ATMEL AT24C1024W-10SU-2.7 Two-wire serial eeprom Datasheet

Features
• Low-voltage Operation
– 2.7 (VCC = 2.7V to 5.5V)
Internally Organized 131,072 x 8
Two-wire Serial Interface
Schmitt Triggers, Filtered Inputs for Noise Suppression
Bidirectional Data Transfer Protocol
400 kHz (2.7V) and 1 MHz (5V) Clock Rate
Write Protect Pin for Hardware and Software Data Protection
256-byte Page Write Mode (Partial Page Writes Allowed)
Random and Sequential Read Modes
Self-timed Write Cycle (5 ms Typical)
High Reliability
– Endurance: 100,000 Write Cycles/Page
– Data Retention: 40 Years
• 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead LAP and 8-lead SAP Packages
• Die Sales: Wafer Form, Waffle Pack and Bumped Die
•
•
•
•
•
•
•
•
•
•
Two-wire Serial
EEPROM
1M (131,072 x 8)
AT24C1024
Description
The AT24C1024 provides 1,048,576 bits of serial electrically erasable and programmable read only memory (EEPROM) organized as 131,072 words of 8 bits each. The
device’s cascadable feature allows up to two devices to share a common two-wire bus.
The device is optimized for use in many industrial and commercial applications where
low-power and low-voltage operation are essential. The devices are available in
space-saving 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead Leadless Array (LAP) and 8-lead
SAP packages. In addition, the entire family is available in 2.7V (2.7V to 5.5V)
versions.
8-lead PDIP
Table 1. Pin Configurations
Pin Name
Function
A1
Address Input
SDA
Serial Data
SCL
Serial Clock Input
WP
Write Protect
NC
No Connect
NC
A1
NC
GND
8
7
6
5
1
2
3
4
VCC
WP
SCL
SDA
8-lead Leadless Array
VCC
WP
SCL
SDA
8
7
6
5
1
2
3
4
NC
A1
NC
GND
8-lead SOIC
Bottom View
NC
A1
NC
GND
1
2
3
4
8
7
6
5
VCC
WP
SCL
SDA
8-lead SAP
VCC
WP
SCL
SDA
8
1
7
2
6
3
5
4
NC
A1
NC
GND
Bottom View
Rev. 1471N–SEEPR–12/05
1
Absolute Maximum Ratings*
Operating Temperature..................................–55°C to +125°C
Storage Temperature .....................................–65°C to +150°C
Voltage on Any Pin
with Respect to Ground .................................... –1.0V to +7.0V
Maximum Operating Voltage .......................................... 6.25V
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.
DC Output Current........................................................ 5.0 mA
Figure 1. Block Diagram
2
AT24C1024
1471N–SEEPR–12/05
AT24C1024
Pin Description
SERIAL CLOCK (SCL): The SCL input is used to positive edge clock data into each
EEPROM device and negative edge clock data out of each device.
SERIAL DATA (SDA): The SDA pin is bi-directional for serial data transfer. This pin is opendrain driven and may be wire-ORed with any number of other open-drain or open-collector
devices.
DEVICE/ADDRESSES (A1): The A1 pin is a device address input that can be hardwired or
left not connected for hardware compatibility with other AT24Cxx devices. When the A1 pin is
hardwired, as many as two 1024K devices may be addressed on a single bus system (device
addressing is discussed in detail under the Device Addressing section). If the A1 pin is left
floating, the A1 pin will be internally pulled down to GND if the capacitive coupling to the circuit
board VCC plane is <3 pF. If coupling is >3 pF, Atmel recommends connecting the A1 pin to
GND.
WRITE PROTECT (WP): The write protect input, when connected to GND, allows normal write
operations. When WP is connected high to VCC, all write operations to the memory are inhibited. If the pin is left floating, the WP pin will be internally pulled down to GND if the capacitive
coupling to the circuit board VCC plane is <3 pF. If coupling is >3 pF, Atmel recommends connecting the pin to GND. Switching WP to VCC prior to a write operation creates a software
write-protect function.
