Microchip EMC2103-2-AP-TR Rpm-based fan controller with hardware thermal shutdown Datasheet

EMC2103
RPM-Based Fan Controller with
Hardware Thermal Shutdown
PRODUCT FEATURES
Datasheet
General Description
Features
The EMC2103 is an SMBus compliant fan controller with
up to up to 3 external and 1 internal temperature
channels. The fan driver can be operated using two
methods each with two modes. The methods include an
RPM based Fan Speed Control Algorithm and a direct
PWM drive setting. The modes include manually
programming the desired settings or using the internal
programmable temperature look-up table to select the
desired setting based on measured temperature.

The temperature monitors offer ±0.5°C accuracy (for
external diodes) with sophisticated features to reduce
errors introduced by series resistance and beta variation
of substrate thermal diode transistors commonly found
in processors.
— 4-wire fan compatible
— High and low frequency PWM





Notebook Computers
Projectors
Graphics Cards
Industrial and Networking Equipment
RPM based fan control algorithm
— 2.5% accuracy from ~500RPM to 16k RPM
— Detects fan aging and variation

Temperature Look-Up Table
—
—
—
—

Allows programmed fan response to temperature
Controls fan speed or PWM drive setting
Allows externally set temperature data to drive fan
Supports DTS data from CPU
Up to Three External Temperature Channels
(EMC2103-2 and EMC2103-4 only)
— Supports 45nm, 60nm, and 90nm CPU diodes
— Automatically detects and supports CPUs requiring BJT
or Transistor models
— Resistance error correction
— Supports discrete transistors (i.e. 2N3904)
— ±0.5°C accurate (60°C to 125°C)
— 0.125°C resolution
The EMC2103 also includes a hardware programmable
temperature limit and dedicated system shutdown
output for thermal protection of critical circuitry.
Applications
Programmable Fan Control circuit

Hardware Programmable Thermal Shutdown
Temperature
— Cannot be altered by software
— 65°C to 127°C Range


Programmable High and Low Limits for all channels
Internal Temperature Monitor
— ±1°C accuracy
— 0.125°C resolution


3.3V Supply Voltage
SMBus 2.0 Compliant
— SMBus Alert compatible


 2013 Microchip Technology Inc.
Two dedicated GPIOs (EMC2103-2 and EMC2103-4
only)
Available in 12-pin, QFN RoHS Compliant Package
(EMC2103-1) or 16-pin, QFN RoHS Compliant
Package (EMC2103-2 and EMC2103-4)
DS0005250A-page 1
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
ORDER NUMBERS:
ORDERING NUMBER
PACKAGE
FEATURES
EMC2103-1-KP-TR
12-pin, QFN ROHS Compliant
One external diode, RPM based
Fan Speed Control Algorithm, High
Frequency PWM driver, HW
Thermal / Critical shutdown,
EEPROM Load disabled
EMC2103-2-AP-TR
16-pin, QFN ROHS Compliant
Up to three external diodes, RPM
based Fan Speed Control algorithm,
High Frequency PWM driver, HW
Thermal / Critical shutdown, 2
GPIOs, EEPROM Load disabled
EMC2103-4-AP-TR
16-pin, QFN ROHS Compliant
Up to three external diodes, RPM
based Fan Speed Control algorithm,
High Frequency PWM driver, HW
Thermal / Critical shutdown, 2
GPIOs, EEPROM Load enabled
REEL SIZE IS 4,000 PIECES
This product meets the halogen maximum concentration values per IEC61249-2-21
DS0005250A-page 2
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table of Contents
Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2 Pin Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
3.2
3.3
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SMBus Electrical Specifications (Client Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
EEPROM Loader Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 4 Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMBus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMBus Time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programming from EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
19
19
19
19
20
20
20
Chapter 5 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
Critical/Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1
SHDN_SEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2
TRIP_SET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Control Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWM Fan Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Control Look-Up Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1
Programming the Look Up Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2
DTS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RPM based Fan Speed Control Algorithm (FSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1
Programming the RPM Based Fan Speed Control Algorithm . . . . . . . . . . . . . . . . . . . . .
Tachometer Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.1
Stalled Fan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.2
Aging Fan or Invalid Drive Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spin Up Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ramp Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.1 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.2 Resistance Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.3 Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.4 Digital Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12.1 Diode Faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
24
24
26
27
27
28
29
29
30
31
31
31
32
33
33
34
34
34
34
35
35
35
36
36
Chapter 6 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1
6.2
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.1
Lock Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
 2013 Microchip Technology Inc.
DS0005250A-page 3
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
Critical/Thermal Shutdown Temperature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pushed Temperature Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRIP_SET Voltage Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Beta Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REC Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Critical Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Error Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13.1 Tcrit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWM Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWM Base Frequency Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Setting Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWM Divide Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Configuration 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Spin Up Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Step Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Minimum Drive Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Valid TACH Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fan Drive Fail Band Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TACH Target Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TACH Reading Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Look Up Table Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Look Up Table Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Direction Register (EMC2103-2 and EMC2103-4 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Output Configuration Register (EMC2103-2 and EMC2103-4 Only) . . . . . . . . . . . . . . . . . .
GPIO Input Register (EMC2103-2 and EMC2103-4 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Output Register (EMC2103-2 and EMC2103-4 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Interrupt Enable Register (EMC2103-2 and EMC2103-4 Only) . . . . . . . . . . . . . . . . . . . . . .
GPIO Status Register (EMC2103-2 and EMC2103-4 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Software Lock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product Features Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Manufacturer ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
45
46
46
47
48
49
50
51
52
53
53
53
54
54
55
55
56
57
57
57
59
60
61
63
63
63
64
64
65
65
66
68
68
68
69
69
70
70
70
71
71
72
Chapter 7 Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1
7.2
7.3
EMC2103-1 Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
EMC2103-2 and EMC2103-4 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Appendix A Look Up Table Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1
A.2
Example #1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Example #2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
DS0005250A-page 4
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
List of Figures
Figure 1.1
Figure 2.1
Figure 2.2
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
EMC2103 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
EMC2103-1 Pin Diagram (12-Pin QFN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
EMC2103-2 and EMC2103-4 Pin Diagram (16-Pin QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
System Diagram for EMC2103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Block Diagram of Critical / Thermal Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Fan Control Look-Up Table Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
RPM based Fan Speed Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Spin Up Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Ramp Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Diode Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12-Pin QFN 4mm x 4mm Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12-Pin QFN 4mm x 4mm Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Recommended PCB Footprint 12-Pin QFN 4mm x 4mm . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16-Pin QFN 4mm x 4mm Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
16-Pin QFN 4mm x 4mm Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Recommended PCB Footprint 16-Pin QFN 4mm x 4mm . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 2013 Microchip Technology Inc.
DS0005250A-page 5
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
List of Tables
Table 2.1 Pin Description for EMC2103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 2.2 Pin Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.4 EEPROM Loader Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.7 Block Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.1 SHDN_SEL Pin Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.2 TRIP_SET Resistor Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.3 Fan Controls Active for Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.4 Dynamic Averaging Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.1 EMC2103 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.3 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.4 Critical/Thermal Shutdown Temperature Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.5 Critical / Thermal Shutdown Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.6 Pushed Temperature Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.7 TRIP_SET Voltage Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.8 Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.9 Ideality Factor Look-Up Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.10 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.11 Beta Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.12 Beta Compensation Look Up Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.13 REC Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.14 Critical Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.15 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.16 Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.17 Fault Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.18 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.19 Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.20 Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.21 Fan Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.22 Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.23 Fan Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.24 PWM Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.25 PWM Base Frequency Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.26 PWM_BASEx[1:0] it Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.27 Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.28 Fan Driver Setting Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.29 PWM Divide Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.30 Fan Configuration 1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.31 Range Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.32 Minimum Edges for Fan Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.33 Update Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.34 Fan Configuration 2 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.35 Derivative Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.36 Error Range Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 2013 Microchip Technology Inc.
10
12
13
14
15
16
18
18
19
19
19
19
20
24
25
26
34
37
44
44
45
45
45
46
46
46
47
47
48
48
49
50
51
51
52
52
53
53
54
54
55
55
56
56
57
57
57
58
58
59
59
60
60
DS0005250A-page 6
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.37 Gain Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.38 Gain Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.39 Fan Spin Up Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.40 DRIVE_FAIL_CNT[1:0] Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.41 Spin Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.42 Spin Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.43 Fan Step Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.44 Minimum Fan Drive Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.45 Valid TACH Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.46 Fan Drive Fail Band Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.47 TACH Target Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.48 TACH Reading Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.49 Look Up Table Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.50 Look Up Table Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.51 GPIO Direction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.52 GPIO Output Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.53 GPIO Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.54 GPIO Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.55 GPIO Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.56 GPIO Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.57 Software Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.58 Product Features Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.59 SHDN_SEL[2:0] Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.60 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.61 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.62 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table A.1 Look Up Table Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table A.2 Look Up Table Example #1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table A.3 Fan Speed Control Table Example #1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table A.4 Fan Speed Determination for Example #1 (using settings in Table A.3) . . . . . . . . . . . . . . . . .
Table A.5 Look Up Table Example #2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table A.6 Fan Speed Control Table Example #2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table A.7 Fan Speed Determination for Example #2 (using settings in Table A.6) . . . . . . . . . . . . . . . . .
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS0005250A-page 7
60
61
61
61
62
62
63
63
63
64
64
65
65
66
68
68
68
69
69
70
70
70
71
71
71
72
79
80
80
80
81
81
82
83
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 1 Block Diagram
Figure 1.1 EMC2103 Block Diagram
 2013 Microchip Technology Inc.
DS0005250A-page 8
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 2 Pin Layout
Figure 2.1 EMC2103-1 Pin Diagram (12-Pin QFN)
 2013 Microchip Technology Inc.
DS0005250A-page 9
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Figure 2.2 EMC2103-2 and EMC2103-4 Pin Diagram (16-Pin QFN)
Table 2.1 Pin Description for EMC2103
PIN NUMBER
EMC2103-1
PIN NUMBER
EMC2103-2 AND
EMC2103-4
PIN NAME
PIN FUNCTION
PIN TYPE
1
1
DN1
Negative (cathode) analog input for
External Diode 1.
AIO
2
2
DP1
Positive (anode) analog input for
External Diode 1.
AIO
3
3
VDD
Power Supply
Power
GPI1 - General Purpose Input
(default)
DI (5V)
GPO1 - Open Drain digital output
OD (5V)
GPO1 - Push-pull digital output
DO
N/A
DS0005250A-page 10
4
GPIO1
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 2.1 Pin Description for EMC2103 (continued)
PIN NUMBER
EMC2103-1
PIN NUMBER
EMC2103-2 AND
EMC2103-4
N/A
5
PIN NAME
GPIO2
PIN FUNCTION
PIN TYPE
GPI2 - General Purpose Input
(default)
DI (5V)
GPO2 - Open Drain digital output
OD (5V)
GPO2 - Push-pull digital output
DO
4
6
ALERT
Active low interrupt - requires
external pull-up resistor.
OD (5V)
5
7
SYS_SHDN
Active low Critical / Thermal
Shutdown output - requires external
pull-up resistor
OD (5V)
6
8
SMDATA
SMBus data input/output - requires
external pull-up resistor
DIOD (5V)
7
9
SMCLK
SMBus clock input - requires
external pull-up resistor
DI (5V)
8
10
TACH
Tachometer input for the Fan
DI (5V)
OD (5V)
PWM
PWM - Open Drain PWM drive
output for the Fan
(default)
PWM - Push-Pull PWM drive output
for the Fan
DO
9
11
10
12
GND
Ground connection
Power
11
13
SHDN_SEL
Selects the hardware shutdown
channel and operating mode
AIO
12
14
TRIP_SET
Voltage input to set the Critical /
Thermal Shutdown threshold
AIO
DN2 / DP3
Negative (cathode) analog input for
External Diode 2 and positive
(anode) analog input for External
Diode 3
AIO
DP2 / DN3
Positive (anode) analog input for
External Diode 2 and negative
(cathode) connection for External
Diode 3
AIO
N/A
N/A
15
16
The pin type are described in detail below. All pins labelled with (5V) are 5V tolerant.
APPLICATION NOTE: For the 5V tolerant pins that have a pull-up resistor, the voltage difference between VDD and
the 5V tolerant pad must never be more than 3.6V.
 2013 Microchip Technology Inc.
DS0005250A-page 11
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 2.2 Pin Types
DS0005250A-page 12
PIN TYPE
DESCRIPTION
Power
This pin is used to supply power or ground to the device.
DI
Digital Input - this pin is used as a digital input. This pin is
5V tolerant.
AIO
Analog Input / Output - this pin is used as an I/O for analog
signals.
DO
Push / Pull Digital Output - this pin is used as a digital
output. It can both source and sink current.
DIOD
Digital Input / Open Drain Output - this pin is used as a
digital I/O. When it is used as an output, it is open drain
and requires a pull-up resistor. This pin is 5V tolerant.
OD
Open Drain Digital Output - this pin is used as a digital
output. It is open drain and requires a pull-up resistor. This
pin is 5V tolerant.
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 3 Electrical Characteristics
Table 3.1 Absolute Maximum Ratings
Voltage on 5V tolerant pins (V5VT_pin)
-0.3 to 5.5
V
Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1)
-0.3 to 3.6
V
Voltage on VDD pin
-0.3 to 4
V
Voltage on any other pin to GND
-0.3 to VDD + 0.3
V
Package Power Dissipation
0.8W up to TA = 85°C
W
Junction to Ambient (JA)
50
°C/W
Operating Ambient Temperature Range
-40 to 125
°C
Storage Temperature Range
-55 to 150
°C
