_0 — MCI card data input/output line 0.
mGPIO8
GPIO8
MCI_DAT_1
GPIO8 — General Purpose I/O pin 8.
MCI_DAT_1 — MCI card data input/output line 1.
mGPIO9
GPIO9
MCI_DAT_2
mGPIO10
GPIO10
MCI_DAT_3
GPIO9 — General Purpose I/O pin 9.
MCI_DAT_2 — MCI card data input/output line 2.
GPIO10 — General Purpose I/O pin 10.
MCI_DAT_3 — MCI card data input/output line 3.
NAND related pin multiplexing
mNAND_RYBN0 NAND_RYBN0
MCI_DAT_4
NAND_RYBN0 — NAND flash controller Read/Not busy signal 0.
MCI_DAT_4 — MCI card data input/output line 4.
mNAND_RYBN1 NAND_RYBN1
MCI_DAT_5
NAND_RYBN1 — NAND flash controller Read/Not busy signal 1.
MCI_DAT_5 — MCI card data input/output line 5.
mNAND_RYBN2 NAND_RYBN2
MCI_DAT_6
NAND_RYBN2 — NAND flash controller Read/Not busy signal 2.
MCI_DAT_6 — MCI card data input/output line 6.
mNAND_RYBN3 NAND_RYBN3
MCI_DAT7
NAND_RYBN3 — NAND flash controller Read/Not busy signal 3.
MCI_DAT7 — MCI card data input/output line 7.
Audio related pin multiplexing
mI2STX_DATA0
I2STX_DATA0
PCM_DA
I2STX_DATA0 — I2S-bus interface 0 transmit data signal.
mI2STX_BCK0
I2STX_BCK0
PCM_FSC
I2STX_BCK0 — I2S-bus interface 0 transmit bitclock signal.
PCM_DA — PCM serial data line A.
PCM_FSC — PCM frame synchronization signal.
mI2STX_WS0
I2STX_WS0
PCM_DCLK
I2STX_WS0 — I2S-bus interface 0 transmit word select signal.
PCM_DCLK — PCM data clock output.
mI2STX_CLK0
I2STX_CLK0
PCM_DB
I2STX_CLK0 — I2S-bus interface 0 transmit clock signal.
PCM_DB — PCM serial data line B.
UART related pin multiplexing
mUART_CTS_N
UART_CTS_N
SPI_CS_OUT1 UART_CTS_N — UART modem control Clear-to-send signal.
SPI_CS_OUT1 — SPI chip select out for slave 1 (used in master
mode).
mUART_RTS_N
UART_RTS_N
SPI_CS_OUT2 UART_RTS_N — UART modem control Request-to-Send signal.
SPI_CS_OUT2 — SPI chip select out for slave 2 (used in master
mode).
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
32 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.26.2 Multiplexing between LCD and MPMC
The multiplexing between the LCD interface and MPMC allows for the following two
modes of operation:
• MPMC-mode: SDRAM and bus-based LCD or SRAM.
• LCD-mode: Dedicated LCD-Interface.
The external NAND flash is accessible in both modes.
The block diagram Figure 9 gives a high level overview of the modules in the chip that are
involved in the pin interface multiplexing between the EBI, NAND flash controller, MPMC,
and RAM-based LCD interface.
LPC31xx
control
NAND_NCS_[0:3]
NAND_RYBN[0:3]
EBI_NCAS_BLOUT_0
EBI_NRAS_BLOUT_1
EBI_DQM_0_NOE
control
NAND
FLASH
INTERFACE
control
(ALE, CLE)
2
2
address
EBI_A_[1:0] 2
data
16
data
16
data
control
3
16
EBI_A_0_ALE
EBI_A_1_CLE
EBI_D_[15:0]
EBI
SUP4
MPMC
address
EBI_A_[15:2] 14
address 16
1
control
6
data
LCD_DB_[15:2]
14
LCD_DB_[15:2] (LCD mode)/
EBI_A_[15:2] (MPMC mode)
14
0
SYSCREG_MUX_LCD_EBI_SEL
register
(I/O multplexing)
LCD
mode
LCD
data
LCD_DB_[1:0],
control
1
6
6
0
SUP8
MPMC
mode
LCD_CSB/EBI_NSTCS_0
LCD_DB_1/EBI_NSTCS_1
LCD_DB_0/EBI_CLKOUT
LCD_E_RD/EBI_CKE
LCD_RS/EBI_NDYCS
LCD_RW_WR/EBI_DQM_1
002aae157
Fig 9.
Diagram of LCD and MPMC multiplexing
Figure 9 only shows the signals that are involved in pad-muxing, so not all interface
signals are visible.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
33 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
The EBI unit between the NAND flash interface and the MPMC contains an arbiter that
determines which interface is muxed to the outside world. Both NAND flash and
SDRAM/SRAM initiate a request to the EBI unit. This request is granted using round-robin
arbitration (see Section 6.6).
6.26.3 Supply domains
As is shown in Figure 9 the EBI (NAND flash/MPMC-control/data) is connected to a
different supply domain than the LCD interface. The EBI control and address signals are
muxed with the LCD interface signals and are part of supply domain SUP8. The
SDRAM/SRAM data lines are shared with the NAND flash through the EBI and are part of
supply domain SUP4. Therefore the following rules apply for connecting memories:
1. SDRAM and bus-based LCD or SRAM: This is the MPMC mode. The supply voltage
for SDRAM/SRAM/bus-based LCD and NAND flash must be the same.The dedicated
LCD interface is not available in this MPMC mode.
2. Dedicated LCD interface only: This is the LCD mode. The NAND flash supply voltage
(SUP4) can be different from the LCD supply voltage (SUP8).
6.27 Timer module
The LPC3130/3131 contains four fully independent timer modules, which can be used to
generate interrupts after a pre-set time interval has elapsed.
This module has the following features:
• Each timer is a 32 bit wide down-counter with selectable pre-scale. The pre-scaler
allows using either the module clock directly or the clock divided by 16 or 256.
• Two modes of operation:
– Free-running timer: The timer generates an interrupt when the counter reaches
zero. The timer wraps around to 0xFFFFFFFF and continues counting down.
– Periodic timer: The timer generates an interrupt when the counter reaches zero. It
reloads the value from a load register and continues counting down from that
value. An interrupt will be generated every time the counter reaches zero. This
effectively gives a repeated interrupt at a regular interval.
• At any time the current timer value can be read.
• At any time the value in the load register may be re-written, causing the timer to
restart.
6.28 Pulse Width Modulation (PWM) module
This PWM can be used to generate a pulse width modulated or a pulse density modulated
signal. With an external low pass filter, the module can be used to generate a
low-frequency analog signal. A typical use of the output of the module is to control the
backlight of an LCD display.
This module has the following features:
• Supports Pulse Width Modulation (PWM) with software controlled duty cycle.