Memory
Organization
AT24C1024, 1024K SERIAL EEPROM: The 1024K is internally organized as 512 pages of
256 bytes each. Random word addressing requires a 17-bit data word address.
3
1471N–SEEPR–12/05
Table 2. Pin Capacitance(1)
Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, VCC = +2.7V
Symbol
Test Condition
CI/O
Input/Output Capacitance (SDA)
CIN
Note:
Max
Units
Conditions
8
pF
VI/O = 0V
6
pF
VIN = 0V
Input Capacitance (A1, SCL)
1. This parameter is characterized and is not 100% tested.
Table 3. DC Characteristics
Applicable over recommended operating range from: TAI = –40°C to +85°C, VCC = +2.7V to +5.5V, TAC = 0°C to +70°C,
VCC = +2.7V to +5.5V (unless otherwise noted)
Symbol
Parameter
Test Condition
VCC
Supply Voltage
ICC
Supply Current
VCC = 5.0V
ICC
Supply Current
ISB
Standby Current
ILI
Input Leakage Current
VIN = VCC or VSS
ILO
Output Leakage
Current
VOUT = VCC or VSS
VIL
Input Low Level(1)
Max
Units
5.5
V
READ at 400 kHz
2.0
mA
VCC = 5.0V
WRITE at 400 kHz
5.0
mA
VCC = 2.7V
VIN = VCC or VSS
3.0
µA
6.0
µA
0.10
3.0
µA
0.05
3.0
µA
–0.6
VCC x 0.3
V
VCC x 0.7
VCC + 0.5
V
0.4
V
VCC = 5.5V
(1)
Input High Level
VOL
Output Low Level
4
Typ
2.7
VIH
Note:
Min
VCC = 3.0V
IOL = 2.1 mA
1. VIL min and VIH max are reference only and are not tested.
AT24C1024
1471N–SEEPR–12/05
AT24C1024
Table 4. AC Characteristics(1)
Applicable over recommended operating range from TA = –40°C to +85°C, VCC = +2.7V to +5.5V, CL = 100 pF (unless
otherwise noted)
Symbol
Parameter
Test Conditions
fSCL
Clock Frequency, SCL
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
tLOW
Clock Pulse Width Low
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
0.4
1.3
µs
tHIGH
Clock Pulse Width High
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
0.4
0.6
µs
tAA
Clock Low to Data Out Valid
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
0.05
0.05
tBUF
Time the bus must be free before a new
transmission can start(2)
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
0.5
1.3
µs
tHD.STA
Start Hold Time
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
0.25
0.6
µs
tSU.STA
Start Setup Time
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
0.25
0.6
µs
tHD.DAT
Data In Hold Time
0
µs
tSU.DAT
Data In Setup Time
100
ns
tR
Inputs Rise Time(2)
tF
Inputs Fall Time(2)
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
tSU.STO
Stop Setup Time
4.5V ≤ VCC ≤ 5.5V
2.7V ≤ VCC ≤ 5.5V
tDH
Data Out Hold Time
tWR
Write Cycle Time
Endurance(2)
5.0V, 25°C, Page Mode
Notes: 1. AC measurement conditions:
RL (connects to VCC): 1.3 kΩ (2.7V, 5V)
Input pulse voltages: 0.3 VCC to 0.7 VCC
Input rise and fall times: ≤50 ns
Input and output timing reference voltages: 0.5 VCC
2. This parameter is ensured by characterization only.
Min
Max
Units
1000
400
kHz
0.55
0.9
µs
0.3
µs
100
300
ns
0.25
0.6
µs
50
ns
10
100K
ms
Write Cycles
5
1471N–SEEPR–12/05
Device
Operation
CLOCK and DATA TRANSITIONS: The SDA pin is normally pulled high with an external
device. Data on the SDA pin may change only during SCL low time periods (see Figure 4 on
page 7). Data changes during SCL high periods will indicate a start or stop condition as
defined below.
START CONDITION: A high-to-low transition of SDA with SCL high is a start condition which
must precede any other command (see Figure 5 on page 8).
STOP CONDITION: A low-to-high transition of SDA with SCL high is a stop condition. After a
read sequence, the Stop command will place the EEPROM in a standby power mode (see
Figure 5 on page 8).