ESD Rating, All Pins, HBM
2000
V
Note: Stresses above those listed could cause permanent damage to the device. This is a stress
rating only and functional operation of the device at any other condition above those indicated
in the operation sections of this specification is not implied. When powering this device from
laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be
exceeded or device failure can result. Some power supplies exhibit voltage spikes on their
outputs when the AC power is switched on or off. In addition, voltage transients on the AC
power line may appear on the DC output. If this possibility exists, it is suggested that a clamp
circuit be used.
Note: All voltages are relative to ground.
Note 3.1
For the 5V tolerant pins that have a pull-up resistor, the pull-up voltage must not exceed
3.6V when the EMC2103 is unpowered.
Note: JA numbers are based on a recommended four 12 mil vias connecting the thermal pad to PCB
ground.
 2013 Microchip Technology Inc.
DS0005250A-page 13
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
3.1
Electrical Specifications
Table 3.2 Electrical Specifications
VDD = 3V to 3.6V, TA = -40°C to 125°C, all Typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNIT
CONDITIONS
DC Power
Supply Voltage
Supply Current
VDD
3
IDD
3.3
3.6
V
1.3
1.8
mA
4 Conversions / second, Fan
Driver active at maximum PWM
frequency, Dynamic Averaging
Enabled (EMC2103-2 and
EMC2103-4)
1
1.5
mA
4 Conversions / second, Fan
Driver active at maximum PWM
frequency, Dynamic Averaging
Enabled (EMC2103-1)
450
750
uA
1 Conversions / second, Fan
Driver not active, Dynamic
Averaging Disabled
First Conversion
Ready
tCONV_T
175
300
ms
Time after power up before all
channels updated
SMBus Delay
tSMB_D
10
15
ms
Time before SMBus
communications should be sent
by host
External Temperature Monitors
Temperature
Accuracy
Temperature
Resolution
±0.5
±1
°C
60°C < TDIODE < 125°C
30°C < TA < 100°C
±1
±2
°C
-40°C < TDIODE < 125°C
0.125
Diode decoupling
capacitor
CFILTER
2200
Resistance Error
Corrected
RSERIES
100
°C
2700
pF
Connected across external
diode, CPU, GPU, or AMD diode
Ohm
Sum of series resistance in both
DP and DN lines
Internal Temperature Monitor
Temperature
Accuracy
TDIE
±1
TDIE
Temperature
Resolution
±2
°C
-40°C < TA < 125°C
±1.5
°C
0°C < TA < 85°C
0.125
°C
PWM Fan Driver
PWM Resolution
PWM
PWM Duty Cycle
DUTY
DS0005250A-page 14
256
0
Steps
100
%
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 3.2 Electrical Specifications (continued)
VDD = 3V to 3.6V, TA = -40°C to 125°C, all Typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNIT
CONDITIONS
TRIP_SET Measurement
Voltage Accuracy
VTRIP
Temperature Decode
Accuracy
TTRIP
0.5
1
%
0.5
°C
1% external resistor
2
°C
5% external resistor
1
RPM Based Fan Controller
Tachometer Range
TACH
Tachometer Setting
Accuracy
TACH
480
16000
RPM
±5
%
±2.5
Digital I/O pins
2.0
V
Input High Voltage
VIH
Input Low Voltage
VIL
Output High Voltage
VOH
Output Low Voltage
VOL
0.4
V
8 mA current sink
Leakage Current
ILEAK
±5
uA
ALERT and SYS_SHDN pins
Device powered or unpowered
TA < 85°C
pull-up voltage < 3.6V
3.2
0.8
V
VDD 0.4
8 mA current drive
V
SMBus Electrical Specifications (Client Mode)
Table 3.3 SMBus Electrical Specifications
VDD= 3V to 3.6V, TA = -40°C to 125°C Typical values are at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
SMBus Interface
Input High/Low Current
Input Capacitance
IIH / IIL
CIN
4
±5
uA
10
pF
Device powered or unpowered
TA < 85°C
SMBus Timing
Clock Frequency
fSMB
10
400
kHz
50
ns
Spike Suppression
tSP
Bus free time Start to
Stop
tBUF
1.3
us
Setup Time: Start
tSU:STA
0.6
us
Setup Time: Stop
tSU:STP
0.6
us
 2013 Microchip Technology Inc.
DS0005250A-page 15
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 3.3 SMBus Electrical Specifications (continued)
VDD= 3V to 3.6V, TA = -40°C to 125°C Typical values are at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
Data Hold Time
tHD:DAT
Data Setup Time
MAX
UNITS
0.6
6
us
tSU:DAT
0.6
72
us
Clock Low Period
tLOW
1.3
us
Clock High Period
tHIGH
0.6
us
Clock/Data Fall time
tFALL
300
ns
Min = 20+0.1CLOAD ns
Clock/Data Rise time
tRISE
300
ns
Min = 20+0.1CLOAD ns
CLOAD
400
pF
Total per bus line
Capacitive Load
3.3
TYP
CONDITIONS
EEPROM Loader Electrical Specifications
The EEPROM Loader is only active in the EMC2103-4 device when enabled via the SHDN_SEL pullup resistor (see Section 5.1.1).
Table 3.4 EEPROM Loader Electrical Specifications
VDD = 3.0V to 3.6V, TA = -40oC - 125oC, Typical values are at TA = 27°C unless otherwise noted
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
Interface
Input High/Low Current
IIH / IIL
±5
Hysteresis
Input Capacitance
420
CIN
uA
Powered or unpowered
mV
10
pF
Timing
Loading Delay
tDLY
10
ms
Loading Time
tLOAD
50
ms
Clock Frequency
fSMB
50
kHz
Spike Suppression
tSP
Bus free time Start to
Stop
tBUF
1.3
us
Hold Time: Start
tHD:STA
0.6
us
Setup Time: Start
tSU:STA
0.6
us
Setup Time: Stop
tSU:STO
0.6
us
Data Hold Time
tHD:DAT
0.3
us
Data Setup Time
tSU:DAT
100
ns
DS0005250A-page 16
50
Delay after power-up until EEPROM
loading begins. (See Section 4.9.)
ns
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 3.4 EEPROM Loader Electrical Specifications (continued)
VDD = 3.0V to 3.6V, TA = -40oC - 125oC, Typical values are at TA = 27°C unless otherwise noted
CHARACTERISTIC
SYMBOL
MIN
Clock Low Period
tLOW
1.3
us
Clock High Period
tHIGH
0.6
us
Clock/Data Fall time
tFALL
300
ns
Min = 20+0.1CLOAD ns
Clock/Data Rise time
tRISE
300
ns
Min = 20+0.1CLOAD ns
Capacitive Load
CLOAD
400
pF
Total per bus line
 2013 Microchip Technology Inc.
TYP
MAX
UNITS
CONDITIONS
DS0005250A-page 17
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 4 Communications
4.1
System Management Bus Interface Protocol
The EMC2103 communicates with a host controller, such as an SIO, through the SMBus. The SMBus
is a two-wire serial communication protocol between a computer host and its peripheral devices. A
detailed timing diagram is shown in Figure 4.1. Stretching of the SMCLK signal is supported, however
the EMC2103 will not stretch the clock signal.
Figure 4.1 SMBus Timing Diagram
The EMC2103 contains a single SMBus interface. The EMC2103 client interfaces are SMBus 2.0
compatible and support Send Byte, Read Byte, Receive Byte and the Alert Response Address as valid
protocols. These protocols are used as shown below.
All of the below protocols use the convention in Table 4.1.
Table 4.1 Protocol Format
DATA SENT
TO DEVICE
# of bits sent
4.2
DATA SENT TO
THE HOST
# of bits sent
Write Byte
The Write Byte is used to write one byte of data to the registers as shown below Table 4.2:
Table 4.2 Write Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
REGISTER
DATA
ACK
STOP
0 -> 1
0101_110
0
0
0 -> 1
0
XXh
0
1 -> 0
 2013 Microchip Technology Inc.
DS0005250A-page 18
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
4.3
Read Byte
The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3.
Table 4.3 Read Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
START
SLAVE
ADDRESS
RD
ACK
REGISTER
DATA
NACK
STOP
0 -> 1
0101_110
0
0
XXh
0
0 -> 1
0101_110
1
0
XXh
1
1 -> 0
4.4
Send Byte
The Send Byte protocol is used to set the internal address register pointer to the correct address
location. No data is transferred during the Send Byte protocol as shown in Table 4.4.
Table 4.4 Send Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
STOP
0 -> 1
0101_110
0
0
XXh
1
1 -> 0
4.5
Receive Byte
The Receive Byte protocol is used to read data from a register when the internal register address
pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads
of the same register as shown in Table 4.5.
Table 4.5 Receive Byte Protocol
START
SLAVE
ADDRESS
RD
ACK
REGISTER DATA
NACK
STOP
0 -> 1
0101_110
1
0
XXh
1
1 -> 0
4.6
Alert Response Address
The ALERT output can be used as a processor interrupt or as an SMBus Alert when configured to
operate as an interrupt.
When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA)
to the general address of 0001_100b. All devices with active interrupts will respond with their client
address as shown in Table 4.6.
Table 4.6 Alert Response Address Protocol
START
ALERT
RESPONSE
ADDRESS
RD
ACK
DEVICE
ADDRESS
NACK
STOP
0 -> 1
0001_100
1
0
0101_1100
1
1 -> 0
DS0005250A-page 19
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The EMC2103 will respond to the ARA in the following way if the ALERT pin is asserted.
1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication
from the device was not prematurely stopped due to a bus contention event).
2. Set the MASK bit to clear the ALERT pin.
4.7
SMBus Address
The EMC2103 SMBus Address is fixed at 0101_110xb.
Other addresses are available. Contact Microchip for details.
Attempting to communicate with the EMC2103 SMBus interface with an invalid slave address or invalid
protocol will result in no response from the device and will not affect its register contents.
4.8
SMBus Time-out
The EMC2103 includes an SMBus time-out feature. Following a 30ms period of inactivity on the
SMBus, the device will time-out and reset the SMBus interface.
4.9
Programming from EEPROM
Programming from EEPROM is only available for EMC2103-4 device. When enabled via the
SHDN_SEL pin (see Section 5.1.1), the EMC2103 will attempt to program itself from an EEPROM.
During this time, the EMC2103 acts as a simple SMBus Master to read data from a connected
EEPROM using the following procedure.
1. After power-up the EMC2103 waits for 10ms with the SMDATA and SMCLK pins tri-stated.
2. Once the wait period has elapsed, the EMC2103 sends a START signal followed by the 7 bit client
address 1010_000b followed by a ‘0’ and waits for an ACK signal from the EEPROM.
3. When the EEPROM sends the ACK signal, the EMC2103 will send a second start signal and
continue sending the Block Read Command (see Table 4.7) to the same slave address. It reads
256 data bytes from the EEPROM sending an ACK between each data byte. When 256 data bytes
have been received, it sends a NACK signal followed by a STOP bit.
4. Resets the device as an SMBus Client with slave address 0101_110xb.
If the EMC2103 does not receive an acknowledge bit from the EEPROM then the following will occur:
1. The ALERT pin will be asserted and will remain asserted until a Host device initiates
communication with the EMC2103 and reads the Status Register. The ALERT pin will be deasserted after a single Status Register read.
2. The EMC2103 will reset its SMBus protocol as a slave interface and start operating from the default
conditions with slave address 0101_110xb.
Table 4.7 Block Read Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
Register
Address
ACK
START
SLAVE
ADDRESS
RD
ACK
Register
Data (00h)
...
0 -> 1
1010_000
0
0
00h
0
0 -> 1
1010_000
1
0
XXh
...
ACK
Register
Data (01h)
ACK
Register
Data (02h)
ACK
Register
Data (02h)
...
ACK
Register
Data (FFh)
NACK
STOP
0
XXh
0
XXh
0
XXh
...
0
XXh
1
1 -> 0
 2013 Microchip Technology Inc.
DS0005250A-page 20
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Note: The shaded columns represent data sent from the EMC2103 to the EEPROM device.
APPLICATION NOTE: It is recommended that the EEPROM that is used be an AT24C02B or equivalent device.
The EEPROM slave address must be 1010_000xb. The device must support a block-read
command, 8-bit addressing, and 8-bit data formatting using a 2-wire bus. The device must
support 3.3V digital switching logic and may not pull the SMCLK and SMDATA pins above
5V. Data must be transmitted MSB first.
APPLICATION NOTE: No other SMBus Master should exist on the SMDATA and SMCLK lines. The presence of
another SMBus Master will cause errors in reading from the EEPROM.
The EEPROM should be loaded to mirror the register set of the EMC2103 with the desired
configuration set. All undefined registers in the EMC2103 register set should be loaded with 00h in the
EEPROM. Likewise, all registers that are read-only in the EMC2103 register set should be loaded with
00h in the EEPROM.
Because of the interaction between the Fan Control Look-up Tables and the Fan Configuration
Register, the EEPROM Loader stores the contents of the Fan Configuration Registers and updates
these registers at the end of the EEPROM loading cycle.
DS0005250A-page 21
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 5 General Description
The EMC2103 is an SMBus compliant fan controller with one external (EMC2103-2 and EMC2103-4
offer up to three external diode channels) and one internal temperature channels. The fan driver can
be operated using two methods each with two modes. The methods include an RPM based Fan Speed
Control Algorithm and a direct PWM drive setting. The modes include manually programming the
desired settings or using the internal programmable temperature look-up table to select the desired
setting based on measured temperature.
The temperature monitors offer 1°C accuracy (for external diodes) with sophisticated features to
reduce errors introduced by series resistance and beta variation of substrate thermal diode transistors
commonly found in processors (including support of the BJT or transistor model for a CPU diode).
The EMC2103 allows the user to program temperatures generated from external sources to control
the fan speed. This functionality also supports DTS data from the CPU. By pushing DTS or standard
temperature values into dedicated registers, the external temperature readings can be used in
conjunction with the external diode(s) and internal diode to control the fan speed.
The EMC2103 also includes a hardware programmable temperature limit and dedicated system
shutdown output for thermal protection of critical circuitry.
Figure 5.1 shows a system diagram of the EMC2103.
Figure 5.1 System Diagram for EMC2103
 2013 Microchip Technology Inc.
DS0005250A-page 22
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
5.1
Critical/Thermal Shutdown
The EMC2103 provides a hardware Critical/Thermal Shutdown function for systems. Figure 5.2 is a
block diagram of this Critical/Thermal Shutdown function. The Critical/Thermal Shutdown function
accepts configuration information from the fixed states of the SHDN_SEL pin as described in
Section 5.1.1.
Each of the software programmed temperature limits can be optionally configured to act as inputs to
the Critical / Thermal Shutdown independent of the hardware shutdown operation. When configured to
operate this way, the SYS_SHDN pin will be asserted when the temperature meets or exceeds the
limit. The pin will be released when the temperature drops below the limit however the individual status
bits will not be cleared if set (see Section 6.13).
The analog portion of the Critical/Thermal Shutdown function monitors the hardware determined
shutdown channel (see Section 5.1.1). This measured temperature is then compared with TRIP_SET
point. This TRIP_SET point is set by the system designer with a single external resistor divider as
described in Section 5.1.2.
The SYS_SHDN is asserted when the indicated temperature meets or exceeds the temperature
threshold (TP) established by the TRIP_SET input pin for a number of consecutive measurements
defined by the fault queue. If the HW_SHDN output is asserted and the temperature drops below the
threshold, then it will be set to a logic ‘0’ state.
Figure 5.2 Block Diagram of Critical / Thermal Shutdown
DS0005250A-page 23
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
5.1.1
SHDN_SEL Pin
The EMC2103 has a ‘strappable’ input (SHDN_SEL) allowing for configuration of the hardware
Critical/Thermal Shutdown input channel. The pull-up resistor used on this pin identifies which
configuration setting is used as shown in Table 5.1.
.
Table 5.1 SHDN_SEL Pin Decode
PULL UP RESISTOR
MODE/SHUTDOWN
CHANNEL
EXTERNAL DIODE 1 CONFIG
EXTERNAL DIODE 2 CONFIG
< 4.7k Ohm
AMD CPU on
External Diode 1
Beta Compensation disabled
REC disabled
Beta and REC controls are locked
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are not locked
6.8k Ohm
2N3904 on External
Diode 1
Beta Compensation disabled
REC enabled
Beta and REC controls are locked
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are not locked
10k Ohm
Intel CPU on External
Diode 1
Beta Compensation enabled and set to
auto
REC enabled
Beta and REC controls are locked
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are not locked
15k Ohm
Internal Diode
See Note 5.2
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are locked
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are not locked
22k Ohm
Intel CPU on External
Diode 2 - see
Note 5.1 and
Note 5.2
Beta Compensation disabled
REC enabled
Beta and REC controls are not locked
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are locked
> 33k Ohm
Intel CPU on External
Diode 1
See Note 5.2
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are locked
Beta Compensation enabled (auto)
REC enabled
Beta and REC controls are not locked
5.1.2
Note 5.1
For the EMC2103-1, the decode for a 22k Ohm resistor on the SHDN_SEL pin will be to
use the External Diode 1 channel in Diode Mode (the same as the decode for a 6.8k Ohm
resistor) as the hardware shutdown device.
Note 5.2
Load from EEPROM enabled (EMC2103-4 only - see Section 4.9).
TRIP_SET Pin
The EMC2103’s TRIP_SET pin is an analog input to the Critical/Thermal Shutdown block which sets
the Thermal Shutdown temperature. The system designer creates a voltage level at the input through
a simple resistor connected to GND as shown in Figure 5.2. The value of this resistor is used to create
an input voltage on the TRIP_SET pin which is translated into a temperature ranging from 65°C to
127°C as shown in Table 5.2
APPLICATION NOTE: Current only flows when the TRIP_SET pin is being monitored. At all other times, the internal
reference voltage is removed and the TRIP_SET pin will be pulled down to ground.
APPLICATION NOTE: The TRIP_SET pin circuitry is designed to use a 1% resistor externally. Using a 1% resistor
will result in the Thermal / Critical Shutdown temperature being decoded correctly. If a 5%
resistor is used, then the Thermal / Critical Shutdown temperature may be decoded with as
much as ±1°C error.
 2013 Microchip Technology Inc.
DS0005250A-page 24
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 5.2 TRIP_SET Resistor Setting
TTRIP (°C)
RSET (1%)
TTRIP (°C)
RSET (1%)
65
0.0
97
1240
66
28.7
98
1330
67
48.7
99
1400
68
69.8
100
1500
69
90.9
101
1580
70
113
102
1690
71
137
103
1820
72
158
104
1960
73
182
105
2050
74
210
106
2210
75
237
107
2370
76
261
108
2550
77
294
109
2740
78
324.
110
2940
79
348
111
3160
80
383
112
3480
81
412
113
3740
82
453
114
4120
83
487
115
4530
84
523
116
4990
85
562
117
5490
86
604
118
6040
87
649
119
6810
88
698
120
7870
89
750
121
9090
90
787
122
10700
91
845
123
12700
92
909
124
15800
93
953
125
20500
DS0005250A-page 25
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 5.2 TRIP_SET Resistor Setting (continued)
TTRIP (°C)
RSET (1%)
TTRIP (°C)
RSET (1%)
94
1020
126
29400
95
1100
127
49900
96
1150
65
Open
5.2
Fan Control Modes of Operation
The EMC2103 has four modes of operation for the fan driver. Each mode uses Ramp Rate control and
the Spin Up Routine
1. PWM Setting Mode - in this mode of operation, the user directly controls the PWM duty cycle
setting. Updating the Fan Driver Setting Register (see Section 6.20) will instantly update the fan
drive.

