IRF IRG4BC30UDPBF Ultra fast copack igbt Datasheet

PD-94810A
IRG4BC30UDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
UltraFast CoPack IGBT
Features
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-220AB package
• Lead-Free
C
VCES = 600V
VCE(on) typ. = 1.95V
G
@VGE = 15V, IC = 12A
E
n-channel
Benefits
• Generation -4 IGBT's offer highest efficiencies
available
• IGBTs optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBTs . Minimized recovery characteristics require
less/no snubbing
• Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
TO-220AB
Absolute Maximum Ratings
Parameter
V CES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
23
12
92
92
12
92
± 20
100
42
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
-------------------------
----------0.50
----2 (0.07)
1.2
2.5
-----80
------
Units
°C/W
g (oz)
1
02/04/10
IRG4BC30UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
∆V (BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ---Collector-to-Emitter Saturation Voltage
---VCE(on)
------VGE(th)
Gate Threshold Voltage
3.0
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---Forward Transconductance „
3.1
gfe
ICES
Zero Gate Voltage Collector Current
------V FM
Diode Forward Voltage Drop
------IGES
Gate-to-Emitter Leakage Current
---V(BR)CES
Typ. Max. Units
------V
0.63 ---- V/°C
1.95 2.1
2.52 ---V
2.09 ------- 6.0
-11 ---- mV/°C
8.6 ---S
---- 250
µA
---- 2500
1.4 1.7
V
1.3 1.6
---- ±100 n A
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 12A
VGE = 15V
IC = 23A
See Fig. 2, 5
IC = 12A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 12A
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
IC = 12A
See Fig. 13
IC = 12A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
----------------------------------------------------------------------------------
Typ.
50
8.1
18
40
21
91
80
0.38
0.16
0.54
40
22
120
180
0.89
7.5
1100
73
14
42
80
3.5
5.6
80
220
180
120
Max. Units
Conditions
75
IC = 12A
12
nC VCC = 400V
See Fig. 8
27
VGE = 15V
---TJ = 25°C
---ns
IC = 12A, VCC = 480V
140
VGE = 15V, RG = 23Ω
130
Energy losses include "tail" and
---diode reverse recovery.
---mJ
See Fig. 9, 10, 11, 18
0.9
---TJ = 150°C, See Fig. 9, 10, 11, 18
---ns
IC = 12A, VCC = 480V
---VGE = 15V, RG = 23Ω
---Energy losses include "tail" and
---mJ
diode reverse recovery.
---nH
Measured 5mm from package
---VGE = 0V
---pF
VCC = 30V
See Fig. 7
---ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
120
TJ = 125°C
14
IF = 12A
6.0
A
TJ = 25°C See Fig.
10
TJ = 125°C
15
VR = 200V
180
nC TJ = 25°C
See Fig.
600
TJ = 125°C
16
di/dt 200A/µs
---- A/µs TJ = 25°C See Fig.
---TJ = 125°C
17
www.irf.com
IRG4BC30UDPbF
Load Current ( A )
16
Duty cycle: 50%
TJ = 125°C
T sink = 90°C
Gate drive as specified
Turn-on losses include
effects of reverse recovery
12
Power Dissipation = 21W
60% of rated
voltage
8
I
4
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25°C
TJ = 150°C
10
1
VGE = 15V
20µs PULSE WIDTH A
0.1
0.1
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
10
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 150°C
10
TJ = 25°C
1
V CC = 10V
5µs PULSE WIDTH A
0.1
5
6
7
8
9
10
11
12
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC30UDPbF
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A
3.0
25
V GE = 15V
20
15
10
5
V GE = 15V
80µs PULSE WIDTH
IC = 24A
2.5
IC = 12A
2.0
I C = 6.0A
A
1.5
A
0
25
50
75
100
125
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
150
TC , Case Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
PDM
0.10
0.1
t
0.05
0.02
0.01
0.01
0.00001
SINGLE PULSE
(THERMAL RESPONSE)
1
t2
Notes:
1. Duty factor D = t / t
1 2
2. Peak TJ = P DM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30UDPbF
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
1600
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
2000
Cies
1200
800
Coes
400
Cres
A
0
1
10
VCE = 400V
I C = 12A
16
12
8
4
A
0
100
0
10
VCE, Collector-to-Emitter Voltage (V)
10
Total Switchig Losses (mJ)
Total Switchig Losses (mJ)
0.56
0.54
0.52
A
0.50
0
10
20
30
40
50
R G, Gate Resistance ( Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
50
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
T J = 25°C
I C = 12A
0.58
30
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.60
20
60
R G = 23Ω
V GE = 15V
V CC = 480V
I C = 24A
I C = 12A
1
I C = 6.0A
A
0.1
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC30UDPbF
1000
R G = 23 Ω
T J = 150°C
V CC = 480V
V GE = 15V
1.6
I C , Collector-to-Emitter Current (A)
Total Switchig Losses (mJ)
2.0
1.2
0.8
0.4
A
0.0
0
10
20
VGE
= 20V
GE
TJ = 125°C
100
SAFE OPERATING AREA
10
1
0.1
30
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
IC , Collector-to-Emitter Current (A)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Instantaneous Forward Current - I F (A)
100
TJ = 150°C
10
TJ = 125°C
TJ = 25°C
1
0.4
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4BC30UDPbF
100
160
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
I IRRM - (A)
t rr - (ns)
I F = 24A
I F = 12A
80
I F = 6.0A
I F = 24A
I F = 12A
10
IF = 6.0A
40
0
100
di f /dt - (A/µs)
1
100
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
600
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
VR = 200V
TJ = 125°C
TJ = 25°C
Q RR - (nC)
400
I F = 24A
I F = 12A
200
1000
I F = 12A
100
IF = 24A
IF = 6.0A
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
IF = 6.0A
1000
10
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4BC30UDPbF
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
430µF
80%
of Vce
5% Ic
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
10% Irr
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
10% Vcc
Vcc
trr
id dt
tx
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4BC30UDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
RL = VCC
ICM
D.U.T.
L
1000V
Vc*
50V
6000µF
100V
0 - VCC
480µF
Pulsed Collector Current
Test Circuit
Figure 19. Clamped Inductive Load Test
Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4BC30UDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2010
10
www.irf.com
Similar pages