ACKNOWLEDGE: All addresses and data words are serially transmitted to and from the
EEPROM in 8-bit words. The EEPROM sends a zero during the ninth clock cycle to acknowledge that it has received each word.
STANDBY MODE: The AT24C1024 features a low-power standby mode which is enabled: a)
upon power-up and b) after the receipt of the stop bit and the completion of any internal
operations.
MEMORY RESET: After an interruption in protocol, power loss or system reset, any two-wire
part can be reset by following these steps:
1. Clock up to 9 cycles.
2. Look for SDA high in each cycle while SCL is high.
3. Create a start condition.
Device Power Up & Power Down Recommendation
POWER UP: It is recommended to power up from 0V to full VCC in less than 1ms and then
hold for at least 100µs at full VCC level before first operation.
POWER DOWN: It is recommended to power down from full VCC to 0V in less than 1ms and
then hold at 0V for at least 0.5s before power up. It is not recommended to VCC power down
to non-zero volt and then slowly go to zero volt.
6
AT24C1024
1471N–SEEPR–12/05
AT24C1024
Figure 2. Bus Timing (SCL: Serial Clock, SDA: Serial Data I/O®)
Figure 3. Write Cycle Timing (SCL: Serial Clock, SDA: Serial Data I/O)
SCL
SDA
8th BIT
ACK
WORDn
(1)
twr
STOP
CONDITION
Note:
START
CONDITION
1. The write cycle time tWR is the time from a valid stop condition of a write sequence to the end of the internal clear/write cycle.
Figure 4. Data Validity
7
1471N–SEEPR–12/05
Figure 5. Start and Stop Definition
Figure 6. Output Acknowledge
Device
Addressing
The 1024K EEPROM requires an 8-bit device address word following a start condition to
enable the chip for a read or write operation (see Figure 7 on page 11). The device address
word consists of a mandatory one, zero sequence for the first five most significant bits as
shown. This is common to all two-wire EEPROM devices.
The 1024K uses the one device address bit, A1, to allow up to two devices on the same bus.
The A1 bit must compare to the corresponding hardwired input pin. The A1 pin uses an internal proprietary circuit that biases it to a logic low condition if the pin is allowed to float.
The seventh bit (P0) of the device address is a memory page address bit. This memory page
address bit is the most significant bit of the data word address that follows. The eighth bit of
the device address is the read/write operation select bit. A read operation is initiated if this bit
is high and a write operation is initiated if this bit is low.
Upon a compare of the device address, the EEPROM will output a zero. If a compare is not
made, the device will return to a standby state.
DATA SECURITY: The AT24C1024 has a hardware data protection scheme that allows the
user to write-protect the entire memory when the WP pin is at VCC.
8
AT24C1024
1471N–SEEPR–12/05
AT24C1024
Write
Operations
BYTE WRITE: To select a data word in the 1024K memory requires a 17-bit word address.
The word address field consists of the P0 bit of the device address, then the most significant
word address followed by the least significant word address (see Figure 8 on page 11)
A write operation requires the P0 bit and two 8-bit data word addresses following the device
address word and acknowledgment. Upon receipt of this address, the EEPROM will again
respond with a zero and then clock in the first 8-bit data word. Following receipt of the 8-bit
data word, the EEPROM will output a zero. The addressing device, such as a microcontroller,
then must terminate the write sequence with a stop condition. At this time the EEPROM enters
an internally timed write cycle, TWR, to the nonvolatile memory. All inputs are disabled during
this write cycle and the EEPROM will not respond until the write is complete (see Figure 8 on
page 11).
PAGE WRITE: The 1024K EEPROM is capable of 256-byte page writes.
A page write is initiated the same way as a byte write, but the microcontroller does not send a
stop condition after the first data word is clocked in. Instead, after the EEPROM acknowledges
receipt of the first data word, the microcontroller can transmit up to 255 more data words. The
EEPROM will respond with a zero after each data word received. The microcontroller must terminate the page write sequence with a stop condition (see Figure 9 on page 11).
