GSI GS82564Z18GB-333IV 288mb pipelined and flow through synchronous nbt sram Datasheet

GS82564Z18/36(GB/GD)-xxxV
119- & 165-Bump BGA
Commercial Temp
Industrial Temp
288Mb Pipelined and Flow Through
Synchronous NBT SRAM
Features
• NBT (No Bus Turn Around) functionality allows zero wait
Read-Write-Read bus utilization; fully pin-compatible with
both pipelined and flow through NtRAM™, NoBL™ and
ZBT™ SRAMs
• 1.8 V or 2.5 V +10%/–10% core power supply
• 1.8 V or 2.5 V I/O supply
• User-configurable Pipeline and Flow Through mode
• ZQ mode pin for user-selectable high/low output drive
• IEEE 1149.1 JTAG-compatible Boundary Scan
• LBO pin for Linear or Interleave Burst mode
• Pin-compatible with 4Mb, 9Mb, 18Mb, 36Mb, and 72Mb
devices
• Byte write operation (9-bit Bytes)
• 3 chip enable signals for easy depth expansion
• ZZ Pin for automatic power-down
• RoHS-compliant 119- and 165-bump BGA packages
Functional Description
The GS82564Z18/36-xxxV is a 288Mbit Synchronous Static
SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or
other pipelined read/double late write or flow through read/
single late write SRAMs, allow utilization of all available bus
bandwidth by eliminating the need to insert deselect cycles
when the device is switched from read to write cycles.
333 MHz–200 MHz
1.8 V or 2.5 V VDD
1.8 V or 2.5 V I/O
Because it is a synchronous device, address, data inputs, and
read/write control inputs are captured on the rising edge of the
input clock. Burst order control (LBO) must be tied to a power
rail for proper operation. Asynchronous inputs include the
Sleep mode enable (ZZ) and Output Enable. Output Enable can
be used to override the synchronous control of the output
drivers and turn the RAM's output drivers off at any time.
Write cycles are internally self-timed and initiated by the rising
edge of the clock input. This feature eliminates complex offchip write pulse generation required by asynchronous SRAMs
and simplifies input signal timing.
The GS82564Z18/36-xxxV may be configured by the user to
operate in Pipeline or Flow Through mode. Operating as a
pipelined synchronous device, in addition to the rising-edgetriggered registers that capture input signals, the device
incorporates a rising edge triggered output register. For read
cycles, pipelined SRAM output data is temporarily stored by
the edge-triggered output register during the access cycle and
then released to the output drivers at the next rising edge of
clock.
The GS82564Z18/36-xxxV is implemented with GSI's high
performance CMOS technology and is available in a JEDECstandard 119-bump or 165-bump BGA package.
Parameter Synopsis
Pipeline
3-1-1-1
Flow Through
2-1-1-1
Rev: 1.02 5/2017
tKQ
tCycle
Curr (x18)
Curr (x36)
tKQ
tCycle
Curr (x18)
Curr (x36)
-333
2.5
3.0
-250
2.5
4.0
-200
3.0
5.0
Unit
ns
ns
630
690
520
570
450
490
mA
mA
4.5
4.5
5.5
5.5
6.5
6.5
ns
ns
490
530
430
470
400
440
mA
mA
1/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
GS82564Z36GB Pad Out–119-Bump BGA—Top View
1
2
3
4
5
6
7
A
VDDQ
A
A
A
A
A
VDDQ
A
B
NC
E2
A
ADV
A
E3
NC
B
C
NC
A
A
VDD
A
A
NC
C
D
DQC
DQPC
VSS
ZQ
VSS
DQPB
DQB
D
E
DQC
DQC
VSS
E1
VSS
DQB
DQB
E
F
VDDQ
DQC
VSS
G
VSS
DQB
VDDQ
F
G
DQC
DQC
BC
A
BB
DQB
DQB
G
H
DQC
DQC
VSS
W
VSS
DQB
DQB
H
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
J
K
DQD
DQD
VSS
CK
VSS
DQA
DQA
K
L
DQD
DQD
BD
NC
BA
DQA
DQA
L
M
VDDQ
DQD
VSS
CKE
VSS
DQA
VDDQ
M
N
DQD
DQD
VSS
A1
VSS
DQA
DQA
N
P
DQD
DQPD
VSS
A0
VSS
DQPA
DQA
P
R
A
A
LBO
VDD
FT
A
A
R
T
NC
A
A
A
A
A
ZZ
T
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
U
7 x 17 Bump BGA—14 x 22 mm2 Body—1.27 mm Bump Pitch
Rev: 1.02 5/2017
2/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
GS82564Z18GB Pad Out–119-Bump BGA—Top View
1
2
3
4
5
6
7
A
VDDQ
A
A
A
A
A
VDDQ
A
B
NC
E2
A
ADV
A
E3
NC
B
C
NC
A
A
VDD
A
A
NC
C
D
DQB
NC
VSS
ZQ
VSS
DQPA
NC
D
E
NC
DQB
VSS
E1
VSS
NC
DQA
E
F
VDDQ
NC
VSS
G
VSS
DQA
VDDQ
F
G
NC
DQB
BB
A
NC
NC
DQA
G
H
DQB
NC
VSS
W
VSS
DQA
NC
H
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
J
K
NC
DQB
VSS
CK
VSS
NC
DQA
K
L
DQB
NC
NC
NC
BA
DQA
NC
L
M
VDDQ
DQB
VSS
CKE
VSS
NC
VDDQ
M
N
DQB
NC
VSS
A1
VSS
DQA
NC
N
P
NC
DQPB
VSS
A0
VSS
NC
DQA
P
R
A
A
LBO
VDD
FT
A
A
R
T
A
A
A
A
A
A
ZZ
T
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
U