This is the default mode. The PWM Setting Mode is enabled by clearing both the EN_ALGO
bit in the Fan Configuration Register (see Section 6.22) and the LUT_LOCK bit in the Look
Up Table Configuration Register (see Section 6.32).

Whenever the PWM Setting Mode is enabled the current drive will be changed to what was
last written into the Fan Driver Setting Register.
2. Fan Speed Control Mode (FSC) - in this mode of operation, the user determines a fan speed and
the drive setting is automatically updated to achieve this target speed.

This mode is enabled by clearing the LUT_LOCK bit in the Look Up Table (LUT)
Configuration Register and setting the EN_ALGO bit in the Fan Configuration Register.
3. Using the Look Up Table with Fan Drive Settings (PWM Setting w/ LUT Mode) - In this mode of
operation, the user programs the Look Up Table with PWM duty cycle settings and corresponding
temperature thresholds. The fan drive is set based on the measured temperatures and the
corresponding drive settings.

This mode is enabled by programming the Look Up Table then setting the LUT_LOCK bit
while the RPM / PWM bit is set to a ‘1’ (see Section 6.32)
4. Using the Look Up Table with Fan Speed Control algorithm (FSC w/ LUT Mode)- In this mode of
operation, the user programs the Look Up Table with fan speed target values and corresponding
temperature thresholds. The TACH Target Register will be set based on the measured
temperatures and the corresponding target settings. The PWM drive settings will be determined
automatically based on the RPM based Fan Speed Control Algorithm

This mode is enabled by programming the Look Up Table then setting the LUT_LOCK bit
while the RPM / PWM bit is set to ‘0’ (see Section 6.32).
Table 5.3 Fan Controls Active for Operating Mode
DIRECT PWM
SETTING MODE
FSC MODE
Fan Driver Setting (read
/ write)
Fan Driver Setting (read
only)
Fan Driver Setting (read only)
Fan Driver Setting (read
only)
EDGES[1:0]
EDGES[1:0]
(Fan Configuration)
EDGES[1:0]
EDGES[1:0]
-
RANGE[1:0]
(Fan Configuration)
-
RANGE[1:0]
(Fan Configuration)
UPDATE[2:0]
(Fan Configuration)
UPDATE[2:0]
(Fan Configuration)
UPDATE[2:0]
(Fan Configuration)
UPDATE[2:0]
(Fan Configuration)
 2013 Microchip Technology Inc.
DIRECT PWM SETTING W/
LUT MODE
FSC W/ LUT MODE
DS0005250A-page 26
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 5.3 Fan Controls Active for Operating Mode (continued)
DIRECT PWM
SETTING MODE
FSC MODE
DIRECT PWM SETTING W/
LUT MODE
FSC W/ LUT MODE
LEVEL
(Spin Up Configuration)
LEVEL
(Spin Up Configuration)
LEVEL
(Spin Up Configuration)
LEVEL
(Spin Up Configuration)
SPINUP_TIME[1:0]
(Spin Up Configuration)
SPINUP_TIME[1:0]
(Spin Up Configuration)
SPINUP_TIME[1:0]
(Spin Up Configuration)
SPINUP_TIME[1:0]
(Spin Up Configuration)
Fan Step
Fan Step
Fan Step
Fan Step
-
Fan Minimum Drive
Valid TACH Count
Valid TACH Count
Valid TACH Count
Valid TACH Count
-
TACH Target (read /
write)
-
TACH Target (read only)
TACH Reading
TACH Reading
TACH Reading
TACH Reading
-
-
Look Up Table Drive /
Temperature Settings (read
only)
Look up Table Drive /
Temperature Settings
(read only)
-
DRIVE_FAIL_CNT [1:0]
(Spin Up Configuration) +
Fan Drive Fail Band
-
DRIVE_FAIL_CNT [1:0]
(Spin Up Configuration)
+ Fan Drive Fail Band
5.3
Fan Minimum Drive
PWM Fan Driver
The EMC2103 supports a high or low frequency PWM driver. The output can be configured as either
push-pull or open drain and the frequency ranges from 9.5Hz to 26kHz in four programmable
frequency bands.
5.4
Fan Control Look-Up Table
The EMC2103 uses a look-up table to apply a user-programmable fan control profile based on
measured temperature to the fan driver. In this look-up table, each temperature channel is allowed to
control the fan drive output independently (or jointly) by programming up to eight pairs of temperature
and drive setting entries.
The user programs the look-up table based on the desired operation. If the RPM based Fan Speed
Control Algorithm is to be used (see Section 5.5), then the user must program a fan speed target for
each temperature setting of interest. Alternately, if the RPM based Fan Speed Control Algorithm is not
to be used, then the user must program a PWM setting for each temperature setting of interest.
If the measured temperature on the External Diode channel meets or exceeds any of the temperature
thresholds for any of the channels, the fan output will be automatically set to the desired setting
corresponding to the exceeded temperature. In cases where multiple temperature channel thresholds
are exceeded, the highest fan drive setting will take precedence. Figure 5.3 shows an example of this
behavior using a single channel.
When the measured temperature drops to a point below a lower threshold minus the hysteresis value,
the fan output will be set to the corresponding lower set point.
DS0005250A-page 27
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Figure 5.3 Fan Control Look-Up Table Example
5.4.1
Programming the Look Up Table
When the Look Up Table is used, it must be loaded and configured correctly based on the system
requirements. The following steps outline the procedure.
1. Determine whether the Look Up Table will drive a PWM duty cycle or a tachometer target value
and set the RPM / PWM bit in the Fan LUT Configuration Register (see Section 6.32).
2. Determine which measurement channels (up to four) are to be used with the Look Up Table and
set the TEMP3_CFG and TEMP4_CFG bits accordingly in the Fan LUT Configuration Register.
3. For each step to be used in the LUT, set the Fan Setting (either PWM or TACH Target as set by
the RPM / PWM bit). If a setting is not used, then set it to FFh (if a PWM) or 00h (if a TACH Target).
Load the lowest settings first in ascending order (i.e. Fan Setting 1 is the lowest setting greater
than “off”. Fan Setting 2 is the next highest setting, etc.). See Section 6.33.
4. For each step to be used in the LUT, set each of the measurement channel thresholds. These
values must be set in the same data format that the data is presented. If DTS is to be used, then
the format should be in temperature with a maximum threshold of 100°C (64h). If a measurement
channel is not used, then set the threshold at FFh.
5. Update the threshold hysteresis to be smaller than the smallest table step.
6. Configure the RPM based Fan Speed Control Algorithm if it is to be used. See Section 5.5.1 for
more details.
 2013 Microchip Technology Inc.
DS0005250A-page 28
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
7. Set the LUT_LOCK bit to enable the Look Up Table and begin fan control in the Fan LUT
Configuration Register.
5.4.2
DTS Support
The EMC2103 supports DTS (Intel’s Digital Temperature Sensor) data in the Fan Control Look Up
Table. Intel’s DTS data is a positive number that represents the processor’s relative temperature below
a fixed value called TCONTROL which is generally equal to 100°C for Intel Mobile processors. For
example, a DTS value of 10°C means that the actual processor temperature is 10°C below TCONTROL
or equal to 90°C.
Either or both of the Pushed Temperature Registers can be written with DTS data and used to control
the fan driver. When DTS data is entered, then the USE_DTS_Fx bit must be set in the Fan LUT
Configuration register. Once this bit is set, the DTS data entered is automatically subtracted from a
value of 100°C. This delta value is then used in the Look Up Table as standard temperature data.
APPLICATION NOTE: The device is designed with the assumption that TCONTROL is 100°C. As such, all DTS
related conversions are done based on this value including Look Up Table comparisons. If
TCONTROL is adjusted (i.e. TCONTROL is shifted to 105°C), then all of the Look Up Table
thresholds should be adjusted by a value equal to TCONTROL - 100°C.
5.5
RPM based Fan Speed Control Algorithm (FSC)
The EMC2103 includes an RPM based Fan Speed Control Algorithm.
This fan control algorithm uses Proportional, Integral, and Derivative terms to automatically approach
and maintain the system’s desired fan speed to an accuracy directly proportional to the accuracy of
the clock source. Figure 5.4 shows a simple flow diagram of the RPM based Fan Speed Control
Algorithm operation.
The desired tachometer count is set by the user inputting the desired number of 32.768KHz cycles
that occur per fan revolution. This is done by either manually setting the TACH Target Register or by
programming the Temperature Look-Up Table. The user may change the target count at any time. The
user may also set the target count to FFh in order to disable the fan driver for lower current operation.
For example, if a desired RPM rate for a 2-pole fan is 3000 RPM then the user would input the
hexidecimal equivalent of 1296 (51h in the TACH Target Register). This number represents the number
of 32.768KHz cycles that would occur during the time it takes the fan to complete a single revolution
when it is spinning at 3000RPMs. See Section 6.31, "TACH Reading Register" for more information.
The EMC2103’s RPM based Fan Speed Control Algorithm has programmable configuration settings
for parameters such as ramp-rate control and spin up conditions. The fan driver automatically detects
and attempts to alleviate a stalled/stuck fan condition while also asserting the ALERT pin. The
EMC2103 works with fans that operate up to 16,000 RPMs and provides a valid tachometer signal.
DS0005250A-page 29
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Figure 5.4 RPM based Fan Speed Control Algorithm
5.5.1
Programming the RPM Based Fan Speed Control Algorithm
The RPM based Fan Speed Control Algorithm powers-up disabled. The following registers control the
algorithm. The EMC2103 fan control registers are pre-loaded with defaults that will work for a wide
variety of fans so only the TACH Target Register is required to set a fan speed. The other fan control
registers can be used to fine-tune the algorithm behavior based on application requirements.
Note that steps 1 - 7 are optional and need only be performed if the default settings do not provide
the desired fan response.
1. Set the Valid TACH Count Register to maximum number of tach counts to indicate the fan is
spinning.
2. Set the Spin Up Configuration Register to the Spin Up Level and Spin Time desired.
3. Set the Fan Step Register to the desired step size.
 2013 Microchip Technology Inc.
DS0005250A-page 30
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
4. Set the Fan Minimum Drive Register to the minimum drive value that will maintain fan operation.
5. Set the Update Time, and Edges options in the Fan Configuration Register.
6. Set the valid TACH count setting at the highest count that indicates that the fan is spinning.
7. Set the TACH Target Register to the desired tachometer count.
8. Enable the RPM based Fan Speed Control Algorithm by setting the EN_ALGO bit.
5.6
Tachometer Measurement
The tachometer measurement circuitry is used in conjunction with the RPM based Fan Speed Control
Algorithm to update the fan driver output. Additionally, it can be used in Direct Setting mode as a
diagnostic for host based fan control.
This method monitors the TACH signal in real time. It constantly updates the tachometer measurement
by reporting the number of clocks between a user programmed number of edges on the TACH signal.
Using the Tach Period Measurement method provides fast response times for the RPM based Fan
Speed Control Algorithm and the data is presented as a count value that represents the fan RPM
period. When this method is used, all fan target values must be input as a count value for proper
operation.
APPLICATION NOTE: The Tach Period Measurement method works independently of the drive settings. If the
device is put into Direct Setting and the fan drive is set at a level that is lower than the fan
can operate (including zero drive), then the tachometer measurement may signal a Stalled
Fan condition and assert an interrupt.
5.6.1
Stalled Fan
A Stalled fan is detected differently based on which tach method is enabled. If the Tach Period
Measurement measurement method is implemented, and if the tach counter exceeds the userprogrammable Valid TACH Count setting then it will flag the fan as stalled and trigger an interrupt.
If the RPM based Fan Speed Control Algorithm is enabled, the algorithm will automatically attempt to
restart the fan until it detects a valid tachometer level or is disabled.
The FAN_STALL Status bit indicates that a stalled fan was detected. This bit is checked conditionally
depending on the mode of operation.
5.6.2

When the Direct Setting Mode or Direct Setting with LUT Mode are enabled or the Spin Up Routine
is initiated, the FAN_STALL interrupt will be masked for the duration of the programmed Spin Up
Time. This is to allow the fan opportunity to reach a valid speed without generating unnecessary
interrupts.

When the Direct Setting Mode or Direct Setting w/ LUT Mode are activated then whenever the
TACH Reading Register value exceeds the Valid TACH Count Register setting, the FAN_STALL
status bit will be set.