The data word address lower 8 bits are internally incremented following the receipt of each
data word. The higher data word address bits are not incremented, retaining the memory page
row location. When the word address, internally generated, reaches the page boundary, the
following byte is placed at the beginning of the same page. If more than 256 data words are
transmitted to the EEPROM, the data word address will “roll over” and previous data will be
overwritten. The address “rollover” during write is from the last byte of the current page to the
first byte of the same page.
ACKNOWLEDGE POLLING: Once the internally timed write cycle has started and the
EEPROM inputs are disabled, acknowledge polling can be initiated. This involves sending a
start condition followed by the device address word. The read/write bit is representative of the
operation desired. Only if the internal write cycle has completed will the EEPROM respond
with a zero, allowing the read or write sequence to continue.
9
1471N–SEEPR–12/05
Read
Operations
Read operations are initiated the same way as write operations with the exception that the
read/write select bit in the device address word is set to one. There are three read operations:
current address read, random address read and sequential read.
CURRENT ADDRESS READ: The internal data word address counter maintains the last
address accessed during the last read or write operation, incremented by one. This address
stays valid between operations as long as the chip power is maintained. The address “rollover”
during read is from the last byte of the last memory page, to the first byte of the first page.
Once the device address with the read/write select bit set to one is clocked in and acknowledged by the EEPROM, the current address data word is serially clocked out. The
microcontroller does not respond with an input zero but does generate a following stop condition (see Figure 10 on page 11).
RANDOM READ: A random read requires a “dummy” byte write sequence to load in the data
word address. Once the device address word and data word address are clocked in and
acknowledged by the EEPROM, the microcontroller must generate another start condition.
The microcontroller now initiates a current address read by sending a device address with the
read/write select bit high. The EEPROM acknowledges the device address and serially clocks
out the data word. The microcontroller does not respond with a zero but does generate a following stop condition (see Figure 11 on page 12).
SEQUENTIAL READ: Sequential reads are initiated by either a current address read or a random address read. After the microcontroller receives a data word, it responds with an
acknowledge. As long as the EEPROM receives an acknowledge, it will continue to increment
the data word address and serially clock out sequential data words. When the memory
address limit is reached, the data word address will “roll over” and the sequential read will continue. The sequential read operation is terminated when the microcontroller does not respond
with a zero, but does generate a following stop condition (see Figure 12 on page 12).
10
AT24C1024
1471N–SEEPR–12/05
AT24C1024
Figure 7. Device Address
0
Figure 8. Byte Write
MOST
SIGNIFICANT
LEAST
SIGNIFICANT
P
0
Figure 9. Page Write
MOST
SIGNIFICANT
LEAST
SIGNIFICANT
P
0
Figure 10. Current Address Read
11
1471N–SEEPR–12/05
Figure 11. Random Read
High Byte
ADDRESS
Low Byte
ADDRESS
P
0
Figure 12. Sequential Read
High Byte
ADDRESS
Low Byte
ADDRESS
Data n + 1
Data n + 2
Data n + X
P0
12
AT24C1024
1471N–SEEPR–12/05
AT24C1024
Ordering Information(1)
Ordering Code
Package
Operation Range
8CN1
8P3
8S2
8Y4
Lead-free/Halogen-free/
Industrial Temperature
(–40°C to 85°C)
Die Sale
Industrial Temperature
(–40°C to 85°C)
(2)
AT24C1024C1-10CU-2.7
AT24C1024-10PU-2.7(2)
AT24C1024W-10SU-2.7(2)
AT24C1024Y4-10YU-2.7(2)
AT24C1024-W2.7-11(3)
Notes:
1. For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the AC and DC Characteristics
tables.
2. “U” designates Green Package & RoHS compliant.
3. Available in waffle pack and wafer form; order as SL788 for wafer form. Bumped die available upon request. Please contact
Serial EEPROM Marketing.