7 x 17 Bump BGA—14 x 22 mm2 Body—1.27 mm Bump Pitch
Rev: 1.02 5/2017
3/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
GS82564Z18/36 119-Bump BGA Pin Description
Symbol
Type
Description
A 0, A 1
I
Address field LSBs and Address Counter Preset Inputs
An
I
Address Inputs
DQA
DQB
DQC
DQD
I/O
Data Input and Output pins
BA , BB , BC , BD
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low
NC
—
No Connect
CK
I
Clock Input Signal; active high
CKE
I
Clock Enable; active low
W
I
Write Enable; active low
E1
I
Chip Enable; active low
E3
I
Chip Enable; active low
E2
I
Chip Enable; active high
G
I
Output Enable; active low
ADV
I
Burst address counter advance enable
ZZ
I
Sleep mode control; active high
FT
I
Flow Through or Pipeline mode; active low
LBO
I
Linear Burst Order mode; active low
ZQ
I
FLXDrive Output Impedance Control
Low = Low Impedance [High Drive], High = High Impedance [Low Drive])
TMS
I
Scan Test Mode Select
TDI
I
Scan Test Data In
TDO
O
Scan Test Data Out
TCK
I
Scan Test Clock
VDD
I
Core power supply
VSS
I
I/O and Core Ground
VDDQ
I
Output driver power supply
Rev: 1.02 5/2017
4/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
165 Bump BGA—x18 Common I/O—Top View (Package D)
1
2
3
4
5
6
7
8
9
10
11
A
NC
A
E1
BB
NC
E3
CKE
ADV
A
A
A
A
B
NC
A
E2
NC
BA
CK
W
G
A
A
NC
B
C
NC
NC
VDDQ
VSS
VSS
VSS
VSS
VSS
VDDQ
NC
DQPA
C
D
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
D
E
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
E
F
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
F
G
NC
DQB
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
G
H
FT
NC
NC
VDD
VSS
VSS
VSS
VDD
NC
ZQ
ZZ
H
J
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
J
K
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
K
L
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
L
M
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
M
N
DQPB
NC
VDDQ
VSS
NC
NC
NC
VSS
VDDQ
NC
NC
N
P
A
A
A
A
TDI
A1
TDO
A
A
A
A
P
R
LBO
A
A
A
TMS
A0
TCK
A
A
A
A
R
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch
Rev: 1.02 5/2017
5/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
165 Bump BGA—x36 Common I/O—Top View (Package D)
1
2
3
4
5
6
7
8
9
10
11
A
NC
A
E1
BC
BB
E3
CKE
ADV
A
A
NC
A
B
NC
A
E2
BD
BA
CK
W
G
A
A
NC
B
C
DQPC
NC
VDDQ
VSS
VSS
VSS
VSS
VSS
VDDQ
NC
DQPB
C
D
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQB
DQB
D
E
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQB
DQB
E
F
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQB
DQB
F
G
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQB
DQB
G
H
FT
NC
NC
VDD
VSS
VSS
VSS
VDD
NC
ZQ
ZZ
H
J
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
J
K
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
K
L
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
L
M
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
M
N
DQPD
NC
VDDQ
VSS
NC
NC
NC
VSS
VDDQ
NC
DQPA
N
P
A
A
A
A
TDI
A1
TDO
A
A
A
A
P
R
LBO
A
A
A
TMS
A0
TCK
A
A
A
A
R
11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch
Rev: 1.02 5/2017
6/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
165-Bump BGA Pin Description
Symbol
Type
Description
A 0, A 1
I
Address field LSBs and Address Counter Preset Inputs
An
I
Address Inputs
A18
I
Address Input
DQA
DQB
DQC
DQD
I/O
Data Input and Output pins
BA , BB , BC , BD
I
Byte Write Enable for DQA, DQB, DQC, DQD I/Os; active low
CK
I
Clock Input Signal; active high
CKE
I
Clock Enable; active low
W
I
Write Enable; active low
E1
I
Chip Enable; active low
E3
I
Chip Enable; active low
E2
I
Chip Enable; active high
FT
I
Flow Through / Pipeline Mode Control
G
I
Output Enable; active low
ADV
I
Burst address counter advance enable; active high
ZQ
I
FLXDrive Output Impedance Control
Low = Low Impedance [High Drive], High = High Impedance [Low Drive])
ZZ
I
Sleep mode control; active high
LBO
I
Linear Burst Order mode; active low
TMS
I
Scan Test Mode Select
TDI
I
Scan Test Data In
TDO
O
Scan Test Data Out
TCK
I
Scan Test Clock
MCH
—
Must Connect High
VDD
I
Core power supply
VSS
I
I/O and Core Ground
VDDQ
I
Output driver power supply
NC
—
No Connect
Rev: 1.02 5/2017
7/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Functional Details
Clocking
Deassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to
suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.