• Supports Pulse Density Modulation (PDM) with software controlled pulse density.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
34 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
6.29 System control registers
The System Control Registers (SysCReg) module provides a register interface for some
of the high-level settings in the system such as multiplexers and mode settings. This is an
auxiliary module included in this overview for the sake of completeness.
6.30 I2S0/1 interfaces
The I2S0/1 receive and I2S0/1 transmit modules have the following features:
•
•
•
•
•
Audio interface compatible with the I2S standard.
I2S0/1 receive supports master mode and slave mode.
I2S0/1 transmit supports master mode.
Supports LSB justified words of 16, 18, 20 and 24 bits.
Supports a configurable number of bit clock periods per Word Select period (up to
128 bit clock periods).
• Supports DMA transfers.
• Transmit FIFO (I2S transmit) or receive FIFO (I2S receive) of 4 stereo samples.
• Supports single 16 bit transfers to/from the left or right FIFO.
• Supports single 24 bit transfers to/from the left or right FIFO.
• Supports 32-bit interleaved transfers, with the lower 16 bits representing the left audio
sample, and the higher 16 bits representing the right audio sample.
• Supports two 16-bit audio samples combined in a 32-bit word (2 left or 2 right
samples) to reduce busload.
• Provides maskable interrupts for audio status: FIFO underrun/overrun/full/
half_full/not empty for left and right channel separately.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
35 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
7. Limiting values
Table 11. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
All digital I/O pins
VI
input voltage
−0.5
-
+3.6
V
VO
output voltage
−0.5
-
+3.6
V
IO
output current
-
4
-
mA
−40
25
125
°C
−65
-
+150
°C
−40
+25
+85
°C
VDDE_IOC = 3.3 V
Temperature values
Tj
junction temperature
Tstg
storage temperature
Tamb
ambient temperature
[2]
Electrostatic handling
Vesd
electrostatic
discharge voltage
−500
-
+500
V
machine model
−100
-
+100
V
charged device
model
-
500
-
V
human body model
[3]
[1]
The following applies to the limiting values:
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless
otherwise noted.
[2]
Dependent on package type.
[3]
Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
36 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
8. Static characteristics
Table 12: Static characteristics
Tamb = −40 °C to +85 °C unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
input/output supply
voltage
NAND flash controller
pads (SUP4) and LCD
interface (SUP8); 1.8 V
mode
1.65
1.8
1.95
V
NAND flash controller
pads (SUP4) and LCD
interface (SUP8); 2.8 V
mode
2.5
2.8
3.1
V
other peripherals
(SUP 3)
2.7
3.3
3.6
V
Supply pins
VDD(IO)
VDD(CORE)
core supply voltage
(SUP1)
1.0
1.2
1.3
V
VDD(OSC_PLL)
oscillator and PLL
supply voltage
on pin VDDA12; for
12 MHz oscillator
(SUP1)
1.0
1.2
1.3
V
VDD(ADC)
ADC supply voltage
on pin
ADC10B_VDDA33; for
10-bit ADC (SUP 3)
2.7
3.3
3.6
V
VBUS
bus supply voltage
on pin USB_VBUS
(SUP5)
-
5.0
-
V
on pin USB_VDDA33
(SUP 3)
3.0
3.3
3.6
V
on pin
USB_VDDA33_DRV
(SUP 3); driver
2.7
3.3
3.6
V
on pin
USB_VDDA12_PLL
(SUP1)
1.1
1.2
1.3
V
VDDA(USB)(3V3) USB analog supply
voltage (3.3 V)
VDDA(PLL)(1V2)
PLL analog supply
voltage (1.2 V)
Input pins and I/O pins configured as input
VI
input voltage
0
-
VDDE_IOC
V
VIH
HIGH-level input
voltage
SUP3; SUP4; SUP8
0.7VDDE_IOx
(x = A, B, C)
-
-
V
VIL
LOW-level input
voltage
SUP3; SUP4; SUP8
-
-
0.3VDDE_IOx V
(x = A, B, C)
Vhys
hysteresis voltage
SUP4; SUP8
V
1.8 V mode
400
-
600
mV
2.8 V mode
550
-
850
mV
SUP3
0.1VDDE_IOC
-
-
V
IIL
LOW-level input
current
VI = 0 V; no pull-up
-
-
<tbd>
µA
IIH
HIGH-level input
current
VI = VDD(IO); no
pull-down
-
-
<tbd>
µA
Ilatch
I/O latch-up current
−(1.5VDD(IO)) < VI <
(1.5VDD(IO))
-
-
<tbd>
mA
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
37 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 12: Static characteristics
Tamb = −40 °C to +85 °C unless otherwise specified.
Symbol
Parameter
Conditions
Ipu
pull-up current
inputs with pull-up;
VI = 0
Ipd
Ci
pull-down current
input capacitance
Min
Typ
Max
Unit
SUP4/SUP8;
1.8 V mode
<tbd>
<tbd>
<tbd>
µA
SUP4/SUP8;
2.8 V mode
<tbd>
<tbd>
<tbd>
µA
SUP3
<tbd>
<tbd>
<tbd>
µA
SUP4/SUP8;
1.8 V mode
<tbd>
<tbd>
<tbd>
µA
SUP4/SUP8;
2.8 V mode
<tbd>
<tbd>
<tbd>
µA
SUP3
<tbd>
<tbd>
<tbd>
µA
excluding bonding pad
capacitance
-
-
<tbd>
pF
<tbd>
-
VDD(IO)
V
1.8 V mode
<tbd>
<tbd>
<tbd>
V
2.8 V mode
VDD(IO) − 0.26
<tbd>
<tbd>
V
SUP3; IOH = 6 mA
VDD(IO) − 0.26
-
-
V
SUP3; IOH = 30 mA
VDD(IO) − 0.38
-
-
V
1.8 V mode
<tbd>
<tbd>
<tbd>
V
2.8 V mode
<tbd>
<tbd>
<tbd>
V
SUP3; IOL = 4 mA
-
-
<tbd>
V
VDD = VDDE_IOx
(x = A, B, C);
VOH = VDD − 0.4 V
<tbd>
-
-
mA
VDD = VDDE_IOx
(x = A, B, C);
VOH = VDD − 0.4 V
<tbd>
-
-
mA
VDD = VDDE_IOx
(x = A, B, C);
VOL = 0.4 V
<tbd>
-
-
mA
VDD = VDDE_IOx
(x = A, B, C);
VOL = 0.4 V
<tbd>
-
-
mA
VO = 0 V; VO = VDD;
no pull-up/down
-
-
0.064
µA
inputs with pull-down;
VI = VDD
Output pins and I/O pins configured as output
VO
output voltage
VOH
HIGH-level output
voltage
VOL
IOH
IOL
IOZ
LOW-level output
voltage
HIGH-level output
