Lattice LAMXO1200LUTSC-3TN144E La-machxo automotive family data sheet Datasheet

LA-MachXO Automotive Family Data Sheet
DS1003 Version 01.5, November 2007
LA-MachXO Automotive Family Data Sheet
Introduction
April 2006
Data Sheet DS1003
Features
• Programmable sysIO™ buffer supports wide
range of interfaces:
− LVCMOS 3.3/2.5/1.8/1.5/1.2
− LVTTL
− PCI
− LVDS, Bus-LVDS, LVPECL, RSDS
■ Non-volatile, Infinitely Reconfigurable
• Instant-on – powers up in microseconds
• Single chip, no external configuration memory
required
• Excellent design security, no bit stream to
intercept
• Reconfigure SRAM based logic in milliseconds
• SRAM and non-volatile memory programmable
through JTAG port
• Supports background programming of
non-volatile memory
■ sysCLOCK™ PLLs
• Up to two analog PLLs per device
• Clock multiply, divide, and phase shifting
■ System Level Support
• IEEE Standard 1149.1 Boundary Scan
• Onboard oscillator
• Devices operate with 3.3V, 2.5V, 1.8V or 1.2V
power supply
• IEEE 1532 compliant in-system programming
■ AEC-Q100 Tested and Qualified
■ Sleep Mode
• Allows up to 100x static current reduction
■ TransFR™ Reconfiguration (TFR)
Introduction
• In-field logic update while system operates
The LA-MachXO automotive device family is optimized
to meet the requirements of applications traditionally
addressed by CPLDs and low capacity FPGAs: glue
logic, bus bridging, bus interfacing, power-up control,
and control logic. These devices bring together the best
features of CPLD and FPGA devices on a single chip in
AEC-Q100 tested and qualified versions.
■ High I/O to Logic Density
•
•
•
•
256 to 2280 LUT4s
73 to 271 I/Os with extensive package options
Density migration supported
Lead free/RoHS compliant packaging
■ Embedded and Distributed Memory
• Up to 27.6 Kbits sysMEM™ Embedded Block
RAM
• Up to 7.5 Kbits distributed RAM
• Dedicated FIFO control logic
The devices use look-up tables (LUTs) and embedded
block memories traditionally associated with FPGAs for
flexible and efficient logic implementation. Through nonvolatile technology, the devices provide the single-chip,
■ Flexible I/O Buffer
Table 1-1. LA-MachXO Automotive Family Selection Guide
LAMXO256E/C
LAMXO640E/C
LAMXO1200E
LAMXO2280E
LUTs
Device
256
640
1200
2280
Dist. RAM (Kbits)
2.0
6.0
6.25
7.5
0
0
9.2
27.6
EBR SRAM (Kbits)
Number of EBR SRAM Blocks (9 Kbits)
VCC Voltage
0
0
1
3
1.2/1.8/2.5/3.3V
1.2/1.8/2.5/3.3V
1.2
1.2
Number of PLLs
0
0
1
2
Max. I/O
78
159
211
271
78
74
73
73
144-pin Lead-Free TQFP (20x20 mm)
113
113
113
256-ball Lead-Free ftBGA (17x17 mm)
159
211
211
Packages
100-pin Lead-Free TQFP (14x14 mm)
324-ball Lead-Free ftBGA (19x19 mm)
271
© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1-1
DS1003 Introduction_01.0
Introduction
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
high-security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and
careful design will provide the high pin-to-pin performance also associated with CPLDs.
The ispLEVER® design tools from Lattice allow complex designs to be efficiently implemented using the LAMachXO automotive family of devices. Popular logic synthesis tools provide synthesis library support for LAMachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools
to place and route the design in the LA-MachXO device. The ispLEVER tool extracts the timing from the routing
and back-annotates it into the design for timing verification.
1-2
LA-MachXO Automotive Family Data Sheet
Architecture
February 2007
Data Sheet DS1003
Architecture Overview
The LA-MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO).
Some devices in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). Figures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.
The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a
column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks.
The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place
and route software tool automatically allocates these routing resources.
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional
unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register functions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and
PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic
blocks are arranged in a two-dimensional array. Only one type of block is used per row.
In the LA-MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on
different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast
memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM
or FIFO. FIFO support includes dedicated FIFO pointer and flag “hard” control logic to minimize LUT use.
The LA-MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) blocks on larger devices.
These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting
capabilities that are used to manage the frequency and phase relationships of the clocks.
Every device in the family has a JTAG Port that supports programming and configuration of the device as well as
access to the user logic. The LA-MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power
supplies, providing easy integration into the overall system.
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
2-1
DS1003 Architecture_01.2
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-1. Top View of the LA-MachXO1200 Device1
PIOs Arranged into
sysIO Banks
Programmable
Functional Units
with RAM (PFUs)
sysMEM Embedded
Block RAM (EBR)
Programmable
Functional Units
without RAM (PFFs)
sysCLOCK
PLL
JTAG Port
1. Top view of the LA-MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.
Figure 2-2. Top View of the LA-MachXO640 Device
PIOs Arranged into
sysIO Banks
Programmable
Function Units
without RAM (PFFs)
Programmable
Function Units
with RAM (PFUs)
JTAG Port
2-2
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-3. Top View of the LA-MachXO256 Device
Programmable Function
Units without RAM (PFFs)
JTAG Port
PIOs Arranged
into sysIO Banks
Programmable
Function
Units with
RAM (PFUs)
PFU Blocks
The core of the LA-MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform
Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform
Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will
use the term PFU to refer to both PFU and PFF blocks.
Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs
and 25 outputs associated with each PFU block.
Figure 2-4. PFU Diagram
From
Routing
FCIN
LUT4 &
CARRY
LUT4 &
CARRY
LUT4 &
CARRY
Slice 0
D
FF/
Latch
D
FF/
Latch
LUT4 &
CARRY
LUT4 &
CARRY
Slice 1
D
FF/
Latch
LUT4 &
CARRY
LUT4 &
CARRY
D
FF/
Latch
FCO
Slice 3
Slice 2
D
FF/
Latch
LUT4 &
CARRY
D
FF/
Latch
D
FF/
Latch
D
FF/
Latch
To
Routing
Slice
Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and
some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and
LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock
select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice.
The registers in the Slice can be configured for positive/negative and edge/level clocks.
2-3
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU).
There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the signals associated with each Slice.
Figure 2-5. Slice Diagram
To Adjacent Slice/PFU
Slice
OFX1
A1
B1
C1
D1
CO
LUT4 &
CARRY
F1
F
D
SUM
FF/
Latch
Fast Connection
to I/O Cell*
Q1
CI
From
Routing
To
Routing
M1
M0
CO
A0
OFX0
Fast Connection
to I/O Cell*
LUT
Expansion
Mux
B0
C0
D0
LUT4 &
CARRY
F0
F
SUM
OFX0
CI
Control Signals
selected and
inverted per
Slice in routing
D
FF/
Latch
Q0
CE
CLK
LSR
From Adjacent Slice/PFU
Notes:
Some inter-Slice signals are not shown.
* Only PFUs at the edges have fast connections to the I/O cell.
Table 2-1. Slice Signal Descriptions
Function
Type
Signal Names
Description
Input
Data signal
A0, B0, C0, D0 Inputs to LUT4
Input
Data signal
A1, B1, C1, D1 Inputs to LUT4
Input
Multi-purpose
M0/M1
Input
Control signal
CE
Clock Enable
Multipurpose Input
Input
Control signal
LSR
Local Set/Reset
Input
Control signal
CLK
System Clock
Input
Inter-PFU signal
FCIN
Fast Carry In1
Output
Data signals
F0, F1
LUT4 output register bypass signals
Output
Data signals
Q0, Q1
Output
Data signals
OFX0
Output of a LUT5 MUX
Output
Data signals
OFX1
Output of a LUT6, LUT7, LUT82 MUX depending on the Slice
Output
Inter-PFU signal
FCO
Fast Carry Out1
Register Outputs
1. See Figure 2-4 for connection details.
2. Requires two PFUs.
2-4
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Modes of Operation
Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of
all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.
Table 2-2. Slice Modes
Logic
Ripple
RAM
ROM
PFU Slice
LUT 4x2 or LUT 5x1
2-bit Arithmetic Unit
SP 16x2
ROM 16x1 x 2
PFF Slice
LUT 4x2 or LUT 5x1
2-bit Arithmetic Unit
N/A
ROM 16x1 x 2
Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A
LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger
lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.
Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:
•
•
•
•
•
•
•
Addition 2-bit
Subtraction 2-bit
Add/Subtract 2-bit using dynamic control
Up counter 2-bit
Down counter 2-bit
Ripple mode multiplier building block
Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B
Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast
arithmetic functions to be constructed by concatenating Slices.
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory.
Through the combination of LUTs and Slices, a variety of different memories can be constructed.
The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the
software will construct these using distributed memory primitives that represent the capabilities of the PFU.
Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows
the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice
functions as the read-write port, while the other companion Slice supports the read-only port. For more information
on RAM mode in LA-MachXO devices, please see details of additional technical documentation at the end of this
data sheet.
Table 2-3. Number of Slices Required For Implementing Distributed RAM
SPR16x2
DPR16x2
1
2
Number of Slices
Note: SPR = Single Port RAM, DPR = Dual Port RAM
2-5
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-6. Distributed Memory Primitives
SPR16x2
AD0
AD1
AD2
AD3
DPR16x2
DO0
DI0
DI1
WRE
CK
DO1
WAD0
WAD1
WAD2
WAD3
RAD0
RAD1
RAD2
RAD3
DI0
DI1
WCK
WRE
RDO0
RDO1
WDO0
WDO1
ROM16x1
AD0
AD1
AD2
AD3
DO0
ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is
accomplished through the programming interface during configuration.
PFU Modes of Operation
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the
functionality possible at the PFU level.
Table 2-4. PFU Modes of Operation
Ripple
RAM
ROM
LUT 4x8 or
MUX 2x1 x 8
Logic
2-bit Add x 4
SPR16x2 x 4
DPR16x2 x 2
ROM16x1 x 8
LUT 5x4 or
MUX 4x1 x 4
2-bit Sub x 4
SPR16x4 x 2
DPR16x4 x 1
ROM16x2 x 4
LUT 6x 2 or
MUX 8x1 x 2
2-bit Counter x 4
SPR16x8 x 1
ROM16x4 x 2
LUT 7x1 or
MUX 16x1 x 1
2-bit Comp x 4
ROM16x8 x 1
Routing
There are many resources provided in the LA-MachXO devices to route signals individually or as buses with
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing)
segments.
The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2
(spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connections in the horizontal and vertical directions.
2-6
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the
place and route tool is completely automatic, although an interactive routing editor is available to optimize the
design.
Clock/Control Distribution Network
The LA-MachXO automotive family of devices provides global signals that are available to all PFUs. These signals
consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes
as shown in Figure 2-7 and Figure 2-8. The available clock sources for the LA-MachXO256 and LA-MachXO640
devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the LAMachXO1200 and LA-MachXO2280 devices are four dual function clock pins, up to nine internal routing signals
and up to six PLL outputs.
Figure 2-7. Primary Clocks for LA-MachXO256 and LA-MachXO640 Devices
12
4
16:1
16:1
16:1
16:1
Routing
Clock
Pads
2-7
Primary Clock 0
Primary Clock 1
Primary Clock 2
Primary Clock 3
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-8. Primary Clocks for LA-MachXO1200 and LA-MachXO2280 Devices
Up to 9
4
Up to 6
16:1
Primary Clock 0
Primary Clock 1
16:1
16:1
16:1
Routing
Clock
Pads
Primary Clock 2
Primary Clock 3
PLL
Outputs
Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock
sources come from dual function clock pins and 12 come from internal routing.
Figure 2-9. Secondary Clocks for LA-MachXO Devices
12
4
16:1
16:1
Secondary (Control)
Clocks
16:1
16:1
Routing
Clock
Pads
2-8
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
sysCLOCK Phase Locked Loops (PLLs)
The LA-MachXO1200 and LA-MachXO2280 provide PLL support. The source of the PLL input divider can come
from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider:
from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and
from the routing (or from an external pin). There is a PLL_LOCK signal to indicate that the PLL has locked on to the
input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.
The setup and hold times of the device can be improved by programming a delay in the feedback or input path of
the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after
adjustment and not relock until the tLOCK parameter has been satisfied. Additionally, the phase and duty cycle block
allows the user to adjust the phase and duty cycle of the CLKOS output.
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated
with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider
is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post
scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.
Figure 2-10. PLL Diagram
Dynamic Delay Adjustment
LOCK
RST
CLKI
(from routing or
external pin)
Input Clock
Divider
(CLKI)
Delay
Adjust
Voltage
Controlled
VCO
Oscillator
Post Scalar
Divider
(CLKOP)
Phase/Duty
Select
CLKOS
CLKOP
CLKFB
(from Post Scalar
Divider output,
clock net,
routing/external
pin or CLKINTFB
port
Secondary
Clock
Divider
(CLKOK)
Feedback
Divider
(CLKFB)
CLKOK
CLKINTFB
(internal feedback)
Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.
Figure 2-11. PLL Primitive
RST
CLKI
CLKOP
CLKFB
CLKOS
DDA MODE
EHXPLLC
DDAIZR
CLKOK
LOCK
DDAILAG
CLKINTFB
DDAIDEL[2:0]
2-9
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Table 2-5. PLL Signal Descriptions
Signal
CLKI
I/O
Description
I
Clock input from external pin or routing
I
PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from
CLKINTFB port
RST
I
“1” to reset the input clock divider
CLKOS
O
PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP
O
PLL output clock to clock tree (No phase shift)
CLKOK
O
PLL output to clock tree through secondary clock divider
LOCK
O
“1” indicates PLL LOCK to CLKI
CLKINTFB
O
Internal feedback source, CLKOP divider output before CLOCKTREE
CLKFB
DDAMODE
I
Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static)
DDAIZR
I
Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on
DDAILAG
I
Dynamic Delay Lag/Lead. “1”: Lag, “0”: Lead
DDAIDEL[2:0]
I
Dynamic Delay Input
For more information on the PLL, please see details of additional technical documentation at the end of this data
sheet.
sysMEM Memory
The LA-MachXO1200 and LA-MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR
consists of a 9-Kbit RAM, with dedicated input and output registers.
sysMEM Memory Block
The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be
used in a variety of depths and widths as shown in Table 2-6.
Table 2-6. sysMEM Block Configurations
Memory Mode
Configurations
Single Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
True Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
Pseudo Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
FIFO
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
2-10
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Bus Size Matching
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB
word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for
each port varies, this mapping scheme applies to each port.
RAM Initialization and ROM Operation
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a
ROM.
Memory Cascading
Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools
cascade memory transparently, based on specific design inputs.
Single, Dual, Pseudo-Dual Port and FIFO Modes
Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM
modes, the input data and address for the ports are registered at the input of the memory array. The output data of
the memory is optionally registered at the memory array output.
Figure 2-12. sysMEM Memory Primitives
AD[12:0]
DI[35:0]
CLK
CE
RST
WE
CS[2:0]
EBR
ADA[12:0]
DIA[17:0]
CLKA
CEA
DO[35:0]
RSTA
WEA
CSA[2:0]
DOA[17:0]
True Dual Port RAM
Single Port RAM
AD[12:0]
CLK
CE
RST
CS[2:0]
EBR
ADW[12:0]
DI[35:0]
CLKW
CEW
DO[35:0]
WE
RST
CS[2:0]
ROM
DI[35:0]
CLKW
RSTA
WE
CEW
EBR
ADB[12:0]
DIB[17:0]
CEB
CLKB
RSTB
WEB
CSB[2:0]
DOB[17:0]
ADR[12:0]
EBR
DO[35:0]
CER
CLKR
Pseudo-Dual Port RAM
EBR
FIFO
2-11
DO[35:0]
CLKR
RSTB
RE
RCE
FF
AF
EF
AE
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
The EBR memory supports three forms of write behavior for single or dual port operation:
1. Normal – data on the output appears only during the read cycle. During a write cycle, the data (at the current
address) does not appear on the output. This mode is supported for all data widths.
2. Write Through – a copy of the input data appears at the output of the same port. This mode is supported for all
data widths.
3. Read-Before-Write – when new data is being written, the old contents of the address appears at the output.
This mode is supported for x9, x18 and x36 data widths.
FIFO Configuration
The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out,
RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The
Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR.
The range of programming values for these flags are in Table 2-7.
Table 2-7. Programmable FIFO Flag Ranges
Flag Name
Programming Range
1 to (up to 2N-1)
Full (FF)
Almost Full (AF)
1 to Full-1
Almost Empty (AE)
1 to Full-1
Empty (EF)
0
N = Address bit width
The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset
that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset
state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in
the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the
FIFO.
Memory Core Reset
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both
ports are as shown in Figure 2-13.
2-12
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-13. Memory Core Reset
Memory Core
D
SET
Q
Port A[17:0]
LCLR
Output Data
Latches
D
SET
Q
Port B[17:0]
LCLR
RSTA
RSTB
GSRN
Programmable Disable
For further information on the sysMEM EBR block, see the details of additional technical documentation at the end
of this data sheet.
EBR Asynchronous Reset
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the
reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the
EBR is always asynchronous.
Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram
Reset
Clock
Clock
Enable
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after
the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset
release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.
