250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH ADATE305 FEATURES GENERAL DESCRIPTION Driver 3-level driver with high-Z mode and built-in clamps Precision trimmed output resistance Low leakage mode (typically <10 nA) Voltage range: up to −2.0 V to +6.0 V 1.6 ns minimum pulse width, 2 V terminated 2.1 ns minimum pulse width, 3 V terminated Comparator Window and differential comparator 500 MHz input equivalent bandwidth Load ±12 mA maximum current capability Per pin PMU Force voltage range: up to −2.0 V to +6.0 V 5 current ranges: 32 mA, 2 mA, 200 μA, 20 μA, 2 μA Levels 14-bit DAC for DCL levels Typically < ±5 mV INL (calibrated) 16-bit DAC for PMU levels Typically < ±1.5 mV INL (calibrated) linearity in FV mode HVOUT output buffer 0 V to 13.5 V output range 100-lead, 14 mm × 14 mm, TQFP_EP package 900 mW per channel with no load The ADATE305 is a complete, single-chip solution that performs the pin electronic functions of the driver, the comparator, and the active load (DCL), per pin PMU, and dc levels for ATE applications. The device also contains an HVOUT driver with a VHH buffer capable of generating up to 13.5 V. APPLICATIONS The driver features three active states: data high mode, data low mode, and term mode, as well as an inhibit state. The inhibit state, in conjunction with the integrated dynamic clamp, facilitates the implementation of a high speed active termination. The ADATE305 supports two output voltage ranges: −2.0 V to +6.0 V and −1.5 V to +6.0 V by adjusting the positive and negative supply voltages. The ADATE305 can be used as either a dual single-ended drive/ receive channel or a single differential drive/receive channel. Each channel of the ADATE305 features a high speed window comparator per pin for functional testing, as well as a per pin PMU with FV, or FI and MV, or MI functions. All necessary dc levels for DCL functions are generated by on-chip 14-bit DACs. The per pin PMU features an on-chip 16-bit DAC for high accuracy and contains integrated range resistors to minimize external component counts. The ADATE305 uses a serial bus to program all functional blocks and has an on-board temperature sensor for monitoring the device temperature. Automatic test equipment Semiconductor test systems Board test systems Instrumentation and characterization equipment Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved. ADATE305 TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ......................................................... 19 Applications ....................................................................................... 1 Thermal Resistance .................................................................... 19 General Description ......................................................................... 1 Explanation of Test Levels ......................................................... 19 Revision History ............................................................................... 2 ESD Caution................................................................................ 19 Functional Block Diagram .............................................................. 3 Pin Configuration and Function Descriptions........................... 20 Specifications..................................................................................... 4 Typical Performance Characteristics ........................................... 23 Total Function ............................................................................... 4 SPI Details ....................................................................................... 34 Driver ............................................................................................. 5 Definition of SPI Word .............................................................. 35 Reflection Clamp .......................................................................... 7 Write Operation.......................................................................... 36 Normal Window Comparator .................................................... 7 Read Operation........................................................................... 37 Differential Comparator .............................................................. 9 Reset Operation .......................................................................... 38 Active Load.................................................................................. 11 Register Map ................................................................................... 39 PMU ............................................................................................. 12 Details of Registers ......................................................................... 40 External Sense (PMUS_CHx)................................................... 16 User Information ............................................................................ 42 DUTGND Input ......................................................................... 16 Details of DACs vs. Levels ......................................................... 43 Serial Peripheral Interface ......................................................... 17 Recommended PMU Mode Switching Sequences................. 46 HVOUT Driver ........................................................................... 17 Block Diagrams............................................................................... 49 Overvoltage Detector (OVD) ................................................... 18 Outline Dimensions ....................................................................... 53 16-Bit DAC Monitor MUX ....................................................... 18 Ordering Guide .......................................................................... 53 REVISION HISTORY 8/08—Revision 0: Initial Version Rev. 0 | Page 2 of 56 ADATE305 FUNCTIONAL BLOCK DIAGRAM CH1 * PMU MUX MUX VCLAMPH * MUX MEASOUT01 CH1 OVD VCLAMPL DAC16_MON PMU_FLAG 16-BIT DAC OVD_CH0 VCLAMPL FORCE VCLAMPH VH VT VL SENSE PMUS_CH0 ROUT (TRIMMED) DATA0P 100Ω DRV DUT0 DATA0N * RCV0P 100Ω WINDOW DIFF. C RCV0N OTHER CHANNEL DUT1 * COMP_VTT0 VHH HVOUT 50Ω COMP_QH0P C VOH C VOL COMP_QH0N COMP_QL0P COMP_QL0N * G IOL ADATE305 SDIN RST * SCLK SPI CS VCOM 14-BIT DAC IOH TEMPERATURE SENSOR * TEMPSENSE 07280-001 SDOUT *ONE PER DEVICE. Figure 1. One of Two Channels Is Shown Rev. 0 | Page 3 of 56 ADATE305 SPECIFICATIONS Characterization and production tests performed using Power Supply Range 1 (see Table 36). VDD = +10.0 V, VCC = +3.3 V, VSS = −5.25 V, VPLUS = +16.75 V, VCOMP_VTT = +3.3 V, VREF = +5.0 V, VREF_GND = 0.0 V. All default test conditions are as defined in Table 38. All specified values are at TJ = 70°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted. Temperature coefficients are measured at TJ = 70°C ± 20°C, unless otherwise noted. Typical values are based on design, simulation analyses, and/or limited bench evaluations. Typical values are not tested or guaranteed. Test levels are specified in the Explanation of Test Levels section. TOTAL FUNCTION Table 1. Parameter TOTAL FUNCTION Output Leakage Current PE Disable Range E Min Typ Max Unit Test Level −20.0 5.3 +20.0 nA P nA CT +400 nA P +6.0 pF V S D V V V V V V mA mA mA mA D D D D D D P P P P Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions Defines PSRR conditions +1.3 12.7 2.7 17 23.25 17.25 10.5 −5.00 3.5 5.0 +3.0 17.0 10.0 26.0 92 119 1.7 133 158 2.2 105 135 1.9 154 183 2.5 mA mA W mA mA W P P P P P P Load power down (IOH = IOL = 0 mA) Load power down (IOH = IOL = 0 mA) Load power down (IOH = IOL = 0 mA) Load active off (IOH = IOL = 12 mA) Load active off (IOH = IOL = 12 mA) Load active off (IOH = IOL = 12 mA) mV/K °C CT CT PE Disable Range A, B, C, D High-Z Mode Output Capacitance DUT Pin Range POWER SUPPLIES Total Supply Range, VPLUS to VSS VPLUS Supply, VPLUS Positive Supply, VDD Negative Supply, VSS Logic Supply, VCC Comparator Termination, VCOMP_VTT VPLUS Supply Current, IPLUS VPLUS Supply Current, IPLUS Logic Supply Current, ICC Comparator Termination Current, ICOMP_VTT Positive Supply Current, IDD Negative Supply Current, ISS Total Power Dissipation Positive Supply Current, IDD Negative Supply Current, ISS Total Power Dissipation TEMPERATURE MONITORS Temperature Sensor Gain Temperature Sensor Accuracy Without Calibration over 25°C to 100°C VREF INPUT Reference Input Voltage Range for DACs (VREF Pin) Input Bias Current 5.3 −400 5.4 4 −1.5 16.25 9.5 −5.50 3.1 3.3 −1.0 4.0 1.0 10.0 72 100 1.0 102 130 1.8 22.5 16.75 10.0 −5.25 3.3 10 6 4.95 Conditions/Comments −1.5 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; PMU Range E, VCH = 7.0 V, VCL = −2.5 V −1.5 V < VDUTx < +6.0 V; PMU and PE disabled via SPI; PMU Range A, PMU Range B, PMU Range C, and PMU Range D, VCH = +7.0 V, VCL = −2.5 V −1.5 V < VDUTx < +6.0 V; PMU disabled and PE enabled via SPI; RCV active, VCH = +7.0 V, VCL = −2.5 V VTERM mode operation HVOUT disabled HVOUT enabled, RCV active, no load, VHH = 12 V Quiescent (SPI is static) Temperature voltage available on Pin 3 at all times and Pin 28 when selected (see Table 24 and Table 36) 5 5.05 V D Referenced to VREF_GND; not referenced to VDUTGND 0.1 100 μA P Tested with 5 V applied Rev. 0 | Page 4 of 56 ADATE305 DRIVER VH − VL ≥ 200 mV (to meet dc/ac specifications). Table 2. Parameter DC SPECIFICATIONS High-Speed Differential Logic Input Characteristics (DATA, RCV) Input Termination Resistance Input Voltage Differential Common-Mode Voltage Input Bias Current Pin Output Characteristics Output High Range, VH Output Low Range, VL Output Term Range, VT Functional Amplitude (VH − VL) DC Output Current Limit Source DC Output Current Limit Sink Output Resistance, ±50 mA Min Typ Max Unit Test Level 92 100 108 Ω P +2.2 1.0 2.35 +20.0 V V μA PF PF P +6.0 +5.9 +6.0 V V V V D D D D 0.2 0.85 −20.0 −1.4 −1.5 −1.5 0.0 7.5 75 100 120 mA P −120 45.0 −100 47.0 −75 49.0 mA Ω P P −250 ±75 ±450 ±1 ±2.5 +250 +10 mV μV/°C mV mV P CT CT P 0.6 +1 mV PF ±1.3 +7 mV P Conditions/Comments Push 6 mA into xP pins, force 1.3 V on xN pins; measure voltage from xP to xN, calculate resistance (ΔV/ΔI) 1 Each pin tested at 2.85 V and 0.35 V, while the other high speed pin remains open Amplitude can be programmed to VH = VL, accuracy specs apply when VH − VL ≥ 200 mV Driver high, VH = 6.0 V, short DUTx pin to −2.0 V, measure current VH, VL, VT Crosstalk ±2 mV CT Overall Voltage Accuracy ±10 mV CT VH, VL, VT DC PSRR AC SPECIFICATIONS Rise/Fall Times 0.2 V Programmed Swing 1.0 V Programmed Swing 2.0 V Programmed Swing 3.0 V Programmed Swing 3.0 V Programmed Swing 5.0 V Programmed Swing Rise to Fall Matching ±15 mV/V CT Driver low, VL = −1.5 V, short DUTx pin to 6.0 V, measure current Source: driver high, VH = 3.0 V, IDUTx = 1 mA and 50 mA; sink: driver low, VL = 0.0 V, IDUTx = −1 mA and −50 mA; ΔVDUT/ΔIDUT VH tests done with VL = −2.5 V and VT= −2.5 V; VL tests done with VH = 7.5 V and VT = 7.5 V; VT tests done with VL = −2.5 V and VH = +7.5 V; unless otherwise specified Error measured at calibration points of 0 V and 5 V Measured at calibration points After two-point gain/offset calibration After two-point gain/offset calibration; measured over driver output ranges After two-point gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V Over ±0.1 V range; measured at end points of VH, VL, and VT functional range VL = −1.5 V: VH = −1.4 V → 6.0 V, VT = −1.5 V → 6.0 V; VH = 6.0 V: VL = −1.5 V → 5.9 V, VT = −1.5 V → 6.0 V; VT = 1.5 V: VL = −1.5 V → 5.9 V, VH = −1.4 V → 6.0 V; dc crosstalk on VL, VH, VT output level when other driver DACs are varied Sum of INL, crosstalk, DUTGND, and tempco over ±5°C, after gain/offset calibration Measured at calibration points 1000 800 950 1175 1650 2350 30 ps ps ps ps ps ps ps CB CB CB P/CB CB CB CB Toggle DATAxx VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80% VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 2.