current
LOW-level output
current
OFF-state output
current
SUP4; SUP8;
IOH = 6 mA:
SUP4; SUP8 outputs;
IOL = 4 mA
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
38 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 12: Static characteristics
Tamb = −40 °C to +85 °C unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
IOHS
HIGH-level
short-circuit output
current
VDD = VDDE_IOx
(x = A, B, C); VOH = 0 V
-
-
<tbd>
mA
VDD = VDDE_IOx
(x = A, B, C); VOH = 0 V
-
-
<tbd>
mA
LOW-level
short-circuit output
current
VDD = VDDE_IOx
(x = A, B, C); VOL = VDD
-
-
<tbd>
mA
VDD = VDDE_IOx
(x = A, B, C); VOL = VDD
-
-
<tbd>
mA
VDD = VDDE_IOx
(x = A, B, C)
<tbd>
-
<tbd>
Ω
VDD = VDDE_IOx
(x = A, B, C)
<tbd>
-
<tbd>
Ω
VO = 0 V; VO = VDD;
no pull-up/down
-
-
7.25
µA
IOLS
Zo
output impedance
I2C0-bus pins
IOZ
OFF-state output
current
VIH
HIGH-level input
voltage
<tbd>
-
-
V
VIL
LOW-level input
voltage
-
-
<tbd>
V
Vhys
hysteresis voltage
-
<tbd>
-
V
VOL
LOW-level output
voltage
IOLS = 3 mA
-
-
0.298
V
ILI
input leakage current
VI = <tbd>
-
<tbd>
<tbd>
µA
VI = 5 V
-
<tbd>
<tbd>
µA
high-speed mode
−50
200
500
mV
full-speed/low-speed
mode
800
-
2500
mV
chirp mode
−50
-
600
mV
100
400
1100
mV
USB
VIC
Vi(dif)
common-mode input
voltage
differential input
voltage
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
39 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 13. ADC static characteristics
VDD(ADC) = 2.7 V to 3.6 V; Tamb = −40 °C to +85 °C unless otherwise specified; ADC frequency <tbd>.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIA
analog input voltage
0[1]
-
VDD(ADC)
V
Cia
analog input capacitance
-
-
<tbd>
pF
Nres(ADC)
ADC resolution
differential linearity error
ED
2
-
10
bit
[2][3][4]
-
-
±1
LSB
EL(adj)
integral non-linearity
[2][5]
-
-
±1
LSB
EO
offset error
[2][6]
-
-
<tbd>
LSB
gain error
[2][7]
-
-
<tbd>
%
ET
absolute error
[2][8]
-
-
<tbd>
LSB
Verr(O)
offset error voltage
−20
-
+20
mV
Verr(FS)
full-scale error voltage
<tbd>
-
<tbd>
mV
-
-
<tbd>
kΩ
EG
[9]
voltage source interface
resistance
Rvsi
[1]
On pin ADC10B_GNDA.
[2]
Conditions: VSSA = 0 V on pin ADC10B_GNDA, VDD(ADC) = 3.3 V.
[3]
The ADC is monotonic, there are no missing codes.
[4]
The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 10.
[5]
The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after
appropriate adjustment of gain and offset errors. See Figure 10.
[6]
The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the
ideal curve. See Figure 10.
[7]
The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset
error, and the straight line which fits the ideal transfer curve. See Figure 10.
[8]
The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC
and the ideal transfer curve. See Figure 10.
[9]
See Figure 11.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
40 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
offset
error
EO
gain
error
EG
1023
1022
1021
1020
1019
1018
(2)
7
code
out
(1)
6
5
(5)
4
(4)
3
(3)
2
1 LSB
(ideal)
1
0
1
2
3
4
5
offset error
EO
6
7
1018
1019
1020
1021
1022
1023
1024
VIA (LSBideal)
1 LSB =
VDDA − VSSA
1024
002aac046
(1) Example of an actual transfer curve.
(2) The ideal transfer curve.
(3) Differential linearity error (ED).
(4) Integral non-linearity (EL(adj)).
(5) Center of a step of the actual transfer curve.
Fig 10. ADC characteristics
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
41 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
LPC31XX
tbd kΩ
AD10B_GPA[0:3]
ADCSAMPLE
tbd pF
Rvsi
tbd pF
VEXT
VSSA
002aae136
Fig 11. Suggested 10-bit ADC interface
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
42 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9. Dynamic characteristics
9.1 LCD controller
9.1.1 Intel 8080 mode
Table 14. Dynamic characteristics: LCD controller in Intel 8080 mode
CL = 25 pF, Tamb = −40 °C to +85 °C, unless otherwise specified; VDD(IO) = 1.8 V and 2.8 V (SUP8).
Symbol
Parameter
Typ
Max
Unit
tsu(A)
address set-up time
th(A)
address hold time
-
1 × LCDCLK
-
ns
-
2 × LCDCLK
-
access cycle time
[1]
ns
write enable pulse width
[1]
-
5 × LCDCLK
-
ns
tw(en)R
read enable pulse width
[1]
-
2 × LCDCLK
-
ns
tr
rise time
-
2 × LCDCLK
-
ns
2
-
5
ns
tf
fall time
2
-
5
ns
tsu(D)
data input set-up time
<tbd>
-
-
ns
th(D)
data input hold time
<tbd>
-
-
ns
td(QV)
data output valid delay time
-
−1 × LCDCLK -
ns
tdis(Q)
data output disable time
-
2 × LCDCLK
ns
tcy(a)
tw(en)W
[1]
Conditions
Min
-
Timing is determined by the LCD Interface Control Register fields: INVERT_CS = 1; MI = 0; PS = 0;
INVERT_E_RD = 0. See LPC3130/3131 user manual.
th(A)
mLCD_RS
mLCD_CSB
tcy(a)
tsu(A)
tw(en)R and tw(en)W
mLCD_RW_WR,
mLCD_E_RD
tf
tr
tsu(D)
th(D)
mLCD_DB[15:0] (16 bit mode),
mLCD_DB[15:8] (8 bit mode),
mLCD_DB[15:12] (4 bit mode)
read access
td(QV)
mLCD_DB[15:0] (16 bit mode),
mLCD_DB[15:8] (8 bit mode),
mLCD_DB[15:12] (4 bit mode)
tdis(Q)
write access
002aae207
Fig 12. LCD timing (Intel 8080 mode)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
43 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.1.2 Motorola 6800 mode
Table 15. Dynamic characteristics: LCD controller in Motorola 6800 mode
CL = 25 pF, Tamb = −40 °C to +85 °C, unless otherwise specified; VDD(IO) = 1.8 V and 2.8 V (SUP8).