Pipeline Mode Read and Write Operations
All inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle
read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device
activation is accomplished by asserting all three of the Chip Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable
inputs will deactivate the device.
Function
W
BA
BB
BC
BD
Read
H
X
X
X
X
Write Byte “a”
L
L
H
H
H
Write Byte “b”
L
H
L
H
H
Write Byte “c”
L
H
H
L
H
Write Byte “d”
L
H
H
H
L
Write all Bytes
L
L
L
L
L
Write Abort/NOP
L
H
H
H
H
Read operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three
chip enables (E1, E2, and E3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address
presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control
logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At
the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.
Write operation occurs when the RAM is selected, CKE is active, and the Write input is sampled low at the rising edge of clock.
The Byte Write Enable inputs (BA, BB, BC, and BD) determine which bytes will be written. All or none may be activated. A write
cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality,
matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At
the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is
required at the third rising edge of clock.
Flow Through Mode Read and Write Operations
Operation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the
use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after
new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow
Through mode the read pipeline is one cycle shorter than in Pipeline mode.
Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability
to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late
write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address
and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of
clock.
Rev: 1.02 5/2017
8/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Synchronous Truth Table
Operation
Address
Used
State
Diagram
Key
E1
E2
E3
ADSP
ADSC
ADV
W
DQ3
Deselect Cycle, Power Down
None
X
L
X
H
X
L
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
L
X
X
L
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
X
H
L
X
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
L
X
L
X
X
X
High-Z
Deselect Cycle, Power Down
None
X
H
X
X
X
L
X
X
High-Z
Read Cycle, Begin Burst
External
R
L
H
L
L
X
X
X
Q
Read Cycle, Begin Burst
External
R
L
H
L
H
L
X
F
Q
Write Cycle, Begin Burst
External
W
L
H
L
H
L
X
T
D
Read Cycle, Continue Burst
Next
CR
X
X
X
H
H
L
F
Q
Read Cycle, Continue Burst
Next
CR
H
X
X
X
H
L
F
Q
Write Cycle, Continue Burst
Next
CW
X
X
X
H
H
L
T
D
Write Cycle, Continue Burst
Next
CW
H
X
X
X
H
L
T
D
Read Cycle, Suspend Burst
Current
X
X
X
H
H
H
F
Q
Read Cycle, Suspend Burst
Current
H
X
X
X
H
H
F
Q
Write Cycle, Suspend Burst
Current
X
X
X
H
H
H
T
D
Write Cycle, Suspend Burst
Current
H
X
X
X
H
H
T
D
Notes:
1. X = Don’t Care, H = High, L = Low
2. E = T (True) if E2 = 1 and E1 = E3 = 0; E = F (False) if E2 = 0 or E1 = 1 or E3 = 1
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown
as “Q” in the Truth Table above).
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish
basic synchronous or synchronous burst operations and may be avoided for simplicity.
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Rev: 1.02 5/2017
9/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Pipelined and Flow Through Read Write Control State Diagram
D
B
Deselect
W
R
D
R
D
W
New Read
New Write
R
W
B
B
R
B
W
R
Burst Read
W
Burst Write
D
Key
B
D
Notes
Input Command Code
1. The Hold command (CKE Low) is not
shown because it prevents any state change.
ƒ Transition
Current State (n)
2. W, R, B, and D represent input command
codes as indicated in the Synchronous Truth Table.