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80% VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90% VH = 5.0V, VL = 0.0 V, unterminated; 10% to 90% VH = 3.0 V, VL = 0.0 V, terminated; rise to fall within one channel ABSOLUTE ACCURACY VH, VL, VT Uncalibrated Accuracy VH, VL, VT Offset Tempco VH, VL, VT DNL VH, VL, VT INL −10 VH, VL, VT Resolution DUTGND Voltage Accuracy −7 1000 1500 Rev. 0 | Page 5 of 56 ADATE305 Unit Test Level 1.4 1.6 ns ns CB CB 2.0 V Programmed Swing 1.6 1.8 ns ns CB CB 3.0 V Programmed Swing 2.1 2.3 ns ns CB CB 250 200 MHz MHz CB CB VH = 2.0 V, VH = 0.0 V, terminated, 10% amplitude degradation VH = 3.0 V, VH = 0.0 V, terminated, 10% amplitude degradation Toggle DATAxx 3.0 3.0 ns ps/°C CB CT 115 30 30 20 ps ps ps mV CB CB CB CB 5 35 ns ns CB CB VH = 3.0 V, VL = 0.0 V, terminated VH = 3.0 V, VL = 0.0 V, terminated VH = 3.0 V, VL = 0.0 V, terminated Rising vs. falling Rising vs. rising, falling vs. falling VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz VH = 3.0 V, VL = 0.0 V, terminated Toggle DATAxx VH = 3.0 V, VL = 0.0 V, terminated VH = 3.0 V, VL = 0.0 V, terminated Toggle RCVx 3.3 100 4.0 0.85 ns ps ps/°C ns CB CB CT CB Parameter Minimum Pulse Width 1.0 V Programmed Swing Maximum Toggle Rate 2.0 V Programmed Swing 3.0 V Programmed Swing Dynamic Performance, Drive (VH to VL and VL to VH) Propagation Delay Time Propagation Delay Tempco Delay Matching Edge to Edge Channel to Channel Delay Change vs. Duty Cycle Overshoot and Undershoot Settling Time (VH to VL) To Within 3% of Final Value To Within 1% of Final Value Dynamic Performance, VT (VH or VL to VT and VT to VH or VL) Propagation Delay Time Delay Matching, Edge to Edge Propagation Delay Tempco Transition Time, Active to VT and VT to Active Dynamic Performance, Inhibit (VH or VL to/from Inhibit) Propagation Delay Time Active to Inhibit Inhibit to Active Transition Time Active to Inhibit Inhibit to Active I/O Spike 1 Min Typ Max Conditions/Comments Toggle DATAxx VH = 1.0 V, VL = 0.0 V, terminated; timing error ±75 ps VH = 1.0 V, VL = 0.0 V, terminated; less than 10% amplitude degradation VH = 2.0 V, VL = 0.0 V, terminated; timing error ±75 ps VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude degradation VH = 3.0 V, VL = 0.0 V, terminated; timing error ±75 ps VH = 3.0 V, VL = 0.0 V, terminated; less than 10% amplitude degradation VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80% Toggle RCVx VH = +1.0 V, VL = −1.0 V, terminated 4.5 6.9 ns ns CB CB 2.6 0.75 190 ns ns mV CB CB CB VH =+1.0 V, VL = −1.0 V, terminated; 20% to 80% VH = 0.0 V, VL = 0.0 V, terminated The xP pins include DATA0P, DATA1P, RCV0P, and RCV1P; the xN pins include DATA0N, DATA1N, RCV0N, and RCV1N. For example, push 6 mA into the DATA0P pin, force 1.3 V into DATA0N, and measure the voltage from DATA0P to DATA0N. Rev. 0 | Page 6 of 56 ADATE305 REFLECTION CLAMP Clamp accuracy specifications apply when VCH > VCL. Table 3. Min Typ Max Unit Test Level −1.0 −200 ±50 +6.0 +200 V mV D P Resolution 0.6 0.75 mV PF DNL ±1 mV CT mV P mV/°C CT Parameter VCH Range Uncalibrated Accuracy INL −40 Tempco VCL Range Uncalibrated Accuracy ±2 +40 −0.3 −1.5 −200 ±50 +5.0 +200 V mV D P Resolution 0.6 0.75 mV PF DNL ±1 mV CT mV P mV/°C CT mA mA mV P P P INL −40 Tempco DC CLAMP CURRENT LIMIT VCH VCL DUTGND VOLTAGE ACCURACY ±2 +40 0.5 −120 60 −7 −85 85 ±1 −60 120 +7 Conditions/Comments Driver high-Z, sinking 1 mA; VCH error measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sinking 1 mA; after two-point gain/offset calibration Driver high-Z, sinking 1 mA; after two-point gain/offset calibration; measured over VCH range of −1.0 V to +6.0 V Measured at calibration points Driver high-Z, sourcing 1 mA; VCL error measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration Driver high-Z, sourcing 1 mA; after two-point gain/offset calibration; measured over VCL range of −1.5 V to +5 V Measured at calibration points Driver high-Z, VCH = 0 V, VCL = −1.5 V, VDUTx = +5 V Driver high-Z, VCH = 6.0 V, VCL = 5.0 V, VDUTx = 0.0 V Over ±0.1 V range; measured at the end points of VCH and VCL functional range NORMAL WINDOW COMPARATOR VOH tests done with VOL = −1.5 V; VOL tests done with VOH = 6.0 V, unless otherwise specified. Table 4. Parameter DC SPECIFICATIONS Input Voltage Range Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated Comparator Threshold Resolution Comparator Threshold DNL Comparator Threshold INL Comparator Input Offset Voltage Tempco DUTGND Voltage Accuracy Min −1.5 ±0.1 −150 −7 Typ Max Unit Test Level ±30 +6.0 ±7.5 +150 V V mV D D P 0.6 1 mV PF ±1 ±1.3 +7 mV mV CT P μV/°C CT mV P ±100 −7 ±0.5 +7 Rev. 0 | Page 7 of 56 Conditions/Comments Offset measured at the calibration points of 0.0 V and 5.0 V After two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0 V and 5 V After two-point gain/offset calibration After two-point gain/offset calibration; measured over VOH, VOL range of −1.5 V to +6.0 V Measured at calibration points Over ±0.1 V range; measured at end points of VOH and VOL functional range ADATE305 Parameter Comparator Uncertainty Range DC Hysteresis DC PSRR Digital Output Characteristics Internal Pull-Up Resistance to Comparator, COMP_VTT Pin VCOMP_VTT Range Common-Mode Voltage Min Typ 6.0 Test Level CB mV mV/V CB CT 60 Ω P 5.0 V V D CT VCOMP_VTT − 1.675 V mV P CT 600 mV ps P CB 0.5 ±5 40 50 3.3 VCOMP_VTT − 1.88 VCOMP_VTT − 2.075 Differential Voltage 250 400 Rise/Fall Time, 20% to 80% Unit mV Max 500 450 AC SPECIFICATIONS Propagation Delay, Input to Output 1.75 ns CB Propagation Delay Tempco 5 ps/°C CT 200 ps CB 50 ps CB 50 ps CB Overdrive, 250 mV and 1.5 V 75 ps CB Pulse Width, Sweep 1.6 ns to 10 ns 75 ps CB Propagation Delay Matching High Transition to Low Transition High to Low Comparator Propagation Delay Change (with Respect To) Slew Rate, 800 ps, 1 ns, 1.2 ns, and 2.2 ns (10% to 90%) Rev. 0 | Page 8 of 56 Conditions/Comments VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Measured at calibration points Pull 1 mA and 10 mA from Logic 1 leg and measure ΔV to calculate resistance; measured ΔV/9 mA; done for both comparator logic states Measured with 100 Ω differential termination Measured with no external termination Measured with 100 Ω differential termination Measured with no external termination Measured with each comparator leg terminated 50 Ω to GND Input transition time = 800 ps, 10% to 90%; measured with each comparator leg terminated 50 Ω to GND; unless otherwise specified VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = −1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = −1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = −1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.75 V, VOL = −1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V For 250 mV: VDUTx = 0 V to 0.5 V swing; for 1.5 V: VDUTx = 0 V to 1.75 V swing; Driver VTERM mode, VT = 0.0 V; highside measurement: VOH = 0.25 V, VOL = −1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.25 V VDUTx = 0 V to 1.5 V swing @ 32.0 MHz, Driver VTERM mode, VT = 0.0 V; highside measurement: VOH = 0.5 V, VOL = −1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V ADATE305 Parameter Duty Cycle, 5% to 95% Min Typ 50 Max Unit ps Test Level CB Minimum Pulse Width 2.0 ns CB Input Equivalent Bandwidth, Terminated 500 MHz CB ERT High-Z Mode, 3 V, 20% to 80% 2.5 ns CB Conditions/Comments VDUTx = 0 V to 1.5 V swing @ 1.0 MHz, Driver VTERM mode, VT =0.0 V; highside measurement: VOH = 0.75 V, VOL = −1.5 V; low-side measurement: VOH = 6.0 V, VOL = 0.75 V VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; less than 12% amplitude degradation measured by shmoo VDUTx = 0 V to 1.5 V swing, Driver VTERM mode, VT = 0.0 V; as measured by shmoo VDUTx = 0 V to 3.0 V swing, driver high-Z; as measured by shmoo; input transition time of ~2000 ps, 10% to 90% DIFFERENTIAL COMPARATOR VOH tests done with VOL = −1.1 V, VOL tests done with VOH = +1.1 V, unless otherwise specified. Table 5. Parameter DC SPECIFICATIONS Input Voltage Range Operational Differential Voltage Range Maximum Differential Voltage Range Comparator Input Offset Voltage Accuracy, Uncalibrated VOH, VOL Resolution Min Unit Test Level +4.5 ±1.1 V V D D ±35 ±8 +150 V mV D P/CT 0.6 1 mV PF mV CT mV P μV/°C mV CT CB mV mV/V CB P −1.25 ±0.05 −150 VOH, VOL DNL VOH, VOL INL Max Typ ±1 −15 ±2.0 +15 VOH, VOL Offset Voltage Tempco Comparator Uncertainty Range ±200 18 DC Hysteresis CMRR 0.5 0.15 DC PSRR AC SPECIFICATIONS ±1.5 mV/V CT Propagation Delay, Input to Output 1.7 ns CB Propagation Delay Tempco 5 ps/°C CT 100 50 ps ps CB CB 1 Propagation Delay Matching High Transition to Low Transition High-to-Low Comparator Rev. 0 | Page 9 of 56 Conditions/Comments Offset measured at differential calibration points +1.0 V and −1.0 V, with common mode = 0.0 V After two-point gain/offset calibration; range/number of DAC bits as measured at differential calibration points +1.0 V and −1.0 V, with common mode = 0.0 V After two-point gain/offset calibration; common mode = 0.0 V After two-point gain/offset calibration; measured over VOH, VOL range of −1.1 V to +1.1 V, common mode = 0.0 V Measured at calibration points VDUTx = 0 V, sweep comparator threshold to determine uncertainty region VDUTx = 0 V Offset measured at common-mode voltage points of −1.5 V and +4.5 V, with differential voltage = 0.0 V Measured at calibration points Input transition time = 800 ps, 