Symbol
Parameter
tsu(A)
th(A)
Conditions
Min
Typ
Max
Unit
address set-up time
-
1 × LCDCLK
-
ns
address hold time
-
2 × LCDCLK
-
ns
-
5 × LCDCLK
-
ns
-
5
ns
[1]
tcy(a)
access cycle time
tr
rise time
2
tf
fall time
2
-
5
ns
tsu(D)
data input set-up time
<tbd>
-
-
ns
th(D)
data input hold time
<tbd>
-
-
ns
td(QV)
data output valid delay time
-
−1 × LCDCLK
-
ns
tdis(Q)
data output disable time
tw(en)
enable pulse width
[1]
-
2 × LCDCLK
-
ns
read cycle
-
2 × LCDCLK
-
ns
write cycle
-
2 × LCDCLK
-
ns
Timing is derived from the LCD Interface Control Register fields: INVERT_CS = 1; MI = 1; PS = 0;
INVERT_E_RD = 0. See LPC3130/3131 user manual.
mLCD_CSB
tcy(a)
tw(en)
mLCD_E_RD
tr
tf
th(A)
tsu(A)
mLCD_RS,
mLCD_RW_WR
tsu(D)
th(D)
mLCD_DB[15:0] (16 bit mode),
mLCD_DB[15:8] (8 bit mode),
mLCD_DB[15:12] (4 bit mode)
read access
td(QV)
mLCD_DB[15:0] (16 bit mode),
mLCD_DB[15:8] (8 bit mode),
mLCD_DB[15:12] (4 bit mode)
tdis(Q)
write access
002aae208
Fig 13. LCD timing (Motorola 6800 mode)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
44 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.1.3 Serial mode
Table 16. Dynamic characteristics: LCD controller serial mode
CL = 25 pF, Tamb = −40 °C to +85 °C, unless otherwise specified; VDD(IO) = 1.8 V and 2.8 V (SUP8).
Symbol Parameter
Conditions
Min
Typ
Max
Unit
Tcy(clk)
clock cycle time
[1]
-
5 × LCDCLK
-
ns
tw(clk)H
HIGH clock pulse width
[1]
-
3 × LCDCLK
-
ns
tw(clk)L
LOW clock pulse width
[1]
-
2 × LCDCLK
-
ns
tr
rise time
2
-
5
ns
tf
fall time
2
-
5
ns
tsu(A)
address set-up time
-
3 × LCDCLK
-
ns
th(A)
address hold time
-
2 × LCDCLK
-
ns
tsu(D)
data input set-up time
<tbd>
-
-
ns
th(D)
data input hold time
<tbd>
-
-
ns
tsu(S)
chip select set-up time
-
3 × LCDCLK
-
ns
th(S)
chip select hold time
-
1 × LCDCLK
-
ns
td(QV)
data output valid delay time
-
−1 × LCDCLK
-
ns
[1]
Timing is determined by the LCD Interface Control Register fields: PS = 1; SERIAL_CLK_SHIFT = 3;
SERIAL_READ_POS = 3. See the LPC3130/3131 user manual.
tsu(S)
th(S)
mLCD_CSB
tsu(A)
th(A)
mLCD_RS
Tcy(clk)
tw(clk)L
mLCD_DB13
(serial clock)
tw(clk)H
tf
tr
tsu(D)
th(D)
mLCD_DB14
(serial data in)
td(QV)
tdis(Q)
mLCD_DB15
(serial data out)
002aae209
Fig 14. LCD timing (serial mode)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
45 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.2 SRAM controller
Table 17. Dynamic characteristics: static external memory interface
CL = 25 pF, Tamb = −40 °C to +85 °C, unless otherwise specified; VDD(IO) = 1.8 V and 2.8 V (SUP8).
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
0
-
ns
Common to read and write cycles
tCSLAV
CS LOW to address valid
time
Read cycle parameters
tOELAV
OE LOW to address valid
time
[1]
-
0 − WAITOEN × HCLK
-
ns
tBLSLAV
BLS LOW to address valid
time
[1]
-
0 − WAITOEN × HCLK
-
ns
tCSLOEL
CS LOW to OE LOW time
-
0 + WAITOEN × HCLK
-
ns
tCSLBLSL
CS LOW to BLS LOW time
[1]
-
0 + WAITOEN × HCLK
-
ns
tOELOEH
OE LOW to OE HIGH time
[1][2][3]
-
(WAITRD − WAITOEN + 1) × HCLK
-
ns
tBLSLBLSH
BLS LOW to BLS HIGH time
[1][2][3]
-
(WAITRD − WAITOEN + 1) × HCLK
-
ns
tsu(DQ)
data input/output set-up time
-
8
-
ns
th(DQ)
data input/output hold time
-
0
-
ns
tCSHOEH
CS HIGH to OE HIGH time
-
0
-
ns
tCSHBLSH
CS HIGH to BLS HIGH time
-
0
-
ns
tOEHANV
OE HIGH to address invalid
time
-
2 × HCLK
-
ns
tBLSHANV
BLS HIGH to address invalid
time
-
2 × HCLK
-
ns
Write cycle parameters
tCSLDV
CS LOW to data valid time
-
0
-
ns
tCSLWEL
CS LOW to WE LOW time
[4]
-
(WAITWEN + 1) × HCLK
-
ns
tCSLBLSL
CS LOW to BLS LOW time
[4]
-
WAITWEN × HCLK
-
ns
WE LOW to data valid time
[4]
-
0 − (WAITWEN + 1) × HCLK
-
ns
tWELWEH
WE LOW to WE HIGH time
[4][5][6]
-
(WAITWR − WAITWEN + 1) × HCLK
-
ns
tBLSLBLSH
BLS LOW to BLS HIGH time
[4][5]
-
(WAITWR − WAITWEN + 3) × HCLK
-
ns
tWEHANV
WE HIGH to address invalid
time
-
1 × HCLK
-
ns
tWEHDNV
WE HIGH to data invalid time
-
1 × HCLK
-
ns
tBLSHANV
BLS HIGH to address invalid
time
-
0
-
ns
tBLSHDNV
BLS HIGH to data invalid
time
-
0
-
ns
tWELDV
[1]
Refer to the LPC3130/3131 user manual for the programming of WAITOEN and HCLK.
[2]
Refer to the LPC3130/3131 user manual for the programming of WAITRD and HCLK.
[3]
(WAITRD − WAITOEN + 1) = 3 min at 60 MHz.
[4]
Refer to the LPC3130/3131 user manual for the programming of WAITWEN and HCLK.
[5]
Refer to the LPC3130/3131 user manual for the programming of WAITWR and HCLK.