If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during
device Wake Up must occur before the release of the device I/Os becoming active.
These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing
rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and
RPReset are always asynchronous EBR inputs.
Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.
2-13
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
PIO Groups
On the LA-MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO
cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while
PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.
On all LA-MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/
O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.
The LA-MachXO1200 and LA-MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger
devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these
devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI
support.
Figure 2-15. Group of Four Programmable I/O Cells
This structure is used on the
left and right of MachXO devices
PIO A
PADA "T"
PIO B
PADB "C"
PIO C
PADC "T"
PIO D
PADD "C"
Four PIOs
Figure 2-16. Group of Six Programmable I/O Cells
This structure is used on the top
and bottom of MachXO devices
PIO A
PADA "T"
PIO B
PADB "C"
PIO C
PADC "T"
PIO D
PADD "C"
PIO E
PADE "T"
PIO F
PADF "C"
Six PIOs
PIO
The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks
receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast
2-14
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17
shows the LA-MachXO PIO logic.
The tristate control signal is multiplexed from the output data signals and their complements. In addition a global
signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.
The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device.
In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.
Figure 2-17. LA-MachXO PIO Block Diagram
From Routing
TS
TSALL
From Routing
TO
sysIO
Buffer
Fast Output
Data signal
DO
PAD
1
Input
Data Signal
2
Programmable
Delay Elements
3
+
4-
Note: Buffer 1 tracks with VCCAUX
Buffer 2 tracks with VCCIO.
Buffer 3 tracks with internal 1.2V VREF.
Buffer 4 is available in MachXO1200 and MachXO2280 devices only.
From Complementary
Pad
sysIO Buffer
Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the
periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety
of standards that are found in today’s systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.
In the LA-MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are
powered using VCCIO. In addition to the Bank VCCIO supplies, the LA-MachXO devices have a VCC core logic power
supply, and a VCCAUX supply that powers up a variety of internal circuits including all the differential and referenced
input buffers.
LA-MachXO256 and LA-MachXO640 devices contain single-ended input buffers and single-ended output buffers
with complementary outputs on all the I/O Banks.
LA-MachXO1200 and LA-MachXO2280 devices contain two types of sysIO buffer pairs.
1. Top and Bottom sysIO Buffer Pairs
The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and
two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom
2-15
Lattice Semiconductor
Architecture
LA-MachXO Automotive Family Data Sheet
of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The
PCI clamp is enabled after VCC, VCCAUX, and VCCIO are at valid operating levels and the device has been configured.
The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of
the differential input buffer.
2. Left and Right sysIO Buffer Pairs
The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and
two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a
differential driver per output pair. The referenced input buffer can also be configured as a differential input
buffer. In these Banks the two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the
negative side of the differential I/O.
Typical I/O Behavior During Power-up
The internal power-on-reset (POR) signal is deactivated when VCC and VCCAUX have reached satisfactory levels.
After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure
that all VCCIO Banks are active with valid input logic levels to properly control the output logic states of all the I/O
Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a
weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have
reached satisfactory levels at which time the I/Os will take on the user-configured settings.
The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers
should be powered up along with the FPGA core fabric. Therefore, VCCIO supplies should be powered up before or
together with the VCC and VCCAUX supplies
Supported Standards
The LA-MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can
be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and
3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive
strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and
LVPECL output emulation is supported on all devices. The LA-MachXO1200 and LA-MachXO2280 support on-chip
LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS,
BLVDS and LVPECL are supported on all Banks of LA-MachXO1200 and LA-MachXO2280 devices. PCI support is
provided in the top Banks of the LA-MachXO1200 and LA-MachXO2280 devices. Table 2-8 summarizes the I/O
characteristics of the devices in the LA-MachXO family.
Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the
LA-MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please
see the details of additional technical documentation at the end of this data sheet.
2-16
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Table 2-8. I/O Support Device by Device
LA-MachXO256
Number of I/O Banks
LA-MachXO640
LA-MachXO1200
LA-MachXO2280
2
4
8
8
Single-ended
(all I/O Banks)
Single-ended
(all I/O Banks)
Single-ended
(all I/O Banks)
Single-ended
(all I/O Banks)
Differential Receivers
(all I/O Banks)
Differential Receivers
(all I/O Banks)
Single-ended buffers
with complementary
outputs (all I/O Banks)
Single-ended buffers
with complementary
outputs (all I/O Banks)
Type of Input Buffers
Single-ended buffers
with complementary
outputs (all I/O Banks)
Single-ended buffers
with complementary
outputs (all I/O Banks)
Types of Output Buffers
Differential buffers with Differential buffers with
true LVDS outputs (50% true LVDS outputs (50%
on left and right side)
on left and right side)
Differential Output
Emulation Capability
All I/O Banks
All I/O Banks
All I/O Banks
All I/O Banks
PCI Support
No
No
Top side only
Top side only
Table 2-9. Supported Input Standards
VCCIO (Typ.)
Input Standard
3.3V
2.5V
1.8V
1.5V
1.2V
LVTTL
√
√
√
√
√
LVCMOS33
√
√
√
√
√
LVCMOS25
√
√
√
√
√
Single Ended Interfaces
LVCMOS18
√
LVCMOS15
√
LVCMOS12
√
PCI1
√
√
√
√
√
√
√
√
√
Differential Interfaces
BLVDS2, LVDS2, LVPECL2, RSDS2
√
1. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only.
2. LA-MachXO1200 and LA-MachXO2280 devices only.
2-17
Lattice Semiconductor
Architecture
LA-MachXO Automotive Family Data Sheet
Table 2-10. Supported Output Standards
Output Standard
Drive
VCCIO (Typ.)
LVTTL
4mA, 8mA, 12mA, 16mA
3.3
LVCMOS33
4mA, 8mA, 12mA, 14mA
3.3
LVCMOS25
4mA, 8mA, 12mA, 14mA
2.5
LVCMOS18
4mA, 8mA, 12mA, 14mA
1.8
LVCMOS15
4mA, 8mA
1.5
LVCMOS12
2mA, 6mA
1.2
Single-ended Interfaces
LVCMOS33, Open Drain
4mA, 8mA, 12mA, 14mA
—
LVCMOS25, Open Drain
4mA, 8mA, 12mA, 14mA
—
LVCMOS18, Open Drain
4mA, 8mA, 12mA, 14mA
—
LVCMOS15, Open Drain
4mA, 8mA
—
LVCMOS12, Open Drain
2mA, 6mA
—
N/A
3.3
N/A
2.5
BLVDS, RSDS
N/A
2.5
LVPECL2
N/A
3.3
PCI333
Differential Interfaces
LVDS1, 2
2
1. LA-MachXO1200 and LA-MachXO2280 devices have dedicated LVDS buffers.
2. These interfaces can be emulated with external resistors in all devices.
3. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only.
sysIO Buffer Banks
The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the LAMachXO1200 and LA-MachXO2280 (two Banks per side). The LA-MachXO640 has four Banks (one Bank per
side). The smallest member of this family, the LA-MachXO256, has only two Banks.
Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage
(VCCIO) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20
and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.
2-18
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-18. LA-MachXO2280 Banks
Bank 7
Bank 1
36
1
34
1
1
Bank 6
34
Bank 4
1
GND
31
VCCIO4
Bank 5
VCCIO1
GND
VCCIO5
1
GND
33
Bank 3
GND
1
Bank 2
VCCIO6
35
GND
GND
Bank 0
VCCIO1
VCCIO7
GND
VCCIO0
1
1
VCCIO2
GND
VCCIO3
GND
33
35
Figure 2-19. LA-MachXO1200 Banks
Bank 7
Bank 1
30
1
26
1
1
Bank 6
Bank 5
20
1
2-19
Bank 4
GND
1
VCCIO4
28
GND
GND
1
Bank 3
VCCIO6
24
26
VCCIO5
GND
Bank 0
Bank 2
VCCIO7
GND
VCCIO0
1
1
28
29
VCCIO2
GND
VCCIO3
GND
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-20. LA-MachXO640 Banks
Bank 3
40
VCCO2
GND
40
37
Bank 2
1
V CCO1
GND
GND
42
1
Bank 0
Bank 1
V CCO3
GND
V CCO0
1
1
Figure 2-21. LA-MachXO256 Banks
V CCO0
1
1
Bank 0
Bank 1
GND
41
37
GND
V CCO1
Hot Socketing
The LA-MachXO automotive devices have been carefully designed to ensure predictable behavior during powerup and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration
2-20
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
with the rest of the system. These capabilities make the LA-MachXO ideal for many multiple power supply and
hot-swap applications.
Sleep Mode
The LA-MachXO “C” devices (VCC = 1.8/2.5/3.3V) have a sleep mode that allows standby current to be reduced
dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.
During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11
compares the characteristics of Normal, Off and Sleep modes.
Table 2-11. Characteristics of Normal, Off and Sleep Modes
Characteristic
SLEEPN Pin
Static Icc
I/O Leakage
Power Supplies VCC/VCCIO/VCCAUX
Normal
Off
Sleep
High
—
Low
Typical <10mA
0
Typical <100uA
<10µA
<1mA
<10µA
Normal Range
0
Normal Range
Logic Operation
User Defined
Non Operational
Non operational
I/O Operation
User Defined
Tri-state
Tri-state
JTAG and Programming circuitry
Operational
Non-operational
Non-operational
EBR Contents and Registers
Maintained
Non-maintained
Non-maintained
SLEEPN Pin Characteristics
The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the
device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An
external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid
low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.
Oscillator
Every LA-MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the
clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 16MHz to 26MHz.
Configuration and Testing
The following section describes the configuration and testing features of the LA-MachXO automotive family of
devices.
IEEE 1149.1-Compliant Boundary Scan Testability
All LA-MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test
access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with
one of the VCCIO Banks (LA-MachXO256: VCCIO1; LA-MachXO640: VCCIO2; LA-MachXO1200 and LAMachXO2280: VCCIO5) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.
For more details on boundary scan test, please see information regarding additional technical documentation at
the end of this data sheet.
2-21
Lattice Semiconductor
Architecture
LA-MachXO Automotive Family Data Sheet
Device Configuration
All LA-MachXO devices contain a test access port that can be used for device configuration and programming.
The non-volatile memory in the LA-MachXO can be configured in two different modes:
• In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by
BSCAN registers.
• In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode
while reprogramming takes place.
The SRAM configuration memory can be configured in three different ways:
• At power-up via the on-chip non-volatile memory.
• After a refresh command is issued via the IEEE 1149.1 port.
• In IEEE 1532 mode via the IEEE 1149.1 port.
Figure 2-22 provides a pictorial representation of the different programming modes available in the LA-MachXO
devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.
Leave Alone I/O
When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh
command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility
for implementing systems where reconfiguration or reprogramming occurs on-the-fly.
TransFR (Transparent Field Reconfiguration)
TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting
system operation using a single ispVM command. See Lattice technical note #TN1087, Minimizing System Interruption During Configuration Using TransFR Technology, for details.
Security
The LA-MachXO automotive devices contain security bits that, when set, prevent the readback of the SRAM configuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory
space.
For more information on device configuration, please see details of additional technical documentation at the end
of this data sheet.
AEC-Q100 Tested and Qualified
The Automotive Electronics Council (AEC) consists of two committees: the Quality Systems Committee and the
Component Technical Committee. These committees are composed of representatives from sustaining and other
associate members. The AEC Component Technical Committee is the standardization body for establishing standards for reliable, high quality electronic components. In particular, the AEC-Q100 specification “Stress Test for
Qualification for Integrated Circuits” defines qualification and re-qualification requirements for electronic components. Components meeting these specifications are suitable for use in the harsh automotive environment without
additional component-level qualification testing. Lattice's LA-ispMACH 4000V and LA-MachXO devices completed
and passed the requirements of the AEC-Q100 specification.
2-22
Architecture
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Figure 2-22. LA-MachXO Configuration and Programming
ISP 1149.1 TAP Port
Port
Background
1532
Mode
Program in seconds
Power-up
Non-Volatile
Memory Space
Configure in milliseconds
SRAM Memory
Space
Refresh
Download in
microseconds
Density Shifting
The LA-MachXO family has been designed to enable density migration in the same package. Furthermore, the
architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a
lower density device. However, the exact details of the final resource utilization will impact the likely success in
each case.
2-23
LA-MachXO Automotive Family Data Sheet
DC and Switching Characteristics
November 2007
Data Sheet DS1003
Absolute Maximum Ratings1, 2, 3
LCMXO E (1.2V)
LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V . . . . . . . . . . . . . . . -0.5 to 3.75V
Supply Voltage VCCAUX . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V
Output Supply Voltage VCCIO . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V
I/O Tristate Voltage Applied 4 . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V
Dedicated Input Voltage Applied4 . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 4.25V
Storage Temperature (ambient). . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C
Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C . . . . . . . . . . . . . . . . . . . +125°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of <20ns.
Recommended Operating Conditions1
Symbol
VCC
VCCAUX
3
VCCIO2
tJAUTO
Parameter
Min.
Max.
Units
Core Supply Voltage for 1.2V Devices
1.14
1.26
V
Core Supply Voltage for 1.8V/2.5V/3.3V Devices
1.71
3.465
V
Auxiliary Supply Voltage
3.135
3.465
V
I/O Driver Supply Voltage
1.14
3.465
Junction Temperature Automotive Operation
tJFLASHAUTO Junction Temperature, Flash Programming, Automotive
V
-40
125
o
-40
125
o
C
C
1. Like power supplies must be tied together. For example, if VCCIO and VCC are both 2.5V, they must also be the same supply. 3.3V VCCIO
and 1.2V VCCIO should be tied to VCCAUX or 1.2V VCC respectively.
2. See recommended voltages by I/O standard in subsequent table.
3. VCC must reach minimum VCC value before VCCAUX reaches 2.5V.
LA-MachXO256 and LA-MachXO640 Hot Socketing Specifications1, 2, 3
Symbol
IDK
Parameter
Input or I/O leakage Current
Condition
0 ≤ VIN ≤ VIH (MAX)
Min.
Typ.
Max
Units
—
—
+/-1000
µA
1. Insensitive to sequence of VCC, VCCAUX, and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX, and VCCIO.
2. 0 ≤ VCC ≤ VCC (MAX), 0 ≤ VCCIO ≤ VCCIO (MAX) and 0 ≤ VCCAUX ≤ VCCAUX (MAX).
3. IDK is additive to IPU, IPD or IBH.
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
3-1
DS1003 DC and Switching_01.3
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO1200 and LA-MachXO2280 Hot Socketing Specifications1, 2, 3, 4
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
0 ≤ VIN ≤ VIH (MAX.)
—
—
+/-1000
µA
VIN ≤ VCCIO
—
—
+/-1000
µA
VIN > VCCIO
—
35
—
mA
Non-LVDS General Purpose sysIOs
IDK
Input or I/O Leakage Current
LVDS General Purpose sysIOs
IDK_LVDS
1.
2.
3.
4.
Input or I/O Leakage Current
Insensitive to sequence of VCC, VCCAUX, and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX, and VCCIO.
0 ≤ VCC ≤ VCC (MAX), 0 ≤ VCCIO ≤ VCCIO (MAX), and 0 ≤ VCCAUX ≤ VCCAUX (MAX).
IDK is additive to IPU, IPW or IBH.
LVCMOS and LVTTL only.
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol
Parameter
IIL, IIH1, 4, 5 Input or I/O Leakage
Condition
0 ≤ VIN ≤ (VCCIO - 0.2V)
Min.
Typ.
Max.
Units
—
—
10
µA
(VCCIO - 0.2V) < VIN ≤ 3.6V
—
—
40
µA
0 ≤ VIN ≤ 0.7 VCCIO
-30
—
-150
µA
30
—
150
µA
30
—
—
µA
—
—
µA
—
150
µA
—
-150
µA
—
VIH (MIN)
V
8
—
pf
8
—
pf
IPU
I/O Active Pull-up Current
IPD
I/O Active Pull-down Current
VIL (MAX) ≤ VIN ≤ VIH (MAX)
IBHLS
Bus Hold Low sustaining current
VIN = VIL (MAX)
IBHHS
Bus Hold High sustaining current VIN = 0.7VCCIO
-30
IBHLO
Bus Hold Low Overdrive current
—
IBHHO
Bus Hold High Overdrive current
0 ≤ VIN ≤ VIH (MAX)
—
VBHT3
Bus Hold trip Points
0 ≤ VIN ≤ VIH (MAX)
VIL (MAX)
C1
I/O Capacitance2
VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = Typ., VIO = 0 to VIH (MAX)
—
C2
Dedicated Input Capacitance2
VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = Typ., VIO = 0 to VIH (MAX)
—
0 ≤ VIN ≤ VIH (MAX)
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured
with the output driver active. Bus maintenance circuits are disabled.
2. TA 25°C, f = 1.0MHz
3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document.
4. Not applicable to SLEEPN pin.
5. When VIH is higher than VCCIO, a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-tolow transition. For LA-MachXO1200 and LA-MachXO2280 true LVDS output pins, VIH must be less than or equal to VCCIO.
3-2
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Supply Current (Sleep Mode)1, 2
Symbol
ICC
Max.
Units
LCMXO256C
12
25
µA
LCMXO640C
12
25
µA
LCMXO256C
1
15
µA
LCMXO640C
1
25
µA
All LCMXO ‘C’ Devices
2
30
µA
Device
Core Power Supply
ICCAUX
Auxiliary Power Supply
ICCIO
Bank Power Supply4
1.