When using the RPM based Fan Speed Control Algorithm (either FSC Mode or LUT with FSC
Mode), the stalled fan condition is checked whenever the Update Time is met and the fan drive
setting is updated. It is not a continuous check.
Aging Fan or Invalid Drive Detection
The EMC2103 contains circuitry that detects that the programmed fan speed can be reached by the
fan. If the target fan speed cannot be reached within a user defined band of tach counts at maximum
drive then the DRIVE_FAIL status bit is and the ALERT pin is asserted. This is useful to detect aging
fan conditions (where the fan’s natural maximum speed degrades over time) or incorrect fan speed
settings.
DS0005250A-page 31
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
5.7
Spin Up Routine
The EMC2103 also contains programmable circuitry to control the spin up behavior of the fan driver
to ensure proper fan operation. The Spin Up Routine is initiated under the following conditions when
the Tach Period Measurement method of tach measurement is used. This applies to either the RPM
based Fan Speed Control Algorithm mode or the Direct Setting mode (with or without the Look Up
Table).
1. The TACH Target Register value changes from a value of FFh to a value that is less than the Valid
TACH Count.
2. The RPM based Fan Speed Control Algorithm’s measured TACH Reading Register value is greater
than the Valid TACH Count setting.
When the Spin Up Routine is operating, the fan driver is set to full scale (optional) for one quarter of
the total user defined spin up time. For the remaining spin up time, the fan driver output is set a a user
defined level (30% through 65% drive).
After the Spin Up Routine has finished, the EMC2103 measures the TACH signal. If the measured
TACH Reading Register value is higher than the Valid TACH Count Register setting, the FAN_SPIN
status bit is set and the Spin Up Routine will automatically attempt to restart the fan.
Figure 5.5 shows an example of the Spin Up Routine in response to a programmed fan speed change
based on the first condition above.
Figure 5.5 Spin Up Routine
 2013 Microchip Technology Inc.
DS0005250A-page 32
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
5.8
Ramp Rate Control
The PWM output drive can be configured with automatic ramp rate control. If the RPM based Fan
Speed Control Algorithm is used, then this ramp rate control is automatically used based on the fan
control derivative option settings. See Section 6.23, "Fan Configuration 2 Register". The user programs
a maximum step size for the PWM setting and an update time. The update time varies from 100ms to
1.6s while the PWM maximum step can vary from 1 PWM count to 31 PWM counts.
When a new PWM is entered, the delta from the next PWM and the previous PWM is determined. If
this delta is greater than the Max Step settings, then the PWM is incrementally adjusted every 100ms
to 1.6s as determined by the Update Time until the target PWM setting is reached. See Figure 5.6.
Figure 5.6 Ramp Rate Control
5.9
Watchdog Timer
The EMC2103 contains an internal Watchdog Timer. Once the device has powered up the watchdog
timer monitors the bus traffic for signs of activity. The Watchdog Timer starts when the internal supply
has reached its operating point. The Watchdog Timer only starts immediately after power-up and once
it has been triggered or deactivated will not restart.
If four (4) seconds elapse without the system host programming the device, then the watchdog will be
triggered and the following will occur:
1. The WATCH status bit will be set.
2. The fan driver will be set to full scale drive. It will remain at full scale drive until one of the three
conditions listed below are met.
If the Watchdog Timer is triggered, the following three operations will disable the timer and return the
device to normal operation. Alternately, if the Watchdog Timer has not yet been triggered performing
any one of the following will disable it.
1. Writing the Fan Setting Register will disable the Watchdog Timer.
2. Enabling the RPM based Fan Speed Control Algorithm by setting the EN_ALGO bit will disable the
Watchdog Timer. The fan driver will be set based on the RPM based Fan Speed Control Algorithm.
DS0005250A-page 33
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
3. Setting the LUT_LOCK bit will disable the Watchdog Timer. The fan driver will be set based on the
Look Up Table settings.
Writing any other configuration registers will not disable the Watchdog Timer.
APPLICATION NOTE: Disabling the Watchdog will not automatically set the fan drive. This must be done manually
(or via the Look Up Table).
5.10
Fault Queue
The EMC2103 contains a programmable fault queue on all fault conditions. The fault queue defines
how many consecutive out-of-limit conditions must be reported before the corresponding status bit is
set (and the ALERT pin asserted).
5.11
Temperature Monitoring
The EMC2103 can monitor the temperature of up to three (3) externally connected diodes as well as
the internal or ambient temperature. Each channel is configured with the following features enabled or
disabled based on user settings and system requirements.
5.11.1
Dynamic Averaging
The EMC2103 supports dynamic averaging. When enabled, this feature changes the conversion time
for all channels based on the selected conversion rate. This essentially increases the averaging factor
as shown in Table 5.4. The benefits of Dynamic Averaging are improved noise rejection due to the
longer integration time as well as less random variation on the temperature measurement.
Table 5.4 Dynamic Averaging Behavior
AVERAGING FACTOR (RELATIVE TO 11-BIT CONVERSI0N)
CONVERSION RATE
5.11.2
DYNAMIC AVERAGING
ENABLED
DYNAMIC AVERAGING
DISABLED
1 / sec
8x
1x
2 / sec
4x
1x
4 / sec
2x
1x
Continuous
1x
1x
Resistance Error Correction
The EMC2103 includes active Resistance Error Correction to remove the effect of up to 100 ohms of
series resistance. Without this automatic feature, voltage developed across the parasitic resistance in
the remote diode path causes the temperature to read higher than the true temperature is. The error
induced by parasitic resistance is approximately +0.7°C per ohm. Sources of parasitic resistance
include bulk resistance in the remote temperature transistor junctions, series resistance in the CPU,
and resistance in the printed circuit board traces and package leads. Resistance error correction in the
EMC2103 eliminates the need to characterize and compensate for parasitic resistance in the remote
diode path.
 2013 Microchip Technology Inc.
DS0005250A-page 34
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
5.11.3
Beta Compensation
The forward current gain, or beta, of a transistor is not constant as emitter currents change. As well,
it is not constant over changes in temperature. The variation in beta causes an error in temperature
reading that is proportional to absolute temperature. This correction is done by implementing the BJT
or transistor model for temperature measurement.
For discrete transistors configured with the collector and base shorted together, the beta is generally
sufficiently high such that the percent change in beta variation is very small. For example, a 10%
variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute
approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction
is used for temperature measurement and the collector is tied to the substrate, the proportional beta
variation will cause large error. For example, a 10% variation in beta for two forced emitter currents
with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C.
The Beta Compensation circuitry in the EMC2103 corrects for this beta variation to eliminate any error
which would normally be induced. It automatically detects the appropriate beta setting to use.
5.11.4
Digital Averaging
The external diode channels support a 4x digital averaging filter. Every cycle, this filter updates the
temperature data based an a running average of the last 4 measured temperature values. The digital
averaging reduces temperature flickering and increases temperature measurement stability.
The digital averaging can be disabled by setting the DIS_AVG bit in the Configuration 2 Register (see
Section 6.11).
5.12
Diode Connections
The External Diode 1 channel can support a diode-connected transistor (such as a 2N3904) or a
substrate transistor requiring the BJT or transistor model (such as those found in a CPU or GPU) as
shown in Figure 5.7.
The External Diode 2 channel (EMC2103-2 and EMC2103-4 only) supports any diode connection
shown or it can be configured to operate in anti-parallel diode (APD) mode. When configured in APD
mode, a third temperature channel is available that shares the DP2 and DN2 pins. When in this mode,
both the external diode 2 channel and external diode 3 channel thermal diodes must be connected as
diodes.
Figure 5.7 Diode Connections
DS0005250A-page 35
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
5.12.1
Diode Faults
The EMC2103 actively detects an open and short condition on each measurement channel. When a
diode fault is detected, the temperature data MSByte is forced to a value of 80h and the FAULT bit is
set in the Status Register. When the External Diode 2 channel is configured to operate in APD mode,
the circuitry will detect independent open fault conditions, however a short condition will be shared
between the External Diode 2 and External Diode 3 channels.
If a diode fault occurs on the hardware defined shutdown channel, then no temperature comparison is
performed. The SYS_SHDN pin will not be asserted.
5.13
GPIOs
The EMC2103-2 and EMC2103-4 contain two dedicated GPIO pins. The GPIO pins can be individually
configured as an input or an output and as a push-pull or open-drain output. Additionally, each GPIO
pin, when configured as an input, can be individually enabled to trigger an interrupt when they change
states.
 2013 Microchip Technology Inc.
DS0005250A-page 36
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 6 Register Set
6.1
Register Map
The following registers are accessible through the SMBus Interface. All register bits marked as ‘-’ will
always read ‘0’. A write to these bits will have no effect.
APPLICATION NOTE: All registers denoted with a ** are specific to the EMC2103-2 and EMC2103-4 only. Writing
to these registers by the EMC2103-1 will have no effect and reading from them will return
‘00h’.
Table 6.1 EMC2103 Register Set
ADDR
R/W
REGISTER
NAME
DEFAULT
VALUE
LOCK
PAGE
Stores the integer data of the Internal
Diode
00h
No
Page 44
Stores the fractional data of the
Internal Diode
00h
No
Page 44
FUNCTION
Temperature Registers
00h
R
Internal Temp
Reading High
Byte
01h
R
Internal Temp
Reading Low Byte
02h
R
External Diode 1
Temp Reading
High Byte
Stores the integer data of External
Diode 1
00h
No
Page 44
03h
R
External Diode 1
Temp Reading
Low Byte
Stores the fractional data of External
Diode 1
00h
No
Page 44
04h **
R
External Diode 2
Temp Reading
High Byte **
Stores the integer data of External
Diode 2
00h
No
Page 44
05h **
R
External Diode 2
Temp Reading
Low Byte **
Stores the fractional data of External
Diode 2
00h
No
Page 44
06h **
R
External Diode 3
Temp Reading
High Byte **
Stores the integer data of External
Diode 3
00h
No
Page 44
07h **
R
External Diode 3
Temp Reading
Low Byte **
Stores the fractional data of External
Diode 3
00h
No
Page 44
0Ah
R
Critical/Thermal
Shutdown
Temperature
Stores the calculated Critical/Thermal
Shutdown temperature high limit
derived from TRIP_SET pin voltage
N/A
No
Page 45
0Ch
R/W
Pushed
Temperature 1
Stores the integer data for Pushed
Temperature 1 to drive the LUT
00h
No
Page 45
0Dh
R/W
Pushed
Temperature 2
Stores the integer data for Pushed
Temperature 2 to drive the LUT
00h
No
Page 45
10h
R
TRIP_SET
Voltage
Stores the measured voltage on the
TRIP_SET pin
FFh
No
Page 46
 2013 Microchip Technology Inc.
DS0005250A-page 37
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2103 Register Set (continued)
ADDR
REGISTER
NAME
R/W
DEFAULT
VALUE
LOCK
PAGE
Stores the Ideality Factor used for
External Diode 1
12h
SWL
Page 46
12h
SWL
Page 46
FUNCTION
Diode Configuration
11h
R/W
External Diode 1
Ideality Register
12h **
R/W
External Diode 2
Ideality Register **
Stores the Ideality factor used for
External Diode 2 and External Diode
3
14h
See
Text
External Diode 1
Beta Configuration
Configures the beta compensation
settings for External Diode 1
See Text
SWL
Page 47
15h **
See
Text
External Diode 2
Beta Configuration
**
Configures the beta compensation
settings for External Diode 2
See Text
SWL
Page 47
17h
R/W
External Diode
REC
Configuration
Configures the Resistance Error
Correction functionality for all
external diodes
See Text
SWL
Page 48
19h
R/W
once
External Diode 1
Tcrit Limit
Stores the critical temperature limit
for External Diode 1
64h
(100°C)
Write
Once
Page 49
1Ah **
R/W
once
External Diode 2
Tcrit Limit **
Stores the critical temperature limit
for External Diode 2
64h
(100°C)
Write
Once
Page 49
1Bh **
R/W
once
External Diode 3
Tcrit Limit **
Stores the critical temperature limit
for External Diode 3
64h
(100°C)
Write
Once
Page 49
1Dh
R/W
once
Internal Diode
Tcrit Limit
Stores the critical temperature limit
for the Internal Diode
64h
(100°C)
Write
Once
Page 49
Stores the status bits for all
temperature channel tcrit limits
00h
No
Page 53
Configuration and control
1Fh
R
Tcrit Status
20h
R/W
Configuration
Configures the Thermal / Critical
Shutdown masking options
00h
SWL
Page 50
21h
R/W
Configuration 2
Controls the conversion rate for
monitoring of all channels
0Eh
SWL
Page 51
23h
R-C
Interrupt Status
Stores the status bits for temperature
channels
00h
No
Page 52
24h
R-C
High Limit Status
Stores the status bits for all
temperature channel high limits
00h
No
Page 53
25h
R-C
Low Limit Status
Stores the status bits for all
temperature channel low limits
00h
No
Page 53
26h
R-C
Diode Fault
Stores the status bits for all
temperature channel diode faults
00h
No
Page 53
27h
R-C
Fan Status
Stores the status bits for the RPM
based Fan Speed Control Algorithm
00h
No
Page 53
28h
R/W
Interrupt Enable
Register
Controls the masking of interrupts on
all temperature channels
00h
No
Page 54
29h
R/W
Fan Interrupt
Enable Register
Controls the masking of interrupts for
the Fan Driver
00h
No
Page 54
DS0005250A-page 38
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2103 Register Set (continued)
ADDR
R/W
REGISTER
NAME
2Ah
R/W
PWM Config
2Bh
R/W
PWM Base
Frequency
DEFAULT
VALUE
LOCK
PAGE
Configures the PWM driver
00h
No
Page 55
Controls the base frequency of the
PWM driver
03h
No
Page 55
FUNCTION
Temperature Limit Registers
30h
R/W
External Diode 1
Temp High Limit
High limit for External Diode 1
55h
(+85°C)
SWL
Page 56
31h **
R/W
External Diode 2
Temp High Limit **
High limit for External Diode 2
55h
(+85°C)
SWL
Page 56
32h **
R/W
External Diode 3
Temp High Limit **
High limit for External Diode 3
55h
(+85°C)
SWL
Page 56
34h
R/W
Internal Diode
High Limit
High Limit for Internal Diode
55h
(85°C)
SWL
Page 56
38h
R/W
External Diode 1
Temp Low Limit
Low Limit for External Diode 1
00h
(0°C)
SWL
Page 56
39h **
R/W
External Diode 2
Temp Low Limit **
Low Limit for External Diode 2
00h
(0°C)
SWL
Page 56
3Ah **
R/W
External Diode 3
Temp Low Limit **
Low Limit for External Diode 3
00h
(0°C)
SWL
Page 56
3Ch
R/W
Internal Diode
Low Limit
Low Limit for Internal Diode
00h
(0°C)
SWL
Page 56
Fan Control Registers
40h
R/W
Fan Setting
Always displays the most recent fan
driver input setting for Fan. If the
RPM based Fan Speed Control
Algorithm is disabled, allows direct
user control of the fan driver.
00h
No
Page 57
41h
R/W
PWM Divide
Stores the divide ratio to set the
frequency for the Fan
01h
No
Page 57
42h
R/W
Fan Configuration
1
Sets configuration values for the
RPM based Fan Speed Control
Algorithm for the Fan
2Bh
No
Page 57
43h
R/W
Fan Configuration
2
Sets additional configuration values
for the Fan driver
38h
SWL
Page 59
45h
R/W
Gain
Holds the gain terms used by the
RPM based Fan Speed Control
Algorithm for the Fan
2Ah
SWL
Page 60
46h
R/W
Fan Spin Up
Configuration
Sets the configuration values for Spin
Up Routine of the Fan driver
19h
SWL
Page 61
47h
R/W
Fan Step
Sets the maximum change per
update for the Fan
10h
SWL
Page 63
48h
R/W
Fan Minimum
Drive
66h
(40%)
SWL
Page 63
 2013 Microchip Technology Inc.
Sets the minimum drive value for the
the Fan driver
DS0005250A-page 39
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2103 Register Set (continued)
REGISTER
NAME
DEFAULT
VALUE
LOCK
PAGE
Holds the minimum tachometer
reading that indicates the fan is
spinning properly
F5h
SWL
Page 63
Stores the number of Tach counts
used to determine how the actual fan
speed must match the target fan
speed at full scale drive
00h
SWL
Page 64
00h
SWL
Holds the target tachometer reading
low byte for the Fan
F8h
No
Page 64
TACH Target High
Byte
Holds the target tachometer reading
for the Fan
FFh
No
Page 64
R
TACH Reading
High Byte
Holds the tachometer reading for the
Fan
FFh
No
Page 65
R
TACH Reading
Low Byte
Holds the tachometer reading low
byte for the Fan
F8h
No
Page 65
ADDR
R/W
49h
R/W
Fan Valid TACH
Count
4Ah
R/W
Fan Drive Fail
Band Low Byte
4Bh
R/W
Fan Drive Fail
Band High Byte
4Ch
R/W
TACH Target Low
Byte
4Dh
R/W
4Eh
4Fh
FUNCTION
Look Up Table (LUT)
50h
R/W
LUT Configuration
Stores and controls the configuration
for the LUT
00h
No
Page 65
51h
R/W
LUT Drive 1
Stores the lowest programmed drive
setting for the LUT
FBh
LUT
Lock
Page 66
52h
R/W
LUT Temp 1
Setting 1
Stores the threshold level for the
External Diode 1 channel that is
associated with the Drive 1 value
7Fh
(127°C)
LUT
Lock
Page 66
53h
R/W
LUT Temp 2
Setting 1
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 1 value
7Fh
(127°C)
LUT
Lock
Page 66
54h
R/W
LUT Temp 3
Setting 1
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 1 value
7Fh
(127°C)
LUT
Lock
Page 66
55h
R/W
LUT Temp 4
Setting 1
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 1 value
7Fh
(127°C)
LUT
Lock
Page 66
56h
R/W
LUT Drive 2
Stores the second programmed drive
setting for the LUT
E6h
LUT
Lock
Page 66
57h
R/W
LUT Temp 1
Setting 2
Stores the threshold level for the
External Diode 1 channel that is
associated with the Drive 2 value
7Fh
(127°C)
LUT
Lock
Page 66
58h
R/W
LUT Temp 2
Setting 2
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 2 value
7Fh
(127°C)
LUT
Lock
Page 66
59h
R/W
LUT Temp 3
Setting 2
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 2 value
7Fh
(127°C)
LUT
Lock
Page 66
DS0005250A-page 40
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2103 Register Set (continued)
REGISTER
NAME
DEFAULT
VALUE
LOCK
PAGE
7Fh
(127°C)
LUT
Lock
Page 66
Stores the third programmed drive
setting for the LUT
D1h
LUT
Lock
Page 66
LUT Temp 1
Setting 3
Stores the threshold level for the
External Diode 1 channel that is
associated with the Drive 3 value
7Fh
(127°C)
LUT
Lock
Page 66
R/W
LUT Temp 2
Setting 3
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 3 value
7Fh
(127°C)
LUT
Lock
Page 66
5Eh
R/W
LUT Temp 3
Setting 3
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 3 value
7Fh
(127°C)
LUT
Lock
Page 66
5Fh
R/W
LUT Temp 4
Setting 3
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 3 value
7Fh
(127°C)
LUT
Lock
Page 66
60h
R/W
LUT Drive 4
Stores the fourth programmed drive
setting for the LUT
BCh
LUT
Lock
Page 66
61h
R/W
LUT Temp 1
Setting 4
Stores the threshold level for the
External Diode 1channel that is
associated with the Drive 4 value
7Fh
(127°C)
LUT
Lock
Page 66
62h
R/W
LUT Temp 2
Setting 4
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 4 value
7Fh
(127°C)
LUT
Lock
Page 66
63h
R/W
LUT Temp 3
Setting 4
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 4 value
7Fh
(127°C)
LUT
Lock
Page 66
64h
R/W
LUT Temp 4
Setting 4
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 4 value
7Fh
(127°C)
LUT
Lock
Page 66
65h
R/W
LUT Drive 5
Stores the fifth programmed drive
setting for the LUT
A7h
LUT
Lock
Page 66
66h
R/W
LUT Temp 1
Setting 5
Stores the threshold level for the
External Diode 1 channel that is
associated with the Drive 5 value
7Fh
(127°C)
LUT
Lock
Page 66
67h
R/W
LUT Temp 2
Setting 5
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 5 value
7Fh
(127°C)
LUT
Lock
Page 66
68h
R/W
LUT Temp 3
Setting 5
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 5 value
7Fh
(127°C)
LUT
Lock
Page 66
ADDR
R/W
5Ah
R/W
LUT Temp 4
Setting 2
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 2 value
5Bh
R/W
LUT Drive 3
5Ch
R/W
5Dh
 2013 Microchip Technology Inc.
FUNCTION
DS0005250A-page 41
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2103 Register Set (continued)
REGISTER
NAME
DEFAULT
VALUE
LOCK
PAGE
7Fh
(127°C)
LUT
Lock
Page 66
Stores the sixth programmed drive
setting for the LUT
92h
LUT
Lock
Page 66
LUT Temp 1
Setting 6
Stores the threshold level for the
External Diode 1 channel that is
associated with the Drive 6 value
7Fh
(127°C)
LUT
Lock
Page 66
R/W
LUT Temp 2
Setting 6
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 6 value
7Fh
(127°C)
LUT
Lock
Page 66
6Dh
R/W
LUT Temp 3
Setting 6
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 6 value
7Fh
(127°C)
LUT
Lock
Page 66
6Eh
R/W
LUT Temp 4
Setting 6
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 6 value
7Fh
(127°C)
LUT
Lock
Page 66
6Fh
R/W
LUT Drive 7
Stores the seventh programmed drive
setting for the LUT
92h
LUT
Lock
Page 66
70h
R/W
LUT Temp 1
Setting 7
Stores the threshold level for the
External Diode 1 channel that is
associated with the Drive 7 value
7Fh
(127°C)
LUT
Lock
Page 66
71h
R/W
LUT Temp 2
Setting 7
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 7 value
7Fh
(127°C)
LUT
Lock
Page 66
72h
R/W
LUT Temp 3
Setting 7
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 7 value
7Fh
(127°C)
LUT
Lock
Page 66
73h
R/W
LUT Temp 4
Setting 7
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 7 value
7Fh
(127°C)
LUT
Lock
Page 66
74h
R/W
LUT Drive 8
Stores the highest programmed drive
setting for the LUT
92h
LUT
Lock
Page 66
75h
R/W
LUT Temp 1
Setting 8
Stores the threshold level for the
External Diode 1 channel that is
associated with the Drive 8 value
7Fh
(127°C)
LUT
Lock
Page 66
76h
R/W
LUT Temp 2
Setting 8
Stores the threshold level for the
External Diode 2 channel that is
associated with the Drive 8 value
7Fh
(127°C)
LUT
Lock
Page 66
77h
R/W
LUT Temp 3
Setting 8
Stores the threshold level for the
External Diode 3 channel (or Pushed
Temp 1 temp) that is associated with
the Drive 8 value
7Fh
(127°C)
LUT
Lock
Page 66
ADDR
R/W
69h
R/W
LUT Temp 4
Setting 5
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 5 value
6Ah
R/W
LUT Drive 6
6Bh
R/W
6Ch
DS0005250A-page 42
FUNCTION
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.1 EMC2103 Register Set (continued)
REGISTER
NAME
DEFAULT
VALUE
LOCK
PAGE
Stores the threshold level for the
Internal Diode channel (or Pushed
Temp 2 temp) that is associated with
the Drive 8 value
7Fh
(127°C)
LUT
Lock
Page 66
Stores the hysteresis that is shared
for all temperature inputs
0Ah
(10°C)
LUT
Lock
Page 66
Controls the GPIO direction for
GPIOs 1 and 2
00h
No
Page 68
GPIO Output
Configuration
Register **
Controls the output type of GPIOs 1
and 2
00h
No
Page 68
R/W
GPIO Input
Register **
Stores the inputs for GPIOs 1 and 2
00h
No
Page 68
E4h **
R/W
GPIO Output
Register **
Controls the output state of GPIOs 1
and 2
00h
No
Page 69
E5h **
R/W
GPIO Interrupt
Enable Register **
Enables interrupts for GPIOs 1 and 2
00h
No
Page 69
E6h **
R/W
GPIO Status **
Indicates when the GPIOs change
state
00h
No
Page 70
00h
SWL
Page 70
Indicates which pin selected options
are enabled
00h
No
Page 70
Stores the unique Product ID
24h
No
Page 71
26h
No
Manufacturer ID
5Dh
No
Page 71
Revision
00h
No
Page 72
ADDR
R/W
78h
R/W
LUT Temp 4
Setting 8
79h
R/W
LUT Temp
Hysteresis
E1h **
R/W
GPIO Direction
Register **
E2h **
R/W
E3h **
FUNCTION
Lock Register
EF
R/W
Software Lock
Locks all SWL registers
Revision Registers
FCh
R
Product Features
FDh
R
Product ID
EMC2103-1
Product ID
EMC2103-2 and
EMC2103-4
FEh
R
Manufacturer ID
FFh
R
Revision
During Power-On-Reset (POR), the default values are stored in the registers. A POR is initiated when
power is first applied to the part and the voltage on the VDD supply surpasses the POR level as
specified in the electrical characteristics. Any reads to undefined registers will return 00h. Writes to
undefined registers will not have an effect.
6.1.1
Lock Entries
The Lock Column describes the locking mechanism, if any, used for individual registers. All SWL
registers are Software Locked and therefore made read-only when the LOCK bit is set.
 2013 Microchip Technology Inc.
DS0005250A-page 43
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.2
Temperature Data Registers
Table 6.2 Temperature Data Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
00h
R
Internal Diode
High Byte
Sign
64
32
16
8
4
2
1
00h
01h
R
Internal Diode
Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
64
32
16
8
4
2
1
00h
R
External
Diode 1 High
Byte
Sign
02h
0.25
0.125
-
-
-
-
-
00h
R
External
Diode 1 Low
Byte
0.5
03h
64
32
16
8
4
2
1
00h
R
External
Diode 2 High
Byte **
Sign
04h **
0.25
0.125
-
-
-
-
-
00h
R
External
Diode 2 Low
Byte **
0.5
05h **
64
32
16
8
4
2
1
00h
R
External
Diode 3 High
Byte **
Sign
06h **
0.25
0.125
-
-
-
-
-
00h
R
External
Diode 3 Low
Byte **
0.5
07h **
The temperature measurement range is from -64°C to +127.875°C. The data format is a signed two’s
complement number as shown in Table 6.3.
Table 6.3 Temperature Data Format
TEMPERATURE (°C)
BINARY
HEX (AS READ BY
REGISTERS)
Diode Fault
1000_0000_000b
80_00h
-63.875
1100_0000_001b
C0_20h
-63
1100_0001_000b
C1_00h
-1
1111_1111_000b
FF_00h
-0.125
1111_1111_111b
FF_E0h
0
0000_0000_000b
00_00h
0.125
0000_0000_001b
00_20h
1
0000_0001_000b
01_00h
63
0011_1111_000b
3F_00h
64
0100_0000_000b
40_00h
DS0005250A-page 44
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.3 Temperature Data Format (continued)
6.3
TEMPERATURE (°C)
BINARY
HEX (AS READ BY
REGISTERS)
65
0100_0001_000b
41_00h
127
0111_1111_000b
7F_00h
127.875
0111_1111_111b
7F_E0h
Critical/Thermal Shutdown Temperature Register
Table 6.4 Critical/Thermal Shutdown Temperature Register
ADDR
R/W
REGISTER
0Ah
R
Critical/Thermal
Shutdown
Temperature
B7
128
B6
64
B5
B4
32
16
B3
8
B2
4
B1
2
B0
1
DEFAULT
7Fh
(+127°C)
The Critical/Thermal Shutdown Temperature Register is a read-only register that stores the Voltage
Programmable Threshold temperature used in the Thermal / Critical Shutdown circuitry. The contents
of the register reflect the calculated temperature determined by the voltage on the TRIP_SET pin (see
Section 5.1.2).
The data format is shown in Table 6.5.
Table 6.5 Critical / Thermal Shutdown Data Format
6.4
TEMPERATURE (°C)
BINARY
HEX
0
0000_0000b
00h
1
0000_0001b
01h
63
0011_1111b
3Fh
64
0100_0000b
40h
65
0100_0001b
41h
127
0111_1111b
7Fh
Pushed Temperature Registers
Table 6.6 Pushed Temperature Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
0Ch
R/W
Pushed
Temperature 1
Sign
64
32
16
8
4
2
1
00h
0Dh
R/W
Pushed
Temperature 2
Sign
64
32
16
8
4
2
1
00h
 2013 Microchip Technology Inc.
DS0005250A-page 45
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The Pushed Temperature Registers store user programmed temperature values that can be used by
the look-up table to update the fan control algorithm. Data written in these registers is not compared
against any limits and must match the data format shown in Table 6.3.
6.5
TRIP_SET Voltage Register
Table 6.7 TRIP_SET Voltage Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
10h
R/W
TRIP_SET
Voltage
Register
750.0
375.0
187.5
93.75
46.88
23.43
11.72
5.89
FFh
The TRIP_SET Voltage Register stores data that is measured on the TRIP_SET Voltage input. Each
bit weight represents mV of resolution so that the final voltage can be determined by adding the
weighting of the set bits together.
6.6
Ideality Factor Registers
Table 6.8 Ideality Factor Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
11h
R/W
External
Diode 1
Ideality
0
0
0
1
0
B2
B1
B0
12h
12h **
R/W
External
Diode 2
Ideality **
0
0
0
1
0
B2
B1
B0
12h
These registers store the ideality factors that are applied to the external diodes.
The External Diode 3 channel will use the settings for the External Diode 2 channel.
Beta Compensation and Resistance Error Correction automatically correct for most diode ideality
errors, therefore it is not recommended that these settings be updated without consulting Microchip.
For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly
differently than for discrete diode-connected transistors. Refer to Table 6.10 when using a CPU
substrate transistor.
Only the lower three bits can be written. Writing to any other bit will be ignored.
The Ideality Factor Registers are software locked.
Table 6.9 Ideality Factor Look-Up Table
DS0005250A-page 46
SETTING
FACTOR
10h
1.0053
11h
1.0066
12h
1.0080
13h
1.0093
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.9 Ideality Factor Look-Up Table (continued)
SETTING
FACTOR
14h
1.0106
15h
1.0119
16h
1.0133
17h
1.0146
Table 6.10 Substrate Diode Ideality Factor Look-Up Table (BJT Model)
SETTING
FACTOR
10h
0.9973
11h
0.9986
12h
1.0000
13h
1.0013
14h
1.0026
15h
1.0039
16h
1.0053
17h
1.0066
APPLICATION NOTE: When measuring a 65nm Intel CPUs, the Ideality Setting should be the default 12h. When
measuring 45nm Intel CPUs, the Ideality Setting should be 15h.
6.7
Beta Configuration Register
Table 6.11 Beta Configuration Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
14h
R/W see
Table 5.1
External Diode 1
Beta
Configuration
-
-
-
AUTO1
-
BETA1[2:0]
see
Table 5.1
15h **
R/W see
Table 5.1
External Diode 2
Beta
Configuration **
-
-
-
AUTO2
-
BETA2[2:0]
see
Table 5.1
The Beta Configuration Register controls advanced temperature measurement features of the External
Diode channels.
If External Diode 1 is selected as the hardware shutdown measurement channel (see Section 5.1.1)
then the External Diode 1 Beta register will be read only. If the internal diode is selected, then this
register can be written normally. Likewise, if the External Diode 2 channel is selected (EMC2103-2 and
EMC2103-4 only) then this register can be written normally. Finally, if External Diode 2 is selected as
the hardware shutdown measurement channel (EMC2103-2 and EMC2103-4 only), then the External
Diode 2 Beta Configuration Register will be read only.
 2013 Microchip Technology Inc.
DS0005250A-page 47
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Writing to a read only register will have no affect. The data will be ignored.
Bit 4 - AUTOx - Enables the Automatic Beta detection algorithm for the External Diode X channel.