10% to 90%, measured with each comparator leg terminated 50 Ω to GND VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel ADATE305 Parameter Propagation Delay Change (with Respect To) Min Typ Max Unit Test Level Slew Rate, 800 ps, 1ns, 1.2ns, and 2.2 ns (10% to 90%) 60 ps CB Overdrive, 250 mV and 750 mV 100 ps CB Pulse Width, Sweep from 1.6 ns to 10 ns 75 ps CB Duty Cycle, 5% to 95% 60 ps CB Minimum Pulse Width 2.5 ns CB Input Equivalent Bandwidth, Terminated 400 MHz CB Rev. 0 | Page 10 of 56 Conditions/Comments VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, for 250 mV: VDUT1 = 0 V to 0.5 V swing; for 750 mV: VDUT1 = 0 V to 1.0 V swing, Driver VTERM mode, VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel with comparator threshold = +0.25 V VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 32 MHz, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing @ 1 MHz, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; less than 10% amplitude degradation measured by shmoo; repeat for other DUT channel VDUT0 = 0 V, VDUT1 = −0.5 V to +0.5 V swing, Driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; less than 22% amplitude degradation measured by shmoo; repeat for other DUT channel ADATE305 ACTIVE LOAD See Table 29 for load control information. Table 6. Parameter DC SPECIFICATIONS Input Characteristics VCOM Voltage Range VDUT Range VCOM Accuracy, Uncalibrated Min −1.25 −1.5 −200 VCOM Resolution Typ Max Unit Test Level ±30 +5.75 +6.0 +200 V V mV D D P 0.6 1 mV PF VCOM DNL VCOM INL −7 ±1 ±2 +7 mV mV CT P DUTGND Voltage Accuracy −7 ±1 +7 mV P 12 −600.0 ±100 +600.0 mA μA D P −12 ±4 +12 % P Resolution 1.5 2 μA PF DNL ±3.0 μA CT +80 μA P 0.25 V P Output Characteristics IOL Maximum Source Current Uncalibrated Offset Uncalibrated Gain INL −80 ±20 90% Commutation Voltage IOH Maximum Sink Current Uncalibrated Offset 12 −600.0 ±100 +600.0 mA μA D P −12 ±4 +12 % P Resolution 1.5 2 μA PF DNL ±3.0 μA CT +80 μA P 0.25 V P μA/°C CT Uncalibrated Gain INL −80 ±20 90% Commutation Voltage Output Current Tempco ±1.5 Rev. 0 | Page 11 of 56 Conditions/Comments Load active on, RCV active, unless otherwise noted IOH = IOL = 6 mA, VCOM error measured at the calibration points of 0.0 V and 5.0 V IOH = IOL = 6 mA, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 0.0 V and 5.0 V IOH = IOL = 6 mA, after two-point gain/offset calibration IOH = IOL = 6 mA, after two-point gain/offset calibration; measured over VCOM range of −1.25 V to +5.75 V Over ±0.1 V range; measured at end points of VCOM functional range IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL offset calculated from the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, IOL gain calculated from the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/ offset calibration; range/number of DAC bits as measured at the calibration points of 1 mA and 11 mA IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/offset calibration IOH = 0 mA, VCOM = 1.5 V, VDUTx = 0.0 V, after two-point gain/ offset calibration; measured over IOL range of 0 mA to 12 mA IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL reference at VDUTx = −1.0 V, measure IOL current at VDUTx = 1.75 V, ensure > 90% of reference current IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH offset calculated from the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, IOH gain calculated from the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 1 mA and 11 mA IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/offset calibration IOL = 0 mA, VCOM = 1.5 V, VDUTx = 3.0 V, after two-point gain/ offset calibration; measured over IOH range of 0 mA to 12 mA IOH = IOL =12 mA, VCOM = 2.0 V, measure IOH reference at VDUTx = 5.0 V, measure IOH current at VDUTx = 2.25 V, ensure > 90% of reference current Measured at calibration points ADATE305 Unit Test Level 7.3 ns CB Propagation Delay, Load Active Off to Load Active On; 50%, 90% 10.3 ns CB Propagation Delay Matching 3.0 ns CB Load Spike 190 mV CB Settling Time to 90% 1.9 ns CB Parameter AC SPECIFICATIONS Dynamic Performance Propagation Delay, Load Active On to Load Active Off; 50%, 90% Min Typ Max Conditions/Comments Load active on, unless otherwise noted Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; active on vs. active off, repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 0 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; repeat for drive low and high Toggle RCV, DUTx terminated 50 Ω to GND, IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured at 90% of final value PMU FV = force voltage, MV = measure voltage, FI = force current, MI = measure current, FN = force nothing. Table 7. Parameter FORCE VOL TAGE (FV) Current Range A Current Range B Current Range C Current Range D Current Range E Force Input Voltage Range at Output for All Ranges Force Voltage Uncalibrated Accuracy for Range C Force Voltage Uncalibrated Accuracy for All Ranges Force Voltage Offset Tempco for All Ranges Force Voltage Gain Tempco for All Ranges Forced Voltage INL Min Max Unit Test Level +6.0 mA mA μA μA μA V D D D D D D +100 mV P ±25 mV CT ±25 μV/°C CT PMU enabled, FV, Range C, PE disabled, error measured at calibration points of 0.0 V and 5.0 V PMU enabled, FV, PE disabled, error measured at calibration points of 0.0 V and 5.0 V; repeat for each PMU current range Measured at calibration points for each PMU current range ±10 ppm/°C CT Measured at calibration points for each PMU current range mV P PMU enabled, FV, Range C, PE disabled, after two-point gain/offset calibration; measured over output range of −1.5 V to +6.0 V PMU enabled, FV, PE disabled, force −1.5 V, measure voltage while PMU sinking zero and full-scale current; measure ∆V; force 6.0 V, measure voltage while PMU sourcing zero and fullscale current; measure ∆V; repeat for each PMU current range mV mV CT CT Typ ±32 ±2 ±200 ±20 ±2 −1.5 −100 −7 ±25 ±2 +7 Force Voltage Compliance vs. Current Load Range A Range B to Range E ±4 ±1 Rev. 0 | Page 12 of 56 Conditions/Comments ADATE305 Parameter Current Limit, Source, and Sink Range A Range B to Range E DUTGND Voltage Accuracy Min Typ Max Unit Test Level 108 140 180 %FS P 120 145 180 %FS P −7 ±1 +7 mV P +6.0 V D μA CT μA P MEASURE CURRENT (MI) Measure Current, Pin DUTx Voltage Range for All Ranges Measure Current Uncalibrated Accuracy Range A Range B −1.5 ±500 −400 ±3.0 +400 Conditions/Comments PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; Range A FS = 32 mA, 108% FS = 35 mA, 180% FS = 58 mA PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each PMU current range; example: Range B FS = 2 mA, 120 % FS = 2.4 mA, 180% FS = 3.6 mA Over ±0.1 V range; measured at end points of FV functional range VDUTx externally forced to 0.0V, unless otherwise specified, ideal MEASOUT transfer functions: VMEASOUT01 [V] = (IMEASOUT01 × 5/FSR) + 2.5 + VDUTGND I(VMEASOUT01) [A] = (VMEASOUT01 − VDUTGND − 2.5) × FSR/5 PMU enabled, FIMI, Range A, PE disabled, error at calibration points −25 mA and +25 mA, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, Range B, PE disabled, error at calibration points −1.6 mA and +1.6 mA, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01)1 − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01) − IDUTx) PMU enabled, FIMI, PE disabled, error at calibration points of ±80% FS, error = (I(VMEASOUT01) − IDUTx) Range C ± 2.00 μA CT Range D ±0.30 μA CT Range E ±0.08 μA CT ±2 ±25 ±5 ±1 μA/°C nA/°C nA/°C nA/°C CT CT CT CT Measured at calibration points Measured at calibration points Measured at calibration points Measured at calibration points ±2.5 % CT % P ±4 % CT PMU enabled, FIMI, PE disabled, gain error from calibration points ±80% FS PMU enabled, FIMI, Range B, PE disabled, gain error from calibration points ±1.6 mA PMU enabled, FIMI, PE disabled, gain error from calibration points ±80% FS Measured at calibration points ±300 ±50 ppm/°C ppm/°C CT CT ±0.05 %FSR CT %FSR P %FSR CT %FSR/V P mV CT Measure Current Offset Tempco Range A Range B Range C Range D and Range E Measure Current Gain Error, Nominal Gain = 1 Range A Range B −20 Range C to Range E Measure Current Gain Tempco Range A Range B to Range E Measure Current INL Range A Range B −0.02 Range B to Range E FVMI DUT Pin Voltage Rejection DUTGND Voltage Accuracy ±2 +20 +0.02 ±0.01 −0.01 +0.01 ±2.5 Rev. 0 | Page 13 of 56 PMU enabled, FIMI, Range A, PE disabled, after two-point gain/offset calibration, measured over FSR output of −32 mA to +32 mA PMU enabled, FIM,I Range B, PE disabled, after two-point gain/ offset calibration measured over FSR output of −2 mA to +2 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FVMI, Range B, PE disabled, force −1 V and +5 V into load of 1 mA; measure ∆I reported at MEASOUT01 Over ±0.1 V range; measured at end points of MI functional range ADATE305 Parameter FORCE CURRENT (FI) Force Current, DUTx Pin Voltage Range for All Ranges Force Current Uncalibrated Accuracy Range A Min Typ −1.5 Max Unit Test Level +6.0 V D −5.0 ±0.5 +5.0 mA P Range B −400 ±40 +400 μA P Range C −40 ±4 +40 μA P Range D −4 ±0.4 +4 μA P Range E −400 ±75 +400 nA P −20 ±1 ±80 ±4 ±4 +20 μA/°C nA/°C nA/°C % CT CT CT P ppm/°C ppm/°C CT CT Force Current Offset Tempco Range A Range B Range C to Range E Forced Current Gain Error, Nominal Gain = 1 Forced Current Gain Tempco Range A Range B to Range E Force Current INL Range A −500 ±75 −0.3 ±0.05 +0.3 %FSR P −0.2 ±0.015 +0.2 %FSR P −0.6 −1.0 ±0.06 ±0.1 +0.6 +1.0 %FSR %FSR P P −1.5 −25 ±2.0 +6.0 +25 V mV D P −2 ±10 ±0.01 +2 μV/°C % CT P Measure Voltage Gain Tempco Measure Voltage INL −7 25 ±1 +7 ppm/°C mV CT P Rejection of Measure V vs. IDUTx −1.5 ±0.1 +1.5 mV P 25 +6.0 4 200 V mA Ω D D P +1 μA P Range B to Range E Force Current Compliance vs. Voltage Load Range A to Range D Range E MEASURE VOLTAGE Measure Voltage Range Measure Voltage Uncalibrated Accuracy Measure Voltage Offset Tempco Measure Voltage Gain Error MEASOUT01 DC CHARACTERISTICS MEASOUT01 Voltage Range DC Output Current MEASOUT01 Pin Output Impedance Output Leakage Current when Tristated −1.5 −1 Rev. 0 | Page 14 of 56 Conditions/Comments VDUTx externally forced to 0.0V, unless otherwise specified, ideal force current transfer function: IFORCE = (PMUDAC − 2.5) × (FSR/5) PMU enabled, FIMI, Range A, PE disabled, error at calibration points of −25 mA and +25 mA PMU enabled, FIMI, Range B, PE disabled, error at calibration points of −1.6 mA and 1.6 mA PMU enabled, FIMI, Range C, PE disabled, error at calibration points of ±80% FS PMU enabled, FIMI, Range D, PE disabled, error at calibration points of ±80% FS PMU enabled, FIMI, Range E, PE disabled, error at calibration points of ±80% FS Measured at calibration