AOSMD AOL1240 40v n-channel mosfet Datasheet

AOL1240
40V N-Channel MOSFET
General Description
Product Summary
The AOL1240 uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance.Power losses are
minimized due to an extremely low combination of
RDS(ON) and Crss.In addition,switching behavior is well
controlled with a "Schottky style" soft recovery body
diode.
VDS
40V
69A
ID (at VGS=10V)
RDS(ON) (at VGS=10V)
< 3mΩ
RDS(ON) (at VGS =4.5V)
< 4.4mΩ
100% UIS Tested
100% Rg Tested
Top View
D
UltraSO-8TM
Bottom View
D
G
S
G
S
S
G
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current G
Pulsed Drain Current
Continuous Drain
Current
C
V
A
400
19
IDSM
TA=70°C
±20
54
IDM
TA=25°C
Units
V
69
ID
TC=100°C
Maximum
40
A
15
Avalanche Current C
IAS, IAR
65
A
Avalanche energy L=0.1mH C
TC=25°C
EAS, EAR
211
mJ
Power Dissipation B
TC=100°C
Power Dissipation A
TA=70°C
TA=25°C
Rev 0: Sep. 2011
2.1
Steady-State
Steady-State
RθJA
RθJC
www.aosmd.com
W
1.3
TJ, TSTG
Symbol
t ≤ 10s
W
62.5
PDSM
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
125
PD
-55 to 175
Typ
20
50
1
°C
Max
25
60
1.2
Units
°C/W
°C/W
°C/W
Page 1 of 6
AOL1240
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=250µA, VGS=0V
Max
40
1
TJ=55°C
µA
5
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
Gate Threshold Voltage
VDS=VGS,ID=250µA
1.3
ID(ON)
On state drain current
VGS=10V, VDS=5V
400
Units
V
VDS=40V, VGS=0V
VGS(th)
100
nA
1.8
2.3
V
2.4
3
3.75
4.7
VGS=4.5V, ID=20A
3.2
4.4
mΩ
90
1
V
69
A
VGS=10V, ID=20A
RDS(ON)
Typ
Static Drain-Source On-Resistance
TJ=125°C
gFS
Forward Transconductance
VDS=5V, ID=20A
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current G
DYNAMIC PARAMETERS
Ciss
Input Capacitance
A
0.68
mΩ
S
2530
3165
3800
pF
640
920
1120
pF
13.5
45.5
77.5
pF
0.5
1
1.5
Ω
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
33.5
42
50.5
nC
Qg(4.5V) Total Gate Charge
12.5
18
23.5
nC
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
VGS=0V, VDS=20V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=20V, ID=20A
VGS=10V, VDS=20V, RL=1Ω,
RGEN=3Ω
8
nC
3.5
nC
9
ns
3.5
ns
32
ns
tf
Turn-Off Fall Time
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
14
20.5
27
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
40
56
73
6
ns
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 0: Sep. 2011
www.aosmd.com
Page 2 of 6
AOL1240
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
120
10V
100
3.5V
VDS=5V
4V
100
80
4.5V
80
ID(A)
ID (A)
60
60
VGS=3V
125°C
40
40
25°C
20
20
0
0
0
1
2
3
4
1
5
6
3
4
5
Normalized On-Resistance
2
5
RDS(ON) (mΩ
Ω)
2
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
4
VGS=4.5V
3
2
VGS=10V
1
1.8
VGS=10V
ID=20A
1.6
17
5
2
VGS=4.5V
10
1.4
1.2
ID=20A
1
0.8
0
0
5
0
10
15
20
25
30
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
25
50
75
100
125
150
175
200
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
8
1.0E+02
ID=20A
1.0E+01
40
1.0E+00
125°C
IS (A)
RDS(ON) (mΩ
Ω)
6
4
125°C
1.0E-01
1.0E-02
25°C
1.0E-03
2
25°C
1.0E-04
1.0E-05
0
2
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 0: Sep. 2011
4
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOL1240
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
4500
VDS=20V
ID=20A
4000
Ciss
3500
Capacitance (pF)
VGS (Volts)
8
6
4
3000
2500
Coss
2000
1500
1000
2
Crss
500
0
0
0
5
10
15
20
25
30
35
Qg (nC)
Figure 7: Gate-Charge Characteristics
40
45
0
10
15
20
25
30
35
VDS (Volts)
Figure 8: Capacitance Characteristics
40
400
1000.0
RDS(ON)
limited
10µs
350
100µs
300
1ms
10ms
250
10µs
10.0
DC
1.0
TJ(Max)=175°C
TC=25°C
Power (W)
100.0
ID (Amps)
5
TJ(Max)=175°C
TC=25°C
17
5
2
10
200
150
100
0.1
50
0.0
0
0.01
0.1
1
VDS (Volts)
10
100
0.001
0.01
0.1
1
10
100
0
Pulse Width (s)
18Junction-to-Case
Figure 10: Single Pulse Power Rating
(Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=1.2°C/W
1
PD
0.1
Ton
Single Pulse
T
0.01
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 0: Sep. 2011
www.aosmd.com
Page 4 of 6
AOL1240
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
140
TA=25°C
120
TA=100°C
Power Dissipation (W)
IAR (A) Peak Avalanche Current
1000
100
100
TA=150°C
TA=125°C
10
80
60
40
20
1
0
1
10
100
Time in avalanche, tA (µ
µs)
Figure 12: Single Pulse Avalanche capability
(Note C)
1000
0
25
75
100
125
150
TCASE (°C)
Figure 13: Power De-rating (Note F)
80
10000
60
1000
50
175
Power (W)
Current rating ID(A)
TA=25°C
40
17
5
2
10
100
10
20
1
0
0
25
50
75
100
125
150
TCASE (°C)
Figure 14: Current De-rating (Note F)
0.1
10 0
1000
18
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
1E-05
175
0.001
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=60°C/W
0.1
PD
0.01
Single Pulse
Ton
T
0.001
1E-05
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 0: Sep. 2011
www.aosmd.com
Page 5 of 6
AOL1240
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev 0: Sep. 2011
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6
Similar pages