2.
3.
4.
Typ.3
Parameter
Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.
Frequency = 0MHz.
TA = 25°C, power supplies at nominal voltage.
Per Bank.
Supply Current (Standby)1, 2, 3, 4
Over Recommended Operating Conditions
Symbol
ICC
ICCAUX
ICCIO
1.
2.
3.
4.
5.
6.
Typ.5
Units
LCMXO256C
7
mA
LCMXO640C
9
mA
LCMXO256E
4
mA
LCMXO640E
6
mA
LCMXO1200E
10
mA
LCMXO2280E
12
mA
LCMXO256E/C
5
mA
LCMXO640E/C
7
mA
LCMXO1200E
12
mA
LCMXO2280E
13
mA
All devices
2
mA
Parameter
Core Power Supply
Auxiliary Power Supply
VCCAUX = 3.3V
6
Bank Power Supply
Device
For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at VCCIO or GND.
Frequency = 0MHz.
User pattern = blank.
TJ = 25oC, power supplies at nominal voltage.
Per Bank. VCCIO = 2.5V. Does not include pull-up/pull-down.
3-3
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Initialization Supply Current1, 2, 3, 4
Over Recommended Operating Conditions
Symbol
Parameter
Device
LCMXO256C
ICC
ICCAUX
ICCIO
1.
2.
3.
4.
5.
6.
Core Power Supply
Auxiliary Power Supply
VCCAUX = 3.3V
6
Bank Power Supply
Typ.5
Units
13
mA
LCMXO640C
17
mA
LCMXO256E
10
mA
LCMXO640E
14
mA
LCMXO1200E
18
mA
LCMXO2280E
20
mA
LCMXO256E/C
10
mA
LCMXO640E/C
13
mA
LCMXO1200E
24
mA
LCMXO2280E
25
mA
All devices
2
mA
For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
Assumes all I/O pins are held at VCCIO or GND.
Frequency = 0MHz.
Typical user pattern.
TJ = 25oC, power supplies at nominal voltage.
Per Bank, VCCIO = 2.5V. Does not include pull-up/pull-down.
3-4
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Programming and Erase Flash Supply Current1, 2, 3, 4
Symbol
ICC
ICCAUX
ICCIO
1.
2.
3.
4.
5.
6.
Parameter
Typ.5
Units
LCMXO256C
9
mA
LCMXO640C
11
mA
LCMXO256E
6
mA
LCMXO640E
8
mA
LCMXO1200E
12
mA
LCMXO2280E
14
mA
LCMXO256E/C
8
mA
LCMXO640E/C
10
mA
LCMXO1200E
15
mA
LCMXO2280E
16
mA
All devices
2
mA
Device
Core Power Supply
Auxiliary Power Supply
VCCAUX = 3.3V
6
Bank Power Supply
For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
Assumes all I/O pins are held at VCCIO or GND.
Typical user pattern.
JTAG programming is at 25MHz.
TJ = 25°C, power supplies at nominal voltage.
Per Bank. VCCIO = 2.5V. Does not include pull-up/pull-down.
3-5
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
sysIO Recommended Operating Conditions
VCCIO (V)
Standard
Min.
Typ.
Max.
LVCMOS 3.3
3.135
3.3
3.465
LVCMOS 2.5
2.375
2.5
2.625
LVCMOS 1.8
1.71
1.8
1.89
LVCMOS 1.5
1.425
1.5
1.575
LVCMOS 1.2
1.14
1.2
1.26
LVTTL
3.135
3.3
3.465
PCI3
3.135
3.3
3.465
LVDS1, 2
2.375
2.5
2.625
LVPECL1
3.135
3.3
3.465
BLVDS
2.375
2.5
2.625
RSDS1
2.375
2.5
2.625
1
1. Inputs on chip. Outputs are implemented with the addition of external resistors.
2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers
3. Input on the top bank of the MachXO1200 and MachXO2280 only.
3-6
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
sysIO Single-Ended DC Electrical Characteristics
Input/Output
Standard
LVCMOS 3.3
LVTTL
LVCMOS 2.5
LVCMOS 1.8
LVCMOS 1.5
LVCMOS 1.2
(“C” Version)
VIL
VIH
Min. (V)
Max. (V)
Min. (V)
-0.3
0.8
2.0
-0.3
-0.3
-0.3
-0.3
-0.3
0.8
0.7
0.35VCCIO
0.35VCCIO
0.42
2.0
1.7
0.65VCCIO
0.65VCCIO
0.78
VOH Min.
(V)
IOL1
(mA)
IOH1
(mA)
0.4
VCCIO - 0.4
16, 12, 8, 4
-14, -12, -8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
2.4
16
-16
0.4
VCCIO - 0.4
12, 8, 4
-12, -8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
16, 12, 8, 4
-14, -12, -8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
16, 12, 8, 4
-14, -12, -8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
8, 4
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
6, 2
-6, -2
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
6, 2
-6, -2
0.2
VCCIO - 0.2
0.1
-0.1
0.1VCCIO
0.9VCCIO
1.5
-0.5
VOL Max.
(V)
Max. (V)
3.6
3.6
3.6
3.6
3.6
3.6
LVCMOS 1.2
(“E” Version)
-0.3
0.35VCC
0.65VCC
3.6
PCI
-0.3
0.3VCCIO
0.5VCCIO
3.6
1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as
shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or
between the last GND in a Bank and the end of a Bank.
3-7
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
sysIO Differential Electrical Characteristics
LVDS
Over Recommended Operating Conditions
Parameter
Symbol
Parameter Description
Test Conditions
VINP, VINM
Input Voltage
VTHD
Differential Input Threshold
VCM
Input Common Mode Voltage
IIN
Input current
Power on
VOH
Output high voltage for VOP or VOM
VOL
Output low voltage for VOP or VOM
VOD
Output voltage differential
ΔVOD
Change in VOD between high and
low
VOS
Output voltage offset
ΔVOS
Change in VOS between H and L
IOSD
Typ.
Max.
Units
0
—
2.4
V
+/-100
—
—
mV
100mV ≤ VTHD
VTHD/2
1.2
1.8
V
200mV ≤ VTHD
VTHD/2
1.2
1.9
V
350mV ≤ VTHD
VTHD/2
1.2
2.0
V
—
—
+/-10
µA
RT = 100 Ohm
—
1.38
1.60
V
RT = 100 Ohm
0.9V
1.03
—
V
(VOP - VOM), RT = 100 Ohm
250
350
450
mV
—
—
50
mV
1.125
1.25
1.375
V
—
—
50
mV
—
—
6
mA
(VOP - VOM)/2, RT = 100 Ohm
VOD = 0V Driver outputs
shorted
Output short circuit current
Min.
LVDS Emulation
LA-MachXO automotive devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in
conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible
solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.
Figure 3-1. LVDS Using External Resistors (LVDS25E)
VCCIO = 2.5
158
8mA
Zo = 100
VCCIO = 2.5
158
140
+
100
-
8mA
On-chip
Off-chip
Off-chip
On-chip
Emulated
LVDS
Buffer
Note: All resistors are ±1%.
The LVDS differential input buffers are available on certain devices in the LA-MachXO family.
3-8
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Table 3-1. LVDS DC Conditions
Over Recommended Operating Conditions
Typical
Units
ZOUT
Parameter
Output impedance
Description
20
Ω
RS
Driver series resistor
294
Ω
RP
Driver parallel resistor
121
Ω
RT
Receiver termination
100
Ω
VOH
Output high voltage
1.43
V
VOL
Output low voltage
1.07
V
VOD
Output differential voltage
0.35
V
VCM
Output common mode voltage
1.25
V
ZBACK
Back impedance
100
Ω
IDC
DC output current
3.66
mA
BLVDS
The LA-MachXO automotive family supports the BLVDS standard through emulation. The output is emulated using
complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The
input standard is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use
when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is
one possible solution for bi-directional multi-point differential signals.
Figure 3-2. BLVDS Multi-point Output Example
Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential
2.5V
2.5V
80
45-90 ohms
45-90 ohms
16mA
16mA
80
2.5V
2.5V
80
16mA
16mA
80
...
2.5V
+
+
-
2.5V
16mA
-
16mA
3-9
80
2.5V
16mA
80
+
-
2.5V
16mA
+
80
-
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Table 3-2. BLVDS DC Conditions1
Over Recommended Operating Conditions
Nominal
Symbol
Description
Zo = 45
Zo = 90
Units
ZOUT
Output impedance
100
100
ohm
RTLEFT
Left end termination
45
90
ohm
RTRIGHT
Right end termination
45
90
ohm
VOH
Output high voltage
1.375
1.48
V
VOL
Output low voltage
1.125
1.02
V
VOD
Output differential voltage
0.25
0.46
V
VCM
Output common mode voltage
1.25
1.25
V
IDC
DC output current
11.2
10.2
mA
1. For input buffer, see LVDS table.
LVPECL
The LA-MachXO automotive family supports the differential LVPECL standard through emulation. This output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver
outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain
devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.
Figure 3-3. Differential LVPECL
VCCIO = 3.3V
100 ohms
16mA
+
VCCIO = 3.3V
150 ohms
100 ohms
-
100 ohms
16mA
Transmission line, Zo = 100 ohm differential
On-chip
Off-chip
Off-chip
On-chip
Table 3-3. LVPECL DC Conditions1
Over Recommended Operating Conditions
Symbol
Description
Nominal
Units
ZOUT
Output impedance
100
ohm
RP
Driver parallel resistor
150
ohm
RT
Receiver termination
100
ohm
VOH
Output high voltage
2.03
V
VOL
Output low voltage
1.27
V
VOD
Output differential voltage
0.76
V
VCM
Output common mode voltage
1.65
V
ZBACK
Back impedance
85.7
ohm
IDC
DC output current
12.7
mA
1. For input buffer, see LVDS table.
3-10
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.
RSDS
The LA-MachXO automotive family supports the differential RSDS standard. The output standard is emulated
using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the
devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The
scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with
suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.
Figure 3-4. RSDS (Reduced Swing Differential Standard)
VCCIO = 2.5V
294
8mA
Zo = 100
+
VCCIO = 2.5V
121
100
-
294
8mA
On-chip
Off-chip
Off-chip
On-chip
Emulated
RSDS Buffer
Table 3-4. RSDS DC Conditions
Parameter
Description
Typical
Units
ZOUT
Output impedance
20
ohm
RS
Driver series resistor
294
ohm
RP
Driver parallel resistor
121
ohm
RT
Receiver termination
100
ohm
VOH
Output high voltage
1.35
V
VOL
Output low voltage
1.15
V
VOD
Output differential voltage
0.20
V
VCM
Output common mode voltage
1.25
V
ZBACK
Back impedance
101.5
ohm
IDC
DC output current
3.66
mA
3-11
Lattice Semiconductor
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Typical Building Block Function Performance1
Pin-to-Pin Performance (LVCMOS25 12mA Drive)
Function
-3 Timing
Units
Basic Functions
16-bit decoder
9.4
ns
4:1 MUX
6.3
ns
16:1 MUX
7.1
ns
-3 Timing
Units
16:1 MUX
348
MHz
16-bit adder
209
MHz
16-bit counter
277
MHz
64-bit counter
143
MHz
Register-to-Register Performance
Function
Basic Functions
Embedded Memory Functions (1200 and 2280 Devices Only)
256x36 Single Port RAM
203
MHz
512x18 True-Dual Port RAM
203
MHz
310
MHz
64x2 Single Port RAM
229
MHz
128x4 Single Port RAM
186
MHz
32x2 Pseudo-Dual Port RAM
224
MHz
64x4 Pseudo-Dual Port RAM
194
MHz
Distributed Memory Functions
16x2 Single Port RAM
1. The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and
tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
Rev. A 0.19
Derating Logic Timing
Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case
numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.
3-12
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO External Switching Characteristics1
Over Recommended Operating Conditions
-3
Parameter
Description
Device
Min.
Max.
Units
LCMXO256
—
4.9
ns
LCMXO640
—
4.9
ns
LCMXO1200
—
5.1
ns
LCMXO2280
—
5.1
ns
LCMXO256
—
5.6
ns
LCMXO640
—
5.7
ns
LCMXO1200
—
6.1
ns
LCMXO2280
—
6.1
ns
LCMXO256
1.8
—
ns
LCMXO640
1.5
—
ns
LCMXO1200
1.6
—
ns
LCMXO2280
1.5
—
ns
LCMXO256
-0.3
—
ns
LCMXO640
-0.1
—
ns
LCMXO1200
0.0
—
ns
LCMXO2280
-0.4
—
ns
LCMXO256
—
500
MHz
LCMXO640
—
500
MHz
LCMXO1200
—
500
MHz
LCMXO2280
—
500
MHz
LCMXO256
—
240
ps
LCMXO640
—
240
ps
LCMXO1200
—
260
ps
LCMXO2280
—
260
ps
General I/O Pin Parameters (Using Global Clock without PLL)1
tPD
tCO
tSU
tH
fMAX_IO
tSKEW_PRI
Best Case tPD Through 1 LUT
Best Case Clock to Output - From PFU
Clock to Data Setup - To PFU
Clock to Data Hold - To PFU
Clock Frequency of I/O and PFU Register
Global Clock Skew Across Device
1. General timing numbers based on LVCMOS2.5V, 12 mA.
Rev. A 0.19
3-13
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO Internal Timing Parameters1
Over Recommended Operating Conditions
-3
Parameter
Description
Min.
Max.
Units
PFU/PFF Logic Mode Timing
tLUT4_PFU
LUT4 delay (A to D inputs to F output)
—
0.39
ns
tLUT6_PFU
LUT6 delay (A to D inputs to OFX output)
—
0.62
ns
tLSR_PFU
Set/Reset to output of PFU
—
1.26
ns
tSUM_PFU
Clock to Mux (M0,M1) input setup time
0.15
—
ns
tHM_PFU
Clock to Mux (M0,M1) input hold time
-0.07
—
ns
tSUD_PFU
Clock to D input setup time
0.18
—
ns
tHD_PFU
Clock to D input hold time
-0.04
—
ns
tCK2Q_PFU
Clock to Q delay, D-type register configuration
—
0.56
ns
tLE2Q_PFU
Clock to Q delay latch configuration
—
0.74
ns
tLD2Q_PFU
D to Q throughput delay when latch is enabled
—
0.77
ns
0.56
ns
PFU Dual Port Memory Mode Timing
tCORAM_PFU
Clock to Output
—
tSUDATA_PFU
Data Setup Time
-0.25
—
ns
tHDATA_PFU
Data Hold Time
0.39
—
ns
tSUADDR_PFU Address Setup Time
tHADDR_PFU
Address Hold Time
tSUWREN_PFU Write/Read Enable Setup Time
tHWREN_PFU
Write/Read Enable Hold Time
-0.65
—
ns
0.99
—
ns
-0.30
—
ns
0.47
—
ns
PIO Input/Output Buffer Timing
tIN_PIO
Input Buffer Delay
—
1.06
ns
tOUT_PIO
Output Buffer Delay
—
1.80
ns
—
3.14
ns
EBR Timing (1200 and 2280 Devices Only)
tCO_EBR
Clock to output from Address or Data with no output
register
tCOO_EBR
Clock to output from EBR output Register
tSUDATA_EBR
Setup Data to EBR Memory
tHDATA_EBR
Hold Data to EBR Memory
tSUADDR_EBR Setup Address to EBR Memory
tHADDR_EBR
Hold Address to EBR Memory
tSUWREN_EBR Setup Write/Read Enable to EBR Memory
—
0.75
ns
-0.37
—
ns
0.57
—
ns
-0.37
—
ns
0.57
—
ns
-0.23
—
ns
tHWREN_EBR
Hold Write/Read Enable to EBR Memory
0.36
—
ns
tSUCE_EBR
Clock Enable Setup Time to EBR Output Register
0.27
—
ns
tHCE_EBR
Clock Enable Hold Time to EBR Output Register
-0.18
—
ns
tRSTO_EBR
Reset To Output Delay Time from EBR Output Register
—
1.44
ns
—
1.00
ns
1.00
—
ns
PLL Parameters (1200 and 2280 Devices Only)
tRSTREC
Reset Recovery to Rising Clock
tRSTSU
Reset Signal Setup Time
1. Internal parameters are characterized but not tested on every device.
Rev. A 0.19
3-14
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO Family Timing Adders1, 2, 3
Over Recommended Operating Conditions
Buffer Type
Description
-3
Units
LVDS
0.61
ns
BLVDS25
BLVDS
0.61
ns
LVPECL334
LVPECL
0.59
ns
LVTTL33
LVTTL
0.01
ns
LVCMOS33
LVCMOS 3.3
0.01
ns
LVCMOS25
LVCMOS 2.5
0.00
ns
LVCMOS18
LVCMOS 1.8
0.10
ns
LVCMOS15
LVCMOS 1.5
0.19
ns
LVCMOS12
LVCMOS 1.2
0.56
ns
PCI
0.01
ns
Input Adjusters
LVDS254
4
4
PCI33
Output Adjusters
LVDS25E
LVDS 2.5 E
-0.18
ns
LVDS254
LVDS 2.5
-0.30
ns
BLVDS25
BLVDS 2.5
-0.04
ns
LVPECL33
LVPECL 3.3
0.05
ns
LVTTL33_4mA
LVTTL 4mA drive
0.05
ns
LVTTL33_8mA
LVTTL 8mA drive
0.08
ns
LVTTL33_12mA
LVTTL 12mA drive
-0.01
ns
LVTTL33_16mA
LVTTL 16mA drive
0.70
ns
LVCMOS33_4mA
LVCMOS 3.3 4mA drive
0.05
ns
LVCMOS33_8mA
LVCMOS 3.3 8mA drive
0.08
ns
LVCMOS33_12mA
LVCMOS 3.3 12mA drive
-0.01
ns
LVCMOS33_14mA
LVCMOS 3.3 14mA drive
0.70
ns
LVCMOS25_4mA
LVCMOS 2.5 4mA drive
0.07
ns
LVCMOS25_8mA
LVCMOS 2.5 8mA drive
0.13
ns
LVCMOS25_12mA
LVCMOS 2.5 12mA drive
0.00
ns
LVCMOS25_14mA
LVCMOS 2.5 14mA drive
0.47
ns
LVCMOS18_4mA
LVCMOS 1.8 4mA drive
0.15
ns
LVCMOS18_8mA
LVCMOS 1.8 8mA drive
0.06
ns
LVCMOS18_12mA
LVCMOS 1.8 12mA drive
-0.08
ns
LVCMOS18_14mA
LVCMOS 1.8 14mA drive
0.09
ns
LVCMOS15_4mA
LVCMOS 1.5 4mA drive
0.22
ns
LVCMOS15_8mA
LVCMOS 1.5 8mA drive
0.07
ns
LVCMOS12_2mA
LVCMOS 1.2 2mA drive
0.36
ns
LVCMOS12_6mA
LVCMOS 1.2 6mA drive
0.07
ns
PCI334
PCI33
2.59
ns
1. Timing adders are characterized but not tested on every device.
2. LVCMOS timing is measured with the load specified in Switching Test Conditions table.
3. All other standards tested according to the appropriate specifications.
4. I/O standard only available in LCMXO1200 and LCMXO2280 devices.
Rev. A 0.19
3-15
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
sysCLOCK PLL Timing
Over Recommended Operating Conditions
Parameter
Descriptions
Conditions
Min.