Next State (n+1)
n
n+1
n+2
n+3
Clock (CK)
Command
ƒ
Current State
ƒ
ƒ
ƒ
Next State
Current State and Next State Definition for Pipelined and Flow through Read/Write Control State Diagram
Rev: 1.02 5/2017
10/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Pipeline Mode Data I/O State Diagram
Intermediate
B W
R B
Intermediate
R
High Z
(Data In)
D
Data Out
(Q Valid)
W
D
Intermediate
Intermediate
W
Intermediate
R
High Z
B
D
Intermediate
Key
Notes
Input Command Code
1. The Hold command (CKE Low) is not
shown because it prevents any state change.
ƒ Transition
Current State (n)
Transition
Intermediate State (N+1)
n
Next State (n+2)
n+1
2. W, R, B, and D represent input command
codes as indicated in the Truth Tables.
n+2
n+3
Clock (CK)
Command
ƒ
ƒ
ƒ
Current State
Intermediate
State
Next State
ƒ
Current State and Next State Definition for Pipeline Mode Data I/O State Diagram
Rev: 1.02 5/2017
11/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Flow Through Mode Data I/O State Diagram
B W
R B
R
High Z
(Data In)
Data Out
(Q Valid)
W
D
D
W
R
High Z
B
D
Key
Notes
Input Command Code
1. The Hold command (CKE Low) is not
shown because it prevents any state change.
ƒ Transition
Current State (n)
2. W, R, B, and D represent input command
codes as indicated in the Truth Tables.
Next State (n+1)
n
n+1
n+2
n+3
Clock (CK)
Command
ƒ
Current State
ƒ
ƒ
ƒ
Next State
Current State and Next State Definition for: Pipeline and Flow Through Read Write Control State Diagram
Rev: 1.02 5/2017
12/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Burst Cycles
Although NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from
read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address
generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when
driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write
the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into
Load mode.
Burst Order
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been
accessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst
sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables
below for details.
FLXDrive™
The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive
strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.
Mode Pin Functions
Mode Name
Pin Name
Burst Order Control
LBO
Output Register Control
FT
Power Down Control
ZZ
FLXDrive Output Impedance Control
ZQ
State
Function
L
Linear Burst
H
Interleaved Burst
L
Flow Through
H or NC
Pipeline
L or NC
Active
H
Standby, IDD = ISB
L
High Drive (Low Impedance)
H or NC
Low Drive (High Impedance)
Note:
There are pull-up devices on the ZQ and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip
will operate in the default states as specified in the above tables.
Rev: 1.02 5/2017
13/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Burst Counter Sequences
Linear Burst Sequence
Interleaved Burst Sequence
A[1:0] A[1:0] A[1:0] A[1:0]
A[1:0] A[1:0] A[1:0] A[1:0]
1st address
00
01
10
11
1st address
00
01
10
11
2nd address
01
10
11
00
2nd address
01
00
11
10
3rd address
10
11
00
01
3rd address
10
11
00
01
4th address
11
00
01
10
4th address
11
10
01
00
Note:
The burst counter wraps to initial state on the 5th clock.
Note:
The burst counter wraps to initial state on the 5th clock.
BPR 1999.05.18
Sleep Mode
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to
low, the SRAM operates normally after 2 cycles of wake up time.
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.
When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands
may be applied while the SRAM is recovering from Sleep mode.
Sleep Mode Timing Diagram
tKH
tKC
tKL
CK
tZZR
tZZS
tZZH
ZZ
Designing for Compatibility
The GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal. Not
all vendors offer this option, however most mark the pin VDD or VDDQ on pipelined parts and VSS on flow through parts. GSI NBT
SRAMs are fully compatible with these sockets. Other vendors mark the pin as a No Connect (NC). GSI RAMs have an internal
pull-up device on the FT pin so a floating FT pin will result in pipelined operation. If the part being replaced is a pipelined mode
part, the GSI RAM is fully compatible with these sockets. In the unlikely event the part being replaced is a Flow Through device,
the pin will need to be pulled low for correct operation.
Rev: 1.02 5/2017
14/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Absolute Maximum Ratings
(All voltages reference to VSS)
Symbol
Description
Value
Unit
VDD
Voltage on VDD Pins
–0.5 to 4.6
V
VDDQ
Voltage in VDDQ Pins
–0.5 to 4.6
V
VI/O
Voltage on I/O Pins
–0.5 to VDDQ +0.5 ( 4.6 V max.)
V
VIN
Voltage on Other Input Pins
–0.5 to VDD +0.5 ( 4.6 V max.)
V
IIN
Input Current on Any Pin
+/–20
mA
IOUT
Output Current on Any I/O Pin
+/–20
mA
PD
Package Power Dissipation
1.5
W
TSTG
Storage Temperature
–55 to 125
oC
TBIAS
Temperature Under Bias
–55 to 125
oC
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of
this component.
Power Supply Voltage Ranges
Parameter
Symbol
Min.
Typ.
Max.