points Measured at calibration points Measured at calibration points PMU enabled, FIMI, PE disabled, gain error from calibration points of ±80% FS Measured at calibration points PMU enabled, FIMI, Range A, PE disabled, after two-point gain/offset calibration; measured over FSR output of −32 mA to +32 mA PMU enabled, FIMI, PE disabled, after two-point gain/offset calibration; measured over FSR output PMU enabled, FIMV, PE disabled; force positive full-scale current driving −1.5 V and +6.0 V, measure ∆I @ DUTx pin; force negative full-scale current driving −1.5 V and +6.0 V, measure ∆I @ DUTx pin PMU enabled, FVMV, Range B, PE disabled, error at calibration points 0 V and 5 V, error = (VMEASOUT01 − VDUTx) Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, gain error from calibration points 0 V and 5 V Measured at calibration points PMU enabled, FVMV, Range B, PE disabled, after two-point gain/offset calibration; measured over output range of −1.5 V to +6.0 V PMU enabled, FVMV, Range D, PE disabled, force 0 V into load of −10 μA and +10 μA; measure ∆V reported at MEASOUT01 PMU enabled, FVMV, PE disabled; source resistance: PMU force 6.0 V and load with 0 mA and 4 mA; sink resistance: PMU force −1.5 V and load with 0 mA and −4 mA; resistance = ∆V/∆I at MEASOUT01 pin Tested at −1.5 V and +6.0 V ADATE305 Max +25 Unit mA Test Level P +10 +4.0 6.0 +300 V V mV D D P −300 −10 +300 mV P Uncalibrated Accuracy −250 ±100 +250 mV P INL −70 ±5 +70 mV P ±1 mV CT 15 μs S 20 μs S 124 μs S 1015 μs S 3455 μs S Parameter Output Short-Circuit Current Min −25 VOLTAGE CLAMPS Low Clamp Range (VCL) High Clamp Range (VCH) Positive Clamp Voltage Droop −1.5 0.0 −300 Negative Clamp Voltage Droop DUTGND Voltage Accuracy Typ SETTLING/SWITCHING TIMES Voltage Force Settling Time to 0.1% of Final Value: Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF and 2000 pF Load Range E, 200 pF and 2000 pF Load Voltage Force Settling Time to 1.0% of Final Value: Range A, 200 pF and 2000 pF Load Range B, 200 pF and 2000 pF Load Range C, 200 pF and 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load Voltage Force Settling Time to 1.0% of Final Value: Range A, 200 pF and 2000 pF Load Range B, 200 pF Load Range B, 2000 pF Load Range C, 200 pF Load Range C, 2000 pF Load Range D, 200 pF Load Range D, 2000 pF Load Range E, 200 pF Load Range E, 2000 pF Load Conditions/Comments PMU enabled, FVMV, PE disabled; source: PMU force +6.0 V, short MEASOUT01 to −1.5 V; sink: PMU force −1.5 V, short MEASOUT01 to +6.0 V PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = 5 V,VCL = −1 V, PMU force 2 mA and 32 mA into open; ∆V seen at DUTx pin PMU enabled, FIMI, Range A, PE disabled, PMU clamps enabled, VCH = 5 V,VCL = −1 V, PMU force −2 mA and −32 mA into open; ∆V seen at DUTx pin PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled, PMU force ±1 mA into open; VCH errors at calibration points 0 V and 5 V; VCL errors at the calibration points 0 V and 4 V PMU enabled, FIMI, Range B, PE disabled, PMU clamps enabled, PMU force ±1 mA into open; after two-point gain/offset calibration; measured over PMU clamp range Over ±0.1 V range; measured at end points of PMU clamp functional range SCAP = 330 pF, FFCAP = 220 pF PMU enabled, FV, PE disabled, program PMUDAC steps of 500 mV and 5.0 V; simulation of worst case, 2000 pF load, PMUDAC step of 5.0 V PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 500 mV 14 μs CB 14 μs CB 14 μs CB 45 45 45 225 μs μs μs μs CB CB CB CB PMU enabled, FV, PE disabled, start with PMUDAC programmed to 0.0 V, program PMUDAC to 5.0 V 4.0 μs CB 4.2 4.2 5.8 19 50 210 360 610 μs μs μs μs μs μs μs μs CB CB CB CB CB CB CB CB Rev. 0 | Page 15 of 56 ADATE305 Parameter Current Force Settling Time to 0.1% of Final Value Range A, 200 pF in Parallel with 120 Ω Range B, 200 pF in Parallel with 1.5 kΩ Range C, 200 pF in Parallel with 15.0 kΩ Range D, 200 pF in Parallel with 150 kΩ Range E, 200 pF in Parallel with 1.5 MΩ Current Force Settling Time to 1.0% of Final Value: Range A, 200 pF in Parallel with 120 Ω Range B, 200 pF in Parallel with 1.5 kΩ Range C, 200 pF in Parallel with 15.0 kΩ Range D, 200 pF in Parallel with 150 kΩ Range E, 200 pF in Parallel with 1.5 MΩ INTERACTION AND CROSSTALK Measure Voltage Channel-toChannel Crosstalk Min Measure Current Channel-toChannel Crosstalk Unit Test Level 8.2 μs S 9.4 μs S 30 μs S 281 μs S 2668 μs S Typ Max Conditions/Comments PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current PMU enabled, FI, PE disabled, start with PMUDAC programmed to 0 current, program PMUDAC to FS current 4.2 μs CB 4.3 μs CB 8.1 μs CB 205 μs CB 505 μs CB ±0.125 %FSR CT ±0.01 %FSR CT PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into 0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA into 0 V load; report ∆V of MEASOUT01 pin under test; 0.125% × 8.0 V = 10 mV PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into 0 mA current load; other channel: Range E, forcing a step of 0 V to 5 V into 0 mA current load; report ∆V of MEASOUT01 pin under test; 0.01% × 5.0 V = 0.5 mV EXTERNAL SENSE (PMUS_CHX) Table 8. Parameter EXTERNAL SENSE (PMUS_CHX) Voltage Range Input Leakage Current Min Max Unit Test Level Conditions/Comments +6.0 +20 V nA D P Tested at −1.5 V and +6.0 V Typ Max Unit Test Level Conditions/Comments 1 +0.1 100 V μA D P Tested at −100 mV and +100 mV Typ −1.5 −20 DUTGND INPUT Table 9. Parameter DUTGND INPUT Input Voltage Range, Referenced to GND Input Bias Current Min −0.1 Rev. 0 | Page 16 of 56 ADATE305 SERIAL PERIPHERAL INTERFACE Table 10. Parameter SERIAL PERIPHERAL INTERFACE Serial Input Logic High Serial Input Logic Low Input Bias Current SCLK Clock Rate SCLK Pulse Width SCLK Crosstalk on DUTx Pin Serial Output Logic High Serial Output Logic Low Update Time Min 1.8 0 −10 Typ 1 50 9 8 VCC − 0.4 Max Unit Test Level VCC 0.7 +10 V V μA MHz ns mV V PF PF P PF CT CB PF V μs PF D VCC 0 0.8 10 Conditions/Comments Tested at 0.0 V and 3.3 V PE disabled, PMU FV enabled and forcing 0 V Sourcing 2 mA Sinking 2 mA Maximum delay time required for the part to enter a stable state after a serial bus command is loaded HVOUT DRIVER Table 11. Max Unit Test Level VPLUS − 3.25 V D V P 5.9 V P ±100 +500 mV P 1 1.21 1.5 mV/°C mV CT PF ±15 +30 mV P mV CT 10 Ω P 60 100 mA P −100 −60 mA P 200 ns CB 26 ns CB ±125 mV CB Parameter VHH BUFFER Voltage Range Min Output High 13.5 Typ 5.9 Output Low Accuracy Uncalibrated −500 Offset Tempco Resolution INL −30 DUTGND Voltage Accuracy ±1 Output Resistance 1 DC Output Current Limit Source DC Output Current Limit Sink Rise Time (From VL or VH to VHH) Fall Time (From VHH to VL or VH) Preshoot, Overshoot, and Undershoot Rev. 0 | Page 17 of 56 Conditions/Comments VHH = (VT + 1 V) × 2 + DUTGND VPLUS = 16.75 V nominal; in this condition, VHVOUT max = 13.5 V VHH mode enabled, RCV active, VHH level = full scale, sourcing 15 mA VHH mode enabled, RCV active, VHH level = zero scale, sinking 15 mA VHH mode enabled, RCV active, VHVOUT error measured at the calibration points of 7 V and 12 V Measured at calibration points VHH mode enabled, RCV active, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points of 7 V and 12 V VHH mode enabled, RCV active, after two-point gain/offset calibration; measured over VHH range of 5.9 V to 13.5 V Over ±0.1 V range; measured at end points of VHH functional range VHH mode enabled, RCV active, source: VHH = 10.0 V, IHVOUT= 0 mA and 15 mA; sink: VHH = 6.5 V, IHVOUT = 0 mA and −15 mA; ∆V/∆I VHH mode enabled, RCV active, VHH = 10.0 V, short HVOUT pin to 5.9 V, measure current VHH mode enabled, RCV active, VHH = 6.5 V, short HVOUT pin to 14.1 V, measure current VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATA = high and DATA = low VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; 20% to 80%, for DATA = high and DATA = low VHH mode enabled, toggle RCV, VHH = 13.5 V, VL = VH = 3.0 V; for DATA = high and DATA = low ADATE305 Parameter VL/VH BUFFER Voltage Range Accuracy Uncalibrated Min Typ Max Unit Test Level −0.1 −500 ±100 +6.0 +500 V mV D P 1 0.61 0.75 mV/°C mV CT PF ±4 +20 mV P mV CT 50 Ω P Offset Tempco Resolution INL −20 DUTGND Voltage Accuracy ±2 Output Resistance 46 48 DC Output Current Limit Source DC Output Current Limit Sink 60 100 mA P −100 −60 mA P Rise Time (VL to VH) 10.0 ns CB Fall Time (VH to VL) 11.3 ns CB Preshoot, Overshoot, and Undershoot ±54 mV CB Max Unit Test Level +7.0 +200 V mV D P mV CB Conditions/Comments VHH mode enabled, RCV inactive, error measured at the calibration points 0 V and 5 V Measured at calibration points VHH mode enabled, RCV inactive, after two-point gain/offset calibration; range/number of DAC bits as measured at the calibration points 0 V and 5 V VHH mode enabled, RCV inactive, after two-point gain/offset calibration; measured over range of −0.1 V to +6.0 V Over ±0.1 V range; measured at end points of VH and VL, functional range VHH mode enabled, RCV inactive, source: VH = 3.0 V, IHVOUT = 1 mA and 50 mA; sink: VL = 2.0 V, IHVOUT = −1 mA and −50 mA; ∆V/∆I VHH mode enabled, RCV inactive, VH = 6.0 V, short HVOUT pin to −0.1 V, DATA high, measure current VHH mode enabled, RCV inactive, VL = −0.1 V, short HVOUT pin to 6.0 V, DATA low, measure current VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA; 20% to 80% VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA; 20% to 80% VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V, toggle DATA OVERVOLTAGE DETECTOR (OVD) Table 12. Parameter DC CHARACTERISTICS Programmable Voltage Range Accuracy Uncalibrated Min Typ −3.0 −200 Hysteresis LOGIC OUTPUT CHARACTERISTICS Off State Leakage 112 Conditions/Comments OVD offset errors measured at programmed levels of +7.0 V and −3.0 V 10 1000 nA P Disable OVD alarm, apply 3.3 V to OVD pin, measure leakage current Activate alarm, force 100 μA into OVD pin, measure active alarm voltage For OVD high: DUTx = 0 V to 6 V swing, OVD high = 3.0 V, OVD low = −3.0 V; for OVD low: DUTx = 0 V to 6 V swing, OVD high = 7.0 V, OVD low = 3.0 V Max On Voltage @ 100 μA 0.2 0.7 V P Propagation Delay 1.6 μs CB Max Unit Test Level Conditions/Comments +7.5 V kΩ D CT PMUDAC = 0.0 V, FV, I = 0, 200 μA; ∆V/∆I 16-BIT DAC MONITOR MUX Table 13. Parameter DC CHARACTERISTICS Programmable Voltage Range Output Resistance Min Typ −2.5 16 Rev. 0 | Page 18 of 56 ADATE305 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 14. Parameter Supply Voltages Positive Supply Voltage (VDD to GND) Positive VCC Supply Voltage (VCC to GND) Negative Supply Voltage (VSS to GND) Supply Voltage Difference (VDD to VSS) Reference Ground (DUTGND to GND) AGND to DGND VPLUS Supply Voltage (VPLUS to GND) Input Voltages Input Common-Mode Voltage Short-Circuit Voltage1 High Speed Input Voltage2 High Speed Differential Input Voltage3 VREF DUTx I/O Pin Current DCL Maximum Short-Circuit Current4 Temperature Operating Temperature, Junction Storage Temperature Range For liquid cooled applications, θJC = 1.1°C/W. Rating −0.5 V to +11.0 V −0.5 V to +4.0 V −6.25 V to +0.5 V −1.0 V to +16.5 V −0.5 V to +0.5 V −0.5 V to +0.5 V −0.5 V to +17.5 V VSS to VDD −3.0 V to +8.0 V 0.0 V to VCC 0.0 V to VCC −0.5 V to +5.5 V ±140 mA 125°C −65°C to +150°C 1 RL = 0 Ω, VDUT continuous short-circuit condition, (VH, VL, VT, high-Z, VCOM, clamp modes). 