Max.
Units
fIN
Input Clock Frequency (CLKI, CLKFB)
25
420
MHz
fOUT
Output Clock Frequency (CLKOP, CLKOS)
25
420
MHz
fOUT2
K-Divider Output Frequency (CLKOK)
0.195
210
MHz
fVCO
PLL VCO Frequency
420
840
MHz
fPFD
Phase Detector Input Frequency
25
—
MHz
AC Characteristics
tPH
Default duty cycle selected3
Output Clock Duty Cycle
tDT
4
45
55
%
—
0.05
UI
Fout ≥ 100MHz
—
+/-120
ps
Fout < 100MHz
—
0.02
UIPP
Output Phase Accuracy
tOPJIT1
Output Clock Period Jitter
tSK
Input Clock to Output Clock Skew
Divider ratio = integer
—
+/-200
ps
tW
Output Clock Pulse Width
At 90% or 10%3
1
—
ns
tLOCK2
PLL Lock-in Time
tPA
Programmable Delay Unit
tIPJIT
tFBKDLY
tHI
Input Clock High Time
90% to 90%
0.5
—
ns
tLO
Input Clock Low Time
10% to 10%
0.5
—
ns
tRST
RST Pulse Width
10
—
ns
—
150
µs
100
450
ps
Input Clock Period Jitter
—
+/-200
ps
External Feedback Delay
—
10
ns
1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.
2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment.
3. Using LVDS output buffers.
4. CLKOS as compared to CLKOP output.
Rev. A 0.19
LA-MachXO “C” Sleep Mode Timing
Symbol
tPWRDN
Parameter
Device
SLEEPN Low to Power Down
Min.
Typ.
Max
Units
All
—
—
400
ns
LCMXO256
—
—
400
µs
tPWRUP
SLEEPN High to Power Up
—
—
600
µs
tWSLEEPN
SLEEPN Pulse Width
All
400
—
—
ns
tWAWAKE
SLEEPN Pulse Rejection
All
—
—
100
ns
LCMXO640
Rev. A 0.19
Power Down Mode
I/O
tPWRUP
tPWRDN
SLEEPN
tWSLEEPN or tWAWAKE
3-16
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Flash Download Time
Symbol
Parameter
LCMXO256
tREFRESH
Minimum VCC or VCCAUX LCMXO640
(later of the two supplies)
LCMXO1200
to Device I/O Active
LCMXO2280
Min.
Typ.
Max.
Units
—
—
0.4
ms
—
—
0.6
ms
—
—
0.8
ms
—
—
1.0
ms
JTAG Port Timing Specifications
Over Recommended Operating Conditions
Symbol
Parameter
Min.
Max.
Units
fMAX
TCK [BSCAN] clock frequency
—
25
MHz
tBTCP
TCK [BSCAN] clock pulse width
40
—
ns
tBTCPH
TCK [BSCAN] clock pulse width high
20
—
ns
tBTCPL
TCK [BSCAN] clock pulse width low
20
—
ns
tBTS
TCK [BSCAN] setup time
8
—
ns
tBTH
TCK [BSCAN] hold time
10
—
ns
tBTRF
TCK [BSCAN] rise/fall time
50
—
mV/ns
tBTCO
TAP controller falling edge of clock to output valid
—
10
ns
tBTCODIS
TAP controller falling edge of clock to output disabled
—
10
ns
tBTCOEN
TAP controller falling edge of clock to output enabled
—
10
ns
tBTCRS
BSCAN test capture register setup time
8
—
ns
tBTCRH
BSCAN test capture register hold time
25
—
ns
tBUTCO
BSCAN test update register, falling edge of clock to output valid
—
25
ns
tBTUODIS
BSCAN test update register, falling edge of clock to output disabled
—
25
ns
tBTUPOEN
BSCAN test update register, falling edge of clock to output enabled
—
25
ns
Rev. A 0.19
Figure 3-5. JTAG Port Timing Waveforms
TMS
TDI
tBTS
tBTCPH
tBTH
tBTCP
tBTCPL
TCK
tBTCO
tBTCOEN
TDO
Valid Data
tBTCRS
Data to be
captured
from I/O
tBTCODIS
Valid Data
tBTCRH
Data Captured
tBTUPOEN
tBUTCO
Data to be
driven out
to I/O
Valid Data
3-17
tBTUODIS
Valid Data
DC and Switching Characteristics
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Switching Test Conditions
Figure 3-6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Figure 3-5.
Figure 3-6. Output Test Load, LVTTL and LVCMOS Standards
VT
R1
DUT
Test Poi nt
CL
Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces
Test Condition
LVTTL and LVCMOS settings (L -> H, H -> L)
R1
∞
CL
0pF
Timing Ref.
LVTTL, LVCMOS 3.3 = 1.5V
—
LVCMOS 2.5 = VCCIO/2
—
LVCMOS 1.8 = VCCIO/2
—
LVCMOS 1.5 = VCCIO/2
—
LVCMOS 1.2 = VCCIO/2
LVTTL and LVCMOS 3.3 (Z -> H)
1.5
LVTTL and LVCMOS 3.3 (Z -> L)
Other LVCMOS (Z -> H)
Other LVCMOS (Z -> L)
188
0pF
VT
—
VOL
VOH
VCCIO/2
VOL
VCCIO/2
VOH
LVTTL + LVCMOS (H -> Z)
VOH - 0.15
VOL
LVTTL + LVCMOS (L -> Z)
VOL - 0.15
VOH
Note: Output test conditions for all other interfaces are determined by the respective standards.
3-18
LA-MachXO Automotive Family Data Sheet
Pinout Information
November 2007
Data Sheet DS1003
Signal Descriptions
Signal Name
I/O
Descriptions
General Purpose
[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
[Row/Column Number] indicates the PFU row or the column of the device on which the
PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number.
When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column
Number]_[A/B/C/D/E/F]
I/O
[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.
Some of these user programmable pins are shared with special function pins. When not
used as special function pins, these pins can be programmed as I/Os for user logic.
During configuration of the user-programmable I/Os, the user has an option to tri-state the
I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or
those not bonded to a package pin). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled.
GSRN
I
Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O
pin.
TSALL
I
TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the
outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC
—
No connect.
GND
—
GND - Ground. Dedicated pins.
VCC
—
VCC - The power supply pins for core logic. Dedicated pins.
VCCAUX
—
VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits
including all the differential and referenced input buffers. Dedicated pins.
VCCIOx
—
VCCIO - The power supply pins for I/O Bank x. Dedicated pins.
SLEEPN1
I
Sleep Mode pin - Active low sleep pin. When this pin is held high, the device operates normally. This pin has a weak internal pull-up, but when unused, an external pull-up to VCC is
recommended. When driven low, the device moves into Sleep mode after a specified time.
PLL and Clock Functions (Used as user programmable I/O pins when not used for PLL or clock pins)
[LOC][0]_PLL[T, C]_IN
—
Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM
(Upper PLL) and LLM (Lower PLL). T = true and C = complement.
[LOC][0]_PLL[T, C]_FB
—
Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM
(Upper PLL) and LLM (Lower PLL). T = true and C = complement.
PCLK [n]_[1:0]
—
Primary Clock Pads, n per side.
Test and Programming (Dedicated pins)
TMS
I
Test Mode Select input pin, used to control the 1149.1 state machine.
TCK
I
Test Clock input pin, used to clock the 1149.1 state machine.
TDI
I
Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO
O
Output pin -Test Data output pin used to shift data out of the device using 1149.1.
1. Applies to LA-MachXO “C” devices only. NC for “E” devices.
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
4-1
DS1003 Pinouts_01.3
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Pin Information Summary
LAMXO256C/E
Pin Type
LAMXO640C/E
100 TQFP
100 TQFP
144 TQFP
256 ftBGA
Single Ended User I/O
78
74
113
159
Differential Pair User I/O1
38
17
43
79
Muxed
6
6
6
6
TAP
4
4
4
4
Dedicated (Total Without Supplies)
5
5
5
5
VCC
2
2
4
4
VCCAUX
VCCIO
1
1
2
2
Bank0
3
2
2
4
Bank1
3
2
2
4
Bank2
—
2
2
4
Bank3
—
2
2
4
8
10
12
18
GND
NC
Single Ended/Differential I/O
per Bank
0
0
0
52
Bank0
41/20
18/5
29/10
42/21
Bank1
37/18
21/4
30/11
40/20
Bank2
—
14/2
24/9
36/18
Bank3
—
21/6
30/13
40/20
1. These devices support emulated LVDS outputs. LVDS inputs are not supported.
LAMXO1200E
Pin Type
Single Ended User I/O
Differential Pair User I/O
1
LAMXO2280E
100 TQFP
144 TQFP
256 ftBGA
100 TQFP
144 TQFP
256 ftBGA
324 ftBGA
73
113
211
73
113
211
271
27
48
105
30
47
105
134
Muxed
6
6
6
6
6
6
6
TAP
4
4
4
4
4
4
4
Dedicated (Total Without Supplies)
5
5
5
5
5
5
5
VCC
4
4
4
2
4
4
6
VCCAUX
2
2
2
2
2
2
2
Bank0
1
1
2
1
1
2
2
Bank1
1
1
2
1
1
2
2
Bank2
1
1
2
1
1
2
2
Bank3
1
1
2
1
1
2
2
Bank4
1
1
2
1
1
2
2
Bank5
1
1
2
1
1
2
2
Bank6
1
1
2
1
1
2
2
Bank7
1
1
2
1
1
2
2
GND
8
12
18
8
12
18
24
NC
0
0
0
0
0
0
0
Bank0
10/3
14/6
26/13
9/3
13/6
24/12
34/17
Bank1
8/2
15/7
28/14
9/3
16/7
30/15
36/18
Bank2
10/4
15/7
26/13
10/4
15/7
26/13
34/17
Single Ended/Differential I/O Bank3
per Bank
Bank4
11/5
15/7
28/14
11/5
15/7
28/14
34/17
8/3
14/5
27/13
8/3
14/4
29/14
35/17
Bank5
5/2
10/4
22/11
5/2
10/4
20/10
30/15
Bank6
10/3
15/6
28/14
10/4
15/6
28/14
34/17
Bank7
11/5
15/6
26/13
11/5
15/6
26/13
34/17
VCCIO
1. These devices support on-chip LVDS buffers for left and right I/O Banks.
4-2
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Power Supply and NC
Signal
100 TQFP1
144 TQFP1
VCC
LAMXO256/640: 35, 90
LAMXO1200/2280: 17, 35, 66, 91
21, 52, 93, 129
VCCIO0
LAMXO256: 60, 74, 92
LAMXO640: 80, 92
LAMXO1200/2280: 94
LAMXO640: 117, 135
LAMXO1200/2280: 135
VCCIO1
LAMXO256: 10, 24, 41
LAMXO640: 60, 74
LAMXO1200/2280: 80
LAMXO640: 82, 98
LAMXO1200/2280: 117
VCCIO2
LAMXO256: None
LAMXO640: 29, 41
LAMXO1200/2280: 70
LAMXO640: 38, 63
LAMXO1200/2280: 98
VCCIO3
LAMXO256: None
LAMXO640: 10, 24
LAMXO1200/2280: 56
LAMXO640: 10, 26
LAMXO1200/2280: 82
VCCIO4
LAMXO256/640: None
LAMXO1200/2280: 44
LAMXO640: None
LAMXO1200/2280: 63
VCCIO5
LAMXO256/640: None
LAMXO1200/2280: 27
LAMXO640: None
LAMXO1200/2280: 38
VCCIO6
LAMXO256/640: None
LAMXO1200/2280: 20
LAMXO640: None
LAMXO1200/2280: 26
VCCIO7
LAMXO256/640: None
LAMXO1200/2280: 6
LAMXO640: None
LAMXO1200/2280: 10
VCCAUX
LAMXO256/640: 88
LAMXO1200/2280: 36, 90
53, 128
GND2
LAMXO256: 40, 84, 62, 75, 93, 12, 25, 42
LAMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25
LAMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26
16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27
NC3
1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.
2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of
GND logic connections from the die to the common package GND plane.
3. NC pins should not be connected to any active signals, VCC or GND.
4-3
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
Power Supply and NC (Cont.)
256 ftBGA1
Signal
324 ftBGA1
VCC
G7, G10, K7, K10
F14, G11, G9, H7, L7, M9
VCCIO0
LAMXO640: F8, F7, F9, F10
LAMXO1200/2280: F8, F7
G8, G7
VCCIO1
LAMXO640: H11, G11, K11, J11
LAMXO1200/2280: F9, F10
G12, G10
VCCIO2
LAMXO640: L9, L10, L8, L7
LAMXO1200/2280: H11, G11
J12, H12
VCCIO3
LAMXO640: K6, J6, H6, G6
LAMXO1200/2280: K11, J11
L12, K12
VCCIO4
LAMXO640: None
LAMXO1200/2280: L9, L10
M12, M11
VCCIO5
LAMXO640: None
LAMXO1200/2280: L8, L7
M8, R9
VCCIO6
LAMXO640: None
LAMXO1200/2280: K6, J6
M7, K7
VCCIO7
LAMXO640: None
LAMXO1200/2280: H6, G6
H6, J7
VCCAUX
T9, A8
M10, F9
GND2
A1, A16, F11, G8, G9, H7, H8, H9, H10, J7, J8, J9,
J10, K8, K9, L6, T1, T16
E14, F16, H10, H11, H8, H9, J10, J11, J4, J8, J9,
K10, K11, K17, K8, K9, L10, L11, L8, L9, N2, P14,
P5, R7
NC3
LAMXO640: E4, E5, F5, F6, C3, C2, G4, G5, H4, H5, —
K5, K4, M5, M4, P2, P3, N5, N6, M7, M8, N10, N11,
R15, R16, P15, P16, M11, L11, N12, N13, M13, M12,
K12, J12, F12, F13, E12, E13, D13, D14, B15, A15,
C14, B14, E11, E10, E7, E6, D4, D3, B3, B2
LAMXO1200: None
LAMXO2280: None
1. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of
GND logic connections from the die to the common package GND plane.