‘0’ - The Automatic Beta detection algorithm is disabled. The BETAx[3:0] bit settings will be used
to control the beta compensation circuitry. This bit is set to ‘0’ automatically if Beta Compensation
is disabled - see Table 5.1.

‘1’ - The Automatic Beta detection algorithm is enabled. The circuitry will automatically detect the
transistor type and beta values and configure the BETAx[3:0] bits for optimal performance.
Bits 2 - 0 - BETAx[2:0] - hold a value that corresponds to a range of betas that the Beta Compensation
circuitry can compensate for. These three bits will always show the current beta setting used by the
circuitry. If the AUTO bit is set (default), then these bits may be overwritten with every temperature
conversion. If the AUTO bit is not set, then the value of these bits is used to drive the beta
compensation circuitry. In this case, these bits should be set with a value corresponding to the lowest
expected value of beta for the PNP transistor being used as a temperature sensing device.
See Table 6.12 for supported beta ranges. A value of 111b indicates that the beta compensation
circuitry is disabled. In this condition, the diode channels will function with default current levels and
will not automatically adjust for beta variation. This mode is used when measuring a discrete 2N3904
transistor or AMD thermal diode.
If the External Diode 3 channel is enabled, it will always use a beta setting of 111b.
These bits will be set to 111b if Beta Compensation is disabled - see Table 5.1
The Beta Configuration Registers are Software Locked.
Table 6.12 Beta Compensation Look Up Table
BETAX[2:0]
6.8
2
1
0
MINIMUM BETA
0
0
0
< 0.08
0
0
1
< 0.111
0
1
0
< 0.176
0
1
1
< 0.29
1
0
0
< 0.48
1
0
1
< 0.9
1
1
0
< 2.33
1
1
1
Disabled
REC Configuration Register
Table 6.13 REC Configuration Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
17h
R/W see
Table 5.1
REC
Configuration
-
-
-
-
-
REC3
REC2
REC1
0000_01XXb
see
Table 5.1
DS0005250A-page 48
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The REC Configuration Register determines whether Resistance Error Correction is used for each
external diode channel.
Bit 2 - REC3 (EMC2102-2 and EMC2103-4 only) - Controls the Resistance Error Correction
functionality of External Diode 3 (if enabled)

‘0’ - the REC functionality for External Diode 3 is disabled

‘1’ (default) - the REC functionality for External Diode 3 is enabled.
Bit 1 - REC2 (EMC2103-2 and EMC2103-4 only) - Controls the Resistance Error Correction
functionality of External Diode 2. If External Diode 2 is selected as the hardware shutdown channel
then this bit is read only and determined by the SHDN_SEL pin (see Section 5.1.1).

‘0’ - the REC functionality for External Diode 2 is disabled

‘1’ - the REC functionality for External Diode 2 is enabled.
Bit 0 - REC1 - Indicates the Resistance Error Correction functionality of External Diode 1. If External
Diode 1 is selected as the hardware shutdown channel then this bit is read only and determined by
the SHDN_SEL pin (see Section 5.1.1).

‘0’ - the REC functionality for External Diode 1 is disabled

‘1’ - the REC functionality for External Diode 1 is enabled.
The REC Configuration Register is software locked.
6.9
Critical Temperature Limit Registers
Table 6.14 Critical Temperature Limit Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
19h
R/W
once
External Diode
1 Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
1Ah
R/W
once
External Diode
2 Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
1Bh
R/W
once
External Diode
3 Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
1Dh
R/W
once
Internal Diode
Tcrit Limit
Sign
64
32
16
8
4
2
1
64h
(+100°C)
The Critical Temperature Limit Registers store the Critical Temperature Limit. At power up, none of the
respective channels are linked to the SYS_SHDN pin or the Hardware set Thermal/Critical Shutdown
circuitry.
Whenever one of the registers is updated, two things occur. First, the register is locked so that it cannot
be updated again without a power on reset. Second, the respective temperature channel is linked to
the SYS_SHDN pin and the Hardware set Thermal/Critical Shutdown Circuitry. At this point, if the
measured temperature channel exceeds the Critical limit, the SYS_SHDN pin will be asserted, the
appropriate bit set in the Tcrit Status Register, and the TCRIT bit in the Interrupt Status Register will
be set.
 2013 Microchip Technology Inc.
DS0005250A-page 49
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.10
Configuration Register
Table 6.15 Configuration Register
ADDR
R/W
REGISTER
B7
20h
R/W
Configuration
MASK
B6
-
B5
-
B4
-
B3
B2
B1
B0
DEFAULT
SYS3
SYS2
SYS1
APD
00h
The Configuration Register controls the basic functionality of the EMC2103. The bits are described
below.
Bit 7 - MASK - Blocks the ALERT pin from being asserted.

‘0’ (default) - The ALERT pin is unmasked. If any bit in either status register is set, the ALERT pin
will be asserted (unless individually masked via the Mask Register)

‘1’ - The ALERT pin is masked and will not be asserted.
Bit 3 - SYS3 (EMC2103-2 and EMC2103-4 only) - Enables the high temperature limit for the External
Diode 3 channel to trigger the Critical / Thermal Shutdown circuitry (see Section 5.1).

‘0’ (default) - the External Diode 3 channel high limit will not be linked to the SYS_SHDN pin. If the
temperature meets or exceeds the limit, the ALERT pin will be asserted normally.

‘1’ - the External Diode 3 channel high limit will be linked to the SYS_SHDN pin. If the temperature
meets or exceeds the limit then the SYS_SHDN pin will be asserted. The SYS_SHDN pin will be
released when the temperature drops below the high limit. The ALERT pin will be asserted
normally.
Bit 2 - SYS2 (EMC2103-2 and EMC2103-4 only) - Enables the high temperature limit for the External
Diode 2 channel to trigger the Critical / Thermal Shutdown circuitry (see Section 5.1).

‘0’ (default) - the External Diode 2 channel high limit will not be linked to the SYS_SHDN pin. If the
temperature meets or exceeds the limit, the ALERT pin will be asserted normally.

‘1’ - the External Diode 2 channel high limit will be linked to the SYS_SHDN pin. If the temperature
meets or exceeds the limit then the SYS_SHDN pin will be asserted. The ALERT pin will be
asserted normally.
Bit 1 - SYS1 - Enables the high temperature limit for the External Diode 1 channel to trigger the Critical
/ Thermal Shutdown circuitry (see Section 5.1).

‘0’ (default) - The External Diode 1 channel high limit will not be linked to the SYS_SHDN pin. If
the temperature meets or exceeds the limit, the ALERT pin will be asserted normally.

‘1’ - The External Diode 1 channel high limit will be linked to the SYS_SHDN pin. If the temperature
meets or exceeds the limit then the SYS_SHDN pin will be asserted. The ALERT pin will be
asserted normally.
Bit 0 - APD (EMC2103-2 and EMC2103-4 only) - This bit enables the Anti-parallel diode functionality
on the External Diode 3 pins (DP3 and DN3).

‘0’ (default) - The Anti-parallel diode functionality is disabled. The External Diode 2 channel can be
configured for any type of diode

‘1’ - The Anti-parallel diode functionality is enabled. Both the External Diode 2 and 3 channels are
configured to support a diode or diode connected transistor (such as a 2N3904).
APPLICATION NOTE: When the APD diode is enabled, there will be a delay of a full temperature update before
any comparisons and functionality associated with the External Diode 3 channel will be
implemented. This includes the SYS3 bit operation, limit comparisons, and look up table
comparisons.
The Configuration Register is software locked.
DS0005250A-page 50
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.11
Configuration 2 Register
Table 6.16 Configuration 2 Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
21h
R/W
Config 2
-
DIS_D
YN
DIS_
TO
DIS_
AVG
B3
B2
QUEUE[1:0]
B1
B0
CONV[1:0]
DEFAULT
0Eh
The Configuration 2 Register controls conversion rate of the temperature monitoring as well as the
fault queue.
Bit 6 - DIS_DYN - Disables the Dynamic Averaging Feature.

‘0’ (default) - The Dynamic Averaging function is enabled. The conversion time for all temperature
channels is scaled based on the chosen conversion rate to maximize accuracy and immunity to
random temperature measurement variation.

‘1’ - The Dynamic Averaging function is disabled. The conversion time for all temperature channels
is fixed regardless of the chosen conversion rate.
Bit 5 - DIS_TO - Disables the SMBus time out function.

‘0’ (default) - The SMBus time out function is enabled.

‘1’ - The SMBus time out function is disabled allowing the device to be fully I2C compliant.
Bit 4 - DIS_AVG - Disables digital averaging of the External Diode channels.

‘0’ (default) - The External Diode channels have digital averaging enabled. The temperature data
is the average of the previous four measurements.

‘1’ - The External Diode channels have digital averaging disabled. The temperature data is the last
measured data.
Bits 3-2 - QUEUE[1:0] - Determines the number of consecutive out of limit conditions that are
necessary to trigger an interrupt. Each measurement channel has a separate fault queue associated
with the high limit, low limit, and diode fault condition.
APPLICATION NOTE: If the fault queue for any channel is currently active (i.e. an out of limit condition has been
detected and caused the fault queue to increment) then changing the settings will not take
effect until the fault queue is zeroed. This occurs by the ALERT pin asserting or the out of
limit condition being removed.
Table 6.17 Fault Queue
QUEUE[1:0]
1
0
NUMBER OF CONSECUTIVE OUT OF LIMIT CONDITIONS
0
0
1 (disabled)
0
1
2
1
0
3
1
1
4 (default)
Bit 1 - 0 - CONV[1:0] - determines the conversion rate of the temperature monitoring. This conversion
rate does not affect the fan driver. The supply current from VDD_3V is nominally dependent upon the
conversion rate and the average current will increase as the conversion rate increases.
 2013 Microchip Technology Inc.
DS0005250A-page 51
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.18 Conversion Rate
CONV[1:0]
1
0
CONVERSION RATE
0
0
1 / sec
0
1
2 / sec
1
0
4 / sec (default)
1
1
Continuous
The Configuration 2 Register is software locked.
6.12
Interrupt Status Register
Table 6.19 Interrupt Status Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
23h
R-C
Interrupt
Status
Register
EEP
ROM
-
TCRIT
GPIO
FAN
HIGH
LOW
FAULT
00h
The Interrupt Status Register reports the operating condition of the EMC2103. If any of the bits are set
to a logic ‘1’ (other than HWS) then the ALERT pin will be asserted low if the corresponding channel
is enabled. Reading from the status register clears all status bits if the error conditions is removed. If
there are no set status bits, then the ALERT pin will be released.
The bits that cause the ALERT pin to be asserted can be masked based on the channel they are
associated with unless stated otherwise.
Bit 7 - EEPROM (EMC2103-4 only) - This bit is set to ‘1’ if the EEPROM loader circuitry detects an
error when writing data from the EEPROM. This bit is cleared when the register is read. This bit is not
masked except via the MASK bit.
Bit 5 - TCRIT - This bit is set to ‘1’ if any bit in the Tcrit Status Register is set. This bit is automatically
cleared when the Tcrit Status Register is read and the bits are cleared.
Bit 4 - GPIO (EMC2103-2 and EMC2103-4 only) - This bit is set to ‘1’ if any bit in the GPIO Status
Register is set. This bit is automatically cleared when the GPIO Status Register is read.
Bit 3 - FAN - This bit is set to ‘1’ if any bit in the Fan Status Register is set. This bit is automatically
cleared when the Fan Status Register is read and the bits are cleared.
Bit 2 - HIGH - This bit is set to ‘1’ if any bit in the High Status Register is set. This bit is automatically
cleared when the High Status Register is read and the bits are cleared.
Bit 1- LOW - This bit is set to ‘1’ if any bit in the Low Status Register is set. This bit is automatically
cleared when the Low Status Register is read and the bits are cleared.
Bit 0 - FAULT - This bit is set to ‘1’ if any bit in the Diode Fault Register is set. This bit is automatically
cleared when the Diode Fault Register is read and the bits are cleared.
DS0005250A-page 52
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.13
Error Status Registers
Table 6.20 Error Status Register
ADDR
R/W
REGISTER
B7
B6
B5
1Fh
R-C
Tcrit Status
HWS
24h
R-C
High Status
-
-
-
25h
R-C
Low Status
-
-
26h
R-C
Diode Fault
-
-
B4
B3
B2
B1
B0
DEFAULT
EXT3
_TCR
IT
EXT2
_TCR
IT
EXT1
_TCR
IT
INT_T
CRIT
00h
-
EXT3
_HI
EXT2
_HI
EXT1
_HI
INT_
HI
00h
--
-
EXT3
_LO
EXT2
_LO
EXT1
_LO
INT_L
O
00h
-
-
EXT3
_FLT
EXT2
_FLT
EXT1
_FLT
-
00h
The Error Status Registers report the specific error condition for all measurement channels with limits.
If any bit is set in the High, Low, or Diode Fault Status register, the corresponding High, Low, or Fault
bit is set in the Interrupt Status Register.
Reading the Interrupt Status Register does not clear the Error Status bit. Reading from any Error Status
Register that has bits set will clear the register and the corresponding bit in the Interrupt Status
Register if the error condition has been removed. If the error condition is persistent, reading the Error
Status Registers will have no affect.
6.13.1
Tcrit Status Register
The Tcrit Status Register stores the event that caused the SYS_SHDN pin to be asserted. Each of the
temperature channels must be associated with the SYS_SHDN pin before they can be set (see
Section 6.9). Once the SYS_SHDN pin is asserted, it will be released when the temperature drops
below the threshold level however the individual status bit will not be cleared until read.
6.14
Fan Status Register
Table 6.21 Fan Status Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
27h
R-C
Fan Status
Register
WATCH
-
DRIVE
_FAIL
-
-
-
FAN_
SPIN
FAN_
STALL
00h
The Fan Status Register contains the status bits associated with each fan driver.
Bit 7 - WATCH - This bit is asserted ‘1’ if the host has not programmed the fan driver within four (4)
seconds after power up (i.e. the Watchdog Timer has timed out. See Section 5.9.
Bit 5 - DRIVE_FAIL - Indicates that the RPM based Fan Speed Control Algorithm cannot drive the Fan
to the desired target setting at maximum drive. This bit can be masked from asserting the ALERT pin.