2 DATAxP, DATAxN, RCVxP, RCVxN, under source R = 0 Ω. 3 DATAxP to DATAxN, RCVxP, RCVxN. 4 RL = 0 Ω, VDUTx = –3 V to +8 V; DCL current limit. Continuous short-circuit condition. ADATE305 must current limit and survive continuous short circuit. Table 15. Thermal Resistance Airflow Natural Convection 1 meter per second 2 meters per second θJA 33 30 28.5 EXPLANATION OF TEST LEVELS D Definition S Design verification simulation P 100% production tested PF Functionally checked during production test CT Characterized on tester CB Characterized on bench ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 0 | Page 19 of 56 Unit °C/W °C/W °C/W ADATE305 NC NC PMUS_CH0 VSS VDD VSSO_0 (DRIVE) DUT0 VDDO_0 (DRIVE) AGND AGND VSS VDD AGND VDD VSS AGND AGND VDDO_1 (DRIVE) DUT1 VSSO_1 (DRIVE) VDD VSS PMUS_CH1 NC NC PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 NC 74 NC 3 73 HVOUT VDD/VDD_TMPSNS 4 72 VPLUS SCAP1 5 71 SCAP0 FFCAP_1B 6 70 FFCAP_0B VDD 7 69 VDD OVD_CH1 8 68 OVD_CH0 DATA1N 9 67 DATA0N DATA1P 10 66 DATA0P FFCAP_1A 11 65 FFCAP_0A ADATE305 64 VSS TOP VIEW (Not to Scale) 63 RCV0N NC 1 NC 2 TEMPSENSE PIN 1 VSS 12 RCV1N 13 62 RCV0P AGND 15 61 AGND COMP_QL1P 16 60 COMP_QL0P COMP_QL1N 17 59 COMP_QL0N RCV1P 14 COMP_VTT1 18 58 COMP_VTT0 COMP_QH1P 19 57 COMP_QH0P COMP_QH1N 20 56 COMP_QH0N AGND 21 55 AGND AGND 22 54 AGND AGND 23 53 AGND NC 24 52 NC NC 25 51 NC NC NC VREF_GND VREF AGND AGND AGND RST VSS VCC VDD SDIN SCLK SDOUT DGND VDD VSS DAC16_MON CS AGND AGND DUTGND MEASOUT01/TEMP SENSE NC NC 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 07280-002 NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD IS CONNEC TED TO VSS. Figure 2. Pin Configuration Table 16. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 Mnemonic NC NC TEMPSENSE VDD/VDD_TMPSNS SCAP1 FFCAP_1B VDD OVD_CH1 DATA1N DATA1P FFCAP_1A VSS Description No Connect. No physical connection to die. No Connect. No physical connection to die. Temperature Sense Output. Temperature Sense Supply +10.0 V. PMU Stability Capacitor Connection Channel 1 (330 pF). PMU Feed Forward Capacitor Connection B Channel 1 (220 pF). Supply +10.0 V. Overvoltage Detection Flag Output Channel 1. Driver Data Input (Negative) Channel 1. Driver Data Input (Positive) Channel 1. PMU Feedforward Capacitor Connection A Channel 1 (220 pF). Supply −5.75 V. Rev. 0 | Page 20 of 56 ADATE305 Pin No. 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Mnemonic RCV1N RCV1P AGND COMP_QL1P COMP_QL1N COMP_VTT1 COMP_QH1P COMP_QH1N AGND AGND AGND NC NC NC NC MEASOUT01/TEMP SENSE 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 DUTGND AGND AGND CS DAC16_MON VSS VDD DGND SDOUT SCLK SDIN VDD VCC VSS RST AGND AGND AGND VREF VREF_GND NC NC NC NC AGND AGND AGND Comp_QH0N Comp_QH0P Comp_VTT0 Comp_QL0N Comp_QL0P AGND RCV0P Description Receive Data Input (Negative) Channel 1. Receive Data Input (Positive) Channel 1. Analog Ground. Low-Side Comparator Output (Positive) Channel 1. Low-Side Comparator Output (Negative) Channel 1. Comparator Supply Channel 1. High-Side Comparator Output (Positive) Channel 1. High-Side Comparator Output (Negative) Channel 1. Analog Ground. Analog Ground. Analog Ground. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. Shared Muxed Output. Muxed output shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1, and the temperature sense and temperature sense GND reference. Device Under Test Ground Reference. Analog Ground. Analog Ground. Serial Peripheral Interface (SPI®) Chip Select. 16-Bit DAC Monitor Mux Output. Supply −5.75 V. Supply +10.0 V. Digital Ground. Serial Programmable Interface (SPI) Data Output. Serial Programmable Interface (SPI) Clock. Serial Programmable Interface (SPI) Data Input. Supply +10.0 V. Supply +3.3 V. Supply −5.75 V. Serial Peripheral Interface (SPI) Reset. Analog Ground. Analog Ground. Analog Ground. +5 V DAC Reference Voltage. DAC Ground Reference. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. Analog Ground. Analog Ground. Analog Ground. High-Side Comparator Output (Negative) Channel 0. High-Side Comparator Output (Positive) Channel 0. Comparator Supply Channel 0. Low-Side Comparator Output (Negative) Channel 0. Low-Side Comparator Output (Positive) Channel 0. Analog Ground. Receive Data Input (Positive) Channel 0. Rev. 0 | Page 21 of 56 ADATE305 Pin No. 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 EP Mnemonic RCV0N VSS FFCAP_0A DATA0P DATA0N OVD_CH0 VDD FFCAP_0B SCAP0 VPLUS HVOUT NC NC NC NC PMUS_CH0 VSS VDD VSSO_0 (DRIVE) DUT0 VDDO_0 (DRIVE) AGND AGND VSS VDD AGND VDD VSS AGND AGND VDDO_1 (DRIVE) DUT1 VSSO_1 (DRIVE) VDD VSS PMUS_CH1 NC NC Description Receive Data Input (Negative) Channel 0. Supply −5.75 V. PMU Feedforward Capacitor Connection A Channel 0 (220 pF). Driver Data Input (Positive) Channel 0. Driver Data Input (Negative) Channel 0. Overvoltage Detection Flag Output Channel 0. Supply +10.0 V. PMU Feedforward Capacitor Connection B Channel 0 (220 pF). PMU Stability Capacitor Connection Channel 0 (330 pF). Supply +16.75 V. High Voltage Driver Output. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. No Connect. No physical connection to die. PMU External Sense Path Channel 0. Supply −5.75 V. Supply +10.0 V. Driver Output Supply −5.75 V Channel 0. Device Under Test Channel 0. Driver Output Supply +10.0 V Channel 0. Analog Ground. Analog Ground. Supply −5.75 V. Supply +10.0 V. Analog Ground. Supply +10.0 V. Supply −5.75 V. Analog Ground. Analog Ground. Driver Output Supply +10.0 V Channel 1. Device Under Test Channel 1. Driver Output Supply −5.75 V Channel 1. Supply +10.0 V. Supply −5.75 V. PMU External Sense Path Channel 1. No Connect. No physical connection to die. No Connect. No physical connection to die. Exposed Pad. The exposed pad is connected to VSS. Rev. 0 | Page 22 of 56 ADATE305 TYPICAL PERFORMANCE CHARACTERISTICS 0.30 1.6 0.5V 0.25 3V 1.4 1.2 0.20 VOLTAGE (V) VOLTAGE (V) 1.0 0.15 0.2V 0.10 2V 0.8 0.6 1V 0.4 0.05 0.2 0 2 4 6 8 10 12 14 16 18 TIME (ns) –0.2 Figure 3. Driver Small Signal Response; VH = 0.2 V, 0.5 V; VL = 0.0 V; 50 Ω Termination 1.0 1.5 2.0 2.5 TIME (ns) 3.0 3.5 4.0 4.5 1.8 3V 1.4 1.6 3V 1.4 1.2 1.2 1.0 2V VOLTAGE (V) 0.8 0.6 1V 0.4 1.0 2V 0.8 0.6 1V 0.4 0.2 0.2 0 0 2 4 6 8 10 TIME (ns) 12 14 16 18 –0.2 07280-024 0 0 2 3 4 5 6 7 8 07280-021 VOLTAGE (V) 0.5 Figure 6. 50 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V, 50 Ω Termination 1.6 –0.2 0 07280-022 0 07280-023 –0.05 0 9 10 11 12 13 14 15 16 17 18 19 TIME (ns) Figure 7. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination Figure 4. Driver Large Signal Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 1.6 6 5V 3V 1.4 5 1.2 VOLTAGE (V) 2V 3V 3 2 1V 1 0 0.8 0.6 1V 0.2 0 2 4 6 8 10 TIME (ns) 12 14 16 18 0 Figure 5. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V; VL = 0 .0 V; 500 Ω Termination 0 1 2 3 4 5 6 TIME (ns) 7 8 9 Figure 8. Response at 200 MH; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination Rev. 0 | Page 23 of 56 10 07280-032 –1 1.0 0.4 07280-031 VOLTAGE (V) 4 ADATE305 0.6 1.6 1.4 0.5 3V 0.4 1.0 VOLTAGE (V) VOLTAGE (V) 1.2 2V 0.8 0.6 1V 0.3 0.2 0.4 0.5V 0 0 07280-026 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 TIME (ns) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 TIME (ns) 07280-028 0.1 0.2 Figure 12. Driver Active (VH and VL) to and from VTERM Transition; VH = 1.0 V, VT = 0.5 V, VL = 0.0 V Figure 9. 300 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 1.2 0.9 3V 0.8 1.0 0.7 2V 0.8 0.5 VOLTAGE (V) VOLTAGE (V) 0.6 1V 0.4 0.6 0.4 0.3 0.5V 0.2 0.2 0 0.5 1.0 1.5 2.0 2.5 3.0 TIME (ns) 3.5 4.0 4.5 0 07280-027 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 TIME (ns) Figure 10. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination 07280-029 0.1 Figure 13. Driver Active (VH and VL) to and from VTERM Transition; VH = 2.0 V, VT = 1.0 V, VL = 0.0 V 1.2 1.6 1.4 1.0 1.2 1.0 VOLTAGE (V) VOLTAGE (V) 0.8 0.6 0.4 0.8 0.6 0.4 0.2 0.2 200 250 300 350 400 450 FREQUENCY (MHz) 500 550 600 –0.2 07280-084 0 0 2 4 6 8 10 TIME (ns) Figure 11. Driver Toggle Rate, VH = 2.0 V, VL = 0.0 V, 50 Ω Termination Rev. 0 | Page 24 of 56 12 14 16 18 20 07280-030 0 Figure 14. Driver Active (VH and VL) to and from VTERM Transition; VH = 3.0 V, VT = 1.5 V, VL = 0.0 V ADATE305 20 40 2V NEG 0 0.2V NEG TRAILING EDGE ERROR (ps) TRAILING EDGE ERROR (ps) 20 0.2V POS –20 –40 –60 0 2V POS –20 –40 –60 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 –100 Figure 15. Driver Minimum Pulse Width; VH = 0.2 V, VL = 0.0 V 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 07280-034 –80 07280-036 –80 Figure 18. Driver Minimum Pulse Width; VH = 2.0 V, VL = 0.0 V 20 40 0 TRAILING EDGE ERROR (ps) TRAILING EDGE ERROR (ps) 20 0.5V NEG 0.5V POS –20 –40 3V POS 3V NEG 0 –20 –40 –60 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 –100 07280-037 –60 1 2 3 4 PULSE WIDTH (ns) 5 6 7 8 9 10 07280-035 –80 Figure 19. Driver Minimum Pulse Width; VH = 3.0 V, VL = 0.0 V Figure 16. Driver Minimum Pulse Width; VH = 0.5 V, VL = 0.0 V 1.5 10 1V NEG 1.0 LINEARITY ERROR (mV) –10 1V POS –20 –30 –40 0 –0.5 –1.0 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 –2.0 –2 –1 0 1 2 3 4 5 DRIVER OUTPUT VOLTAGE (V) Figure 20. Driver VH Linearity Error Figure 17. Driver Minimum Pulse Width; VH = 1.0 V, VL = 0.0 V Rev. 0 | Page 25 of 56 6 7 07280-051 –60 0.5 –1.5 –50 07280-033 TRAILING EDGE ERROR (ps) 0 ADATE305 100 1.5 90 DRIVER OUTPUT CURRENT (mA) LINEARITY ERROR (mV) 1.0 0.5 0 –0.5 –1.0 80 70 60 50 40 30 20 10 0 1 2 3 4 DRIVER OUTPUT VOLTAGE (V) 5 07280-052 –1 –10 –2 6 –1 0 1 2 VDUTx (V) 3 4 5 6 07280-055 0 –1.5 –2 Figure 24. Driver Output Current Limit; Driver Programmed to −2.0 V; VDUTx Swept from −2.0 V to +6.0 V Figure 21. Driver VL Linearity Error 0 1.5 –10 DRIVER OUTPUT CURRENT (mA) 0.5 0 –0.5 –1.0 –1.5 –30 –40 –50 –60 –70 –80 –90 –1 0 1 2 3 4 DRIVER OUTPUT VOLTAGE (V) 5 6 –100 –2 07280-053 –2.0 –2 –20 Figure 22. Driver VT Linearity Error –1 0 1 2 VDUTx (V) 3 4 5 6 07280-056 LINEARITY ERROR (mV) 1.0 Figure 25. Driver Output Current Limit; Driver Programmed to 6.0 V; VDUTx Swept from −2.0 V to +6.0 