3. NC pins should not be connected to any active signals, VCC or GND.
4-4
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO256 and LA-MachXO640 Logic Signal Connections:
100 TQFP
LAMXO256
Pin Number
Ball
Function
Bank
1
PL2A
2
3
LAMXO640
Differential
Ball
Function
Bank
1
T
PL2A
3
PL2B
1
C
PL2C
3
T
PL3A
1
T
PL2B
3
C
4
PL3B
1
C
PL2D
3
C
5
PL3C
1
T
PL3A
3
T
6
PL3D
1
C
PL3B
3
C
7
PL4A
1
T
PL3C
3
T
8
PL4B
1
C
PL3D
3
C
9
PL5A
1
T
PL4A
3
10
VCCIO1
1
11
PL5B
1
12
GNDIO1
1
13
PL5C
1
14
PL5D
1
15
PL6A
1
16
PL6B
1
C
PL8C
3
17
PL7A
1
T
PL8D
3
18
PL7B
1
C
PL9A
3
19
PL7C
1
T
PL9C
3
20
PL7D
1
C
PL10A
3
21
PL8A
1
T
PL10C
3
22
PL8B
1
C
PL11A
3
23
PL9A
1
T
PL11C
3
24
VCCIO1
1
VCCIO3
3
25
GNDIO1
1
GNDIO3
3
26
TMS
1
27
PL9B
1
28
TCK
1
29
PB2A
1
30
PB2B
1
31
TDO
1
32
PB2C
1
33
TDI
1
34
PB2D
1
35
VCC
-
36
PB3A
1
37
PB3B
1
38
PB3C
1
39
PB3D
1
Dual
Function
C
T
GSRN
TSALL
3
GNDIO3
3
PL4D
3
PL5B
3
T
PL7B
3
TMS
2
C
PB2C
2
TCK
2
T
VCCIO2
2
C
GNDIO2
2
TDO
2
PB4C
2
TDI
2
PB4E
2
VCC
-
TCK
TDO
T
TDI
C
PCLK1_0**
3
PL4C
C
TMS
PCLK1_1**
VCCIO3
T
PB5B
2
C
PB5D
2
T
PB6B
2
C
PB6C
2
40
GND
-
GND
-
41
VCCIO1
1
VCCIO2
2
4-5
Dual
Function
Differential
T
T
C
GSRN
TSALL
T
C
TMS
TCK
TDO
TDI
PCLK2_1**
PCLK2_0**
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO256 and LA-MachXO640 Logic Signal Connections:
100 TQFP (Cont.)
LAMXO256
Pin Number
Ball
Function
42
GNDIO1
1
GNDIO2
2
43
PB4A
1
T
PB8B
2
Bank
Dual
Function
LAMXO640
Differential
Ball
Function
Bank
Dual
Function
Differential
44
PB4B
1
C
PB8C
2
T
45
PB4C
1
T
PB8D
2
C
46
PB4D
1
C
PB9A
2
47
PB5A
1
PB9C
2
48*
SLEEPN
-
49
PB5C
1
T
50
PB5D
1
51
PR9B
0
52
PR9A
0
T
53
PR8B
0
C
54
PR8A
0
T
PR11A
1
T
55
PR7D
0
C
PR10D
1
C
56
PR7C
0
T
PR10C
1
T
57
PR7B
0
C
PR10B
1
C
58
PR7A
0
T
PR10A
1
T
59
PR6B
0
C
PR9D
1
60
VCCIO0
0
61
PR6A
0
62
GNDIO0
0
63
PR5D
0
64
PR5C
65
PR5B
66
PR5A
67
PR4B
68
PR4A
69
PR3D
70
PR3C
71
PR3B
72
PR3A
73
PR2B
74
VCCIO0
75
GNDIO0
76
PR2A
0
77
PT5C
0
78
PT5B
0
79
PT5A
0
80
PT4F
0
81
PT4E
0
82
PT4D
0
SLEEPN
T
SLEEPN
-
PB9D
2
C
PB9F
2
C
PR11D
1
C
PR11B
1
C
PR11C
1
T
T
VCCIO1
1
PR9B
1
GNDIO1
1
C
PR7B
1
0
T
PR6C
1
0
C
PR6B
1
0
T
PR5D
1
0
C
PR5B
1
0
T
PR4D
1
0
C
PR4B
1
0
T
PR3D
1
0
C
PR3B
1
0
T
PR2D
1
0
C
PR2B
1
0
VCCIO1
1
0
GNDIO1
1
T
SLEEPN
C
PT9F
0
C
PT9E
0
T
C
PT9C
0
T
PT9A
0
C
VCCIO0
0
T
GNDIO0
0
C
PT7E
0
4-6
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO256 and LA-MachXO640 Logic Signal Connections:
100 TQFP (Cont.)
LAMXO256
Dual
Function
LAMXO640
Pin Number
Ball
Function
Bank
Differential
Ball
Function
Bank
T
PT7A
0
GND
-
83
PT4C
0
84
GND
-
85
PT4B
0
PCLK0_1**
C
PT6B
0
PCLK0_1**
86
PT4A
0
PCLK0_0**
T
PT5B
0
PCLK0_0**
87
PT3D
0
88
VCCAUX
-
89
PT3C
0
90
VCC
-
91
PT3B
0
92
VCCIO0
0
93
GNDIO0
0
GNDIO0
0
94
PT3A
0
T
PT3B
0
95
PT2F
0
C
PT3A
0
T
96
PT2E
0
T
PT2F
0
C
97
PT2D
0
C
PT2E
0
T
98
PT2C
0
T
PT2B
0
C
99
PT2B
0
C
PT2C
0
100
PT2A
0
T
PT2A
0
C
T
C
* NC for “E” devices.
** Primary clock inputs are single-ended.
4-7
PT5A
0
VCCAUX
-
PT4F
0
VCC
-
PT3F
0
VCCIO0
0
Dual
Function
Differential
C
T
C
T
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections:
100 TQFP
LAMXO1200
Dual
Function
LAMXO2280
Pin
Number
Ball
Function
Differential
Ball
Function
Bank
Bank
Dual
Function
1
PL2A
Differential
7
T
PL2A
7
LUM0_PLLT_FB_A
T
2
3
PL2B
7
C
PL2B
7
LUM0_PLLC_FB_A
C
PL3C
7
T
PL3C
7
LUM0_PLLT_IN_A
T
4
5
PL3D
7
C
PL3D
7
LUM0_PLLC_IN_A
C
PL4B
7
PL4B
7
6
VCCIO7
7
7
PL6A
7
8
PL6B
7
9
GND
-
10
PL7C
7
11
PL7D
7
12
PL8C
7
13
PL8D
7
14
PL9C
6
15
PL10A
6
T*
16
PL10B
6
C*
17
VCC
-
18
PL11B
6
19
PL11C
6
20
VCCIO6
6
VCCIO6
6
21
PL13C
6
PL16C
6
22
PL14A
6
LLM0_PLLT_FB_A
T*
PL17A
6
LLM0_PLLT_FB_A
T*
23
PL14B
6
LLM0_PLLC_FB_A
C*
PL17B
6
LLM0_PLLC_FB_A
C*
24
PL15A
6
LLM0_PLLT_IN_A
T*
PL18A
6
LLM0_PLLT_IN_A
T*
25
PL15B
6
LLM0_PLLC_IN_A
C*
PL18B
6
LLM0_PLLC_IN_A
C*
26**
GNDIO6
GNDIO5
-
GNDIO6
GNDIO5
-
27
VCCIO5
5
28
TMS
5
TMS
TCK
GSRN
VCCIO7
7
T*
PL7A
7
C*
PL7B
7
GND
-
T
PL9C
7
T
C
PL9D
7
C
T
PL10C
7
T
C
PL10D
7
C
PL11C
6
PL13A
6
T*
PL13B
6
C*
VCC
-
PL14D
6
PL14C
6
TSALL
T*
GSRN
C*
C
TSALL
VCCIO5
5
TMS
5
TMS
TCK
5
TCK
PB3B
5
T
29
TCK
5
30
PB3B
5
31
PB4A
5
T
PB4A
5
T
32
PB4B
5
C
PB4B
5
C
33
TDO
5
TDO
TDO
5
TDO
34
TDI
5
TDI
TDI
5
TDI
35
VCC
-
VCC
-
36
VCCAUX
-
VCCAUX
-
37
PB6E
5
T
PB8E
5
T
38
PB6F
5
C
PB8F
5
C
39
PB7B
4
PCLK4_1***
PB10F
4
PCLK4_1***
40
PB7F
4
PCLK4_0***
PB10B
4
PCLK4_0***
4-8
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections:
100 TQFP (Cont.)
LAMXO1200
Pin
Number
Ball
Function
Bank
Dual
Function
LAMXO2280
Differential
Ball
Function
GND
-
PB12A
4
T
PB12B
4
C
VCCIO4
4
Bank
Dual
Function
Differential
41
GND
-
42
PB9A
4
T
43
PB9B
4
C
44
VCCIO4
4
45
PB10A
4
T
PB13A
4
T
46
PB10B
4
C
PB13B
4
C
NC
-
PB16A
4
T
C
47
NC
-
48
PB11A
4
NC
T
49
PB11B
4
C
50**
GNDIO3
GNDIO4
51
NC
PB16B
4
-
GNDIO3
GNDIO4
-
PR16B
3
PR19B
3
52
PR15B
3
C*
PR18B
3
C*
53
PR15A
3
T*
PR18A
3
T*
54
PR14B
3
C*
PR17B
3
C*
55
PR14A
3
T*
PR17A
3
T*
56
VCCIO3
3
VCCIO3
3
57
PR12B
3
C*
PR15B
3
C*
58
PR12A
3
T*
PR15A
3
T*
59
GND
-
GND
-
60
PR10B
3
C*
PR13B
3
C*
61
PR10A
3
T*
PR13A
3
T*
62
PR9B
3
C*
PR11B
3
C*
63
PR9A
3
T*
PR11A
3
T*
64
PR8B
2
C*
PR10B
2
C*
65
PR8A
2
T*
PR10A
2
T*
66
VCC
-
VCC
-
67
PR6C
2
PR8C
2
68
PR6B
2
C*
PR8B
2
C*
69
PR6A
2
T*
PR8A
2
T*
70
VCCIO2
2
VCCIO2
2
71
PR4D
2
PR5D
2
72
PR4B
2
C*
PR5B
2
C*
73
PR4A
2
T*
PR5A
2
T*
74
PR2B
2
C
PR3B
2
C*
75
PR2A
2
T
PR3A
2
T*
76**
GNDIO1
GNDIO2
-
GNDIO1
GNDIO2
-
77
PT11C
1
PT15C
1
78
PT11B
1
C
PT14B
1
C
79
PT11A
1
T
PT14A
1
T
4-9
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections:
100 TQFP (Cont.)
LAMXO1200
Pin
Number
Ball
Function
80
VCCIO1
1
VCCIO1
1
81
PT9E
1
PT12D
1
C
82
PT9A
1
PT12C
1
T
83
GND
-
GND
-
84
PT8B
1
C
PT11B
1
C
85
PT8A
1
T
PT11A
1
T
86
PT7D
1
PCLK1_1***
PT10B
1
PCLK1_1***
87
PT6F
0
PCLK1_0***
PT9B
1
PCLK1_0***
88
PT6D
0
C
PT8F
0
C
89
PT6C
0
T
PT8E
0
T
90
VCCAUX
-
VCCAUX
-
91
VCC
-
VCC
-
92
PT5B
0
PT6D
0
93
PT4B
0
PT6F
0
94
VCCIO0
0
VCCIO0
0
95
PT3D
0
C
PT4B
0
C
96
PT3C
0
T
PT4A
0
T
97
PT3B
0
PT3B
0
98
PT2B
0
C
PT2B
0
C
99
PT2A
0
T
PT2A
0
T
100**
GNDIO0
GNDIO7
-
GNDIO0
GNDIO7
-
Bank
Dual
Function
LAMXO2280
Differential
*Supports true LVDS outputs.
**Double bonded to the pin.
*** Primary clock inputs are single-ended.
4-10
Ball
Function
Bank
Dual
Function
Differential
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 144 TQFP
LAMXO640
Pin
Number
Ball
Function
Bank
1
PL2A
2
Dual
Function
LAMXO1200
Dual
Function
LAMXO2280
Differential
Ball
Function
Differential
Ball
Function
Bank
Bank
Dual
Function
3
T
PL2A
7
T
PL2A
7
LUM0_PLLT_FB_A
PL2C
3
T
T
PL2B
7
C
PL2B
7
LUM0_PLLC_FB_A
C
3
PL2B
3
4
PL3A
3
C
PL3A
7
T*
PL3A
7
T*
T
PL3B
7
C*
PL3B
7
C*
5
PL2D
3
C
PL3C
6
PL3B
3
C
PL3D
7
T
PL3C
7
LUM0_PLLT_IN_A
T
7
C
PL3D
7
LUM0_PLLC_IN_A
C
7
PL3C
3
T
PL4A
7
T*
PL4A
7
T*
8
PL3D
3
C
PL4B
7
C*
PL4B
7
C*
Differential
9
PL4A
3
PL4C
7
PL4C
7
10
VCCIO3
3
VCCIO7
7
VCCIO7
7
11
GNDIO3
3
GNDIO7
7
GNDIO7
7
12
PL4D
3
PL5C
7
PL6C
7
13
PL5A
3
T
PL6A
7
14
PL5B
3
C
PL6B
7
15
PL5D
3
PL6D
16
GND
-
GND
17
PL6C
3
T
PL7C
7
18
PL6D
3
C
PL7D
7
19
PL7A
3
T
PL10A
6
T*
PL13A
6
T*
20
PL7B
3
C
PL10B
6
C*
PL13B
6
C*
VCC
-
VCC
-
T
PL11A
6
T*
PL13D
6
C*
PL14D
6
PL14C
6
PL15B
6
6
GSRN
T*
PL7A
7
C*
PL7B
7
7
PL7D
7
-
GND
-
T
PL9C
7
T
C
PL9D
7
C
GSRN
T*
GSRN
C*
21
VCC
-
22
PL8A
3
23
PL8B
3
24
PL8C
3
25
PL9C
3
26
VCCIO3
3
VCCIO6
6
VCCIO6
27
GNDIO3
3
GNDIO6
6
GNDIO6
6
28
PL9D
3
C
PL13D
6
PL16D
6
29
PL10A
3
T
PL14A
6
LLM0_PLLT_FB_A
T*
PL17A
6
LLM0_PLLT_FB_A
T*
30
PL10B
3
C
PL14B
6
LLM0_PLLC_FB_A
C*
PL17B
6
LLM0_PLLC_FB_A
C*
31
PL10C
3
T
PL14C
6
T
PL17C
6
T
32
PL11A
3
T
PL14D
6
C
PL17D
6
C
33
PL10D
3
C
PL15A
6
LLM0_PLLT_IN_A
T*
PL18A
6
LLM0_PLLT_IN_A
T*
34
PL11C
3
T
PL15B
6
LLM0_PLLC_IN_A
C*
PL18B
6
LLM0_PLLC_IN_A
C*
35
PL11B
3
C
PL16A
6
T
PL19A
6
T
36
PL11D
3
C
PL16B
6
C
PL19B
6
C
37
GNDIO2
2
GNDIO5
5
GNDIO5
5
38
VCCIO2
2
VCCIO5
5
VCCIO5
5
39
TMS
2
40
PB2C
2
41
PB3A
2
42
TCK
2
43
PB3B
44
C
TSALL
T
TMS
PL11B
6
PL11C
6
PL12B
6
TSALL
T
TMS
5
TMS
5
PB2C
5
T
PB2A
5
T
T
PB2D
5
C
PB2B
5
C
TCK
5
TCK
5
2
C
PB3A
5
T
PB3A
5
T
PB3C
2
T
PB3B
5
C
PB3B
5
C
45
PB3D
2
C
PB4A
5
T
PB4A
5
T
46
PB4A
2
T
PB4B
5
C
PB4B
5
C
47
TDO
2
TDO
5
48
PB4B
2
C
PB4D
5
49
PB4C
2
T
PB5A
5
50
PB4D
2
C
PB5B
5
TCK
TDO
TMS
C
TSALL
TCK
TDO
4-11
TMS
TCK
TDO
5
PB4D
5
TDO
T
PB5A
5
T
C
PB5B
5
C
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 144 TQFP (Cont.)
LAMXO640
Pin
Number
Ball
Function
Bank
Dual
Function
51
TDI
2
TDI
LAMXO1200
Differential
Ball
Function
Bank
Dual
Function
TDI
5
TDI
LAMXO2280
Differential
Ball
Function
Bank
Dual
Function
TDI
5
TDI
Differential
52
VCC
-
VCC
-
VCC
-
53
VCCAUX
-
VCCAUX
-
VCCAUX
-
54
PB5A
2
T
PB6F
5
PB8F
5
55
PB5B
2
C
PB7B
4
56
PB5D
2
PB7C
4
57
PB6A
2
T
PB7D
4
58
PB6B
2
C
PB7F
4
59
GND
-
GND
-
60
PB7C
2
PB9A
4
T
PB12A
4
T
61
PB7E
2
PB9B
4
C
PB12B
4
C
62
PB8A
2
PB9E
4
PB12E
4
63
VCCIO2
2
VCCIO4
4
VCCIO4
4
64
GNDIO2
2
GNDIO4
4
GNDIO4
4
65
PB8C
2
T
PB10A
4
T
PB13A
4
T
66
PB8D
2
C
PB10B
4
C
PB13B
4
C
67
PB9A
2
T
PB10C
4
T
PB13C
4
T
68
PB9C
2
T
PB10D
4
C
PB13D
4
C
C
PB10F
4
PB14D
4
NC
-
NC
-
PB11C
4
T
PB16C
4
T
PB11D
4
C
PB16D
4
C
C
PCLKT2_1***
PCLKT2_0***
PCLK4_1***
PB10F
4
T
PB10C
4
T
C
PB10D
4
C
PB10B
4
GND
-
PCLK4_0***
PCLK4_1***
PCLK4_0***
69
PB9B
2
70**
SLEEPN
-
71
PB9D
2
72
PB9F
2
73
PR11D
1
C
PR16B
3
C
PR20B
3
74
PR11B
1
C
PR16A
3
T
PR20A
3
T
75
PR11C
1
T
PR15B
3
C*
PR19B
3
C
76
PR10D
1
C
PR15A
3
T*
PR19A
3
T
77
PR11A
1
T
PR14D
3
C
PR17D
3
C
78
PR10B
1
C
PR14C
3
T
PR17C
3
T
79
PR10C
1
T
PR14B
3
C*
PR17B
3
C*
80
PR10A
1
T
PR14A
3
T*
T*
81
PR9D
1
PR13D
3
SLEEPN
C
PR17A
3
PR16D
3
3
82
VCCIO1
1
VCCIO3
3
VCCIO3
83
GNDIO1
1
GNDIO3
3
GNDIO3
3
84
PR9A
1
PR12B
3
C*
PR15B
3
85
PR8C
1
PR12A
3
T*
PR15A
3
T*
86
PR8A
1
PR11B
3
C*
PR14B
3
C*
87
PR7D
1
PR11A
3
T*
PR14A
3
T*
88
GND
-
GND
-
GND
-
89
PR7B
1
C
PR10B
3
C*
PR13B
3
90
PR7A
1
T
PR10A
3
T*
PR13A
3
T*
91
PR6D
1
C
PR8B
2
C*
PR10B
2
C*
92
PR6C
1
T
PR8A
2
T*
PR10A
2
T*
93
VCC
-
VCC
-
VCC
-
94
PR5D
1
PR6B
2
C*
PR8B
2
95
PR5B
1
PR6A
2
T*
PR8A
2
T*
96
PR4D
1
PR5B
2
C*
PR7B
2
C*
97
PR4B
1
T*
T*
98
VCCIO1
1
99
GNDIO1
1
100
PR4A
1
C
T
PR5A
2
PR7A
2
VCCIO2
2
VCCIO2
2
GNDIO2
2
GNDIO2
2
PR4C
2
PR5C
2
4-12
C*
C*
C*
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 144 TQFP (Cont.)