[6]
(WAITWD − WAITWEN + 1) = 3 min at 60 MHz.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
46 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
EBI_NSTCS_X
tCSLAV
EBI_A_[15:0]
tCSHOEH
tOELAV
EBI_DQM_0_NOE
tOELOEH
tCSLOEL
tOEHANV
tBLSLAV
tCSHBLSH
EBI_NCAS_BLOUT_0
EBI_NRAS_BLOUT_1
tBLSLBLSH
tCSLBLSL
tBLSHANV
EBI_D_[15:0]
th(DQ)
tsu(DQ)
002aae161
Fig 15. External memory read access to static memory
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
47 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
EBI_NSTCS_X
tCSLAV
EBI_A_[15:0]
tBLSHANV
tCSLDV
tWEHANV
EBI_D_[15:0]
tWELWEH
tCSLWEL
tWEHDNV
tWELDV
tBLSHDNV
EBI_NWE
tBLSLBLSH
tCSLBLSL
EBI_NCAS_BLOUT_0
EBI_NRAS_BLOUT_1
002aae162
Fig 16. External memory write access to static memory
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
48 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.3 SDRAM controller
Table 18. Dynamic characteristics of SDR SDRAM memory interface
Tamb = −40 °C to +85 °C, unless otherwise specified; VDD(IO) = 1.8 V and 2.8 V (SUP8).[1][2]
Symbol
Parameter
Conditions
[3]
Min
Typical
Max
Unit
-
<tbd>
-
MHz
foper
operating frequency
TCLCL
clock cycle time
-
<tbd>
-
ns
tCLCX
clock LOW time
-
<tbd>
-
ns
tCHCX
clock HIGH time
-
<tbd>
-
ns
td(o)
output delay time
on pin EBI_CKE
-
-
3.5
ns
on pins
EBI_NRAS_BLOUT,
EBI_NCAS_BLOUT,
EBI_NWE,
EBI_NDYCS
-
-
3.5
ns
on pins EBI_DQM_1,
EBI_DQM_0_NOE
-
-
5
ns
on pin EBI_CKE
0.2
-
3.5
ns
on pins
EBI_NRAS_BLOUT,
EBI_NCAS_BLOUT,
EBI_NWE,
EBI_NDYCS
0.23
-
3.5
ns
on pins EBI_DQM_1,
EBI_DQM_0_NOE
2
-
5
ns
th(o)
output hold time
td(AV)
address valid delay
time
-
-
5
ns
th(A)
address hold time
0.1
-
5
ns
td(QV)
data output valid
delay time
-
-
9
ns
th(Q)
data output hold time
4
-
10
ns
tsu(D)
data input set-up
time
<tbd>
-
-
ns
th(D)
data input hold time
<tbd>
-
-
ns
tQZ
data output
high-impedance time
-
-
<TCLCL
ns
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
All values valid for pads set to high slew rate. VDDE_IOA = VDDE_IOB = 1.8 ± 0.15 V. VDDI = 1.2 ± 0.1 V.
[3]
foper = 1/TCLCL
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
49 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
TCLCL
tCLCX
tCHCX
EBI_CLKOUT
td(o)
EBI_NRAS_BLOUT
EBI_NCAS_BLOUT
EBI_NWE
EBI_CKE
EBI_NDYCS
th(o)
READ
NOP
NOP
NOP
td(o)
READ
NOP
NOP
th(o)
EBI_DQMx
th(A)
EBI_A_[15:2]
BANK,
COLUMN
tsu(D) th(D)
EBI_D_[15:0]
DATA n
CAS
LATENCY = 2
DATA n+2
DATA n+1
DATA n+3
002aae121
EBI_CKE is HIGH.
Fig 17. SDRAM burst read timing
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
50 of 68
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
NXP Semiconductors
LPC3130_3131_1
Preliminary data sheet
TCLCL
tCLCX
tCHCX
EBI_CLKOUT
td(o)
th(o)
EBI_CKE
td(o)
EBI_NRAS_BLOUT
EBI_NCAS_BLOUT
EBI_NWE
EBI_CKE
EBI_NDYCS
th(o)
ACTIVE
WRITE
Rev. 1 — 9 February 2009
EBI_DQMx
EBI_A_[15:2]
td(AV)
BANK,
COLUMN
BANK,
ROW
EBI_D_[15:0]
DATA
td(QV)
th(Q)
002aae123
Fig 18. SDRAM bank activate and write timing
51 of 68
© NXP B.V. 2009. All rights reserved.
LPC3130/3131
tQZ
Low-cost, low-power ARM926EJ-S microcontrollers
th(A)
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.4 NAND flash memory controller
Table 19. Dynamic characteristics of the NAND flash memory controller
Tamb = −40 °C to +85 °C, unless otherwise specified.
Symbol
Parameter
Typical
Unit
tREH
RE HIGH hold time
[1][2]
tRP
THCLK x (TREH+1)
ns
RE pulse width
[1][2]
THCLK x (TRP + 1)
ns
WE HIGH hold time
[1][2]
THCLK x (TWH + 1)
ns
WE pulse width
[1][2]
THCLK x (TWP + 1)
ns
tCLS
CLE set-up time
[1][2]
THCLK x (TCLS + 1)
ns
tCLH
CLE hold time
[1][2]
THCLK x (TCLH + 1)
ns
ALE set-up time
[1][2]
THCLK x (TALS + 1)
ns
ALE hold time
[1][2]
THCLK x (TALH + 1)
ns
tCS
CE set-up time
[1][2]
THCLK x (TCS + 1)
ns
tCH
CE hold time
[1][2]
THCLK x (TCH + 1)
ns
tWH
tWP
tALS
tALH
[1]
THCLK = 1/NANDFLASH_NAND_CLK, see LPC3130/3131 user manual.
[2]
See registers NandTiming1 and NandTiming2 in the LPC3130/3131 user manual.
mNAND_NCS
tCS
tCH
tWP tWH
EBI_NWE
EBI_A_1_CLE
tCLS
tCLH
EBI_A_0_ALE
tALS
tALH
tRP tREH
EBI_DQM_0_NOE
002aae353
Fig 19.
NAND flash controller write and read timing
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
52 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.5 Crystal oscillator
Table 20:
Dynamic characteristics: crystal oscillator
Symbol
Parameter
fosc
Conditions
Min
Typ
Max
Unit
oscillator frequency
10
12
25
MHz
δclk
clock duty cycle
45
50
55
%
Cxtal
crystal capacitance
input; on pin
FFAST_IN
-
-
2
pF
output; on pin
FFAST_OUT
-
-
0.74
pF
tstartup
start-up time
-
500
-
µs
Pdrive
drive power
100
-
500
µW
9.6 SPI
Table 21. Dynamic characteristics of SPI pins
Tamb = −40 °C to +85 °C for industrial applications
Symbol
Parameter
Min
Typ
Max
Unit
TSPICYC
SPI cycle time
<tbd>
<tbd>
<tbd>
ns
tSPICLKH
SPICLK HIGH time
<tbd>
<tbd>
<tbd>
ns
tSPICLKL
SPICLK LOW time
<tbd>
<tbd>
<tbd>
ns
tSPIDSU
SPI data set-up time
<tbd>
<tbd>
<tbd>
ns
tSPIDH
SPI data hold time
<tbd>
<tbd>
<tbd>
ns
tSPIQV
SPI data output valid time
<tbd>
<tbd>
<tbd>
ns
tSPIOH
SPI output data hold time
<tbd>
<tbd>
<tbd>
ns
TSPICYC
SPI cycle time
<tbd>
<tbd>
<tbd>
ns
tSPICLKH
SPICLK HIGH time
<tbd>
<tbd>
<tbd>
ns
tSPICLKL
SPICLK LOW time
<tbd>
<tbd>
<tbd>
ns
tSPIDSU
SPI data set-up time
<tbd>
<tbd>
<tbd>
ns
tSPIDH
SPI data hold time
<tbd>
<tbd>
<tbd>
ns
tSPIQV
SPI data output valid time
<tbd>
<tbd>
<tbd>
ns
tSPIOH
SPI output data hold time
<tbd>
<tbd>
<tbd>
ns
SPI
master
SPI slave
Remark: Note that the signal names SCK, MISO, and MOSI correspond to signals on
pins SPI_SCK, SPI_MOSI, and SPI_MISO in the following SPI timing diagrams.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
53 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
TSPICYC
tSPICLKH
tSPICLKL
SCK (CPOL = 0)
SCK (CPOL = 1)
tSPIOH
tSPIQV
MOSI
DATA VALID
DATA VALID
tSPIDSU
MISO
DATA VALID
tSPIDH
DATA VALID
002aad986
Fig 20.