V 48.5 –722 LINEARITY ERROR (mV) 47.5 47.0 46.5 –724 –725 –726 –727 –728 46.0 –60 –40 –20 0 20 DRIVER OUTPUT CURRENT (mA) 40 60 –730 –1 0 1 2 3 4 VL PROGRAMMED VOLTAGE (V) Figure 26. HVOUT VL Linearity Error Figure 23. Driver Output Resistance vs. Output Current Rev. 0 | Page 26 of 56 5 6 07280-057 –729 007280-054 DRIVER OUTPUT RESISTANCE (Ω) –723 48.0 ADATE305 1.0 6 RISE INPUT 4 0.8 RISE SHMOO 0 VOLTAGE (V) LINEARITY ERROR (mV) 2 –2 –4 0.6 0.4 –6 –8 FALL SHMOO 0.2 FALL INPUT 5 6 7 8 9 10 11 12 VL PROGRAMMED VOLTAGE (V) 13 14 0 07280-058 –12 0 0.6 1.8 2.4 3.0 TIME (ns) Figure 30. Comparator Shmoo, 1.0 V Input, 1.0 ns (10% to 90%) Input, 50 Ω Terminated Figure 27. HVOUT VHH Linearity Error 1.6 80 RISE INPUT 70 60 1.2 50 VOLTAGE (V) HVOUT DRIVER CURRENT (mA) 1.2 07280-049 –10 40 30 RISE SHMOO 0.8 20 FALL SHMOO 0.4 10 FALL INPUT 0 1 2 3 VHVOUT (V) 4 5 6 0 07280-059 –10 –1 Figure 28. HVOUT VH Current Limit; VH = −0.1 V; VHVOUT Swept from −0.1 V to +6.0 V 0 0.6 2.4 3.0 Figure 31. Comparator Shmoo, 1.5 V Input, 1.5 ns (10% to 90%) Input, 50 Ω Terminated 80 1.6 RISE INPUT 60 40 1.2 VOLTAGE (V) 20 0 –20 –40 RISE SHMOO 0.8 FALL SHMOO 0.4 FALL INPUT –80 5 6 7 8 9 10 11 VHVOUT (V) 12 13 14 Figure 29. HVOUT VHH Current Limit; VHH = 10.0 V; VHVOUT Swept from −5.9 V to +14.1 V 15 0 0 0.6 1.2 1.8 TIME (ns) 2.4 3.0 07280-047 –60 07280-060 HVOUT DRIVER CURRENT (mA) 1.2 1.8 TIME (ns) 07280-048 0 Figure 32. Comparator Shmoo, 1.5 V Input, 1.2 ns (10% to 90%) Input, 50 Ω Terminated Rev. 0 | Page 27 of 56 ADATE305 100 1.6 VOLTAGE (V) 1.2 RISE SHMOO 0.8 0.4 FALL SHMOO FALL INPUT 0 0.6 1.2 1.8 TIME (ns) 2.4 3.0 50 25 RISING 0 FALLING –25 –50 0.5 07280-046 0 TOTAL 75 Figure 33. Comparator Shmoo, 1.5 V Input, 1.0 ns (10% to 90%) Input, 50 Ω Terminated 1.0 1.5 2.0 INPUT SLEW RATE (10%-90%) (ns) 07280-050 PROPAGATION DELAY VARIATION (ps) RISE INPUT 2.5 Figure 36. Comparator Slew Rate Dispersion, Input Swing = 1.5 V, Comparator Threshold = 0.75 V 1.6 1.6 RISE INPUT COMP_QH0P 1.4 COMP_QH0N 1.2 RISE SHMOO VOLTAGE (V) 0.8 0.4 0.6 1.2 1.8 2.4 3.0 0 0 5 10 15 20 25 30 35 40 45 50 TIME (ns) Figure 34. Comparator Shmoo, 1.5 V Input, 0.625 ns (10% to 90%) Input, 50 Ω Terminated 07280-025 0.6 0.2 07280-045 0 FALL INPUT TIME (ns) Figure 37. Comparator Output Waveform, COMP_QH0P, COMP_QH0N 0.8 10 0.6 0 0.4 LINEARITY ERROR (mV) –10 –20 –30 1V POS –40 –50 1V NEG –60 0.2 0 –0.2 –0.4 –0.6 –0.8 –1.0 –70 –1.2 –80 1 2 3 4 PULSEWIDTH (ns) 5 6 7 8 9 10 –1.4 –2 07280-038 TRAILING EDGE ERROR (ps) 0.8 0.4 FALL SHMOO 0 1.0 –1 0 1 2 3 4 5 PROGRAMMED THRESHOLD VOLTAGE (V) Figure 38. Comparator Threshold Linearity Figure 35. Comparator Minimum Pulse Width, 1.0 V Rev. 0 | Page 28 of 56 6 07280-061 VOLTAGE (V) 1.2 0.8 2.0 0.6 1.8 0.4 LINEARITY ERROR (mV) 2.2 1.4 1.2 1.0 0.8 0.2 0 –0.2 –0.4 0.6 –0.6 0.4 –0.8 –1 0 1 2 3 INPUT COMMON-MODE VOLTAGE (V) 4 5 –1 –2 IDUTx (nA) 6 0 –5 5 6 2.8 2.6 2.4 2.2 0 1 2 3 4 5 6 VDUTx (V) 2.0 –2 07280-063 –1 Figure 40. Active Load Commutation Response; VCOM = 2.0 V; IOH = IOL = 12 mA 4 2.5 2 2.0 IDUTx (nA) 3.0 0 –2 –6 0 –0.5 –2 07280-064 12 2 VDUTx (V) 3 4 1.0 0.5 10 1 1.5 –4 4 6 8 ACTIVE LOAD CURRENT (mA) 0 Figure 43. DUTx Pin Leakage in Low Leakage Mode 6 2 –1 07280-067 LOAD CURRENT (mA) 5 3.0 5 –10 LINEARITY ERROR (µA) 4 3.2 10 0 1 2 3 VCOM VOLTAGE (V) 3.4 15 –8 0 Figure 42. Active Load VCOM Linearity Figure 39. Differential Comparator CMRR –15 –2 –1 Figure 41. Active Load Current Linearity –1 0 1 2 VDUTx (V) 3 4 Figure 44. DUTx Pin Leakage in High-Z Mode Rev. 0 | Page 29 of 56 5 6 07280-066 0.2 –2 07280-065 1.6 07280-062 DIFFERENTIAL COMPARATOR OFFSET (mV) ADATE305 ADATE305 40 0.008 20 0.006 LINEARITY ERROR (µA) LINEARITY ERROR (µA) 0 –20 –40 –60 –80 0.004 0.002 0 –0.002 –100 –30 –20 –10 0 10 20 PMU OUTPUT CURRENT (mA) 30 –0.006 –0.020 –0.015 –0.010 –0.005 0 0.005 0.010 PMU OUTPUT CURRENT (mA) 07280-068 –140 –40 40 0.015 0.020 07280-071 –0.004 –120 Figure 48. PMU Force Current Range D Linearity Figure 45. PMU Force Current Range A Linearity 0.0005 0.8 0.0004 0.0003 0.4 LINEARITY ERROR (µA) LINEARITY ERROR (µA) 0.6 0.2 0 –0.2 –0.4 0.0002 0.0001 0 –0.0001 –0.0002 –0.0003 –0.0004 –0.6 –1.5 –1.0 –0.5 0 0.5 1.0 PMU OUTPUT CURRENT (mA) 1.5 2.0 –0.0006 –0.0020 –0.0015 –0.0010 –0.0050 0 0.0050 0.0010 0.0015 0.0020 PMU OUTPUT CURRENT (mA) Figure 49. PMU Force Current Range E Linearity Figure 46. PMU Force Current Range B Linearity 5 0.08 4 PMU VOLTAGE ERROR (mV) 0.04 0.02 0 –0.02 –0.04 3 2 1 0 –1 –2 –0.15 –0.10 –0.05 0 0.05 0.10 PMU OUTPUT CURRENT (mA) 0.15 Figure 47. PMU Force Current Range C Linearity 0.20 –4 –40 –30 –20 –10 0 10 IDUTx (mA) 20 30 40 07280-073 –3 07280-070 LINEARITY ERROR (µA) 0.06 –0.06 –0.20 07280-072 –0.0005 07280-069 –0.8 –2.0 Figure 50. PMU Force Voltage Range A Output Voltage Error at 6.0 V vs. Output Current Rev. 0 | Page 30 of 56 ADATE305 5 10 0 3 PMU CURRENT ERROR (µA) 2 1 0 –1 –2 –10 0 10 IDUTx (mA) 20 30 40 –40 –60 –2 0.6 10 0.4 0 0.2 0 –0.2 –0.4 1 2 VDUTx (V) 3 4 5 6 –10 –20 –30 –40 –0.5 0 0.5 IDUTx (mA) 1.0 1.5 2.0 –60 –2 –1 0 1 2 VDUTx (V) 3 4 5 6 07280-078 –1.0 07280-075 –1.5 Figure 52. PMU FV Range B Output Voltage Error at 6.0 V vs. Output Current Figure 55. PMU FI Range A Output Current Error at +32 mA vs. Output Voltage; Output Voltage Is Pulled Externally 0.5 0.4 0.4 PMU CURRENT ERROR (µA) 0.6 0.2 0 –0.2 –0.4 –0.6 0.3 0.2 0.1 0 –0.1 –1.5 –1.0 –0.5 0 0.5 IDUTx (mA) 1.0 1.5 2.0 –0.2 –2 07280-076 –0.8 –2.0 0 –50 –0.6 –0.8 –2.0 –1 Figure 54. PMU FI Range A Output Current Error at −32 mA vs. Output Voltage; Output Voltage Is Pulled Externally PMU CURRENT ERROR (µA) PMU VOLTAGE ERROR (mV) –30 07280-077 –20 07280-074 –30 Figure 51. PMU FV Range A Output Voltage Error at −1.5 V vs. Output Current PMU VOLTAGE ERROR (mV) –20 –50 –3 –4 –40 –10 Figure 53. PMU FV Range B Output Voltage Error at −1.5 V vs. Output Current –1 0 1 2 VDUTx (V) 3 4 5 6 07280-079 PMU VOLTAGE ERROR (mV) 4 Figure 56. PMU FI Range B Output Current Error at −2 mA vs. Output Voltage; Output Voltage Is Pulled Externally Rev. 0 | Page 31 of 56 0.7 0.45 0.6 0.40 0.5 0.35 PMU VOLTAGE ERROR (mV) 0.4 0.3 0.2 0.1 0 0.30 0.25 0.20 0.15 0.10 0.05 –0.1 –1 0 1 2 3 4 5 6 VDUTx (V) 0 –2 07280-080 –0.2 –2 Figure 57. PMU FI Range B Output Current Error at +2 mA vs. Output Voltage; Output Voltage Is Pulled Externally –1 0 1 2 VDUTx (V) 3 4 5 07280-083 PMU CURRENT ERROR (µA) ADATE305 Figure 60. PMU Measure Current CMRR, Externally Pulling 1 mA, FVMI; Error of MI vs. External 1 mA 0.0010 89mV/DIV 0.0005 0 –0.0010 –2 –1 0 1 2 VDUTx (V) 3 4 5 6 Figure 58. PMU FI Range E Output Current Error at −2 μA vs. Output Voltage; Output Voltage Is Pulled Externally 960ps/DIV 07280-039 –0.0005 07280-081 PMU CURRENT ERROR (µA) 0.0015 Figure 61. Eye Diagram, 200 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V 0.0016 0.0012 0.0010 89mV/DIV PMU CURRENT ERROR (µA) 0.0014 0.0008 0.0006 0.0004 0.0002 –1 0 1 2 VDUTx (V) 3 4 5 6 Figure 59. PMU FI Range E Output Current Error at +2 μA vs. Output Voltage; Output Voltage Is Pulled Externally Rev. 0 | Page 32 of 56 400ps/DIV 07280-040 –0.0002 –2 07280-082 0 Figure 62. Eye Diagram, 400 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V 250ps/DIV 07280-043 07280-044 200ps/DIV 07280-042 Figure 65. Eye Diagram, 400 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V 130mV/DIV 400ps/DIV Figure 63. Eye Diagram, 600 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V 100mV/DIV 250ps/DIV 07280-041 130mV/DIV 100mV/DIV ADATE305 Figure 66. Eye Diagram, 600 Mbps, PRBS31; VH = 2.0 V, VL = 0.0 V Figure 64. Eye Diagram, 800 Mbps, PRBS31; VH = 1.0 V, VL = 0.0 V Rev. 0 | Page 33 of 56 ADATE305 SPI DETAILS tCH SCLK tCL tCSSA tCSHA tCSHD tCSSD CS tCSW tDH tDS SDOUT DATA[15] DATA[14] DO_15 LAST DO_14 LAST CH[1] R/W DO_13 LAST DO_12 LAST ADDR[1] DO_2LAST ADDR[0] DO_1LAST 07280-003 SDIN DO_0LAST tDO Figure 67. SPI Timing Diagram Table 17. Serial Peripheral Interface Timing Requirements Symbol tCH tCL tCSHA tCSSA tCSHD tCSSD tDH tDS tDO tCSW tCSTP 1 Parameter SCLK minimum high SCLK minimum low CS assert hold CS assert setup CS deassert hold CS deassert setup SDIN hold SDIN setup SDOUT Data Out CS minimum between assertions 1 CS minimum directly after a read request Minimum delay after CS is deasserted before SCLK can be stopped (not shown in Figure 67); this allows any internal operations to complete An extra cycle is needed after a read request to prime the read data into the SPI shift register. Rev. 0 | Page 34 of 56 Min 9.0 9.0 3.0 3.0 3.0 3.0 3.0 3.0 Max 15.0 2 3 16 Unit ns ns ns ns ns ns ns ns ns SCLK cycles SCLK cycles SCLK cycles ADATE305 DEFINITION OF SPI WORD Table 18. Channel Selection The SPI can accept variable length words, depending on the operation. At most, the word length equals 24 bits: 16 bits of data, two channel selects, one R/W selector, and a 5-bit address. Channel 1 0 Channel 0 0 0 1 1 1 0 1 Depending on the operation, the data can be smaller or, in the case of a read operation, nonexistent. Channel Selected NOP (no channel selected, no register changes) Channel 0 selected Channel 1 selected Channel 0 and Channel 1 selected Table 19. R/W Definition R/W 0 Description Current register specified by address shifts out of SDOUT on next shift operation Current data is written to the register specified by address and channel select 1 Example 1: 16-Bit Write DATA[15:0] CH[1:0] R/W 07280-004 Write 16 bits of data to a register or DAC; ignore unused MSBs. For example, Bit 15 and Bit 14 are ignored, and Bit 13 through Bit 0 are applied to the 14-bit DAC. ADDR[4:0] Figure 68. 16-Bit Write Example 2: 14-Bit Write DATA[13:0] CH[1:0] R/W ADDR[4:0] 07280-005 Write 14 bits of data to the DAC. Figure 69. 14-Bit Write Example 3a: 2-Bit Write DATA[1:0] CH[1:0] R/W ADDR[4:0] 07280-006 Write two bits of data to the 2-bit register. Figure 70. 2-Bit Write Example 3b: 2-Bit Write DATA[15:0] CH[1:0] R/W 07280-007 Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored and Bit 1 through Bit 0 are applied to the register. ADDR[4:0] Figure 71. 2-Bit Write Example 4: Read Request DATA[15:0] CH[1:0] R/W = 0 ADDR[4:0] CH[1:0] R/W ADDR[4:0] Figure 72. Read Request Rev. 0 | Page 35 of 56 07280-008 Read request and follow with a second instruction (could be NOP) to clock out the data. ADATE305 WRITE OPERATION CS INPUT SCLK INPUT SDIN INPUT DATA[2] DATA[1] DATA[0] DATA[15] DATA[14] DATA[13] 0 1 2 13 14 15 CH[1] CH[0] R/W 16 17 18 SDOUT OUTPUT ADDR[4] 19 ADDR[3] 20 ADDR[2] 21 ADDR[1] 22 X ADDR[0] 23 24 25 X 07280-009 NOTES 1. R/W = 1. 2. X = DON’T CARE. Figure 73. 16-Bit SPI Write CS INPUT SCLK INPUT SDIN INPUT DATA[1] DATA[0] 0 SDOUT OUTPUT 1 CH[1] CH[0] R/W 2 3 4 ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0] 5 6 7 8 X 9 10 11 X 07280-010 NOTES 1. R/W = 1. 