LAMXO640
Pin
Number
Ball
Function
Bank
101
PR3D
102
Dual
Function
LAMXO1200
Differential
Ball
Function
Bank
1
C
PR4B
PR3C
1
T
103
PR3B
1
104
PR2D
105
LAMXO2280
Differential
Ball
Function
Bank
2
C*
PR5B
2
C*
PR4A
2
T*
PR5A
2
T*
C
PR3D
2
C
PR4D
2
C
1
C
PR3C
2
T
PR4C
2
T
PR3A
1
T
PR3B
2
C*
PR4B
2
C*
106
PR2B
1
C
PR3A
2
T*
PR4A
2
T*
107
PR2C
1
T
PR2B
2
C
PR3B
2
C*
108
PR2A
1
T
PR2A
2
T
PR3A
2
T*
109
PT9F
0
C
PT11D
1
C
PT16D
1
C
110
PT9D
0
C
PT11C
1
T
PT16C
1
T
111
PT9E
0
T
PT11B
1
C
PT16B
1
C
112
PT9B
0
C
PT11A
1
T
PT16A
1
T
113
PT9C
0
T
PT10F
1
C
PT15D
1
C
114
PT9A
0
T
115
PT8C
0
116
PT8B
0
117
VCCIO0
0
118
GNDIO0
0
119
PT8A
0
120
PT7E
121
C
Dual
Function
Dual
Function
Differential
PT10E
1
T
PT15C
1
T
PT10D
1
C
PT14B
1
C
PT10C
1
T
T
VCCIO1
1
PT14A
1
VCCIO1
1
GNDIO1
1
GNDIO1
1
PT9F
1
C
PT12F
1
0
PT9E
1
T
PT12E
1
T
PT7C
0
PT9B
1
C
PT12D
1
C
122
PT7A
0
PT9A
1
T
PT12C
1
T
123
GND
-
GND
-
GND
-
124
PT6B
0
125
PT6A
0
126
PT5C
0
127
PT5B
0
128
VCCAUX
129
VCC
130
T
PCLK0_1***
C
PT7D
1
PT10B
1
T
PT7B
1
C
PT9D
1
PT7A
1
T
PT9C
1
PT6F
0
PT9B
1
-
VCCAUX
-
VCCAUX
-
-
VCC
-
VCC
-
PT4D
0
PT5D
0
C
PT7B
0
C
131
PT4B
0
C
PT5C
0
T
PT7A
0
T
132
PT4A
0
T
PT5B
0
C
PT6D
0
133
PT3F
0
PT5A
0
T
PT6E
0
T
134
PT3D
0
PT4B
0
PT6F
0
C
PCLK0_0***
PCLK1_1***
C
PCLK1_0***
PCLK1_1***
C
T
PCLK1_0***
135
VCCIO0
0
VCCIO0
0
VCCIO0
0
136
GNDIO0
0
GNDIO0
0
GNDIO0
0
137
PT3B
0
C
PT3D
0
C
PT4B
0
T
138
PT2F
0
C
PT3C
0
T
PT4A
0
C
139
PT3A
0
T
PT3B
0
C
PT3B
0
C
140
PT2D
0
C
PT3A
0
T
PT3A
0
T
141
PT2E
0
T
PT2D
0
C
PT2D
0
C
142
PT2B
0
C
PT2C
0
T
PT2C
0
T
143
PT2C
0
T
PT2B
0
C
PT2B
0
C
144
PT2A
0
T
PT2A
0
T
PT2A
0
T
*Supports true LVDS outputs.
**NC for “E” devices.
***Primary clock inputs arer single-ended.
4-13
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 256 ftBGA
LAMXO640
Ball
Ball
Number Function Bank
Dual
Function
LAMXO1200
Ball
Ball
Differential Number Function Bank
Dual
Function
LAMXO2280
Ball
Ball
Differential Number Function Bank
7
Dual
Function
Differential
GND
GNDIO3
3
GND
GNDIO7
GND
GNDIO7
7
VCCIO3
VCCIO3
3
VCCIO7
VCCIO7
7
E4
NC
E4
PL2A
7
T
VCCIO7
VCCIO7
7
E4
PL2A
7
E5
NC
E5
PL2B
7
C
LUM0_PLLT_FB_A
T
E5
PL2B
7
LUM0_PLLC_FB_A
C
F5
NC
F5
PL3A
7
T**
F5
PL3A
7
T**
F6
NC
F6
PL3B
7
C**
F6
PL3B
7
C**
F3
PL3A
3
T
F3
PL3C
7
T
F3
PL3C
7
LUM0_PLLT_IN_A
T
F4
PL3B
3
C
F4
PL3D
7
C
F4
PL3D
7
LUM0_PLLC_IN_A
C
E3
PL2C
3
T
E3
PL4A
7
T**
E3
PL4A
7
T**
E2
PL2D
3
C
E2
PL4B
7
C**
E2
PL4B
7
C**
C3
NC
C3
PL4C
7
T
C3
PL4C
7
T
C2
NC
C2
PL4D
7
C
C2
PL4D
7
C
B1
PL2A
3
T
B1
PL5A
7
T**
B1
PL5A
7
T**
C1
PL2B
3
C
C1
PL5B
7
C**
C1
PL5B
7
C**
VCCIO3
VCCIO3
3
VCCIO7
VCCIO7
7
VCCIO7
VCCIO7
7
GND
GNDIO3
3
GND
GNDIO7
7
GND
GNDIO7
7
D2
PL3C
3
T
D2
PL5C
7
T
D2
PL6C
7
T
D1
PL3D
3
C
D1
PL5D
7
C
D1
PL6D
7
C
F2
PL5A
3
G2
PL5B
3
T
F2
PL6A
7
C
G2
PL6B
7
E1
PL4A
F1
PL4B
3
T
E1
PL6C
3
C
F1
PL6D
G4
G5
NC
G4
PL7A
7
T**
G4
PL8A
7
T**
NC
G5
PL7B
7
C**
G5
PL8B
7
C**
GSRN
T**
F2
PL7A
7
C**
G2
PL7B
7
7
T
E1
PL7C
7
T
7
C
F1
PL7D
7
C
GSRN
T**
GSRN
C**
GND
GND
-
GND
GND
-
GND
GND
-
G3
PL4C
3
T
G3
PL7C
7
T
G3
PL8C
7
T
H3
PL4D
3
C
H3
PL7D
7
C
H3
PL8D
7
C
H4
NC
H4
PL8A
7
T**
H4
PL9A
7
T**
H5
NC
H5
PL8B
7
C**
H5
PL9B
7
C**
-
-
VCCIO7
VCCIO7
7
VCCIO7
VCCIO7
7
-
-
GND
GNDIO7
7
GND
GNDIO7
7
G1
PL5C
3
T
G1
PL8C
7
T
G1
PL10C
7
T
H1
PL5D
3
C
H1
PL8D
7
C
H1
PL10D
7
C
H2
PL6A
3
T
H2
PL9A
6
T**
H2
PL11A
6
T**
J2
PL6B
3
C
J2
PL9B
6
C**
J2
PL11B
6
C**
J3
PL7C
3
T
J3
PL9C
6
T
J3
PL11C
6
T
K3
PL7D
3
C
K3
PL9D
6
C
K3
PL11D
6
C
J1
PL6C
3
T
T**
T**
-
-
J1
PL10A
6
VCCIO6
VCCIO6
6
J1
PL12A
6
VCCIO6
VCCIO6
6
-
-
GND
GNDIO6
6
GND
GNDIO6
6
K1
PL6D
3
C
K1
PL10B
6
C**
K1
PL12B
6
K2
PL9A
3
T
K2
PL10C
6
T
K2
PL12C
6
T
L2
PL9B
3
C
L2
PL10D
6
C
L2
PL12D
6
C
C**
L1
PL7A
3
T
L1
PL11A
6
T**
L1
PL13A
6
T**
M1
PL7B
3
C
M1
PL11B
6
C**
M1
PL13B
6
C**
C
P1
PL11D
6
C
P1
PL14D
6
T
N1
PL11C
6
T
N1
PL14C
6
PL12A
6
T**
L3
PL15A
6
T**
C**
P1
PL8D
3
N1
PL8C
3
L3
PL10A
3
T
L3
M3
PL10B
3
C
M3
PL12B
6
C**
M3
PL15B
6
M2
PL9C
3
T
M2
PL12C
6
T
M2
PL15C
6
T
N2
PL9D
3
C
N2
PL12D
6
C
N2
PL15D
6
C
TSALL
TSALL
VCCIO3
VCCIO3
3
VCCIO6
VCCIO6
6
VCCIO6
VCCIO6
6
GND
GNDIO3
3
GND
GNDIO6
6
GND
GNDIO6
6
4-14
C
TSALL
T
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 256 ftBGA (Cont.)
LAMXO640
Ball
Ball
Number Function Bank
Dual
Function
LAMXO1200
Ball
Ball
Differential Number Function Bank
Dual
Function
LAMXO2280
Ball
Ball
Differential Number Function Bank
Dual
Function
Differential
J4
PL8A
3
T
J4
PL13A
6
T**
J4
PL16A
6
T**
J5
PL8B
3
C
J5
PL13B
6
C**
J5
PL16B
6
C**
R1
PL11A
3
T
R1
PL13C
6
T
R1
PL16C
6
T
R2
PL11B
3
C
R2
PL13D
6
C
R2
PL16D
6
C
-
-
-
-
-
-
GND
GND
-
K5
NC
K5
PL14A
6
LLM0_PLLT_FB_A
T**
K5
PL17A
6
LLM0_PLLT_FB_A
T**
K4
NC
K4
PL14B
6
LLM0_PLLC_FB_A
C**
K4
PL17B
6
LLM0_PLLC_FB_A
C**
L5
PL10C
3
T
L5
PL14C
6
T
L5
PL17C
6
T
L4
PL10D
3
C
L4
PL14D
6
C
L4
PL17D
6
C
M5
NC
M5
PL15A
6
LLM0_PLLT_IN_A
T**
M5
PL18A
6
LLM0_PLLT_IN_A
T**
M4
NC
M4
PL15B
6
LLM0_PLLC_IN_A
C**
M4
PL18B
6
LLM0_PLLC_IN_A
C**
N4
PL11C
3
T
N4
PL16A
6
T
N4
PL19A
6
T
N3
PL11D
3
C
N3
PL16B
6
C
N3
PL19B
6
C
VCCIO3
VCCIO3
3
VCCIO6
VCCIO6
6
VCCIO6
VCCIO6
6
GND
GNDIO3
3
GND
GNDIO6
6
GND
GNDIO6
6
5
GND
GNDIO2
2
GND
GNDIO5
5
GND
GNDIO5
VCCIO2
VCCIO2
2
VCCIO5
VCCIO5
5
VCCIO5
VCCIO5
5
P4
TMS
2
P4
TMS
5
P4
TMS
5
P2
NC
P2
PB2A
5
T
P2
PB2A
5
T
P3
NC
P3
PB2B
5
C
P3
PB2B
5
C
N5
PB2C
5
T
N5
PB2C
5
R3
TCK
5
R3
TCK
5
N5
NC
R3
TCK
2
TMS
TCK
TMS
TCK
TMS
T
TCK
N6
NC
N6
PB2D
5
C
N6
PB2D
5
T2
PB2A
2
T
T2
PB3A
5
T
T2
PB3A
5
T
T3
PB2B
2
C
T3
PB3B
5
C
T3
PB3B
5
C
R4
PB2C
2
T
R4
PB3C
5
T
R4
PB3C
5
T
R5
PB2D
2
C
R5
PB3D
5
C
R5
PB3D
5
C
P5
PB3A
2
T
P5
PB4A
5
T
P5
PB4A
5
T
P6
PB3B
2
C
P6
PB4B
5
C
P6
PB4B
5
C
T5
PB3C
2
M6
TDO
2
T
TDO
T5
PB4C
5
M6
TDO
5
T
TDO
T5
PB4C
5
M6
TDO
5
C
T
TDO
T4
PB3D
2
C
T4
PB4D
5
C
T4
PB4D
5
C
R6
PB4A
2
T
R6
PB5A
5
T
R6
PB5A
5
T
GND
GNDIO2
2
GND
GNDIO5
5
GND
GNDIO5
5
VCCIO2
VCCIO2
2
VCCIO5
VCCIO5
5
VCCIO5
VCCIO5
5
T6
PB4B
2
T6
PB5B
5
T6
PB5B
5
N7
TDI
2
N7
TDI
5
N7
TDI
5
T8
PB4C
2
T
T8
PB5C
5
T
T8
PB6A
5
T
T7
PB4D
2
C
T7
PB5D
5
C
T7
PB6B
5
C
M7
NC
M7
PB6A
5
T
M7
PB7C
5
T
M8
NC
M8
PB6B
5
C
M8
PB7D
5
C
C
TDI
C
TDI
C
TDI
T9
VCCAUX
-
T9
VCCAUX
-
T9
VCCAUX
-
R7
PB4E
2
T
R7
PB6C
5
T
R7
PB8C
5
T
R8
PB4F
2
C
R8
PB6D
5
C
R8
PB8D
5
C
-
-
VCCIO5
VCCIO5
5
VCCIO5
VCCIO5
5
-
-
GND
GNDIO5
5
GND
GNDIO5
5
P7
PB5C
2
T
P7
PB6E
5
T
P7
PB9A
4
T
P8
PB5D
2
C
P8
PB6F
5
C
P8
PB9B
4
C
N8
PB5A
2
N9
PB5B
2
PCLK2_1****
T
N8
PB7A
4
C
N9
PB7B
4
PCLK4_1****
T
N8
PB10E
4
C
N9
PB10F
4
P10
PB7B
2
C
P10
PB7D
4
C
P10
PB10D
4
P9
PB7A
2
T
P9
PB7C
4
T
P9
PB10C
4
M9
PB6B
2
C
M9
PB7F
4
C
M9
PB10B
4
PCLK2_0****
PCLK4_0****
4-15
T
PCLK4_1****
C
C
T
PCLK4_0****
C
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 256 ftBGA (Cont.)