SPI master timing (CPHA = 1)
TSPICYC
tSPICLKH
tSPICLKL
SCK (CPOL = 0)
SCK (CPOL = 1)
tSPIOH
tSPIQV
MOSI
DATA VALID
DATA VALID
tSPIDSU
MISO
DATA VALID
tSPIDH
DATA VALID
002aad987
Fig 21.
SPI master timing (CPHA = 0)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
54 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
TSPICYC
tSPICLKH
tSPICLKL
tSPIDSU
tSPIDH
SCK (CPOL = 0)
SCK (CPOL = 1)
MOSI
DATA VALID
DATA VALID
tSPIOH
tSPIQV
MISO
DATA VALID
DATA VALID
002aad988
Fig 22.
SPI slave timing (CPHA = 1)
TSPICYC
tSPICLKH
tSPICLKL
SCK (CPOL = 0)
SCK (CPOL = 1)
tSPIDSU
MOSI
DATA VALID
tSPIDH
DATA VALID
tSPIQV
MISO
DATA VALID
tSPIOH
DATA VALID
002aad989
Fig 23.
SPI slave timing (CPHA = 0)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
55 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.6.1 Texas Instruments synchronous serial mode (SSI mode)
Table 22. Dynamic characteristic: SPI interface (SSI mode)
Tamb = −40 °C to +85 °C; VDD(IO) (SUP3) over specified ranges.[1]
Symbol
Parameter
Conditions
Min
Typ[2]
Max
Unit
tsu(SPI_MISO)
SPI_MISO set-up time
Tamb = 25 °C;
measured in
SPI Master
mode; see
Figure 24
-
11
-
ns
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.
Remark: Note that the signal names SCK, MISO, and MOSI correspond to signals on
pins SPI_SCK, SPI_MOSI, and SPI_MISO in the following SPI timing diagram.
shifting edges
SCK
sampling edges
MOSI
MISO
tsu(SPI_MISO)
002aad326
Fig 24. MISO line set-up time in SSI Master mode
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
56 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
9.7 I2S-bus interface
Table 23. Dynamic characteristics: I2S-bus interface pins
Tamb = −40 °C to +85 °C for industrial applications
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
common to input and output
Tcy(clk)
clock cycle time
<tbd>
<tbd>
<tbd>
<tbd>
tr
rise time
<tbd>
<tbd>
<tbd>
<tbd>
tf
fall time
<tbd>
<tbd>
<tbd>
<tbd>
tWH
pulse width HIGH
<tbd>
<tbd>
<tbd>
<tbd>
tWL
pulse width LOW
<tbd>
<tbd>
<tbd>
<tbd>
on pin
I2STX_DATAx[1]
<tbd>
<tbd>
<tbd>
<tbd>
on pin
I2STX_WSx[1]
<tbd>
<tbd>
<tbd>
<tbd>
output
data output valid time
tv(Q)
input
tsu(D)
data input hold time
th(D)
[1]
data input set-up time
on pin I2SRX_DATAx[1]
<tbd>
<tbd>
<tbd>
<tbd>
on pin
I2SRX_WSx[1]
<tbd>
<tbd>
<tbd>
<tbd>
on pin
I2SRX_DATAx[1]
<tbd>
<tbd>
<tbd>
<tbd>
on pin
I2SRX_WSx[1]
<tbd>
<tbd>
<tbd>
<tbd>
x = 0 or 1.
tf
Tcy(clk)
tr
I2STX_BCK0 or
I2STX_BCK1
tWH
tWL
I2STX_DATA0 or
I2STX_DATA1
tv(Q)
I2STX_WS0 or
I2STX_WS1
tv(Q)
002aae361
Fig 25. I2S-bus timing (output)
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
57 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Tcy(clk)
tf
tr
I2SRX_BCK0 or
I2SRX_BCK1
tWH
tWL
I2SRX_DATA0 or
I2SRX_DATA1
tsu(D)
th(D)
I2SRX_WS0 or
I2SRX_WS1
tsu(D)
th(D)
002aae362
Fig 26. I2S-bus timing (input)
9.8 I2C-bus interface
Table 24. Dynamic characteristics: I2C-bus interface pins
Tamb = −40 °C to +85 °C.[1]
Symbol
Parameter
Conditions
Min
Typ[2]
Max
Unit
fSCL
SCL clock frequency
Standard mode
0
<tbd>
100
kHz
Fast mode
0
<tbd>
400
kHz
tf(o)
output fall time
VIH to VIL
20 + 0.1 × Cb[3]
-
-
ns
tr
rise time
Standard mode
<tbd>
Fast mode
20 + 0.1 ×
fall time
tf
tBUF
bus free time between a STOP and
START condition
tLOW
LOW period of the SCL clock
tHD;STA
hold time (repeated) START
condition
tHIGH
HIGH period of the SCL clock
tSU;DAT
data set-up time
<tbd>
1000
ns
Cb[3]
<tbd>
300
ns
Standard mode
<tbd>
<tbd>
300
ns
Fast mode
20 + 0.1 × Cb[3]
<tbd>
300
ns
-
<tbd>
<tbd>
<tbd>
Standard mode
4.7
<tbd>
<tbd>
µs
Fast mode
1.3
<tbd>
<tbd>
µs
-
<tbd>
<tbd>
<tbd>
Standard mode
4.0
<tbd>
<tbd>
µs
Fast mode
0.6
<tbd>
<tbd>
µs
Standard mode
250
<tbd>
<tbd>
ns
Fast mode
100
<tbd>
<tbd>
ns
tSU;STA
set-up time for a repeated START
condition
-
<tbd>
<tbd>
<tbd>
tSU;STO
set-up time for STOP condition
Standard mode
4.0
<tbd>
<tbd>
µs
Fast mode
0.6
<tbd>
<tbd>
µs
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.
[3]
Bus capacitance Cb in pF, from 10 pF to 400 pF.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
58 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
SDA
tBUF
tLOW
tr
tf
tHD;STA
SCL
P
S
tHD;STA
P
S
tHD;STA
tHIGH
tSU;DAT
tSU;STA
tSU;STO
002aad985
Remark: Signals SDA and SCL correspond to pins I2C_SDAx and I2C_SCLx (x = 0, 1).