‘0’ - The RPM based Fan Speed Control Algorithm can drive Fan to the desired target setting.

‘1’ - The RPM based Fan Speed Control Algorithm cannot drive Fan to the desired target setting
at maximum drive.
 2013 Microchip Technology Inc.
DS0005250A-page 53
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Bit 1- FAN_SPIN - This bit is asserted ‘1’ if the Spin up Routine for the Fan cannot detect a valid
tachometer reading within its maximum time window. This bit can be masked from asserting the ALERT
pin.
Bit 0 - FAN_STALL - This bit is asserted ‘1’ if the tachometer measurement on the Fan detects a stalled
fan. This bit can be masked from asserting the ALERT pin.
6.15
Interrupt Enable Register
Table 6.22 Interrupt Enable Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
28
R/W
Interrupt
Enable
-
-
-
-
EXT3_I
NT_EN
EXT2_I
NT_EN
EXT1_I
NT_EN
INT_IN
T_EN
00h
The Interrupt Enable Register controls the masking for each temperature channel. When a channel is
masked, it will not cause the ALERT pin to be asserted when an error condition is detected.
Bit 3 - EXT3_INT_EN (EMC2103-2 and EMC2103-4 only) - Allows the External Diode 3 to assert the
ALERT pin.

‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with External
Diode 3 channel.

‘1’ - The ALERT pin will be asserted for an error condition associated with External Diode 3
channel.
Bit 2 - EXT2_INT_EN (EMC2103-2 and EMC2103-4 only) - Allows the External Diode 2 to assert the
ALERT pin.

‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with External
Diode 2 channel.

‘1’ - The ALERT pin will be asserted for an error condition associated with External Diode 2
channel.
Bit 1 - EXT1_INT_EN - Allows the External Diode 1 to assert the ALERT pin.

‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with External
Diode 1 channel.

‘1’ - The ALERT pin will be asserted for an error condition associated with External Diode 1
channel.
Bit 0 - INT_INT_EN - Allows the Internal Diode to assert the ALERT pin.
6.16

‘0’ (default) - The ALERT pin will not be asserted for any error condition associated with the Internal
Diode.

‘1’ - The ALERT pin will be asserted for an error condition associated with the Internal Diode.
Fan Interrupt Enable Register
Table 6.23 Fan Interrupt Enable Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
29
R/W
Fan
Interrupt
Enable
-
-
-
-
-
-
SPIN_
INT_EN
STALL_
INT_EN
00h
DS0005250A-page 54
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The Fan Interrupt Enable Register controls the masking for errors generated by the Fan Driver. When
a channel is masked, it will not cause the ALERT pin to be asserted when an error condition is
detected.
Bit 1 - SPIN_INT_EN - Allows the FAN_SPIN bit to assert the ALERT pin.

‘0’ (default) - the FAN_SPIN bit will not assert the ALERT pin though it will still update the Status
Register normally.

‘1’ - the FAN_SPIN bit will assert the ALERT pin.
Bit 0 - STALL_INT_EN - Allows the FAN_STALL bit or DRIVE_FAIL bit to assert the ALERT pin.
6.17

‘0’ (default) - the FAN_STALL bit or DRIVE_FAIL bit will not assert the ALERT pin though will still
update the Status Register normally.

‘1’ - the FAN_STALL bit will assert the ALERT pin.
PWM Configuration Register
Table 6.24 PWM Configuration Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
2Ah
R/W
PWM
Config
-
-
-
PWM_
OT
-
-
-
POLA
RITY
00h
The PWM Config Register controls the output type and polarity of the PWM output.
Bit 4 - PWM_OT - Determines the output type for the PWM pin.

‘0’ (default) - The PWM pin is configured as an open drain output.

‘1’ - The PWM pin is configured as a push-pull output.
Bit 0 - POLARITY1 - Determines the polarity of PWM1 (if enabled).
6.18

‘0’ (default) - the Polarity of the PWM driver is normal. A drive setting of 00h will cause the output
to be set at 0% duty cycle and a drive setting of FFh will cause the output to be set at 100% duty
cycle.

‘1’ - The Polarity of the PWM driver is inverted. A drive setting of 00h will cause the output to be
set at 100% duty cycle and a drive setting of FFh will cause the output to be set at 0% duty cycle.
PWM Base Frequency Register
Table 6.25 PWM Base Frequency Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
2Bh
R/W
PWM Base
Frequency
-
-
-
-
-
-
B1
B0
PWM_BASE[1:0
]
DEFAULT
03h
The PWM Base Frequency Register controls base frequency of the PWM output.
Bits 1-0 - PWM_BASE[1:0] - Determines the base frequency of the PWM driver (PWM).
 2013 Microchip Technology Inc.
DS0005250A-page 55
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.26 PWM_BASEx[1:0] it Decode
PWM_BASE[1:0]
6.19
1
0
BASE FREQUENCY
0
0
26.00kHz
0
1
19.531kHz
1
0
4,882Hz
1
1
2,441Hz (default)
Limit Registers
Table 6.27 Limit Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
30h
R/W
External Diode
1 High Limit
Sign
64
32
16
8
4
2
1
55h
(+85°C)
31h **
R/W
External Diode
2 High Limit **
Sign
64
32
16
8
4
2
1
55h
(+85°C)
32h **
R/W
External Diode
3 High Limit **
Sign
64
32
16
8
4
2
1
55h
(+85°C)
34h
R/W
Internal Diode
High Limit
Sign
64
32
16
8
4
2
1
55h
(+85°C)
38h
R/W
External Diode
1 Low Limit
Sign
64
32
16
8
4
2
1
00h
(0°C)
39h **
R/W
External Diode
2 Low Limit **
Sign
64
32
16
8
4
2
1
00h
(0°C)
3Ah **
R/W
External Diode
3 Low Limit **
Sign
64
32
16
8
4
2
1
00h
(0°C)
3Ch
R/W
Internal Diode
Low Limit
Sign
64
32
16
8
4
2
1
00h
(0°C)
The EMC2103 contains high limits for all temperature channels. If any measurement meets or exceeds
the high limit then the appropriate status bit is set and the ALERT pin is asserted (if enabled).
Additionally, the EMC2103 contains low limits for all temperature channels. If the temperature channel
drops below the low limit, then the appropriate status bit is set and the ALERT pin is asserted (if
enabled).
All Limit Registers are Software Locked.
DS0005250A-page 56
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.20
Fan Setting Registers
Table 6.28 Fan Driver Setting Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
40h
R/W
Fan Setting
128
64
32
16
8
4
2
1
00h
The Fan Setting Register always displays the current setting of the Fan Driver. Reading from the
register will report the current fan speed setting of the fan driver regardless of the operating mode.
Therefore it is possible that reading from this register will not report data that was previously written
into this register.
While the RPM based Fan Speed Control Algorithm or the Look Up Table are active (or both), then
the register is read only. Writing to the register will have no affect and the data will not be stored.
If both the RPM based Fan Control Algorithm and the Look Up Table are disabled, then the register
will be set with the previous value that was used. The register is read / write and writing to this register
will affect the fan speed.
The contents of the register represent the weighting of each bit in determining the final duty cycle. The
output drive for a PWM output is given by Equation [1].
VALUE
Drive =  ---------------------  100%
 255 
6.21
[1]
PWM Divide Register
Table 6.29 PWM Divide Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
41h
R/W
PWM Divide
128
64
32
16
8
B2
B1
4
2
B0
1
DEFAULT
01h
The PWM Divide Register determines the final frequency of the PWM driver. The driver base frequency
is divided by the value of the PWM Divide Register to determine the final frequency. The duty cycle
settings are not affected by these settings, only the final frequency of the PWM driver. A value of 00h
will be decoded as 01h.
The final PWM frequency is derived as the base frequency divided by the value of this register as
shown in Equation [2].
PWM base freqeuncy
f PWM = ---------------------------------------------------------------PWM Divide Setting
6.22
[2]
Fan Configuration 1 Register
Table 6.30 Fan Configuration 1 Register
ADDR
R/W
REGISTER
B7
42h
R/W
Fan
Configuration 1
EN_
ALGO
 2013 Microchip Technology Inc.
B6
B5
RANGE[1:0]
B4
B3
EDGES[1:0]
B2
B1
B0
UPDATE[2:0]
DEFAULT
2Bh
DS0005250A-page 57
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The Fan Configuration 1 Register controls the general operation of the RPM based Fan Speed Control
Algorithm used on the PWM pin.
Bit 7 - EN_ALGO - enables the RPM based Fan Speed Control Algorithm. Based on the setting of the
RPM / PWM bit, this bit is automatically set or cleared when the LUT_LOCK bit is set (see
Section 6.32).

‘0’ - (default) the control circuitry is disabled and the fan driver output is determined by the Fan
Driver Setting Register.

‘1’ - the control circuitry is enabled and the Fan Driver output will be automatically updated to
maintain the programmed fan speed as indicated by the TACH Target Register.
Bits 6- 5 - RANGE[1:0] - Adjusts the range of reported and programmed tachometer reading values.
The RANGE bits determine the weighting of all TACH values (including the Valid TACH Count, TACH
Target, and TACH reading) as shown in Table 6.31.
Table 6.31 Range Decode
RANGE[1:0]
1
0
REPORTED MINIMUM
RPM
TACH COUNT
MULTIPLIER
0
0
500
1
0
1
1000 (default)
2
1
0
2000
4
1
1
4000
8
Bits 4-3 - EDGES[1:0] - determines the minimum number of edges that must be detected on the TACH
signal to determine a single rotation. A typical fan measured 5 edges (for a 2-pole fan). For more
accurate tachometer measurement, the minimum number of edges measured may be increased.
Increasing the number of edges measured with respect to the number of poles of the fan will cause
the TACH Reading registers to indicate a fan speed that is higher or lower than the actual speed. In
order for the FSC Algorithm to operate correctly, the TACH Target must be updated by the user to
accommodate this shift. The Effective Tach Multiplier shown in Table 6.32 is used as a direct multiplier
term that is applied to the Actual RPM to achieve the Reported RPM. It should only be applied if the
number of edges measured does not match the number of edges expected based on the number of
poles of the fan (which is fixed for any given fan).
Contact Microchip for recommended settings when using fans with more or less than 2 poles.
Table 6.32 Minimum Edges for Fan Rotation
EDGES[1:0]
1
0
MINIMUM TACH
EDGES
NUMBER OF FAN POLES
EFFECTIVE TACH
MULTIPLIER (BASED ON 2
POLE FANS)
0
0
3
1 pole
0
1
5
2 poles (default)
1
0
7
3 poles
1.5
1
1
9
4 poles
2
DS0005250A-page 58
0.5
1
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Bit 2-0 - UPDATE - determines the base time between fan driver updates. The Update Time, along
with the Fan Step Register, is used to control the ramp rate of the drive response to provide a cleaner
transition of the actual fan operation as the desired fan speed changes. The Update Time is set as
shown in Table 6.33.
Table 6.33 Update Time
UPDATE[2:0]
2
1
0
UPDATE TIME
0
0
0
100ms
0
0
1
200ms
0
1
0
300ms
0
1
1
400ms (default)
1
0
0
500ms
1
0
1
800ms
1
1
0
1200ms
1
1
1
1600ms
6.23
Fan Configuration 2 Register
Table 6.34 Fan Configuration 2 Register
ADDR
R/W
REGISTER
B7
B6
B5
43h
R/W
Fan
Configuration
2
-
EN_
RRC
GLITCH
_EN
B4
B3
DER_OPT [1:0]
B2
B1
ERR_RNG:0]
B0
DEFAULT
-
38h
The Fan Configuration 2 Register controls the tachometer measurement and advanced features of the
RPM based Fan Speed Control Algorithm.
Bit 6 - EN_RRC - Enables ramp rate control when the fan driver is operated in the Direct Setting mode
or the Direct Setting with LUT mode.

‘0’ (default) - Ramp rate control is disabled. When the fan driver is operating in Direct Setting mode
or Direct Setting with LUT mode, the PWM setting will instantly transition to the next programmed
setting.

‘1’ - Ramp rate control is enabled. When the fan driver is operating in Direct Setting mode or Direct
Setting with LUT mode, the PWM setting will follow the ramp rate controls as determined by the
Fan Step and Update Time settings. The maximum PWM step is capped at the Fan Step setting
and is updated based on the Update Time as given by Table 6.33.
Bit 5 - GLITCH_EN - Disables the low pass glitch filter that removes high frequency noise injected on
the TACH pin.

‘0’ - The glitch filter is disabled.

‘1’ (default) - The glitch filter is enabled.
Bits 4 - 3 - DER_OPT[1:0] - Control some of the advanced options that affect the derivative portion of
the RPM based Fan Speed Control Algorithm as shown in Table 6.35. Note that the default derivative
 2013 Microchip Technology Inc.
DS0005250A-page 59
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
options disable the ramp rate control maximum step settings. To take advantage of the full ramp rate
control, limit derivative options to the disabled or basic derivative settings.
Table 6.35 Derivative Options
DER_OPT[1:0]
1
0
OPERATION
0
0
No derivative terms used
1
Basic derivative. The derivative of the error from
the current drive setting and the target is added
to the iterative Fan Drive setting (in addition to
proportional and integral terms)
0
Step derivative. The derivative of the error from
the current drive setting and the target is added
to the iterative Fan Drive setting and is not
capped by the maximum Fan Step Register
setting.
1
Both the basic derivative and the step derivative
are used effectively causing the derivative term to
have double the effect of the derivative term
(default).
0
1
1
Bit 2 - 1 - ERR_RNG[1:0] - Control some of the advanced options that affect the error window. When
the measured fan speed is within the programmed error window around the target speed, then the fan
drive setting is not updated. The algorithm will continue to monitor the fan speed and calculate
necessary drive setting changes based on the error, however these changes are ignored.
Table 6.36 Error Range Options
ERR_RNG[1:0]
1
0
OPERATION
0
0
0 RPM (default)
0
1
50 RPM
1
0
100 RPM
1
1
200 RPM
The Fan Configuration 2 Register is Software Locked.
6.24
Gain Register
Table 6.37 Gain Register
ADDR
R/W
REGISTER
B7
B6
45h
R/W
Gain Register
-
-
DS0005250A-page 60
B5
B4
GAIND[1:0]
B3
B2
GAINI[1:0]
B1
B0
GAINP[1:0]
DEFAULT
2Ah
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The Gain Register stores the gain terms used by the proportional and integral portions of the RPM
based Fan Speed Control Algorithm. These terms will affect the FSC closed loop acquisition,
overshoot, and settling as would be expected in a classic PID system.
Table 6.38 Gain Decode
GAIND OR GAINP OR GAINI [1:0]
6.25
1
0
RESPECTIVE GAIN FACTOR
0
0
1x
0
1
2x
1
0
4x (default)
1
1
8x
Fan Spin Up Configuration Register
Table 6.39 Fan Spin Up Configuration Register
ADDR
R/W
REGISTER
46h
R/W
Fan Spin Up
Configuration
B7
B6
DRIVE_FAIL
_CNT [1:0]
B5
NOK
ICK
B4
B3
B2
SPIN_LVL[2:0]
B1
B0
DEFAULT
SPINUP_TIME
[1:0]
19h
The Fan Spin Up Configuration Register controls the settings of Spin Up Routine.
Bit 7 - 6 - DRIVE_FAIL_CNT[1:0] - Determines how many update cycles are used for the Drive Fail
detection function as shown in Table 6.40. This circuitry determines whether the fan can be driven to
the desired tach target.
Table 6.40 DRIVE_FAIL_CNT[1:0] Bit Decode
DRIVE_FAIL_CNT[1:0]
1
0
NUMBER OF UPDATE PERIODS
0
0
Disabled - the Drive Fail detection circuitry is
disabled
0
1
16 - the Drive Fail detection circuitry will count for 16
update periods
1
0
32 - the Drive Fail detection circuitry will count for 32
update periods
1
1
64 - the Drive Fail detection circuitry will count for 64
update periods
Bit 5 - NOKICK - Determines if the Spin Up Routine will drive the fan to 100% duty cycle for 1/4 of the
programmed spin up time before driving it at the programmed level.