LAMXO640
Ball
Ball
Number Function Bank
-
Dual
Function
LAMXO1200
Ball
Ball
Differential Number Function Bank
-
VCCIO4
VCCIO4
Dual
Function
LAMXO2280
Ball
Ball
Differential Number Function Bank
4
VCCIO4
VCCIO4
Dual
Function
Differential
4
-
-
GND
GNDIO4
4
GND
GNDIO4
4
M10
PB6A
2
T
M10
PB7E
4
T
M10
PB10A
4
T
R9
PB6C
2
T
R9
PB8A
4
T
R9
PB11C
4
T
R10
PB6D
2
C
R10
PB8B
4
C
R10
PB11D
4
C
T10
PB7C
2
T
T10
PB8C
4
T
T10
PB12A
4
T
T11
PB7D
2
C
T11
PB8D
4
C
T11
PB12B
4
C
N10
NC
N10
PB8E
4
T
N10
PB12C
4
T
N11
NC
N11
PB8F
4
C
N11
PB12D
4
C
VCCIO2
VCCIO2
2
VCCIO4
VCCIO4
4
VCCIO4
VCCIO4
4
GND
GNDIO2
2
GND
GNDIO4
4
GND
GNDIO4
4
R11
PB7E
2
T
R11
PB9A
4
T
R11
PB13A
4
T
R12
PB7F
2
C
R12
PB9B
4
C
R12
PB13B
4
C
P11
PB8A
2
T
P11
PB9C
4
T
P11
PB13C
4
T
P12
PB8B
2
C
P12
PB9D
4
C
P12
PB13D
4
C
T13
PB8C
2
T
T13
PB9E
4
T
T13
PB14A
4
T
T12
PB8D
2
C
T12
PB9F
4
C
T12
PB14B
4
C
R13
PB9A
2
T
R13
PB10A
4
T
R13
PB14C
4
T
R14
PB9B
-
C
R14
PB10B
4
C
R14
PB14D
4
C
GND
GND
-
GND
GND
-
GND
GND
-
T14
PB9C
2
T
T14
PB10C
4
T
T14
PB15A
4
T
T15
PB9D
2
C
T15
PB10D
4
C
T15
PB15B
4
C
P13***
SLEEPN
-
P14
PB9F
2
R15
R16
SLEEPN
P13
NC
-
P13
NC
-
P14
PB10F
4
P14
PB15D
4
NC
R15
PB11A
4
T
R15
PB16A
4
T
NC
R16
PB11B
4
C
R16
PB16B
4
C
P15
NC
P15
PB11C
4
T
P15
PB16C
4
T
P16
NC
P16
PB11D
4
C
P16
PB16D
4
C
VCCIO2
VCCIO2
2
VCCIO4
VCCIO4
4
VCCIO4
VCCIO4
4
GND
GNDIO2
2
GND
GNDIO4
4
GND
GNDIO4
4
3
GND
GNDIO1
1
GND
GNDIO3
3
GND
GNDIO3
VCCIO1
VCCIO1
1
VCCIO3
VCCIO3
3
VCCIO3
VCCIO3
3
M11
NC
M11
PR16B
3
C
M11
PR20B
3
L11
NC
L11
PR16A
3
T
L11
PR20A
3
T
N12
NC
N12
PR15B
3
C**
N12
PR18B
3
C**
C
N13
NC
N13
PR15A
3
T**
N13
PR18A
3
T**
M13
NC
M13
PR14D
3
C
M13
PR17D
3
C
M12
NC
M12
PR14C
3
T
M12
PR17C
3
T
N14
PR11D
1
C
N14
PR14B
3
C**
N14
PR17B
3
C**
N15
PR11C
1
T
N15
PR14A
3
T**
N15
PR17A
3
T**
L13
PR11B
1
C
L13
PR13D
3
C
L13
PR16D
3
C
L12
PR11A
1
T
L12
PR13C
3
T
L12
PR16C
3
T
M14
PR10B
1
C
M14
PR13B
3
C**
M14
PR16B
3
C**
VCCIO1
VCCIO1
1
VCCIO3
VCCIO3
3
VCCIO3
VCCIO3
3
GND
GNDIO1
1
GND
GNDIO3
3
GND
GNDIO3
3
L14
PR10A
1
T
L14
PR13A
3
T**
L14
PR16A
3
T**
N16
PR10D
1
C
N16
PR12D
3
C
N16
PR15D
3
C
M16
PR10C
1
T
M16
PR12C
3
T
M16
PR15C
3
T
M15
PR9D
1
C
M15
PR12B
3
C**
M15
PR15B
3
C**
L15
PR9C
1
T
L15
PR12A
3
T**
L15
PR15A
3
T**
L16
PR9B
1
C
L16
PR11D
3
C
L16
PR14D
3
C
K16
PR9A
1
T
K16
PR11C
3
T
K16
PR14C
3
T
K13
PR8D
1
C
K13
PR11B
3
C**
K13
PR14B
3
C**
4-16
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 256 ftBGA (Cont.)
LAMXO640
Ball
Ball
Number Function Bank
Dual
Function
LAMXO1200
Ball
Ball
Differential Number Function Bank
J13
PR8C
1
T
GND
GND
-
K14
PR8B
1
C
J14
PR8A
1
T
K15
PR7D
1
C
J15
PR7C
1
T
-
-
J13
PR11A
3
GND
GND
-
K14
PR10D
3
J14
PR10C
3
K15
PR10B
J15
GND
Dual
Function
LAMXO2280
Ball
Ball
Differential Number Function Bank
T**
Dual
Function
Differential
J13
PR14A
3
GND
GND
-
C
K14
PR13D
3
T
J14
PR13C
3
T
3
C**
K15
PR13B
3
C**
PR10A
3
T**
T**
GNDIO3
3
J15
PR13A
3
GND
GNDIO3
3
T**
C
-
-
VCCIO3
VCCIO3
3
VCCIO3
VCCIO3
3
K12
NC
K12
PR9D
3
C
K12
PR11D
3
J12
NC
J12
PR9C
3
T
J12
PR11C
3
T
J16
PR7B
1
J16
PR9B
3
C**
J16
PR11B
3
C**
H16
PR7A
1
T
H16
PR9A
3
T**
H16
PR11A
3
T**
H15
PR6B
1
C
H15
PR8D
2
C
H15
PR10D
2
C
G15
PR6A
1
T
G15
PR8C
2
T
G15
PR10C
2
T
H14
PR5D
1
C
H14
PR8B
2
C**
H14
PR10B
2
C**
T
T**
T**
C
G14
PR5C
1
GND
GNDIO1
1
G14
PR8A
2
GND
GNDIO2
2
VCCIO1
VCCIO1
1
H13
PR6D
1
C
VCCIO2
VCCIO2
2
H13
PR7D
2
C
H12
PR6C
1
T
H12
PR7C
2
G13
PR4D
1
C
G13
PR7B
G12
PR4C
1
T
G12
G16
PR5B
1
C
G16
F16
PR5A
1
T
F16
F15
PR4B
1
C
F15
E15
PR4A
1
T
E16
PR3B
1
C
D16
PR3A
1
T
VCCIO1
VCCIO1
1
GND
GNDIO1
1
D15
PR2D
1
C
C15
PR2C
1
C16
PR2B
B16
C
G14
PR10A
2
GND
GNDIO2
2
VCCIO2
VCCIO2
2
H13
PR9D
2
T
H12
PR9C
2
T
2
C**
G13
PR9B
2
C**
PR7A
2
T**
G12
PR9A
2
T**
PR6D
2
C
G16
PR7D
2
C
PR6C
2
T
F16
PR7C
2
T
PR6B
2
C**
F15
PR7B
2
C**
E15
PR6A
2
T**
E15
PR7A
2
T**
E16
PR5D
2
C
E16
PR6D
2
C
D16
PR5C
2
T
D16
PR6C
2
T
VCCIO2
VCCIO2
2
VCCIO2
VCCIO2
2
GND
GNDIO2
2
GND
GNDIO2
2
D15
PR5B
2
C**
D15
PR6B
2
C**
T
C15
PR5A
2
T**
C15
PR6A
2
T**
1
C
C16
PR4D
2
C
C16
PR5D
2
C
PR2A
1
T
B16
PR4C
2
T
B16
PR5C
2
T
F14
PR3D
1
C
F14
PR4B
2
C**
F14
PR5B
2
C**
E14
PR3C
1
T
E14
PR4A
2
T**
T**
-
-
-
-
-
-
F12
NC
F12
PR3D
2
F13
NC
F13
PR3C
2
E12
NC
E12
PR3B
E13
NC
E13
D13
NC
D13
C
E14
PR5A
2
GND
GND
-
C
F12
PR4D
2
T
F13
PR4C
2
T
2
C**
E12
PR4B
2
C**
PR3A
2
T**
E13
PR4A
2
T**
PR2B
2
C
D13
PR3B
2
C**
T
T**
C
D14
NC
D14
PR2A
2
D14
PR3A
2
VCCIO0
VCCIO0
0
VCCIO2
VCCIO2
2
VCCIO2
VCCIO2
2
GND
GNDIO0
0
GND
GNDIO2
2
GND
GNDIO2
2
GND
GNDIO0
0
GND
GNDIO1
1
GND
GNDIO1
1
VCCIO0
VCCIO0
0
VCCIO1
VCCIO1
1
VCCIO1
VCCIO1
1
B15
NC
B15
PT11D
1
C
B15
PT16D
1
A15
NC
A15
PT11C
1
T
A15
PT16C
1
T
C14
NC
C14
PT11B
1
C
C14
PT16B
1
C
C
B14
NC
B14
PT11A
1
T
B14
PT16A
1
T
C13
PT9F
0
C
C13
PT10F
1
C
C13
PT15D
1
C
B13
PT9E
0
T
B13
PT10E
1
T
B13
PT15C
1
T
4-17
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 256 ftBGA (Cont.)
LAMXO640
Ball
Ball
Number Function Bank
Dual
Function
LAMXO1200
Ball
Ball
Differential Number Function Bank
Dual
Function
LAMXO2280
Ball
Ball
Differential Number Function Bank
Dual
Function
Differential
E11
NC
E11
PT10D
1
C
E11
PT15B
1
E10
NC
E10
PT10C
1
T
E10
PT15A
1
C
T
D12
PT9D
0
C
D12
PT10B
1
C
D12
PT14D
1
C
D11
PT9C
0
T
D11
PT10A
1
T
D11
PT14C
1
T
A14
PT7F
0
C
A14
PT9F
1
C
A14
PT14B
1
C
A13
PT7E
0
T
A13
PT9E
1
T
A13
PT14A
1
T
C12
PT8B
0
C
C12
PT9D
1
C
C12
PT13D
1
C
C11
PT8A
0
T
T
T
-
-
C11
PT9C
1
VCCIO1
VCCIO1
1
C11
PT13C
1
VCCIO1
VCCIO1
1
-
-
GND
GNDIO1
1
GND
GNDIO1
1
B12
PT7B
0
C
B12
PT9B
1
C
B12
PT12D
1
B11
PT7A
0
T
B11
PT9A
1
T
B11
PT12C
1
T
A12
PT7D
0
C
A12
PT8F
1
C
A12
PT12B
1
C
A11
PT7C
0
T
A11
PT8E
1
T
A11
PT12A
1
T
GND
GND
-
GND
GND
-
GND
GND
-
C
B10
PT5D
0
C
B10
PT8D
1
C
B10
PT11B
1
B9
PT5C
0
T
B9
PT8C
1
T
B9
PT11A
1
T
D10
PT8D
0
C
D10
PT8B
1
C
D10
PT10F
1
C
D9
PT8C
0
T
T
T
-
-
D9
PT8A
1
VCCIO1
VCCIO1
1
D9
PT10E
1
VCCIO1
VCCIO1
1
-
-
GND
GNDIO1
1
GND
GNDIO1
1
C10
PT6D
0
C
C10
PT7F
1
C
C10
PT10D
1
C9
PT6C
0
T
C9
PT7E
1
T
C9
PT10C
1
A9
PT6B
0
C
A9
PT7D
1
C
A9
PT10B
1
PCLK0_1****
PCLK1_1****
C
C
T
PCLK1_1****
C
A10
PT6A
0
T
A10
PT7C
1
T
A10
PT10A
1
T
E9
PT9B
0
C
E9
PT7B
1
C
E9
PT9D
1
C
E8
PT9A
0
T
E8
PT7A
1
T
E8
PT9C
1
D7
PT5B
0
C
D7
PT6F
0
C
D7
PT9B
1
PCLK0_0****
D8
PT5A
0
VCCIO0
VCCIO0
0
T
GND
GNDIO0
0
C8
PT4F
0
C
B8
PT4E
0
T
A8
VCCAUX
-
A7
PT4D
0
A6
PT4C
0
B7
PT4B
PCLK1_0****
D8
PT6E
0
VCCIO0
VCCIO0
0
T
GND
GNDIO0
0
C8
PT6D
0
C
B8
PT6C
0
T
A8
VCCAUX
-
C
A7
PT6B
0
T
A6
PT6A
0
0
C
B7
PT5F
T
PCLK1_0****
C
D8
PT9A
1
VCCIO0
VCCIO0
0
T
GND
GNDIO0
0
C8
PT8D
0
C
B8
PT8C
0
T
A8
VCCAUX
-
C
A7
PT7D
0
T
A6
PT7C
0
T
0
C
B7
PT7B
0
C
T
C
B6
PT4A
0
T
B6
PT5E
0
T
B6
PT7A
0
C6
PT3C
0
T
C6
PT5C
0
T
C6
PT6A
0
T
C7
PT3D
0
C
C7
PT5D
0
C
C7
PT6B
0
C
A5
PT3E
0
T
A5
PT5A
0
T
A5
PT6C
0
T
A4
PT3F
0
C
A4
PT5B
0
C
A4
PT6D
0
C
E7
NC
E7
PT4C
0
T
E7
PT6E
0
T
E6
NC
E6
PT4D
0
C
E6
PT6F
0
C
B5
PT3B
0
C
B5
PT3F
0
C
B5
PT5D
0
C
B4
PT3A
0
T
B4
PT3E
0
T
B4
PT5C
0
T
D5
PT2D
0
C
D5
PT3D
0
C
D5
PT5B
0
C
D6
PT2C
0
T
D6
PT3C
0
T
D6
PT5A
0
T
C4
PT2E
0
T
C4
PT4A
0
T
C4
PT4A
0
T
C5
PT2F
0
C
C5
PT4B
0
C
C
-
-
-
-
-
-
D4
NC
D4
PT2D
0
D3
NC
D3
PT2C
0
4-18
C5
PT4B
0
GND
GND
-
C
D4
PT3D
0
C
T
D3
PT3C
0
T
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal
Connections: 256 ftBGA (Cont.)
LAMXO640
Ball
Ball
Number Function Bank
Dual
Function
LAMXO1200
Ball
Ball
Differential Number Function Bank
Dual
Function
LAMXO2280
Ball
Ball
Differential Number Function Bank
Dual
Function
Differential
A3
PT2B
0
C
A3
PT3B
0
C
A3
PT3B
0
A2
PT2A
0
T
A2
PT3A
0
T
A2
PT3A
0
T
B3
NC
B3
PT2B
0
C
B3
PT2D
0
C
T
T
B2
NC
B2
PT2A
0
B2
PT2C
0
VCCIO0
VCCIO0
0
VCCIO0
VCCIO0
0
VCCIO0
VCCIO0
0
GND
GNDIO0
0
GND
GNDIO0
0
GND
GNDIO0
0
A1
GND
-
A1
GND
-
A1
GND
-
A16
GND
-
A16
GND
-
A16
GND
-
F11
GND
-
F11
GND
-
F11
GND
-
G8
GND
-
G8
GND
-
G8
GND
-
G9
GND
-
G9
GND
-
G9
GND
-
H7
GND
-
H7
GND
-
H7
GND
-
H8
GND
-
H8
GND
-
H8
GND
-
H9
GND
-
H9
GND
-
H9
GND
-
H10
GND
-
H10
GND
-
H10
GND
-
J7
GND
-
J7
GND
-
J7
GND
-
J8
GND
-
J8
GND
-
J8
GND
-
J9
GND
-
J9
GND
-
J9
GND
-
J10
GND
-
J10
GND
-
J10
GND
-
K8
GND
-
K8
GND
-
K8
GND
-
K9
GND
-
K9
GND
-
K9
GND
-
L6
GND
-
L6
GND
-
L6
GND
-
T1
GND
-
T1
GND
-
T1
GND
-
T16
GND
-
T16
GND
-
T16
GND
-
G7
VCC
-
G7
VCC
-
G7
VCC
-
G10
VCC
-
G10
VCC
-
G10
VCC
-
K7
VCC
-
K7
VCC
-
K7
VCC
-
K10
VCC
-
K10
VCC
-
K10
VCC
-
H6
VCCIO3
3
H6
VCCIO7
7
H6
VCCIO7
7
G6
VCCIO3
3
G6
VCCIO7
7
G6
VCCIO7
7
K6
VCCIO3
3
K6
VCCIO6
6
K6
VCCIO6
6
J6
VCCIO3
3
J6
VCCIO6
6
J6
VCCIO6
6
L8
VCCIO2
2
L8
VCCIO5
5
L8
VCCIO5
5
L7
VCCIO2
2
L7
VCCIO5
5
L7
VCCIO5
5
L9
VCCIO2
2
L9
VCCIO4
4
L9
VCCIO4
4
L10
VCCIO2
2
L10
VCCIO4
4
L10
VCCIO4
4
K11
VCCIO1
1
K11
VCCIO3
3
K11
VCCIO3
3
J11
VCCIO1
1
J11
VCCIO3
3
J11
VCCIO3
3
H11
VCCIO1
1
H11
VCCIO2
2
H11
VCCIO2
2
G11
VCCIO1
1
G11
VCCIO2
2
G11
VCCIO2
2
F9
VCCIO0
0
F9
VCCIO1
1
F9
VCCIO1
1
F10
VCCIO0
0
F10
VCCIO1
1
F10
VCCIO1
1
F8
VCCIO0
0
F8
VCCIO0
0
F8
VCCIO0
0
F7
VCCIO0
0
F7
VCCIO0
0
F7
VCCIO0
0
* LCMXO640 only.