Fig 27. I2C-bus pins clock timing
9.9 USB interface
Table 25. Dynamic characteristics: USB pins (high-speed)
CL = 50 pF; Rpu = 1.5 kΩ on D+ to VDD(IO) (SUP3), unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tr
rise time
10 % to 90 %
<tbd>
-
<tbd>
ns
tf
fall time
10 % to 90 %
<tbd>
-
<tbd>
ns
tFRFM
differential rise and fall time
matching
tr / tf
-
-
<tbd>
%
VCRS
output signal crossover voltage
<tbd>
-
<tbd>
V
tFEOPT
source SE0 interval of EOP
see Figure 28
<tbd>
-
<tbd>
ns
tFDEOP
source jitter for differential transition
to SE0 transition
see Figure 28
<tbd>
-
<tbd>
ns
tJR1
receiver jitter to next transition
<tbd>
-
<tbd>
ns
tJR2
receiver jitter for paired transitions
10 % to 90 %
tEOPR1
EOP width at receiver
must reject as
EOP; see
Figure 28
[1]
tEOPR2
EOP width at receiver
must accept as
EOP; see
Figure 28
[1]
[1]
<tbd>
-
<tbd>
ns
<tbd>
-
-
ns
<tbd>
-
-
ns
Characterized but not implemented as production test. Guaranteed by design.
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
59 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
TPERIOD
crossover point
extended
crossover point
differential
data lines
source EOP width: tFEOPT
differential data to
SE0/EOP skew
n × TPERIOD + tFDEOP
receiver EOP width: tEOPR1, tEOPR2
002aab561
Fig 28. Differential data-to-EOP transition skew and EOP width
9.10 10-bit ADC
Table 26:
Dynamic characteristics: 10-bit ADC
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fs
sampling frequency
10 bit resolution
400
-
-
ksample/s
2 bit resolution
-
-
1500
ksample/s
10 bit resolution
-
-
11
clock cycles
2 bit resolution
3
-
-
clock cycles
tconv
conversion time
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
60 of 68
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
Table 27.
NXP Semiconductors
LPC3130_3131_1
Preliminary data sheet
10. Application information
LCD panel connections
TFBGA pin #
Pin name
Reset function
LCD mode
Parallel
Serial
LCD panel data mapping
Control function
16 bit
8 bit
4 bit
6800
8080
mLCD_CSB
-
-
-
LCD_CSB
LCD_CSB
LCD_CSB
L8
mLCD_E_RD/EBI_CKE
mLCD_E_RD
-
-
-
LCD_E
LCD_RD
-
P8
mLCD_RS/EBI_NDYCS
mLCD_RS
-
-
-
LCD_RS
LCD_RS
LCD_RS
N9
mLCD_RW_WR/EBI_DQM1
mLCD_RW_WR
-
-
-
LCD_RW
LCD_WR
-
N8
mLCD_DB0/EBI_CLKOUT
mLCD_DB0
LCD_DBO
-
-
-
-
-
P9
mLCD_DB1/EBI_NSTCS1
mLCD_DB1
LCD_DB1
-
-
-
-
-
N6
mLCD_DB2/EBI_A2
mLCD_DB2
LCD_DB2
-
-
-
-
-
P6
mLCD_DB3/EBI_A3
mLCD_DB3
LCD_DB3
-
-
-
-
-
N7
mLCD_DB3/EBI_A4
mLCD_DB4
LCD_DB4
-
-
-
-
-
P7
mLCD_DB5/EBI_A5
mLCD_DB5
LCD_DB5
-
-
-
-
-
K6
mLCD_DB6/EBI_A6
mLCD_DB6
LCD_DB6
-
-
-
-
-
P5
mLCD_DB3/EBI_A7
mLCD_DB7
LCD_DB7
-
-
-
-
-
N5
mLCD_DB3/EBI_A8
mLCD_DB8
LCD_DB8
LCD_DB0
-
-
-
-
L5
mLCD_DB9/EBI_A9
mLCD_DB9
LCD_DB9
LCD_DB1
-
-
-
-
K7
mLCD_DB10/EBI_A10
mLCD_DB10
LCD_DB10
LCD_DB2
-
-
-
-
N4
mLCD_DB11/EBI_A11
mLCD_DB11
LCD_DB11
LCD_DB3
-
-
-
-
K5
mLCD_DB12/EBI_A12
mLCD_DB12
LCD_DB12
LCD_DB4
LCD_DB0
-
-
-
P4
mLCD_DB13/EBI_A13
mLCD_DB13
LCD_DB13
LCD_DB5
LCD_DB1
-
-
SER_CLK
P3
mLCD_DB14/EBI_A14
mLCD_DB14
LCD_DB14
LCD_DB6
LCD_DB2
-
-
SER_DAT_IN
N3
mLCD_DB15/EBI_A15
mLCD_DB15
LCD_DB15
LCD_DB7
LCD_DB3
-
-
SER_DAT_OUT
61 of 68
© NXP B.V. 2009. All rights reserved.
LPC3130/3131
mLCD_CSB/EBI_nSTCS0
Low-cost, low-power ARM926EJ-S microcontrollers
Rev. 1 — 9 February 2009
K8
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
11. Marking
Table 28.
LPC3130/3131 Marking
Line
Marking
Description
A
LPC3130/3131
BASIC_TYPE
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
62 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
12. Package outline
TFBGA180: thin fine-pitch ball grid array package; 180 balls
SOT570-3
B
D
A
ball A1
index area
A2
A
E
A1
detail X
e1
e
1/2 e
∅v
∅w
b
M
M
C
C A B
C
y1 C
y
P
N
M
L
K
J
H
G
F
E
D
C
B
A
ball A1
index area
e
e2
1/2 e
1
2
3
4
5
6
7
8
9
10
11
12
13
X
14
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
mm
max
nom
min
A
A1
A2
b
D
E
e
e1
e2
v
w
y
y1
1.20
1.06
0.95
0.40
0.35
0.30
0.80
0.71
0.65
0.50
0.45
0.40
12.1
12.0
11.9
12.1
12.0
11.9
0.8
10.4
10.4
0.15
0.05
0.08
0.1
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
08-05-30
08-07-09
SOT570-3
Fig 29. LPC3130/3131 TFBGA180 package outline
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
63 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
13. Abbreviations
Table 29.