‘0’ (default) - The Spin Up Routine will drive the PWM to 100% for 1/4 of the programmed spin up
time before reverting to the programmed spin level.
 2013 Microchip Technology Inc.
DS0005250A-page 61
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet

‘1’ - The Spin Up Routine will not drive the PWM to 100%. It will set the drive at the programmed
spin level for the entire duration of the programmed spin up time.
Bits 4 - 2 - SPIN_LVL[2:0] - Determines the final drive level that is used by the Spin Up Routine as
shown in Table 6.41.
Table 6.41 Spin Level
SPIN_LVL[2:0]
2
1
0
SPIN UP DRIVE LEVEL
0
0
0
30%
0
0
1
35%
0
1
0
40%
0
1
1
45%
1
0
0
50%
1
0
1
55%
1
1
0
60% (default)
1
1
1
65%
Bit 1 -0 - SPINUP_TIME[1:0] - determines the maximum Spin Time that the Spin Up Routine will run
for (see Section 5.7). If a valid tachometer measurement is not detected before the Spin Time has
elapsed, then an interrupt will be generated. When the RPM based Fan Speed Control Algorithm is
active, the fan driver will attempt to re-start the fan immediately after the end of the last spin up attempt.
The Spin Time is set as shown in Table 6.42.
Table 6.42 Spin Time
SPINUP_TIME[1:0]
1
0
TOTAL SPIN UP TIME
0
0
250 ms
0
1
500 ms (default)
1
0
1 sec
1
1
2 sec
The Fan Spin Up Configuration Register is software locked.
DS0005250A-page 62
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.26
Fan Step Register
Table 6.43 Fan Step Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
47h
R/W
Fan Max Step
-
-
32
16
8
4
2
1
10h
The Fan Step Register, along with the Update Time, control the ramp rate of the fan driver response.
The value of the registers represents the maximum step size each fan driver will take between update
times (see Section 6.22).
All modes of operation have the options to use the Fan Step Register (and update times) for ramp rate
control based on the Fan Configuration 2 Register settings. The Fan Speed Control Algorithm will
always use the Fan Step Register settings (but see application note below).
APPLICATION NOTE: If the Fan Speed Control Algorithm is used, the default settings in the Fan Configuration 2
Register will cause the maximum fan step settings to be ignored.
The Fan Step Register is software locked.
6.27
Fan Minimum Drive Register
Table 6.44 Minimum Fan Drive Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
48h
R/W
Fan Minimum
Drive
128
64
32
16
8
4
2
1
66h
(40%)
The Fan Minimum Drive Register stores the minimum drive setting for the RPM based Fan Speed
Control Algorithm. This register is not used if the FSC is not active. The RPM based Fan Speed Control
Algorithm will not drive the fan at a level lower than the minimum drive unless the target TACH Target
is set at FFh (see Section 6.30)
During normal operation, if the fan stops for any reason (including low drive), the RPM based Fan
Speed Control Algorithm will attempt to restart the fan. Setting the Fan Minimum Drive Registers to a
setting that will maintain fan operation is a useful way to avoid potential fan oscillations as the control
circuitry attempts to drive it at a level that cannot support fan operation.
The Fan Minimum Drive Register is software locked.
6.28
Valid TACH Count Register
Table 6.45 Valid TACH Count Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
49h
R/W
Valid TACH
Count
4096
2048
1024
512
256
128
64
32
F5h
The Valid TACH Count Register store the maximum TACH Reading Register value to indicate that the
the fan is spinning properly. The value is referenced at the end of the Spin Up Routine to determine
if the fan has started operating and decide if the device needs to retry.
 2013 Microchip Technology Inc.
DS0005250A-page 63
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
See Equation [4] for translating the count to an RPM.
If the TACH Reading Register value exceeds the Valid TACH Count Register (indicating that the Fan
RPM is below the threshold set by this count), then a stalled fan is detected. In this condition, the
algorithm will automatically begin its Spin Up Routine.
APPLICATION NOTE: The automatic invoking of the Spin Up Routine only applies if the Fan Speed Control
Algorithm is used. If the FSC is disabled, then the device will only invoke the Spin Up Routine
when the PWM setting changes from 00h.
If a TACH Target setting is set above the Valid TACH Count setting, then that setting will be ignored
and the algorithm will use the current fan drive setting.
The Valid TACH Count Register is software locked.
6.29
Fan Drive Fail Band Registers
Table 6.46 Fan Drive Fail Band Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
4Ah
R/W
Fan Drive
Fail Band
Low Byte
16
8
4
2
1
-
-
-
00h
4Bh
R/W
Fan Drive
Fail Band
High Byte
4096
2048
1024
512
256
128
64
32
00h
The Fan Drive Fail Band Registers store the number of tach counts used by the Fan Drive Fail
detection circuitry. This circuitry is activated when the fan drive setting high byte is at FFh. When it is
enabled, the actual measured fan speed is compared against the target fan speed.
This circuitry is used to indicate that the target fan speed at full drive is higher than the fan is actually
capable of reaching. If the measured fan speed does not exceed the target fan speed minus the Fan
Drive Fail Band Register settings for a period of time longer than set by the DRIVE_FAIL_CNTx[1:0]
bits then the DRIVE_FAIL status bit will be set and an interrupt generated.
6.30
TACH Target Register
Table 6.47 TACH Target Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
4Ch
R/W
Fan TACH
Target Low
Byte
16
8
4
2
1
-
-
-
F8h
4Dh
R/W
TACH Target
4096
2048
1024
512
256
128
64
32
FFh
The TACH Target Register holds the target tachometer value that is maintained by the RPM based
Fan Speed Control Algorithm.
The value in the TACH Target Register will always reflect the current TACH Target value. If the Look
Up Table is active and configured to operate in RPM Mode, then this register will be read only. Writing
to this register will have no affect and the data will not be stored.
DS0005250A-page 64
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
If the algorithm is enabled then setting the TACH Target Register to FFh will disable the fan driver (set
the PWM duty cycle to 0%). Setting the TACH Target to any other value (from a setting of FFh) will
cause the algorithm to invoke the Spin Up Routine after which it will function normally.
6.31
TACH Reading Register
Table 6.48 TACH Reading Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
4Eh
R
Fan TACH
4096
2048
1024
512
256
128
64
32
FFh
4Fh
R
Fan TACH
Low Byte
16
8
4
2
1
-
-
-
F8h
The TACH Reading Register contents describe the current tachometer reading for the fan. By default,
the data represents the fan speed as the number of 32kHz clock periods that occur for a single
revolution of the fan.
Equation [3] shows the detailed conversion from TACH measurement (COUNT) to RPM while Equation
[4] shows the simplified translation of TACH Reading Register count to RPM assuming a 2-pole fan,
measuring 5 edges, with a frequency of 32.768kHz.
These equations are solved and tabulated for ease of use in AN17.4 RPM to TACH Counts
Conversion.
where:
poles = number of poles of the fan
(typically 2)
1
n – 1
RPM = --------------------  ----------------------------------  1,966,080
 poles 
1COUNT  ---m
n = number of edges measured
(typically 5)
m = the multiplier defined by the
RANGE bits
3,932,160  m
RPM = -------------------------------------COUNT
6.32
[3]
[4]
COUNT = TACH Reading Register
value (in decimal)
Look Up Table Configuration Register
Table 6.49 Look Up Table Configuration Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
50h
R/W
LUT
Configuration
USE_D
TS_F1
USE_D
TS_F2
LUT_L
OCK
RPM /
PWM
-
TEMP3
_CFG
-
TEMP4
_CFG
00h
The Look Up Table Configuration Register controls the setup information for the temperature to fan
drive look up table.
Bit 7 - USE_DTS_F1 - This bit determines whether the Pushed Temperature 1 Register is using DTS
data.
 2013 Microchip Technology Inc.
DS0005250A-page 65
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet

‘0’ (default) - The Pushed Temperature 1 Register is not using DTS data. The contents of the
Pushed Temperature 1 registers is standard temperature data.

‘1’ - The Pushed Temperature 1 Register is loaded with DTS data. The contents of this register is
automatically subtracted from a fixed value of 100°C before being compared to the Look Up Table
threshold levels.
Bit 6 - USE_DTS_F2 - This bit determines whether the Pushed Temperature 2 Register is using DTS
data.

‘0’ (default) - The Pushed Temperature 2 Register is not using DTS data. The contents of this
register is standard 2’s complement temperature data.

‘1’ - The Pushed Temperature 2 Register is loaded with DTS data. The contents of this register is
automatically subtracted from a fixed value of 100°C before being compared to the Look Up Table
threshold levels.
Bit 5 - LUT_LOCK - This bit locks updating the Look Up Table entries and determines whether the look
up table is being used.

‘0’ (default) - The Look Up Table entries can be updated normally. The Look Up Table will not be
used while the Look Up Table entries are unlocked. During this condition, the PWM output will not
change states regardless of temperature or tachometer variation.

‘1’ - The Look Up Table entries are locked and cannot be updated. The Look Up Table is fully active
and will be used based on the loaded values. The PWM output will be updated depending on the
temperature and / or TACH variations.
APPLICATION NOTE: When the LUT_LOCK bit is set at a logic ‘0’, the PWM drive setting will be set at whatever
value was last used by the RPM based Fan Speed Control Algorithm or the Look Up Table.
Bit 4 - RPM / PWM - This bit selects the data format for the LUT drive settings.

‘0’ (default) - The Look Up Table drive settings are RPM TACH count values for use by the RPM
based Fan Speed Control Algorithm. The Look Up Table drive settings should be loaded highest
value to lowest value (to coincide with the inversion between TACH counts and actual RPM).

‘1’ - The Look Up Table drive settings are PWM duty cycle values and are used directly. The drive
settings should be loaded lowest value to highest value.
Bit 2 - TEMP3_CFG - Determine the temperature channel that is used for the Temperature 3 inputs to
the Look Up Table. If the External Diode 3 channel is not enabled, then the Temperature 3 inputs are
not used by the Look Up Table.

‘0’ (default) - The External Diode 3 channel is used by the Fan Look Up Table (if enabled).

‘1’ - The data written into the Pushed Temperature 1 Register is used by the Fan Look Up Table.
Bit 0 - TEMP4_CFG - Determine the temperature channel that is used for the Temperature 4 inputs to
the Look Up Table.
6.33

‘0’ (default) - The Internal channel is used by the Fan Look Up Table.

‘1’ - The data written into the Pushed Temperature 2 Register is used by the Fan Look Up Table.
Look Up Table Registers
Table 6.50 Look Up Table Registers
ADDR
R/W
REGISTER
51h
R/W
LUT Drive
Setting 1
DS0005250A-page 66
RPM /
PWM
B7
B6
B5
B4
B3
B2
B1
B0
‘0’
4096
2048
1024
512
256
128
64
32
‘1’
128
64
32
16
8
4
2
1
DEFAULT
FBh
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table 6.50 Look Up Table Registers (continued)
RPM /
PWM
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
LUT Ext
Diode 1
Setting 1
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
R/W
LUT Ext
Diode 2
Setting 1
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
54h
R/W
LUT Temp 3
Setting 1
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
55h
R/W
LUT Temp 4
Setting 1
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
...
...
...
...
...
...
...
...
...
...
...
...
...
4096
2048
1024
512
256
128
64
32
R/W
LUT Drive
Setting 8
‘0’
74h
‘1’
128
64
32
16
8
4
2
1
ADDR
R/W
REGISTER
52h
R/W
53h
92h
75h
R/W
LUT Ext
Diode 1
Setting 8
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
76h
R/W
LUT Ext
Diode 2
Setting 8
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
77h
R/W
LUT Temp 3
Setting 8
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
78h
R/W
LUT Temp 4
Setting 8
X
-
64
32
16
8
4
2
1
7Fh
(127°C)
79h
R/W
LUT Temp
Hysteresis
X
-
-
-
16
8
4
2
1
0Ah
The Look Up Table Registers hold the 40 entries of the Look Up Table that controls the drive of the
PWM. As the temperature channels are updated, the measured value for each channel is compared
against the respective entries in the Look Up Table and the associated drive setting is loaded into an
internal shadow register and stored.
The bit weighting for temperature inputs represents °C and is compared against the measured data.
Note that the LUT entry does not include a sign bit. The Look Up Table does not support negative
temperature values and the MSBit should not be set for a temperature input.
Each temperature channel threshold shares the same hysteresis value. When the measured
temperature for any of the channels meets or exceeds the programmed threshold, the drive setting
associated with that threshold is used. The temperature must drop below the threshold minus the
hysteresis value before the drive setting will be set to the previous value.
If the RPM based Fan Speed Control Algorithm is used, the TACH Target is updated after every
conversion. It is always set to the minimum TACH Target that is stored by the Look Up Table. The
PWM duty cycle is updated based on the RPM based Fan Speed Control Algorithm configuration
settings.
If the RPM based Fan Speed Control Algorithm is not used, then the PWM duty cycle is updated after
every conversion. It is set to the maximum duty cycle that is stored by the Look Up Table.
 2013 Microchip Technology Inc.
DS0005250A-page 67
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.34
GPIO Direction Register (EMC2103-2 and EMC2103-4 Only)
Table 6.51 GPIO Direction Register
ADDR
R/W
REGISTER
E1h
R/W
GPIO
Direction 1
B7
-
B6
B5
B4
B3
B2
-
B1
B0
GPIO
2_DIR
GPIO
1_DIR
DEFAULT
00h
The GPIO Direction Register controls the direction of GPIOs 1 and 2.
Bit 1 - GPIO2_DIR - Determines the direction of GPIO2.

‘0’ (default) - GPIO2 is configured as an input.

‘1’ - GPIO1 is configured as an output.
Bit 0 - GPIO2_DIR - Determines the direction of GPIO1.

‘0’ (default) - GPIO1 is configured as an input.

‘1’ - GPIO1 is configured as an output.
6.35
GPIO Output Configuration Register (EMC2103-2 and
EMC2103-4 Only)
Table 6.52 GPIO Output Configuration Register
ADDR
R/W
REGISTER
B7
E2
R/W
GPIO
Output
Config
-
B6
B5
B4
B3
B2
B1
B0
DEFAULT
GPIO
2_OT
GPIO
1_OT
00h
The GPIO Output Configuration Register controls the output pin type of each GPIO pin.
Bit 1 - GPIO2_OT - Determines the output type for GPIO2.

‘0’ (default) - GPIO2 is configured as an open drain output (if enabled as an output).

‘1’ - GPIO2 is configured as a push-pull output (if enabled as an output).
Bit 0 - GPIO1_OT - Determines the output type for GPIO1.
6.36

‘0’ (default) - GPIO1 is configured as an open drain output (if enabled as an output).

‘1’ - GPIO1 is configured as a push-pull output (if enabled as an output).
GPIO Input Register (EMC2103-2 and EMC2103-4 Only)
Table 6.53 GPIO Input Register
ADDR
R/W
REGISTER
B7
B6
E3h
R
GPIO Input
-
-
DS0005250A-page 68
B5
B4
B3
B2
B1
B0
DEFAULT
GPIO
2_IN
GPIO
1_IN
00h
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The GPIO Input Register indicates the state of the corresponding GPIO pin. When a GPIO is
configured as an input, any change of state will assert the ALERT pin (unless GPIO interrupts are
masked, see Section 6.15).
Bit 1 - GPIO2_IN - Indicates the pin state of the GPIO2 pin regardless of the pin functionality.
Bit 0 - GPIO1_IN - Indicates the pin state of the GPIO1 pin regardless of the pin functionality.
6.37
GPIO Output Register (EMC2103-2 and EMC2103-4 Only)
Table 6.54 GPIO Output Register
ADDR
R/W
REGISTER
B7
B6
E4h
R/W
GPIO
Output 1
-
-
B5
B4
B3
B2
B1
B0
DEFAULT
GPIO2
_OUT
GPIO1
_OUT
00h
The GPIO Output Register controls the state of the corresponding pins when they are configured as
outputs.
If the output is configured as an open-drain output, then it requires a pull-up resistor to VDD. Setting
the corresponding bit to a ‘1’ will act to disable the output allowing the pull-up resistor to pull the output
high. Setting the corresponding bit to a ‘0’ will enable the output and drive the pin to a logical ‘0’ state.
If the output is configured as a push-pull output, then output pin will immediately be driven to match
the corresponding bit setting.
Bit 1 - GPIO2_OUT - Controls the pin state of the GPIO2 pin when it is configured as a GPIO output.
Bit 0 - GPIO1_OUT - Controls the pin state of the GPIO1 pin when it is configured as a GPIO output.
6.38
Only)
GPIO Interrupt Enable Register (EMC2103-2 and EMC2103-4
Table 6.55 GPIO Interrupt Enable Register
ADDR
R/W
REGISTER
B7
B6
E5h
R/W
GPIO
Interrupt
Enable
-
-
B5
B4
B3
B2
B1
B0
DEFAULT
GPIO2_
INT_EN
GPIO1_
INT_EN
00h
The GPIO Interrupt Enable Register enables the GPIOs to assert the ALERT pin when they change
state. When the GPIO pins are configured as outputs, then these bits are ignored.
Bit 1 - GPIO2_INT_EN - Allows the ALERT pin to be asserted when the GPIO2 pin changes state
(when configured as an input).

‘0’ (default) - The ALERT pin will not be asserted when the GPIO2 pin changes state (when
configured as an input).