Unit
3.3 V Supply Voltage
VDD3
3.0
3.3
3.6
V
2.5 V Supply Voltage
VDD2
2.3
2.5
2.7
V
3.3 V VDDQ I/O Supply Voltage
VDDQ3
3.0
3.3
3.6
V
2.5 V VDDQ I/O Supply Voltage
VDDQ2
2.3
2.5
2.7
V
Parameter
Symbol
Min.
Typ.
Max.
Unit
Input High Voltage
VIH
2.0
—
VDD + 0.3
V
Input Low Voltage
VIL
–0.3
—
0.8
V
VDD3 Range Logic Levels
Note:
VIHQ (max) is voltage on VDDQ pins plus 0.3 V.
Rev: 1.02 5/2017
15/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
VDD2 Range Logic Levels
Parameter
Symbol
Min.
Typ.
Max.
Unit
Input High Voltage
VIH
0.6*VDD
—
VDD + 0.3
V
Input Low Voltage
VIL
–0.3
—
0.3*VDD
V
Parameter
Symbol
Min.
Typ.
Max.
Unit
Junction Temperature (Commercial Range Versions)
TJ
0
25
85
C
Junction Temperature (Industrial Range Versions)*
TJ
–40
25
100
C
Note:
VIHQ (max) is voltage on VDDQ pins plus 0.3 V.
Recommended Operating Temperatures
Note:
* The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications
quoted are evaluated for worst case in the temperature range marked on the device.
Thermal Impedance
Package
Test PCB
Substrate
JA (C°/W)
Airflow = 0 m/s
 JA (C°/W)
Airflow = 1 m/s
 JA (C°/W)
Airflow = 2 m/s
JB (C°/W)
 JC (C°/W)
119 BGA
4-layer
21.37
17.56
16.42
10.15
1.97
165 BGA
4-layer
20.70
17.51
16.44
9.14
2.96
Notes:
1. Thermal Impedance data is based on a number of samples from multiple lots and should be viewed as a typical number.
2. Please refer to JEDEC standard JESD51-6.
3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to
the PCB can result in cooling or heating of the RAM depending on PCB temperature.
Undershoot Measurement and Timing
Overshoot Measurement and Timing
VIH
20% tKC
VDD + 2.0 V
VSS
50%
50%
VDD
VSS – 2.0 V
20% tKC
VIL
Note:
Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Rev: 1.02 5/2017
16/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Capacitance
(TA = 25oC, f = 1 MHZ, VDD = 2.5 V)
Parameter
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
CIN
VIN = 0 V
4
5
pF
Input/Output Capacitance
CI/O
VOUT = 0 V
6
7
pF
Note:
These parameters are sample tested.
AC Test Conditions
Parameter
Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDD/2
Output reference level
VDDQ/2
Output load
Fig. 1
Notes:
1. Include scope and jig capacitance.
2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted.
3. Device is deselected as defined by the Truth Table.
Rev: 1.02 5/2017
17/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Operating Currents
-333
Parameter
Test Conditions
(x36)
Operating
Current
Device Selected;
All other inputs
VIH or VIL
Output open
Standby
Current
ZZ VDD – 0.2 V
—
Deselect
Current
Device Deselected;
All other inputs
VIH or  VIL
—
-200
Symbol
0
to
85°C
–40
to
100°C
0
to
85°C
–40
to
100°C
0
to
85°C
–40
to
100°C
Unit
Pipeline
IDD
690
710
570
590
490
510
mA
Flow Through
IDD
530
550
470
490
440
460
mA
Pipeline
IDD
630
650
520
540
450
470
mA
Flow Through
IDD
490
510
430
450
400
420
mA
Pipeline
ISB
180
180
180
180
180
180
mA
Flow Through
ISB
180
180
180
180
180
180
mA
Pipeline
IDD
230
250
220
240
200
220
mA
Flow Through
IDD
220
240
200
220
200
220
mA
Mode
(x18)
-250
Notes:
1. IDD and IDDQ apply to any combination of VDD3, VDD2, VDDQ3, and VDDQ2 operation.
2. All parameters listed are worst case scenario.
Rev: 1.02 5/2017
18/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Pipeline
Flow Through
Parameter
Symbol
Clock Cycle Time
-333
-250
-200
Unit
AC Electrical Characteristics
Min
Max
Min
Max
Min
Max
tKC
3.0
—
4.0
—
5.0
—
ns
Clock to Output Valid
tKQ
—
2.5
—
2.5
—
3.0
ns
Clock to Output Invalid
tKQX
1.5
—
1.5
—
1.5
—
ns
Clock to Output in Low-Z
tLZ1
1.5
—
1.5
—
1.5
—
ns
Setup time
tS
1.0
—
1.2
—
1.4
—
ns
Hold time
tH
0.1
—
0.2
—
0.4
—
ns
Clock Cycle Time
tKC
4.5
—
5.5
—
6.5
—
ns
Clock to Output Valid
tKQ
—
4.5
—
5.5
—
6.5
ns
Clock to Output Invalid
tKQX
2.0
—
2.0
—
2.0
—
ns
Clock to Output in Low-Z
tLZ1
2.0
—
2.0
—
2.0
—
ns
Setup time
tS
1.3
—
1.5
—
1.5
—
ns
Hold time
tH
0.3
—
0.5
—
0.5
—
ns
Clock HIGH Time
tKH
1.0
—
1.3
—
1.3
—
ns
Clock LOW Time
tKL
1.2
—
1.5
—
1.5
—
ns
Clock to Output in
High-Z
tHZ1
1.5
2.5
1.5
2.5
1.5
3.0
ns
G to Output Valid
tOE
—
2.5
—
2.5
—
3.0
ns
G to output in Low-Z
tOLZ1
0
—
0
—
0
—
ns
G to output in High-Z
tOHZ1
—
2.5
—
2.5
—
3.0
ns
ZZ setup time
tZZS2
5
—
5
—
5
—
ns
ZZ hold time
tZZH2
1
—
1
—
1
—
ns
ZZ recovery
tZZR
20
—
20
—
20
—
ns
Notes:
1. These parameters are sampled and are not 100% tested.
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold
times as specified above.
Rev: 1.02 5/2017
19/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Pipeline Mode Timing (NBT)
Write A
Read B
Suspend
Read C
tKH
Write D
Write No-op
Read E
Deselect
tKC
tKL
CK
tH
tS
A
A
B
C
D
E
tH
tS
CKE
tH
tS
E*
tH
tS
ADV
tH
tS
W
tH
tH
tS
tS
Bn
tH
tLZ
tKQ
tS
DQ
D(A)
Q(B)
Q(C)
D(D)
tHZ
tKQX
Q(E)
*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1
Rev: 1.02 5/2017
20/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Flow Through Mode Timing (NBT)
Write A
Write B
Write B+1
Read C
Cont
Read D
Write E
Read F
Write G
tKL
tKH
tKC
CK
tH
tS
CKE
tH
tS
E
tH
tS
ADV
tH
tS
W
tH
tS
Bn
tH
tS
A0–An
A
B
C
D
E
F
G
tKQ
tH
tKQ
tLZ
tS
D(A)
DQ
D(B)
D(B+1)
tKQX
tHZ
Q(C)
Q(D)
tLZ
D(E)
tKQX
Q(F)
D(G)
tOLZ
tOE
tOHZ
G
*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1
JTAG Port Operation
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output
drivers are powered by VDDQ.
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either VDD or VSS. TDO should be left unconnected.
Rev: 1.02 5/2017
21/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
JTAG Pin Descriptions
Pin
Pin Name
I/O
Description
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate
from the falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP
controller state machine. An undriven TMS input will produce the same result as a logic one input
level.
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers
placed between TDI and TDO. The register placed between TDI and TDO is determined by the
state of the TAP Controller state machine and the instruction that is currently loaded in the TAP
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce
the same result as a logic one input level.
TDI
Test Data In
TDO
Test Data Out
Output that is active depending on the state of the TAP state machine. Output changes in
Out response to the falling edge of TCK. This is the output side of the serial registers placed between
TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
JTAG Port Registers
Overview
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
Rev: 1.02 5/2017
22/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
JTAG TAP Block Diagram
·
·
·
·
·
·
Boundary Scan Register
·
·
0
Bypass Register
0
108
·
1
·
·
2 1 0
Instruction Register
TDI
TDO
ID Code Register
31 30 29
·
· ··
2 1 0
Control Signals
TMS
TCK
Test Access Port (TAP) Controller
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
Rev: 1.02 5/2017
23/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Die
Revision
Code
GSI Technology
JEDEC Vendor
ID Code
I/O
Configuration
Not Used
Presence Register
ID Register Contents
Bit #
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
x72
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0 0 1 1 0 1 1 0 0 1
1
x36
X
X
X
X
0
0
0
X
1
0
0
1
0
0
0
0
1
0
0
0
0
0 0 1 1 0 1 1 0 0 1
1
x32
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0 0 1 1 0 1 1 0 0 1
1
x18
X
X
X
X
0
0
0
X
1
0
0
1
0
0
0
0
1
0
1
0
0
0 0 1 1 0 1 1 0 0 1
1
x16
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0 0 1 1 0 1 1 0 0 1
1
Tap Controller Instruction Set
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
Rev: 1.02 5/2017
24/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
JTAG Tap Controller State Diagram
1
0
Test Logic Reset
0
Run Test Idle
1
Select DR
1
Select IR
0
0
1
1
Capture DR
Capture IR
0
0
Shift DR
1
1
Shift IR
0
1
1
Exit1 DR
0
Exit1 IR
0
0
Pause DR
1
Exit2 DR
1
Update DR
1
1
0
0
Pause IR
1
Exit2 IR
0
1
0
0
Update IR
1
0
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This
occurs when the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet. Because
the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the
TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be paused for any other TAP
operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then
places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with
all logic 0s. The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is
still determined by its input pins.