** Supports true LVDS outputs.
*** NC for “E” devices.
**** Primary clock inputs are single-ended.
4-19
C
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA
LAMXO2280
Ball Number
Ball Function
Bank
GND
GNDIO7
7
Dual Function
Differential
VCCIO7
VCCIO7
7
D4
PL2A
7
LUM0_PLLT_FB_A
T
LUM0_PLLC_FB_A
F5
PL2B
7
B3
PL3A
7
C
T*
C3
PL3B
7
E4
PL3C
7
LUM0_PLLT_IN_A
C*
G6
PL3D
7
LUM0_PLLC_IN_A
A1
PL4A
7
T*
B1
PL4B
7
C*
F4
PL4C
7
T
T
C
VCC
VCC
-
E3
PL4D
7
D2
PL5A
7
T*
D3
PL5B
7
C*
G5
PL5C
7
T
F3
PL5D
7
C
T*
C2
PL6A
7
VCCIO7
VCCIO7
7
GND
GNDIO7
7
C1
PL6B
7
C
C*
H5
PL6C
7
T
G4
PL6D
7
C
E2
PL7A
7
D1
PL7B
7
T*
J6
PL7C
7
T
H4
PL7D
7
C
GSRN
C*
F2
PL8A
7
T*
E1
PL8B
7
C*
GND
GND
-
J3
PL8C
7
J5
PL8D
7
C
G3
PL9A
7
T*
T
H3
PL9B
7
C*
K3
PL9C
7
T
K5
PL9D
7
C
F1
PL10A
7
T*
VCCIO7
VCCIO7
7
GND
GNDIO7
7
G1
PL10B
7
C*
K4
PL10C
7
T
K6
PL10D
7
C
4-20
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
Dual Function
Differential
G2
PL11A
6
T*
H2
PL11B
6
C*
L3
PL11C
6
T
L5
PL11D
6
C
T*
H1
PL12A
6
VCCIO6
VCCIO6
6
GND
GNDIO6
6
J2
PL12B
6
L4
PL12C
6
T
L6
PL12D
6
C
K2
PL13A
6
T*
K1
PL13B
6
C*
T
J1
PL13C
6
VCC
VCC
-
C*
L2
PL13D
6
C
M5
PL14D
6
C
M3
PL14C
6
L1
PL14B
6
C*
M2
PL14A
6
T*
M1
PL15A
6
T*
N1
PL15B
6
C*
M6
PL15C
6
T
C
TSALL
T
M4
PL15D
6
VCCIO6
VCCIO6
6
GND
GNDIO6
6
P1
PL16A
6
T*
P2
PL16B
6
C*
N3
PL16C
6
T
N4
PL16D
6
C
GND
GND
-
T1
PL17A
6
LLM0_PLLT_FB_A
T*
R1
PL17B
6
LLM0_PLLC_FB_A
C*
P3
PL17C
6
T
N5
PL17D
6
C
R3
PL18A
6
LLM0_PLLT_IN_A
T*
R2
PL18B
6
LLM0_PLLC_IN_A
C*
P4
PL19A
6
T
N6
PL19B
6
C
T
U1
PL20A
6
VCCIO6
VCCIO6
6
GND
GNDIO6
6
GND
GNDIO5
5
VCCIO5
VCCIO5
5
4-21
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
T2
PL20B
6
P6
TMS
5
Dual Function
Differential
C
TMS
V1
PB2A
5
T
U2
PB2B
5
C
T3
PB2C
5
N7
TCK
5
T
R4
PB2D
5
C
R5
PB3A
5
T
T4
PB3B
5
C
VCC
VCC
-
TCK
R6
PB3C
5
T
P7
PB3D
5
C
U3
PB4A
5
T
T5
PB4B
5
C
V2
PB4C
5
N8
TDO
5
T
V3
PB4D
5
C
T6
PB5A
5
T
GND
GNDIO5
5
VCCIO5
VCCIO5
5
U4
PB5B
5
C
P8
PB5C
5
T
TDO
T7
PB5D
5
V4
TDI
5
C
R8
PB6A
5
T
N9
PB6B
5
C
TDI
U5
PB6C
5
T
V5
PB6D
5
C
U6
PB7A
5
T
VCC
VCC
-
V6
PB7B
5
C
P9
PB7C
5
T
T8
PB7D
5
C
U7
PB8A
5
T
V7
PB8B
5
C
M10
VCCAUX
-
U8
PB8C
5
T
V8
PB8D
5
C
VCCIO5
VCCIO5
5
GND
GNDIO5
5
T9
PB8E
5
T
U9
PB8F
5
C
V9
PB9A
4
T
4-22
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
Dual Function
Differential
V10
PB9B
4
C
N10
PB9C
4
T
R10
PB9D
4
P10
PB10F
4
C
PCLK4_1**
C
T10
PB10E
4
T
U10
PB10D
4
C
V11
PB10C
4
U11
PB10B
4
VCCIO4
VCCIO4
4
GND
GNDIO4
4
T
PCLK4_0**
C
T11
PB10A
4
T
U12
PB11A
4
T
R11
PB11B
4
C
GND
GND
-
T12
PB11C
4
T
P11
PB11D
4
C
V12
PB12A
4
T
V13
PB12B
4
C
R12
PB12C
4
T
N11
PB12D
4
C
T
U13
PB12E
4
VCCIO4
VCCIO4
4
GND
GNDIO4
4
V14
PB12F
4
C
T13
PB13A
4
T
P12
PB13B
4
C
R13
PB13C
4
T
N12
PB13D
4
C
V15
PB14A
4
T
U14
PB14B
4
C
T
V16
PB14C
4
GND
GND
-
T14
PB14D
4
C
U15
PB15A
4
T
V17
PB15B
4
C
P13
NC
-
T15
PB15D
4
U16
PB16A
4
T
V18
PB16B
4
C
N13
PB16C
4
T
C
R14
PB16D
4
VCCIO4
VCCIO4
4
GND
GNDIO4
4
4-23
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
GND
GNDIO3
3
VCCIO3
VCCIO3
3
Dual Function
Differential
P15
PR20B
3
C
N14
PR20A
3
T
N15
PR19B
3
C
M13
PR19A
3
T
R15
PR18B
3
C*
T16
PR18A
3
T*
N16
PR17D
3
C
M14
PR17C
3
T
U17
PR17B
3
C*
VCC
VCC
-
U18
PR17A
3
T*
R17
PR16D
3
C
R16
PR16C
3
T
P16
PR16B
3
C*
VCCIO3
VCCIO3
3
GND
GNDIO3
3
P17
PR16A
3
T*
L13
PR15D
3
C
M15
PR15C
3
T
T17
PR15B
3
C*
T18
PR15A
3
T*
L14
PR14D
3
C
L15
PR14C
3
T
R18
PR14B
3
C*
T*
P18
PR14A
3
GND
GND
-
K15
PR13D
3
C
K13
PR13C
3
T
N17
PR13B
3
C*
N18
PR13A
3
T*
K16
PR12D
3
C
K14
PR12C
3
T
M16
PR12B
3
C*
L16
PR12A
3
T*
GND
GNDIO3
3
VCCIO3
VCCIO3
3
J16
PR11D
3
C
J14
PR11C
3
T
M17
PR11B
3
C*
L17
PR11A
3
T*
J15
PR10D
2
C
4-24
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
Dual Function
Differential
J13
PR10C
2
T
M18
PR10B
2
C*
T*
L18
PR10A
2
GND
GNDIO2
2
VCCIO2
VCCIO2
2
H16
PR9D
2
H14
PR9C
2
T
K18
PR9B
2
C*
C
J18
PR9A
2
T*
J17
PR8D
2
C
VCC
VCC
-
H18
PR8C
2
T
H17
PR8B
2
C*
G17
PR8A
2
T*
H13
PR7D
2
C
H15
PR7C
2
T
G18
PR7B
2
C*
F18
PR7A
2
T*
G14
PR6D
2
C
G16
PR6C
2
T
VCCIO2
VCCIO2
2
GND
GNDIO2
2
E18
PR6B
2
C*
F17
PR6A
2
T*
G13
PR5D
2
C
G15
PR5C
2
T
E17
PR5B
2
C*
E16
PR5A
2
T*
GND
GND
-
F15
PR4D
2
E15
PR4C
2
T
D17
PR4B
2
C*
C
D18
PR4A
2
T*
B18
PR3D
2
C
C18
PR3C
2
T
C16
PR3B
2
C*
D16
PR3A
2
T*
C17
PR2B
2
C
T
D15
PR2A
2
VCCIO2
VCCIO2
2
GND
GNDIO2
2
GND
GNDIO1
1
VCCIO1
VCCIO1
1
4-25
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
Dual Function
Differential
E13
PT16D
1
C
C15
PT16C
1
T
F13
PT16B
1
C
D14
PT16A
1
T
A18
PT15D
1
C
B17
PT15C
1
T
A16
PT15B
1
C
A17
PT15A
1
T
VCC
VCC
-
D13
PT14D
1
F12
PT14C
1
T
C14
PT14B
1
C
C
E12
PT14A
1
T
C13
PT13D
1
C
B16
PT13C
1
T
B15
PT13B
1
C
T
A15
PT13A
1
VCCIO1
VCCIO1
1
GND
GNDIO1
1
B14
PT12F
1
C
A14
PT12E
1
T
D12
PT12D
1
C
F11
PT12C
1
T
B13
PT12B
1
C
A13
PT12A
1
T
C12
PT11D
1
C
GND
GND
-
B12
PT11C
1
T
E11
PT11B
1
C
D11
PT11A
1
T
C11
PT10F
1
C
A12
PT10E
1
T
VCCIO1
VCCIO1
1
GND
GNDIO1
1
F10
PT10D
1
C
D10
PT10C
1
T
B11
PT10B
1
A11
PT10A
1
T
PCLK1_1***
C
E10
PT9D
1
C
C10
PT9C
1
T
D9
PT9B
1
E9
PT9A
1
T
B10
PT8F
0
C
4-26
PCLK1_0***
C
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
Dual Function
Differential
A10
PT8E
0
VCCIO0
VCCIO0
0
T
GND
GNDIO0
0
A9
PT8D
0
C9
PT8C
0
T
B9
PT8B
0
C
C
F9
VCCAUX
-
A8
PT8A
0
T
B8
PT7D
0
C
C8
PT7C
0
T
VCC
VCC
-
A7
PT7B
0
C
B7
PT7A
0
T
A6
PT6A
0
T
B6
PT6B
0
C
D8
PT6C
0
T
F8
PT6D
0
C
C7
PT6E
0
T
E8
PT6F
0
C
D7
PT5D
0
C
VCCIO0
VCCIO0
0
GND
GNDIO0
0
E7
PT5C
0
T
A5
PT5B
0
C
C6
PT5A
0
T
B5
PT4A
0
T
A4
PT4B
0
C
D6
PT4C
0
T
F7
PT4D
0
C
B4
PT4E
0
T
GND
GND
-
C5
PT4F
0
C
F6
PT3D
0
C
E5
PT3C
0
T
E6
PT3B
0
C
D5
PT3A
0
T
A3
PT2D
0
C
C4
PT2C
0
T
A2
PT2B
0
C
B2
PT2A
0
T
VCCIO0
VCCIO0
0
GND
GNDIO0
0
E14
GND
-
4-27
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
F16
GND
-
H10
GND
-
H11
GND
-
H8
GND
-
H9
GND
-
J10
GND
-
J11
GND
-
J4
GND
-
J8
GND
-
J9
GND
-
K10
GND
-
K11
GND
-
K17
GND
-
K8
GND
-
K9
GND
-
L10
GND
-
L11
GND
-
L8
GND
-
L9
GND
-
N2
GND
-
P14
GND
-
P5
GND
-
R7
GND
-
F14
VCC
-
G11
VCC
-
G9
VCC
-
H7
VCC
-
L7
VCC
-
M9
VCC
-
H6
VCCIO7
7
J7
VCCIO7
7
M7
VCCIO6
6
K7
VCCIO6
6
M8
VCCIO5
5
R9
VCCIO5
5
M12
VCCIO4
4
M11
VCCIO4
4
L12
VCCIO3
3
K12
VCCIO3
3
J12
VCCIO2
2
H12
VCCIO2
2
G12
VCCIO1
1
G10
VCCIO1
1
4-28
Dual Function
Differential
Pinout Information
LA-MachXO Automotive Family Data Sheet
Lattice Semiconductor
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)
LAMXO2280
Ball Number
Ball Function
Bank
G8
VCCIO0
0
G7
VCCIO0
0
* Supports true LVDS outputs.
** Primary clock inputs are single-ended.
4-29
Dual Function
Differential
Lattice Semiconductor
Pinout Information
LA-MachXO Automotive Family Data Sheet
Thermal Management
Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal
characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets.
Designers must complete a thermal analysis of their specific design to ensure that the device and package do not
exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package
specific thermal values.
For Further Information
For further information regarding Thermal Management, refer to the following located on the Lattice website at
www.latticesemi.com.
• Thermal Management document
• Technical Note TN1090 - Power Estimation and Management for MachXO Devices
• Power Calculator tool included with Lattice’s ispLEVER design tool, or as a standalone download from
www.latticesemi.com/software
4-30
LA-MachXO Automotive Family Data Sheet
Ordering Information
April 2006
Data Sheet DS1003
Part Number Description
LAMXO XXXX X – X XXXXXX X
Device Family
LA-MachXO Automotive Crossover PLD
Grade
E = Automotive
Logic Capacity
256 LUTs = 256
640 LUTs = 640
1200 LUTs = 1200
2280 LUTs = 2280
Package
TN100 = 100-pin Lead-Free TQFP
TN144 = 144-pin Lead-Free TQFP
FTN256 = 256-ball Lead-Free ftBGA
FTN324 = 324-ball Lead-Free ftBGA
Supply Voltage
C = 1.8V/2.5V/3.3V
E = 1.2V
Speed
3 = -3 Speed Grade
Note: Parts dual marked as described.
Ordering Information
Part Number
LUTs
Supply Voltage
I/Os
Grade
Package
Pins
Temp.
LAMXO256C-3TN100E
256
1.8V/2.5V/3.3V
78
-3
Lead-Free TQFP
100
AUTO
LAMXO640C-3TN100E
640
1.8V/2.5V/3.3V
74
-3
Lead-Free TQFP
100
AUTO
LAMXO640C-3TN144E
640
1.8V/2.5V/3.3V
113
-3
Lead-Free TQFP
144
AUTO
LAMXO640C-3FTN256E
640
1.8V/2.5V/3.3V
159
-3
Lead-Free ftBGA
256
AUTO
LAMXO256E-3TN100E
256
1.2V
78
-3
Lead-Free TQFP
100
AUTO
LAMXO640E-3TN100E
640
1.2V
74
-3
Lead-Free TQFP
100
AUTO
LAMXO640E-3TN144E
640
1.2V
113
-3
Lead-Free TQFP
144
AUTO
LAMXO640E-3FTN256E
640
1.2V
159
-3
Lead-Free ftBGA
256
AUTO
LAMXO1200E-3TN100E
1200
1.2V
73
-3
Lead-Free TQFP
100
AUTO
LAMXO1200E-3TN144E
1200
1.2V
113
-3
Lead-Free TQFP
144
AUTO
LAMXO1200E-3FTN256E
1200
1.2V
211
-3
Lead-Free ftBGA
256
AUTO
LAMXO2280E-3TN100E
2280
1.2V
73
-3
Lead-Free TQFP
100
AUTO
LAMXO2280E-3TN144E
2280
1.2V
113
-3
Lead-Free TQFP
144
AUTO
LAMXO2280E-3FTN256E
2280
1.2V
211
-3
Lead-Free ftBGA
256
AUTO
LAMXO2280E-3FTN324E
2280
1.2V
271
-3
Lead-Free ftBGA
324
AUTO
© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
5-1
DS1003 Ordering Information_01.0
LA-MachXO Automotive Family Data Sheet
Supplemental Information
November 2007
Data Sheet DS1003
For Further Information
A variety of technical notes for the LA-MachXO family are available on the Lattice web site at www.latticesemi.com.
•
•
•
•
•
•
•
•
MachXO sysIO Usage Guide (TN1091)
MachXO sysCLOCK PLL Design and Usage Guide (TN1089)
MachXO Memory Usage Guide (TN1092)
Power Estimation and Management for MachXO Devices (TN1090)
MachXO JTAG Programming and Configuration User’s Guide (TN1086)
Minimizing System Interruption During Configuration Using TransFR Technology (TN1087)
MachXO Density Migration (TN1097)
IEEE 1149.1 Boundary Scan Testability in Lattice Devices
For further information on interface standards refer to the following web sites:
• JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
• PCI: www.pcisig.com
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
6-1
DS1003 Further Information_01.1
LA-MachXO Automotive Family Data Sheet
Revision History
November 2007
Data Sheet DS1003
Revision History
Date
Version
Section
April 2006
01.0
—
May 2006
01.1
Pinout Information
Change Summary
Initial release.
Removed [LOC][0]_PLL_RST from Signal Descriptions table.
PCLK footnote added to appropriate pins in Logic Signal Connections
tables.
November 2006
01.2
DC and Switching
Characteristics
December 2006
01.3
Architecture
February 2007
01.4
Architecture
November 2007
01.5
DC and Switching
Characteristics
Corrections to MachXO “C” Sleep Mode Timing table - value for
tWSLEEPN (400ns) changed from max. to min. Value for tWAWAKE
(100ns) changed from min. to max.
Added Flash Download Time table.
Pinout Information
EBR Asynchronous Reset section added.
Power Supply and NC table: Pin/Ball orientation footnotes added.
Updated EBR Asynchronous Reset section.
Updated sysIO Single-Ended DC Electrical Characteristics table.
Added JTAG Port Timing Waveforms diagram.
Pinout Information
Supplemental
Information
Added Thermal Management text section.
Updated title list.
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
7-1
Similar pages