‘1’ - The ALERT pin will be asserted when the GPIO2 pin changes state (when configured as an
input)
Bit 0 - GPIO1_INT_EN - Allows the ALERT pin to be asserted when the GPIO1 pin changes state
(when configured as an input).
 2013 Microchip Technology Inc.
DS0005250A-page 69
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
6.39

‘0’ (default) - The ALERT pin will not be asserted when the GPIO1 pin changes state (when
configured as an input).

‘1’ - The ALERT pin will be asserted when the GPIO1 pin changes state (when configured as an
input)
GPIO Status Register (EMC2103-2 and EMC2103-4 Only)
Table 6.56 GPIO Status Register
ADDR
R/W
REGISTER
B7
B6
E6h
R-C
GPIO
Status
-
-
B5
B4
B3
B2
B1
B0
DEFAULT
GPIO2_
STS
GPIO1_
STS
00h
The GPIO Status Register indicates which GPIO has changed states to cause the ALERT pin to be
asserted. This register is cleared when it is read. The bits in this register are set whenever the
corresponding GPIO changes states regardless if the ALERT pins are asserted. Once a bit is set, it
will remain set until read.
If any bit in this register is set, then the GPIO status bit will be set.
Bit 1 - GPIO2_STS - Indicates that the GPIO2 pin has changed states from a ‘0’ to a ‘1’ or a ‘1’ to a
‘0’ (when configured as a GPIO input).
Bit 0 - GPIO1_STS - Indicates that the GPIO1 pin has changed states from a ‘0’ to a ‘1’ or a ‘1’ to a
‘0’ (when configured as a GPIO input).
6.40
Software Lock Register
Table 6.57 Software Lock
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
EFh
R/W
Software
Lock
-
-
-
-
-
-
-
LOCK
00h
The Software Lock Register controls the software locking of critical registers. This register is software
locked.
Bit 0 - LOCK - this bit acts on all registers that are designated SWL. When this bit is set, the locked
registers become read only and cannot be updated.
6.41

‘0’ (default) - all SWL registers can be updated normally.

‘1’ - all SWL registers cannot be updated and a hard-reset is required to unlock them.
Product Features Register
Table 6.58 Product Features Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
FCh
R
Product
Features
-
-
-
-
-
DS0005250A-page 70
B2
B1
B0
SHDN_SEL[2:0]
DEFAULT
00h
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The Product Features Register indicates which pin selected functionality is enabled.
Table 6.59 SHDN_SEL[2:0] Encoding
SHDN_SEL[2:0]
2
1
0
DIODE MODE
OTHER FEATURES
0
0
0
External Diode 1 Simple Mode - Beta
compensation disabled, REC disabled recommended for AMD CPU diodes
none
0
0
1
External Diode 1 Diode Mode - Beta
compensation disabled, REC enabled
none
0
1
0
External Diode 1 Transistor Mode - Beta
compensation enabled, REC enabled - recommended for Intel 45nm and 65mn CPU
diodes
none
0
1
1
Internal Diode Transistor Mode - Beta
compensation enabled, REC enabled
none
1
0
0
External Diode 2 Transistor Mode - Beta
compensation enabled, REC enabled
(EMC2103-2 and EMC2103-4 only)
none
External Diode 1 Diode mode (EMC2103-1 only)
1
6.42
0
1
External Diode 1 Transistor Mode - Beta
compensation enabled, REC enabled
none
Product ID Register
Table 6.60 Product ID Register
ADDR
FDh
R/W
R
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
Product ID
Register
(EMC2103-1)
0
0
1
0
0
1
0
0
24h
Product ID
Register
(EMC2103-2
and
EMC2103-4)
0
0
1
0
0
1
1
0
26h
The Product ID Register contains a unique 8-bit word that identifies the product.
6.43
Manufacturer ID Register
Table 6.61 Manufacturer ID Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FEh
R
Manufacturer
ID
0
1
0
1
1
1
0
1
5Dh
 2013 Microchip Technology Inc.
DS0005250A-page 71
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
The Manufacturer ID Register contains an 8-bit word that identifies Microchip.
6.44
Revision Register
Table 6.62 Revision Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FFh
R
Revision
0
0
0
0
0
0
0
1
01h
The Revision Register contains an 8-bit word that identifies the die revision.

‘0’ - The lower 3 bits are writable for a range of 1.0053 to 1.0146

‘1’ - The lower 4 bits are writable for a range of 1.0053 to 1.0253
DBh - IDCF Trim Register - sets the default value for the IDCF1 Register.
DS0005250A-page 72
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Chapter 7 Package Drawing
7.1
EMC2103-1 Package Information
Figure 7.1 12-Pin QFN 4mm x 4mm Package Dimensions
 2013 Microchip Technology Inc.
DS0005250A-page 73
DS0005250A-page 74
Figure 7.2 12-Pin QFN 4mm x 4mm Package Drawing
 2013 Microchip Technology Inc.
Datasheet
RPM-Based Fan Controller with Hardware Thermal Shutdown
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Figure 7.3 Recommended PCB Footprint 12-Pin QFN 4mm x 4mm
 2013 Microchip Technology Inc.
DS0005250A-page 75
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
7.2
EMC2103-2 and EMC2103-4 Package Information
Figure 7.4 16-Pin QFN 4mm x 4mm Package Dimensions
DS0005250A-page 76
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
 2013 Microchip Technology Inc.
DS0005250A-page 77
Figure 7.5 16-Pin QFN 4mm x 4mm Package Drawing
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Figure 7.6 Recommended PCB Footprint 16-Pin QFN 4mm x 4mm
7.3
Package Markings
All devices are marked on the first line with “2103” followed by the dash number of the respective
device. On the second line, they will be marked with the Lot Number. on the third line, they will be
marked with the functional revision “B” and the Country Code.
DS0005250A-page 78
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Appendix A Look Up Table Operation
The EMC2103 uses a look-up table to apply a user-programmable fan control profile based on
measured temperature to the fan driver. In this look-up table, each temperature channel is allowed to
control the fan drive output independently (or jointly) by programming up to eight pairs of temperature
and drive setting entries.
The user programs the look-up table based on the desired operation. If the RPM based Fan Speed
Control Algorithm is to be used (see Section 5.5), then the user must program an RPM target for each
temperature setting of interest. Alternately, if the RPM based Fan Speed Control Algorithm is not to be
used, then the user must program a drive setting for each temperature setting of interest.
If the measured temperature on the External Diode channel meets or exceeds any of the temperature
thresholds for any of the channels, the fan output will be automatically set to the desired setting
corresponding to the exceeded temperature. In cases where multiple temperature channel thresholds
are exceeded, the highest fan drive setting will take precedence.
When the measured temperature drops to a point below a lower threshold minus the hysteresis value,
the fan output will be set to the corresponding lower set point.
The following sections show examples of how the Look Up Table is used and configured. Each Look
Up Table Example uses the Fan 1 Look Up Table Registers configured as shown in Table A.1.
Table A.1 Look Up Table Format
STEP
TEMP 1
TEMP 2
TEMP 3
TEMP 4
LUT DRIVE
1
LUT Temp 1
Setting 1 (52h)
LUT Temp 2
Setting 1 (53h)
LUT Temp 3
Setting 1 (54h)
LUT Temp 4
Setting 1 (55h)
LUT Drive
Setting 1 (51h)
2
LUT Temp 1
Setting 2 (57h)
LUT Temp 2
Setting 2 (58h)
LUT Temp 3
Setting 2 (59h)
LUT Temp 4
Setting 2 (5Ah)
LUT Drive
Setting 2 (56h)
3
LUT Temp 1
Setting 3 (5Ch)
LUT Temp 2
Setting 3 (5Dh)
LUT Temp 3
Setting 3 (5Eh)
LUT Temp 4
Setting 3 (5Fh)
LUT Drive
Setting 3 (5Bh)
4
LUT Temp 1
Setting 4 (61h)
LUT Temp 2
Setting 4 (62h)
LUT Temp 3
Setting 4 (63h)
LUT Temp 4
Setting 4 (64h)
LUT Drive
Setting 4 (60h)
5
LUT Temp 1
Setting 5 (66h)
LUT Temp 2
Setting 5 (67h)
LUT Temp 3
Setting 5 (68h)
LUT Temp 4
Setting 5 (69h)
LUT Drive
Setting 5 (65h)
6
LUT Temp 1
Setting 6 (6Bh)
LUT Temp 2
Setting 6 (6Ch)
LUT Temp 3
Setting 6 (6Dh)
LUT Temp 4
Setting 6 (6Eh)
LUT Drive
Setting 6 (6Ah)
7
LUT Temp 1
Setting 7 (70h)
LUT Temp 2
Setting 7 (71h)
LUT Temp 3
Setting 7 (72h)
LUT Temp 4
Setting 7 (73h)
LUT Drive
Setting 7 (6Fh)
8
LUT Temp 1
Setting 8 (75h)
LUT Temp 2
Setting 8 (76h)
LUT Temp 3
Setting 8 (77h)
LUT Temp 4
Setting 8 (78h)
LUT Drive
Setting 8 (74h)
A.1
Example #1
This example does not use the RPM based Fan Speed Control Algorithm. Instead, the Look Up Table
is configured to directly set a PWM setting based on the temperature of four of its measured inputs.
The configuration is set as shown in Table A.2.
Once configured, the Look Up Table is loaded as shown in Table A.3. Table A.3 shows three
temperature configurations using the settings in Table A.3 and the final PWM output drive setting that
the Look Up Table will select.
 2013 Microchip Technology Inc.
DS0005250A-page 79
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table A.2 Look Up Table Example #1 Configuration
ADDR
REGISTER
50h
LUT 1
Configuration
B7
B6
B5
B4
B3
B2
B1
B0
SETTING
USE_D
TS_F1
USE_D
TS_F2
LUT_L
OCK
RPM /
PWM
-
TEMP3
_CFG
-
TEMP4
_CFG
C0h
0
0
1
1
0
0
0
0
Table A.3 Fan Speed Control Table Example #1
FAN
SPEED
STEP #
EXTERNAL DIODE
1 TEMPERATURE
(CPU)
EXTERNAL
DIODE 2
TEMPERATURE
(GPU)
EXTERNAL DIODE
3 TEMPERATURE
(SKIN)
INTERNAL DIODE
TEMPERATURE
(AMBIENT)
PWM
SETTINGS
1
35oC
60oC
30oC
40oC
0%
2
40oC
70oC
35oC
45oC
30%
3
50oC
75oC
40oC
50oC
40%
4
60oC
80oC
45oC
55oC
50%
5
70oC
85oC
50oC
60oC
60%
6
80oC
90oC
55oC
65oC
70%
7
90oC
95oC
60oC
70oC
80%
8
100oC
100oC
65oC
75oC
100%
Note: The values shown in Table A.3 are example settings. All the cells in the look-up table are
programmable via SMBus.
Table A.4 Fan Speed Determination for Example #1 (using settings in Table A.3)
EXTERNAL
DIODE 1
TEMPERATURE
(CPU)
EXTERNAL
DIODE 2
TEMPERATURE
(GPU)
EXTERNAL
DIODE 3
TEMPERATURE
(SKIN)
INTERNAL DIODE
TEMPERATURE
(AMBIENT)
Example 1:
82°C
82°C
48°C
58°C
70% (CPU temp
requires highest drive)
Example 2:
82C°
97°C
62°C
58°C
80% (GPU and Skin
require highest drive)
Example 3:
82°C
97°C
62°C
75°C
100% (Internal temp
requires highest drive)
DS0005250A-page 80
PWM RESULT
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
A.2
Example #2
This example uses the RPM based Fan Speed Control Algorithm. The Spin Level (used by the Spin
Up Routine) should be changed to 50% drive for a total Spin Time of 1 second. For all other RPM
configuration settings, the default conditions are used.
For control inputs, it uses the External Diode 1 channel normally, the External Diode 2 channel
normally, and both Pushed Temperature registers in DTS format. The configuration is set as shown in
Table A.5 while Table A.6 shows how the table is loaded.
Note that when using DTS data, the USE_DTS_F1 and / or USE_DTS_F2 bits should be set. The
Pushed Temperature Registers are loaded with the normal DTS values as received by the processor.
When the DTS value is used by the Look Up Table, the value that is stored in the Pushed Temperature
Register is subtracted from a fixed temperature of 100°C. This resultant value is then compared
against the Look Up Table thresholds normally. When programming the Look Up Table, it is necessary
to take this translation into account or else incorrect settings may be selected.
Table A.5 Look Up Table Example #2 Configuration
ADDR
REGISTER
B7
42h
Fan 1
Configuration
1
EN_
ALGO
Fan 1 Spin
Up
Configuration
46h
LUT 1
Configuration
50h
1
B6
B5
RANGE[1:0]
B4
B3
B2
B1
EDGES[1:0]
B0
SETTING
UPDATE[2:0]
CBh
1
0
DRIVE_FAIL_CNT1
[1:0]
0
NOKICK
1
1
0
1
1
SPINUP_TIME
[1:0]
SPIN_LVL[2:0]
0
0
0
0
1
0
1
USE_DT
S_F1
USE_D
TS_F2
LUT_LO
CK
RPM /
PWM
-
TEMP3
_CFG
1
1
1
0
0
1
0
TEMP
3_CFG
0
0Ah
E5h
1
Table A.6 Fan Speed Control Table Example #2
FAN
SPEED
STEP #
EXTERNAL
DIODE 1
TEMPERATURE
(CPU)
EXTERNAL
DIODE 2
TEMPERATURE
(GPU)
PUSHED
TEMPERATURE
SETTING (DTS1)
PUSHED
TEMPERATURE
SETTING (DTS2)
1
35oC
65oC
50oC
40oC
F4h
(2014 RPM)
2
40oC
75oC
55oC
45oC
C4h
(2508 RPM)
3
50oC
85oC
60oC
50oC
A0h
(3072 RPM)
4
60oC
90oC
65oC
55oC
78h
(4096 RPM)
5
70oC
95oC
70oC
60oC
60h
(5120 RPM)
6
80oC
100oC
75oC
65oC
52h
(5994 RPM)
 2013 Microchip Technology Inc.
TACH
TARGET
DS0005250A-page 81
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Table A.6 Fan Speed Control Table Example #2 (continued)
FAN
SPEED
STEP #
EXTERNAL
DIODE 1
TEMPERATURE
(CPU)
EXTERNAL
DIODE 2
TEMPERATURE
(GPU)
PUSHED
TEMPERATURE
SETTING (DTS1)
PUSHED
TEMPERATURE
SETTING (DTS2)
7
90oC
105oC
80oC
80oC
46h
(7022 RPM)
8
100oC
110oC
85oC
100oC
3Dh
(8058 RPM)
TACH
TARGET
Note: The values shown in Table A.6 are example settings. All the cells in the look-up table are
programmable via SMBus.
Table A.7 Fan Speed Determination for Example #2 (using settings in Table A.6)
EXTERNAL
DIODE 1
TEMPERATURE
(CPU)
EXTERNAL
DIODE 2
TEMPERATURE
(GPU)
Example 1:
75°C
Example 2:
Example 3:
PUSHED
TEMPERATURE
(DTS1)
PUSHED
TEMPERATURE
(DTS2)
75°C
35°C
(translated as 65°C)
50°C
(translated as 50°C)
0Ch (5120 RPM) CPU requires highest
target
75°C
90°C
15°C
(translated as
85°C)
20°C
(translated as 80°C)
08h (7680 RPM) DTS1 requires
highest target
75°C
97.25°C
30°C
(translated as 70°C)
5°C
(translated as
95°C)
09h (6826 RPM) DTS2 requires
highest target
DS0005250A-page 82
PWM RESULT
 2013 Microchip Technology Inc.
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Datasheet Revision History
Revision History
REVISION LEVEL & DATE
REV A
SECTION/FIGURE/ENTRY
CORRECTION
Replaces the previous SMSC version Rev. 0.93
Rev. 0.93 (01-08-10)
Table A.6, "Fan Speed
Control Table Example #2"
Recalculated RPM values using Equation 3 to
correct math errors.
Rev. 0.92 (5-17-09)
Section Chapter 2, "Pin
Layout"
Added app note: For the 5V tolerant pins that have
a pull-up resistor (SMCLK, SMDATA, ALERT, and
SYS_SHDN), the voltage difference between VDD
and the 5V tolerant pad must never be more than
3.6V.
Table 3.1, "Absolute
Maximum Ratings"
Updated voltage limits for 5V tolerant pins with
pull-up resistors.
Table 3.2, "Electrical
Specifications"
Qualified leakage current (pull-up voltage < 3.6V)
Appendix B "RPM to
Tachometer Count Look Up
Tables"
Removed
Section 6.31, "TACH
Reading Register"
Added reference to AN17.4 “RPM to TACH Counts
Conversion” which includes more information.
Table 5.1, "SHDN_SEL Pin
Decode"
Added note for EEPROM loading for EMC2103-4
Section 4.9, "Programming
from EEPROM"
Added section for EEPROM loading description
Table 3.4, "EEPROM Loader
Electrical Specifications"
Added specifications for EEPROM loading
description
Rev. 0.91 (04-09-09)
Rev. 0.89 (07-02-08)
 2013 Microchip Technology Inc.
DS0005250A-page 83
RPM-Based Fan Controller with Hardware Thermal Shutdown
Datasheet
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of
Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32
logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and
other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM,
MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and ZScale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation (“SMSC”)
is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any
intellectual property rights that SMSC has established in any of its trademarks.
All other trademarks mentioned herein are property of their respective companies.
© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 9781620776483
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
 2013 Microchip Technology Inc.
DS0005250A-page 84
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
Austin, TX
Tel: 512-257-3370
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Detroit
Novi, MI
Tel: 248-848-4000
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Houston, TX
Tel: 281-894-5983
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
DS0005250A-page 85
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Germany - Pforzheim
Tel: 49-7231-424750
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Poland - Warsaw
Tel: 48-22-3325737
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
10/28/13
 2013 Microchip Technology Inc.
Similar pages