Abbreviations
Acronym
Description
A/D
Analog-to-Digital
ADC
Analog-to-Digital Converter
AHB
Advanced High-performance Bus
AMBA
Advanced Microcontroller Bus Architecture
APB
ARM Peripheral Bus
ATA
Advanced Transport Architecture
BIU
Bus Interface Unit
CE
Consumer Electronics
CGU
Clock Generation Unit
CRC
Cyclic Redundancy Check
DFU
Device Firmware Upgrade
DMA
Direct Memory Access
DRM
Digital Rights Management
DSP
Digital Signal Processing
EBI
External Bus Interface
ECC
Error Correction Code
EOP
End Of Packet
ESD
Electrostatic Discharge
FIFO
First In, First Out
FPGA
Field Programmable Gate Array
GF
Galois Field
INTC
Interrupt Controller
IOCONFIG
Input Output Configuration
IOM
ISDN Oriented Modular
IrDA
Infrared Data Association
IROM
Internal ROM
ISRAM
Internal Static RAM
ISROM
Internal Static ROM
JTAG
Joint Test Action Group
LSB
Least Significant Bit
MCI
Memory Card Interface
MCU
MicroController Unit
MMC
Multi-Media Card
MPMC
Multi-Port Memory Controller
OTG
On-The-Go
PCM
Pulse Code Modulation
PHY
Physical Layer
PLL
Phase Locked Loop
PWM
Pulse Width Modulation
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
64 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
Table 29.
Abbreviations …continued
Acronym
Description
RNG
Random Number Generator
ROM
Read-Only Memory
SD
Secure Digital
SDHC
Secure Digital High Capacity
SDIO
Secure Digital Input Output
SDR
Single Data Rate
SE0
Single Ended Zero
SIR
Serial IrDA
SPI
Serial Peripheral Interface
SSI
Serial Synchronous Interface
SysCReg
System Control Registers
TAP
Test Access Port
TDO
Test Data Out
UART
Universal Asynchronous Receiver Transmitter
USB
Universal Serial Bus
UTMI
USB 2.0 Transceiver Macrocell Interface
WDT
WatchDog Timer
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
65 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
14. Revision history
Table 30:
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
LPC3130_3131_1
20090209
Preliminary data sheet
-
-
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
66 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
15. Legal information
15.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
15.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
15.3 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or completeness of such
information and shall have no liability for the consequences of use of such
information.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) may cause permanent
damage to the device. Limiting values are stress ratings only and operation of
the device at these or any other conditions above those given in the
Characteristics sections of this document is not implied. Exposure to limiting
values for extended periods may affect device reliability.
Terms and conditions of sale — NXP Semiconductors products are sold
subject to the general terms and conditions of commercial sale, as published
at http://www.nxp.com/profile/terms, including those pertaining to warranty,
intellectual property rights infringement and limitation of liability, unless
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of
any inconsistency or conflict between information in this document and such
terms and conditions, the latter will prevail.
No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or the
grant, conveyance or implication of any license under any copyrights, patents
or other industrial or intellectual property rights.
15.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP B.V.
16. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
LPC3130_3131_1
Preliminary data sheet
© NXP B.V. 2009. All rights reserved.
Rev. 1 — 9 February 2009
67 of 68
LPC3130/3131
NXP Semiconductors
Low-cost, low-power ARM926EJ-S microcontrollers
17. Contents
1
2
2.1
3
4
5
5.1
6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pinning information . . . . . . . . . . . . . . . . . . . . . . 4
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional description . . . . . . . . . . . . . . . . . . 13
ARM926EJ-S . . . . . . . . . . . . . . . . . . . . . . . . . 13
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 14
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
NAND flash controller . . . . . . . . . . . . . . . . . . . 15
Multi-Port Memory Controller (MPMC) . . . . . . 16
External Bus Interface (EBI) . . . . . . . . . . . . . . 17
Internal ROM Memory . . . . . . . . . . . . . . . . . . 17
Internal RAM memory. . . . . . . . . . . . . . . . . . . 18
Memory Card Interface (MCI) . . . . . . . . . . . . . 18
High-speed Universal Serial Bus 2.0
On-The-Go (OTG) . . . . . . . . . . . . . . . . . . . . . 19
6.11
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 19
6.12
Interrupt controller (INTC). . . . . . . . . . . . . . . . 20
6.13
Multi-layer AHB . . . . . . . . . . . . . . . . . . . . . . . . 21
6.14
APB bridge . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.15
Clock Generation Unit (CGU) . . . . . . . . . . . . . 23
6.16
Watchdog Timer (WDT) . . . . . . . . . . . . . . . . . 25
6.17
Input/Output configuration module
(IOCONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.18
10-bit Analog-to-Digital Converter (ADC10B) . 26
6.19
Event router . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.20
Random number generator. . . . . . . . . . . . . . . 28
6.21
Serial Peripheral Interface (SPI) . . . . . . . . . . . 28
6.22
Universal Asynchronous Receiver
Transmitter (UART) . . . . . . . . . . . . . . . . . . . . . 28
6.23
Pulse Code Modulation (PCM) interface . . . . 29
6.24
LCD interface . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.25
I2C-bus master/slave interface . . . . . . . . . . . . 30
6.26
LCD/NAND flash/SDRAM multiplexing . . . . . 30
6.26.1
Pin connections . . . . . . . . . . . . . . . . . . . . . . . 31
6.26.2
Multiplexing between LCD and MPMC . . . . . . 33
6.26.3
Supply domains . . . . . . . . . . . . . . . . . . . . . . . 34
6.27
Timer module . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.28
Pulse Width Modulation (PWM) module . . . . . 34
6.29
System control registers . . . . . . . . . . . . . . . . . 35
6.30
I2S0/1 interfaces. . . . . . . . . . . . . . . . . . . . . . . 35
7
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 36
8
Static characteristics. . . . . . . . . . . . . . . . . . . . 37
9
9.1
9.1.1
9.1.2
9.1.3
9.2
9.3
9.4
9.5
9.6
9.6.1
9.7
9.8
9.9
9.10
10
11
12
13
14
15
15.1
15.2
15.3
15.4
16
17
Dynamic characteristics . . . . . . . . . . . . . . . . .
LCD controller . . . . . . . . . . . . . . . . . . . . . . . .
Intel 8080 mode . . . . . . . . . . . . . . . . . . . . . . .
Motorola 6800 mode . . . . . . . . . . . . . . . . . . .
Serial mode . . . . . . . . . . . . . . . . . . . . . . . . . .
SRAM controller . . . . . . . . . . . . . . . . . . . . . . .
SDRAM controller . . . . . . . . . . . . . . . . . . . . .
NAND flash memory controller. . . . . . . . . . . .
Crystal oscillator. . . . . . . . . . . . . . . . . . . . . . .
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Texas Instruments synchronous serial
mode (SSI mode) . . . . . . . . . . . . . . . . . . . . . .
I2S-bus interface. . . . . . . . . . . . . . . . . . . . . . .
I2C-bus interface. . . . . . . . . . . . . . . . . . . . . . .
USB interface . . . . . . . . . . . . . . . . . . . . . . . . .
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application information . . . . . . . . . . . . . . . . .
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package outline . . . . . . . . . . . . . . . . . . . . . . . .
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . . .
Legal information . . . . . . . . . . . . . . . . . . . . . .
Data sheet status . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . . .
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
43
43
44
45
46
49
52
53
53
56
57
58
59
60
61
62
63
64
66
67
67
67
67
67
67
68
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2009.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 9 February 2009
Document identifier: LPC3130_3131_1
Similar pages