2. X = DON’T CARE. Figure 74. 2-Bit SPI Write Rev. 0 | Page 36 of 56 ADATE305 back the previous specified data. The NOP address can be used for this read if there is no need to write/read another register. To maintain the clarity of the operation, it is strongly recommended that the NOP address be used for all reads. READ OPERATION The read operation is a two-stage operation. First, a word is shifted in, specifying which register to read. CS is deasserted for three clock cycles, and then a second word is shifted in to obtain the readback data. This second word can be either another operation or an NOP address. If another operation is shifted in, it needs to shift in at least eight bits of data to read Any register read that is fewer than 16 bits has zeroes filled in the top bits to make it a 16-bit word. CS INPUT SCLK INPUT SDIN INPUT READ INSTRUCTION SDOUT OUTPUT X NOP READ DATA X 07280-011 X X NOTES 1. X = DON’T CARE. Figure 75. SPI Read Overview CS INPUT SCLK INPUT SDIN INPUT DATA[15:0], VALUE IS A DON’T CARE 0 1 2 13 14 CH[1] CH[0] R/W 16 17 18 15 SDOUT OUTPUT X ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0] 19 20 21 22 23 24 25 07280-012 X NOTES 1. X = DON’T CARE. Figure 76. SPI Read—Details of Read Request CS INPUT SCLK INPUT SDIN INPUT DATA[15:0], VALUE IS A DON’T CARE 0 SDOUT OUTPUT RDATA[15] 1 2 RDATA[14] 13 RDATA[2] CH[1] 14 15 RDATA[1] RDATA[0] 16 CH[0] 17 ADDR[4:0] = 0x00 (NOP) R/W = 1 18 19 21 22 23 24 25 X 07280-013 NOTES 1. RDATA IS THE REGISTER VALUE BEING READ. 2. X = DON’T CARE. 20 X Figure 77. SPI Read—Details of Read Out Rev. 0 | Page 37 of 56 ADATE305 RESET OPERATION The ADATE305 contains an asynchronous reset feature. The ADATE305 can be reset to the default values shown in Table 20 by utilizing the RST pin. To initiate the reset operation, deassert the RST pin for a minimum of 100 ns and deassert the CS pin for a minimum of two SCLK cycles. 100ns MINIMUM RST SCLK MINIMUM OF TWO SCLK EDGES AFTER ASSERTING RST BEFORE RESUMING NORMAL OPERATION. Figure 78. Reset Operation Rev. 0 | Page 38 of 56 07280-014 CS ADATE305 REGISTER MAP The ADDR[4:0] bits determine the destination register of the data being written to the ADATE305. Table 20. Register Selection DATA[15:0] N/A 1 DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[13:0] DATA[15:0] DATA[2:0] DATA[2:0] DATA[9:0] DATA[2:0] DATA[0] DATA[1:0] DATA[1:0] DATA[2:0] N/A 1 CH[1:0] N/A CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1] CH[0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] CH[1:0] N/A R/W N/A R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R N/A ADDR[4:0] 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 to 0x1F Register Selected NOP VH DAC level VL DAC level VT/VCOM DAC level VOL DAC level VOH DAC level VCH DAC level VCL DAC level V(IOH ) DAC level V(IOL ) DAC level OVD high level OVD low level PMUDAC level PE/PMU enable Channel state PMU state PMU measure enable Differential comparator enable 16-bit DAC monitor OVD_CHx alarm mask OVD_CHx alarm state Reserved N/A means not applicable. Rev. 0 | Page 39 of 56 Reset State N/A 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 4096d 16384d 000b 000b 0d 000b 0b 00b 01b N/A N/A ADATE305 DETAILS OF REGISTERS Table 21. PE/PMU Enable (ADDR[4:0] = 0x0C) Bit DATA[2] Name PMU enable DATA[1] Force VT DATA[0] PE disable Description 0 = disable PMU force output and clamps, place PMU in MV mode 1 = enable PMU force output When set to 0, the PMU state bits are ignored, except for PMU sense path (Data[7]) 0 = normal driver operation 1 = force driver to VT See Table 29 for complete functionality of this bit 0 = enable driver functions 1 = disable driver (low leakage) See Table 29 for complete functionality of this bit Table 22. Channel State (ADDR[4:0] = 0x0D) Bit DATA[2] Name HV mode select DATA[1] Load enable DATA[0] Driver high-Z or VT Description 0 = HV driver in low impedance. 1 = enable HV driver. This bit affects Channel 0 only. Ensure that the Channel 0 bit in SPI write is active. Channel 1 bit in SPI write is don’t care. 0 = disable load. 1 = enable load. See Table 29 for complete functionality of this bit. 0 = enable Driver high-Z function. 1 = enable Driver VTERM function. See Table 29 for complete functionality of this bit. Table 23. PMU State (ADDR[4:0] = 0x0E) 1, 2 Bit DATA[9:8] Name PMU input selection DATA[7] PMU sense path DATA[6] DATA[5] Reserved PMU clamp enable DATA[4] PMU measure voltage or current DATA[3] PMU force voltage or current DATA[2:0] PMU range 1 2 Description 00 = VDUTGND (calibrated for 0.0 V voltage reference) 01 = 2.5 V + VDUTGND (calibrated for 0.0 A current reference) 1X = PMUDAC 0 = internal sense 1 = external sense 0 = disable clamps 1 = enable clamps 0 = measure voltage mode 1 = measure current mode 0 = force voltage mode 1 = force current mode 0XX = 2 μA range 100 = 20 μA range 101 = 200 μA range 110 = 2 mA range 111 = 32 mA range Note that when ADDR[4:0] = 0x0C, the PMU enable bit (DATA[2]) = 0, PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage mode. PMU State DATA[9:8] and DATA[6:0] are ignored, and only the DATA[7] PMU sense path is valid. X = don’t care. Rev. 0 | Page 40 of 56 ADATE305 Table 24. PMU Measure Enable (ADDR[4:0] = 0x0F) 1 Bit DATA[2:1] Name MEASOUT01 select DATA[0] MEASOUT01 output enable 1 Description 00 = PMU MEASOUT Channel 0 01 = PMU MEASOUT Channel 1 10 = Temp sensor ground reference 11 = Temp sensor 0 = MEASOUT01 is tristated 1 = MEASOUT01 is enabled This register is written to or read from when either of the CH[1:0] bits is 1. Table 25. Differential Comparator Enable (ADDR[4:0] = 0x10) 1 Bit DATA[0] 1 Name Differential Comparator Enable Description 0 = differential comparator is disabled; the Channel 0 normal window comparator (NWC) outputs are located on Channel 0 1 = differential comparator is enabled; the differential comparator outputs are located on Channel 0 This register is written to or read from when either of the CH[1:0] bits is 1. Table 26. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11) 1 Bit DATA[1] Name 16-Bit DAC mux enable DATA[0] 16-Bit DAC mux select 1 Description 0 = 16-bit DAC mux is tristated 1 = 16-bit DAC mux is enabled 0 = 16-bit DAC Channel 0 1 = 16-bit DAC Channel 1 This register is written to or read from when either of the CH[1:0] bits is 1. Table 27. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12) Bit DATA[1] Name PMU mask DATA[0] OVD mask Description 0 = disable PMU alarm flag 1 = enable PMU alarm flag 0 = disable OVD alarm flag 1 = enable OVD alarm flag Table 28. OVD_CHx Alarm State (ADDR[4:0] = 0x13) 1 Bit DATA[2] Name PMU clamp flag DATA[1] OVD high flag DATA[0] OVD low flag 1 Description 0 = PMU is not clamped 1 = PMU is clamped 0 = DUT voltage < OVD high voltage 1 = DUT voltage > OVD high voltage 0 = DUT voltage > OVD low voltage 1 = DUT voltage < OVD low voltage This register is a read-only register. Rev. 0 | Page 41 of 56 ADATE305 USER INFORMATION Table 29. Driver and Load Truth Table 1 PE Disable DATA[0] ADDR[4:0] = 0x0C 1 Registers Force VT Load Enable DATA[1] DATA[1] ADDR[4:0] = 0x0C ADDR[4:0] = 0x0D X X Driver High-Z/VT DATA[0] ADDR[4:0] = 0x0D X DATAx X RCVx X Driver State High-Z without clamps Load State Power-down 0 0 1 0 X 0 X 0 X 0 X 0 VT VL Power-down Power-down 0 0 0 0 0 0 0 0 0 1 1 0 High-Z with clamps VH Power-down Power-down 0 0 0 0 0 0 0 1 1 0 1 0 High-Z with clamps VL Power-down Power-down 0 0 0 0 0 0 1 1 0 1 1 0 VT VH Power-down Power-down 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 VT VL High-Z with clamps VH High-Z with clamps VL High-Z with clamps VH High-Z with clamps Power-down Active off Active on Active off Active on Active on Active on Active on Active on 1 Signals X = don’t care. Table 30. HVOUT Truth Table 1 HVOUT Mode Select DATA[2] ADDR[4:0] =0x0D 1 1 1 0 1 Channel 0 RCV 1 0 0 X Channel 0 DATA X 0 1 X HVOUT Driver Output VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC) VL (Channel 0 VL DAC) VH (Channel 0 VH DAC) Disabled (HVOUT pin set to 0 V low impedance) X = don’t care. Table 31. Comparator Truth Table Differential Comparator Enable DATA[0] ADDR[4:0] = 0x10 0 1 COMP_QH0 Normal window mode Logic high: VOH0 < VDUT0 Logic low: VOH0 > VDUT0 Differential comparator mode Logic high: VOH0 < VDUT0 − VDUT1 Logic low: VOH0 > VDUT0 − VDUT1 COMP_QL0 Normal window mode Logic high: VOL0 < VDUT0 Logic low: VOL0 > VDUT0 Differential comparator mode Logic high: VOL0 < VDUT0 − VDUT1 Logic low: VOL0 > VDUT0 − VDUT1 Rev. 0 | Page 42 of 56 COMP_QH1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1 Normal window mode Logic high: VOH1 < VDUT1 Logic low: VOH1 > VDUT1 COMP_QL1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1 Normal window mode Logic high: VOL1 < VDUT1 Logic low: VOL1 > VDUT1 ADATE305 • DETAILS OF DACS vs. LEVELS There are ten 14-bit DACs per channel. These DACs provide levels for the driver, comparator, load currents, VHH buffer, OVD, and clamp levels. There are three versions of output levels as follows: • −2.5 V to +7.5 V and tracks DUTGND. Controls the VH, VL, VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels. • −3.0 V to +7.0 V and tracks DUTGND. Controls the OVD levels. −2.5 V to +7.5 V and does not track DUTGND. Controls the IOH and IOL levels. There is one 16-bit DAC per channel. This DAC provides the levels for the PMU. The output level is as follows: • −2.5 V to +7.5 V and tracks DUTGND; controls the PMU levels. Table 32. Level Transfer Functions DAC Transfer Function VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) – 0.5 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] VOUT = 4.0 × (VREF − VREF_GND) × (Code/(214)) − 1.0 × (VREF − VREF_GND) + 2.0 + VDUTGND Code = [VOUT − VDUTGND − 2.0 + 1.0 × (VREF − VREF_GND)] × [(214)/(4.0 × (VREF − VREF_GND))] VOUT = 2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.6 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.6 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(214)) − 0.5 × (VREF − VREF_GND)] × (0.012/5.0) Code = [(IOUT × (5.0/0.012)) + 0.5 × (VREF − VREF_GND)] × [(214)/(2.0 × (VREF − VREF_GND))] VOUT = 2.0 × (VREF − VREF_GND) × (Code/(216)) – 0.5 × (VREF − VREF_GND) + VDUTGND Code = [VOUT − VDUTGND + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) – 0.5 × (VREF − VREF_GND) − 2.5] × (0.050/5.0) Code = [(IOUT × (5.0/0.050)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) – 0.5 × (VREF − VREF_GND) − 2.5] × (0.004/5.0) Code = [(IOUT × (5.0/0.004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) – 0.5 × (VREF − VREF_GND) − 2.5] × (0.0004/5.0) Code = [(IOUT × (5.0/0.0004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) – 