Rev: 1.02 5/2017
25/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV

Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command.
Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output
drivers on the falling edge of TCK when the controller is in the Update-IR state.

Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected, the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR
state, the RAM’s output pins drive out the value of the Boundary Scan Register location with which each output pin is associated.
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and
places the ID register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction
loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (highZ) and the Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR
state.
RFU
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
JTAG TAP Instruction Set Summary
Instruction
Code
Description
Notes
EXTEST
000
Places the Boundary Scan Register between TDI and TDO.
1
IDCODE
001
Preloads ID Register and places it between TDI and TDO.
1, 2
SAMPLE-Z
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
Forces all RAM output drivers to High-Z.
1
RFU
011
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
SAMPLE/
PRELOAD
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
1
GSI
101
GSI private instruction.
1
RFU
110
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
BYPASS
111
Places Bypass Register between TDI and TDO.
1
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
Rev: 1.02 5/2017
26/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
JTAG Port Recommended Operating Conditions and DC Characteristics
Parameter
Symbol
Min.
Max.
Unit Notes
3.3 V Test Port Input High Voltage
VIHJ3
2.0
VDD3 +0.3
V
1
3.3 V Test Port Input Low Voltage
VILJ3
–0.3
0.8
V
1
2.5 V Test Port Input High Voltage
VIHJ2
0.6 * VDD2
VDD2 +0.3
V
1
2.5 V Test Port Input Low Voltage
VILJ2
–0.3
0.3 * VDD2
V
1
TMS, TCK and TDI Input Leakage Current
IINHJ
–300
1
uA
2
TMS, TCK and TDI Input Leakage Current
IINLJ
–1
100
uA
3
TDO Output Leakage Current
IOLJ
–1
1
uA
4
Test Port Output High Voltage
VOHJ
1.7
—
V
5, 6
Test Port Output Low Voltage
VOLJ
—
0.4
V
5, 7
Test Port Output CMOS High
VOHJC
VDDQ – 100 mV
—
V
5, 8
Test Port Output CMOS Low
VOLJC
—
100 mV
V
5, 9
Notes:
1. Input Under/overshoot voltage must be –2 V < Vi < VDDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.
2. VILJ  VIN VDDn
3. 0 V VIN VILJn
4. Output Disable, VOUT = 0 to VDDn
5. The TDO output driver is served by the VDDQ supply.
6. IOHJ = –4 mA
7. IOLJ = + 4 mA
8. IOHJC = –100 uA
9. IOLJC = +100 uA
JTAG Port AC Test Conditions
Parameter
Conditions
Input high level
VDD – 0.2 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
VDDQ/2
Output reference level
VDDQ/2
JTAG Port AC Test Load
DQ
50
30pF*
VDDQ/2
* Distributed Test Jig Capacitance
Notes:
1. Include scope and jig capacitance.
2. Test conditions as shown unless otherwise noted.
Rev: 1.02 5/2017
27/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
JTAG Port Timing Diagram
tTKC
tTKH
tTKL
TCK
tTH
tTS
TDI
tTH
tTS
TMS
tTKQ
TDO
tTH
tTS
Parallel SRAM input
JTAG Port AC Electrical Characteristics
Parameter
Symbol
Min
Max
Unit
TCK Cycle Time
tTKC
50
—
ns
TCK Low to TDO Valid
tTKQ
—
20
ns
TCK High Pulse Width
tTKH
20
—
ns
TCK Low Pulse Width
tTKL
20
—
ns
TDI & TMS Set Up Time
tTS
10
—
ns
TDI & TMS Hold Time
tTH
10
—
ns
Boundary Scan (BSDL Files)
For information regarding the Boundary Scan Chain, or to obtain BSDL files for this part, please contact our Applications
Engineering Department at: [email protected].