Package Type
8CN1
8-lead, 0.300" Wide, Leadless Array Package (LAP)
8P3
8-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP)
8S2
8-lead, 0.200" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC)
8Y4
8-lead, (6.00 x 4.90 mm Body) SOIC Array Package (SAP)
Options
–2.7
Low Voltage (2.7V to 5.5V)
13
1471N–SEEPR–12/05
Packaging Information
8CN1 – LAP
Marked Pin1 Indentifier
E
A
A1
D
Top View
Side View
Pin1 Corner
L1
0.10 mm
TYP
8
1
e
COMMON DIMENSIONS
(Unit of Measure = mm)
2
7
3
6
b
5
4
e1
L
Bottom View
Note:
SYMBOL
MIN
NOM
MAX
A
0.94
1.04
1.14
A1
0.30
0.34
0.38
b
0.36
0.41
0.46
D
7.90
8.00
8.10
E
4.90
5.00
5.10
e
1.27 BSC
e1
0.60 REF
NOTE
1
L
0.62
.0.67
0.72
1
L1
0.92
0.97
1.02
1
1. Metal Pad Dimensions.
11/13/01
R
14
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8CN1, 8-lead (8 x 5 x 1.04 mm Body), Lead Pitch 1.27 mm,
Leadless Array Package (LAP)
DRAWING NO.
8CN1
REV.
A
AT24C1024
1471N–SEEPR–12/05
AT24C1024
8P3 – PDIP
E
1
E1
N
Top View
c
eA
End View
COMMON DIMENSIONS
(Unit of Measure = inches)
D
e
D1
A2 A
b2
b3
b
4 PLCS
Side View
L
SYMBOL
NOM
MAX
NOTE
2
A
–
–
0.210
A2
0.115
0.130
0.195
b
0.014
0.018
0.022
5
b2
0.045
0.060
0.070
6
b3
0.030
0.039
0.045
6
c
0.008
0.010
0.014
D
0.355
0.365
0.400
3
D1
0.005
–
–
3
E
0.300
0.310
0.325
4
E1
0.240
0.250
0.280
3
e
0.100 BSC
eA
L
Notes:
MIN
0.300 BSC
0.115
0.130
4
0.150
2
1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA, for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).
01/09/02
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8P3, 8-lead, 0.300" Wide Body, Plastic Dual
In-line Package (PDIP)
DRAWING NO.
REV.
8P3
B
15
1471N–SEEPR–12/05
8S2 – EIAJ SOIC
C
1
E
E1
L
N
Top View
∅
End View
e
b
COMMON DIMENSIONS
(Unit of Measure = mm)
A
SYMBOL
A1
D
Side View
NOM
MAX
NOTE
A
1.70
2.16
A1
0.05
0.25
b
0.35
0.48
5
C
0.15
0.35
5
D
5.13
5.35
E1
5.18
5.40
E
7.70
8.26
L
0.51
0.85
∅
0°
8°
e
Notes: 1.
2.
3.
4.
5.
MIN
1.27 BSC
2, 3
4
This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.
Mismatch of the upper and lower dies and resin burrs are not included.
It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.
Determines the true geometric position.
Values b and C apply to pb/Sn solder plated terminal. The standard thickness of the solder layer shall be 0.010 +0.010/−0.005 mm.
10/7/03
R
16
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8S2, 8-lead, 0.209" Body, Plastic Small
Outline Package (EIAJ)
DRAWING NO.
8S2
REV.
C
AT24C1024
1471N–SEEPR–12/05
AT24C1024
8Y4 – SAP
PIN 1 INDEX AREA
A
D1
PIN 1 ID
D
E1
L
A1
E
e
b
e1
A
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
MIN
NOM
MAX
A
–
–
0.90
A1
0.00
–
0.05
D
5.80
6.00
6.20
E
4.70
4.90
5.10
D1
2.85
3.00
3.15
E1
2.85
3.00
3.15
b
0.35
0.40
0.45
e
1.27 TYP
e1
3.81 REF
L
0.50
0.60
NOTE
0.70
5/24/04
R
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8Y4, 8-lead (6.00 x 4.90 mm Body) SOIC Array Package
(SAP) Y4
DRAWING NO.
REV.
8Y4
A
17
1471N–SEEPR–12/05
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are ® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Printed on recycled paper.
1471N–SEEPR–12/05
Similar pages