0.5 × (VREF − VREF_GND) − 2.5] × (0.00004/5.0) Code = [(IOUT × (5.0/0.00004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] IOUT = [2.0 × (VREF − VREF_GND) × (Code/(216)) – 0.5 × (VREF − VREF_GND) − 2.5] × (0.000004/5.0) Code = [(IOUT × (5.0/0.000004)) + 2.5 + 0.5 × (VREF − VREF_GND)] × [(216)/(2.0 × (VREF − VREF_GND))] 1 Programmable Range 1 (All 0s to All 1s) −2.5 V to +7.5 V −3.0 V to +17.0 V Levels VH, VL, VT/VCOM, VOL, VOH, VCH, VCL VHH −3.0 V to +7.0 V OVD −6 mA to +18 mA IOH, IOL −2.5 V to +7.5 V PMUDAC −50 mA to +50 mA PMUDAC (PMU FI Range A) PMUDAC (PMU FI Range B) PMUDAC (PMU FI Range C) PMUDAC (PMU FI Range D) PMUDAC (PMU FI Range E) −4 mA to +4 mA −400 μA to +400 μA −40 μA to +40 μA −4 μA to +4 μA Programmable range includes a margin outside of the specified part performance, allowing for offset/gain calibration. Table 33. Load Transfer Functions Load Level IOL IOH 1 Transfer Function 1 V(IOL)/5 V × 12 mA V(IOH)/5 V × 12 mA V(IOH), V(IOL) DAC levels are not referenced to DUTGND. Table 34. PMU Transfer Functions PMU Mode Force Voltage Measure Voltage Force Current Measure Current 1 Transfer Functions VOUT = PMUDAC VMEASOUT01 = VDUTx (internal sense) or VMEASOUT01 = VPMUS_CHx (external sense) IOUT = [PMUDAC − (VREF/2)]/(R 1 × 5) VMEASOUT01 = (VREF/2) + VDUTGND + (IDUTx × 5 × R1) R = 15.5 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E. Rev. 0 | Page 43 of 56 ADATE305 Table 35. PMU User Required Capacitors Table 36. Temperature Sensor Capacitor 220 pF 220 pF 330 pF 330 pF Temperature 0K 300 K xK Location Across Pin 70 (FFCAP_0B) and Pin 65 (FFCAP_0A) Across Pin 6 (FFCAP_1B) and Pin 11 (FFCAP_1A) Between GND and Pin 71 (SCAP0) Between GND and Pin 5 (SCAP1) Output 0V 3V (x K) × 10 mV/K Table 37. Power Supply Ranges Parameter Nominal VDD Nominal VSS Driver VH range VL range VT range Functional Amplitude Reflection Clamp VCH Range VCL Range Comparator Input Voltage Range Active Load VCOM Range PMU Force Voltage Range Measure Voltage Range Force Current Voltage Range Measure Current Voltage Range Low Clamp Range High Clamp Range Range 1 +10.0 V −5.25 V Range 2 +10.0 V −5.75 V −1.4 V to +6.0 V −1.5 V to +5.9 V −1.5 V to +6.0 V 7.5 V −1.9 V to +6.0 V −2.0 V to +5.9 V −2.0 V to +6.0 V 8.0 V −1.0 V to +6.0 V −1.5 V to +5.0 V −1.5 V to +6.0 V −1.25 V to +5.75 V −1.5 V to +6.0 V −2.0 V to +5.0 V −2.0 V to +6.0 V −1.75 V to +5.75 V −1.5 V to +6.0 V −1.5 V to +6.0 V −1.5 V to +6.0 V −1.5 V to +6.0 V −1.5 V to +4.0 V 0.0 V to +6.0 V −2.0 V to +6.0 V −2.0 V to +6.0 V −2.0 V to +6.0 V −2.0 V to +6.0 V −2.0 V to +4.0 V 0.0 V to +6.0 V Rev. 0 | Page 44 of 56 ADATE305 Table 38. Default Test Conditions (Range 1) Name VH DAC Level VL DAC Level VT/VCOM DAC Level VOL DAC Level VOH DAC Level VCH DAC Level VCL DAC Level IOH DAC Level IOL DAC Level OVD Low DAC Level OVD High DAC Level PMUDAC DAC Level PE/PMU Enable Channel State PMU State PMU Measure Enable Differential Comparator Enable 16-Bit DAC Monitor OVD_CHx Alarm Mask Data Input Receive Input DUTx Pin Comparator Output Default Test Condition +2.0 V +0.0 V +1.0 V −1.0 V +6.0 V +7.5 V −2.5 V 0.0 A 0.0 A −2.5 V +6.5 V 0.0 V 0x0000: PMU disabled, VT not forced through driver, PE enabled 0x0000: HV mode disabled, load disabled, VTERM inactive 0x0000: Input of DUTGND, internal sense, clamps disabled, FVMV, Range E 0x0000: MEASOUT01 pin tristated 0x0000: Normal window comparator mode 0x0000: DAC16_MON tristated 0x0000: disable alarm functions Logic low Logic low Unterminated Unterminated Rev. 0 | Page 45 of 56 ADATE305 RECOMMENDED PMU MODE SWITCHING SEQUENCES To minimize any possible aberrations and voltage spikes on the DUT output, specific mode switching sequences are recommended for the following transitions: • • • PMU disable to PMU enable. PMU force voltage mode to PMU force current mode. PMU force current mode to PMU force voltage mode. PMU Disable to PMU Enable Note that in Table 39 through Table 49, X indicates the don’t care bit. Step 1. Table 39 lists the state of the registers in PMU disabled mode. Table 39. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 0 XX X X X X X XXX Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 40). Table 40. Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] Setting 1X or 00 X X X X 0 Comments Set desired input selection DATA[2:0] XXX This bit must be set to force voltage mode to reduce aberrations Set desired range Setting 1 Comments PMU is now enabled in force voltage mode Step 3. Write to Register ADDR[4:0] = 0x0C (see Table 41). Table 41. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C Bits DATA[2] PMU Force Voltage Mode to PMU Force Current Mode Step 1. Table 42 lists the state of registers in force voltage mode. Table 42. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1 XX X X X X 0 XXX Rev. 0 | Page 46 of 56 ADATE305 Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 43). Table 43. Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 01 X X X X 1 0XX Comments Set 2.5 V + DUTGND input selection Setting X Comments Update the VIN 16-Bit DAC register to the desired value Setting 1X X X X X 1 XXX Comments Set VIN input selection Set to force current mode 2 μA range has the minimum offset current Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 44). Table 44. Register VIN 16-Bit DAC, ADDR[4:0] = 0x0B Bits DATA[15:0] Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 45). Table 45. Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Set to the desired current range Transition from PMU Force Current Mode to PMU Force Voltage Mode Step 1. Table 46 lists the state of the registers in force current mode. Table 46. Register PE/PMU Enable Register, ADDR[4:0] = 0x0C PMU State Register, ADDR[4:0] = 0x0E Bits DATA[2] DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 1 XX X X X X 1 XXX Step 2. Write to Register ADDR[4:0] = 0x0E (see Table 47). Table 47. Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Setting 00 X X X X 0 XXX Rev. 0 | Page 47 of 56 Comments Set DUTGND input selection Set to force voltage mode Set to the desired current range ADATE305 Step 3. Write to Register ADDR[4:0] = 0x0B (see Table 48). Table 48. Register VIN 16-Bit DAC, ADDR[4:0] = 0x0B Bits DATA[15:0] Setting X Comments Update the VIN 16-Bit DAC register to the desired value Setting 1X X X X X 0 XXX Comments Set VIN input selection Step 4. Write to Register ADDR[4:0] = 0x0E (see Table 49). Table 49. Register PMU State Register, ADDR[4:0] = 0x0E Bits DATA[9:8] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2:0] Force voltage mode Rev. 0 | Page 48 of 56 ADATE305 BLOCK DIAGRAMS VCL VCH PE DISABLE DATA[0] (ADDR[4:0] = 0x0C) FORCES SWITCH OPEN WHEN 1 VH ROUT = 47Ω (TRIMMED) DRIVER VL DUT DATA VT DRIVER HIGH-Z/VT DATA[0] (ADDR[4:0] = 0x0D) VT BUFFER WHEN 1 HIGH-Z BUFFER WHEN 0 V(IOH) RCV VCOM FORCE VT DATA[1] (ADDR[4:0] = 0x0C) OVERRIDES THE RCV PIN AND FORCES VTERM MODE ON THE DRIVER AND LOAD POWER-DOWN MODE LOAD ENABLE DATA[1] (ADDR[4:0] = 0x0D) FORCES SWITCHES OPEN AND POWERS DOWN LOAD WHEN 0 Figure 79. Driver and Load Block Diagram ~5Ω VHH = (VT + 1V) × 2 + DUTGND HVOUT VH VL DATA 48Ω HV MODE SELECT DATA[2] (ADDR [4:0] = 0x0D) DISABLES HV DRIVER AND FORCES 0V ON HVOUT WHEN 0 Figure 80. HVOUT Driver Output Stage Rev. 0 | Page 49 of 56 07280-016 RCV (SHOWN IN RCV = 0 STATE) 07280-015 V(IOL) ADATE305 DUT0 VOL0 VOH0 DUT1 – VOH NWC + + VOL NWC – – VOH DMC + DU T0 – DUT0– DU T1 DUT1 DIFFERENTIAL BUFFER VOL0 2:1 COMP_QH0 MUX DIFFERENTIAL COMPARATOR ENABLE DATA[0] (ADDR[4:0] = 0x10) 2:1 COMP_QL0 MUX + VOL DMC – 07280-017 VOH0 NOTES 1. DIFFERENTIAL COMPARATOR ONLY ON CHANNEL 0. Figure 81. Comparator Block Diagram COMPARATOR OUTPUT (AB) VTT = 3.3V RECEIVER OUT HIGH = 1.55V 50Ω OUT CM = 1.42V OUT LOW = 1.30V 50Ω GND Figure 82. Comparator Output Scheme Rev. 0 | Page 50 of 56 07280-018 100Ω ADATE305 PMU MEASURE V/I DATA[4] (ADDR[4:0] = 0x0E) PMU SENSE PATH DATA[7] (ADDR[4:0] = 0x0E) EXTERNAL DUT SENSE PIN MEASURE V MEASURE I MEASOUT01 SELECT DATA[2:1] (ADDR[4:0] = 0x0F) MUX MUX PMU FORCE V/I DATA[3] (ADDR[4:0] = 0x0E) MEASURE OUT CH[1] PMU V/I TEMP SENSE GND REF TEMP SENSE IN-AMP G = 5 10kΩ 2.5 + DUTGND REF MUX MUX MEASOUT01 OUTPUT ENABLE DATA[0] (ADDR[4:0] = 0x0F) ONE PER DEVICE 225kΩ 2µA PMU INPUT SELECTION DATA[9:8] (ADDR[4:0] = 0x0E) 20µA 22.5kΩ 200µA 2.25kΩ 250Ω DUTx 15.5Ω 2mA MV VIN 2.5V + DUTGND DUTGND FFCAP_xA MUX PMU CLAMP ENABLE DATA[5] (ADDR[4:0] = 0x0E) 330pF SCAPx (EXTERNAL) 32mA BUFFER FFCAP_xB CRA = 220pF VCH VCL 32mA NOTES 1. SWITCHES CONNECTED WITH DOTTED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE D ATA[2] = 0 (ADDR[4:0] = 0x0C), ALL SWITCHES OPEN AND PMU POWERS DOWN. 2. THE EXTERNAL SENSE PATH MUST CLOSE THE LOOP TO ENABLE THE CLAMPS TO OPERATE CORRECTLY. 3. 32mA RANGE HAS ITS OWN OUTPUT BUFFER. 4. 32mA BUFFER TRISTATES WHEN NOT IN USE. Figure 83. PMU Block Diagram Rev. 0 | Page 51 of 56 07280-019 MEASURE V (AT OUTPUT OF SENSE MUX) ADATE305 (ADDR[4:0] = 0x12) DATA[0] OVD MASK ENABLES OVD FLAGS TO ALARM OVD_CHx PIN 6.5V 1 OVD HIGH LEVEL DAC (ADDR[4:0] = 0x0A, CH[1]) OVD_CHx SHORT-CIRCUIT CURRENT = 100µA DUT ADATE305 –2.5V 1 OVD LOW LEVEL DAC (ADDR[4:0] = 0x0A, CH[0]) PMU V/I CLAMP FLAG (ADDR[4:0] = 0x12) DATA[1] PMU MASK ENABLES PMU V/I FLAG TO ALARM OVD_CHx PIN (ADDR[4:0] = 0x13) 2 DATA[2] DATA[1] DATA[0] LEVEL CAN BE SET PER CHIP. THE OVD DACs PROVIDE A VOLTAGE RANGE OF –3V TO +7V. THE RECOMMENDED HIGH/LOW SETTINGS ARE +6.5V/–2.5V. (THESE VALUES NEED TO BE PROGRAMMED BY THE USER UPON STARTUP/RESET.) 2THIS IS A READ ONLY REGISTER THAT ALLOWS THE USER TO DETERMINE THE CAUSE OF THE ACTIVE OVD FLAG. Figure 84. OVD Block Diagram Rev. 0 | Page 52 of 56 07280-020 1THE OVD HIGH/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THEREFORE, ONLY ONE OVD HIGH/LOW VOLTAGE ADATE305 OUTLINE DIMENSIONS 0.75 0.60 0.45 16.00 BSC SQ 1.20 MAX 14.00 BSC SQ 76 100 1 75 PIN 1 8.00 BSC SQ EXPOSED PAD 0.15 0.05 SEATING PLANE 0.20 0.09 7° 3.5° 0° 0.08 MAX COPLANARITY TOP VIEW (PINS DOWN) 25 26 VIEW A 51 50 0.50 BSC LEAD PITCH 0.27 0.22 0.17 VIEW A FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. ROTATED 90° CCW COMPLIANT TO JEDEC STANDARDS MS-026-AED-HU 072408-A 0° MIN 1.05 1.00 0.95 Figure 85. 100-Lead, Thin Quad Flatpack, Exposed Pad [TQFP_EP] (SV-100-7) Dimensions shown in millimeters ORDERING GUIDE Model ADATE305BSVZ 1 1 Temperature Range −40°C to +85°C Package Description 100-Lead, Thin Quad Flatpack, Exposed Pad [TQFP_EP] Z = RoHS Compliant Part. Rev. 0 | Page 53 of 56 Package Option SV-100-7 ADATE305 NOTES Rev. 0 | Page 54 of 56 ADATE305 NOTES Rev. 0 | Page 55 of 56 ADATE305 NOTES ©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07280-0-8/08(0) Rev. 0 | Page 56 of 56