Rev: 1.02 5/2017
28/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Package Dimensions—119-Bump FPBGA (Package B, Variation 2)
TOP VIEW
A1
1
2
3
4
5
6
BOTTOM VIEW
A1
Ø0.10S C
Ø0.30S C AS B S
Ø0.60~0.90 (119x)
7
7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
20.32
22±0.10
1.27
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
B
1.27
0.15 C
7.62
Rev: 1.02 5/2017
14±0.10
0.50~0.70
1.86.±0.13
SEATING PLANE
C
A
0.20(4x)
29/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Package Dimensions—165-Bump FPBGA (Package D)
A1 CORNER
TOP VIEW
BOTTOM VIEW
Ø0.10 M C
Ø0.25 M C A B
Ø0.40~0.60 (165x)
1 2 3 4 5 6 7 8 9 10 11
A1 CORNER
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
1.0
14.0
15±0.05
1.0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
A
1.0
1.0
10.0
0.15 C
B
Rev: 1.02 5/2017
SEATING PLANE
0.20(4x)
0.36~0.46
1.40 MAX.
C
13±0.05
30/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
Ordering Information for GSI Synchronous NBT RAMs
Org
Part Number1
Type
Package
Speed2
(MHz/ns)
TJ3
16M x 18
GS82564Z18GB-333V
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
333/4.5
C
16M x 18
GS82564Z18GB-250V
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
250/5.5
C
16M x 18
GS82564Z18GB-200V
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
200/6.5
C
8M x 36
GS82564Z36GB-333V
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
333/4.5
C
8M x 36
GS82564Z36GB-250V
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
250/5.5
C
8M x 36
GS82564Z36GB-200V
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
200/6.5
C
16M x 18
GS82564Z18GB-333IV
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
333/4.5
I
16M x 18
GS1284218GB-250IV
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
250/5.5
I
16M x 18
GS82564Z18GB-200IV
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
200/6.5
I
8M x 36
GS82564Z36GB-333IV
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
333/4.5
I
8M x 36
GS82564Z36GB-250IV
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
250/5.5
I
8M x 36
GS82564Z36GB-200IV
NBT PL/FT
RoHS-compliant 119 BGA (var.2)
200/6.5
I
16M x 18
GS82564Z18GD-333V
NBT PL/FT
RoHS-compliant 165 BGA
333/4.5
C
16M x 18
GS82564Z18GD-250V
NBT PL/FT
RoHS-compliant 165 BGA
250/5.5
C
16M x 18
GS82564Z18GD-200V
NBT PL/FT
RoHS-compliant 165 BGA
200/6.5
C
8M x 36
GS82564Z36GD-333V
NBT PL/FT
RoHS-compliant 165 BGA
333/4.5
C
8M x 36
GS82564Z36GD-250V
NBT PL/FT
RoHS-compliant 165 BGA
250/5.5
C
8M x 36
GS82564Z36GD-200V
NBT PL/FT
RoHS-compliant 165 BGA
200/6.5
C
16M x 18
GS82564Z18GD-333IV
NBT PL/FT
RoHS-compliant 165 BGA
333/4.5
I
16M x 18
GS8256418GD-250IV
NBT PL/FT
RoHS-compliant 165 BGA
250/5.5
I
16M x 18
GS82564Z18GD-200IV
NBT PL/FT
RoHS-compliant 165 BGA
200/6.5
I
8M x 36
GS82564Z36GD-333IV
NBT PL/FT
RoHS-compliant 165 BGA
333/4.5
I
8M x 36
GS82564Z36GD-250IV
NBT PL/FT
RoHS-compliant 165 BGA
250/5.5
I
8M x 36
GS82564Z36GD-200IV
NBT PL/FT
RoHS-compliant 165 BGA
200/6.5
I
Notes:
1.
Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS82564Z18GB-333IVT.
2.
The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3.
4.
C = Commercial Temperature Range. I = Industrial Temperature Range.
GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this
data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.02 5/2017
31/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
GS82564Z18/36(GB/GD)-xxxV
288Mb Sync SRAM Datasheet Revision History
File Name
Types of Changes
Revision(s)
Format or Content
• Creation of new datasheet
82564Zxx_V_r1
82564Zxx_V_r1_01
Content
• Packages separated due to separate MP status
82564Zxx_V_r1_02
Content
• Packages combined; both at MP status
Rev: 1.02 5/2017
32/32
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
© 2015, GSI Technology
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
GSI Technology:
GS82564Z36GB-333V GS82564Z18GB-200V GS82564Z36GB-333IV GS82564Z18GB-250IV GS82564Z36GD250V GS82564Z36GD-250IV GS82564Z36GD-200IV GS82564Z18GD-333IV GS82564Z36GB-200V
GS82564Z18GD-250V GS82564Z18GB-333V GS82564Z36GB-250IV GS82564Z36GD-200V GS82564Z18GD-200V
GS82564Z36GD-333V GS82564Z18GD-333V GS82564Z36GB-250V GS82564Z36GD-333IV GS82564Z18GD250IV GS82564Z18GB-333IV GS82564Z18GB-250V GS82564Z36GB-200IV GS82564Z18GB-200IV
GS82564Z18GD-200IV
Similar pages