Product Folder Sample & Buy Support & Community Tools & Software Technical Documents LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 LMx11 Quad Differential Comparators 1 Features 3 Description • • • • • • The LM111, LM211, and LM311 devices are single high-speed voltage comparators. These devices are designed to operate from a wide range of powersupply voltages, including ±15-V supplies for operational amplifiers and 5-V supplies for logic systems. The output levels are compatible with most TTL and MOS circuits. These comparators are capable of driving lamps or relays and switching voltages up to 50 V at 50 mA. All inputs and outputs can be isolated from system ground. The outputs can drive loads referenced to ground, VCC+ or VCC−. Offset balancing and strobe capabilities are available, and the outputs can be wire-OR connected. If the strobe is low, the output is in the off state, regardless of the differential input. 1 • Fast Response Time: 165 ns Strobe Capability Maximum Input Bias Current: 300 nA Maximum Input Offset Current: 70 nA Can Operate From Single 5-V Supply Available in Q-Temp Automotive – High-Reliability Automotive Applications – Configuration Control and Print Support – Qualification to Automotive Standards On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters. Device Information(1) PACKAGE BODY SIZE 2 Applications LMx11D PART NUMBER SOIC (8) 4.90 mm × 3.91 mm • LMx11DK LCCC (20) 8.89 mm × 8.89 mm LMx11JG CDIP (8) 9.60 mm × 6.67 mm LMx11P PDIP (8) 9.81 mm × 6.35 mm LMx11PS SOP (8) 6.20 mm × 5.30 mm LMx11PW TSSOP (8) 3.00 mm × 4.40 mm Desktop PCs (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic BALANCE BAL/STRB IN+ + COL OUT IN− − EMIT OUT 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 4 4 4 5 5 5 6 7 Absolute Maximum Ratings ..................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information (8-Pin Packages) ..................... Thermal Information (20-Pin Package) ..................... Electrical Characteristics........................................... Switching Characteristics .......................................... Typical Characteristics .............................................. Parameter Measurement Information .................. 9 Detailed Description ............................................ 10 8.1 Overview ................................................................. 10 8.2 Functional Block Diagram ....................................... 10 8.3 Feature Description................................................. 10 8.4 Device Functional Modes........................................ 11 9 Application and Implementation ........................ 12 9.1 Application Information............................................ 12 9.2 Typical Application ................................................. 12 9.3 System Examples ................................................... 14 10 Power Supply Recommendations ..................... 20 11 Layout................................................................... 20 11.1 Layout Guidelines ................................................. 20 11.2 Layout Example .................................................... 20 12 Device and Documentation Support ................. 21 12.1 12.2 12.3 12.4 12.5 Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 21 21 21 21 21 13 Mechanical, Packaging, and Orderable Information ........................................................... 21 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision H (August 2003) to Revision I Page • Updated Features with Military Disclaimer. ............................................................................................................................ 1 • Added Applications, Device Information table, Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. No specification changes. ........................................................................... 1 2 Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 5 Pin Configuration and Functions D, JG, P, PS, or PW Package 8-Pin SOIC, CDIP, PDIP, SOP or TSSOP Top View 8 2 7 3 6 4 5 VCC+ COL OUT BAL/STRB BALANCE 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC VCC− NC IN+ NC IN− NC NC COL OUT NC BAL/STRB NC NC BALANCE NC 1 NC EMIT OUT NC VCC+ NC EMIT OUT IN+ IN− VCC− FK Package 20-Pin LCCC(1) Top View (1) NC = No internal connection Pin Functions PIN SOIC, CDIP, PDIP, SOP, TSSOP LCCC 1IN+ 2 5 I Noninverting comparator 1IN– 3 7 I Inverting input comparator BALANCE 5 12 I Balance BAL/STRB 6 15 I Strobe COL OUT 7 17 O Output collector comparator EMIT OUT 1 2 O Output emitter comparator VCC– 4 10 — Negative supply VCC+ 8 20 — Positive supply — No connect (No internal connection) NAME I/O (1) DESCRIPTION 1 3 4 6 8 NC — 9 11 13 14 16 18 19 (1) I = Input, O = Output Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 3 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN Supply voltage MAX VCC+ (2) 18 VCC– (2) –18 VCC+ – VCC– 36 Differential input voltage (3) VID VI Input voltage (either input) (2) (4) Voltage from emitter output to VCC– Voltage from collector output to VCC– TJ Tstg (1) (2) (3) (4) V ±15 V 30 V 50 LM211 50 LM211Q 50 LM311 40 Operating virtual-junction temperature V ±30 LM111 Duration of output short circuit to ground UNIT V 10 s 150 °C Case temperature for 60 s FK package 260 °C Lead temperature 1,6 mm (1/16 inch) from case, 10 s J or JG package 300 °C Lead temperature 1,6 mm (1/16 inch) from case, 60 s D, P, PS, or PW package 260 °C 150 °C −65 Storage temperature range Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC–. Differential voltages are at IN+ with respect to IN–. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or ±15 V, whichever is less. 6.2 ESD Ratings VALUE Electrostatic discharge V(ESD) (1) (2) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±750 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions MIN VCC+ – VCC– Supply voltage VI Input voltage (|VCC+| ≤ 15 V) TA Operating free-air temperature range Submit Documentation Feedback UNIT 3.5 30 V VCC– + 0.5 VCC+ – 1.5 V LM111 –55 125 LM211 –40 85 LM211Q –40 125 0 70 LM311 4 MAX °C Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 6.4 Thermal Information (8-Pin Packages) LMx11 THERMAL METRIC (1) D (SOIC) P (PDIP) PS (SOP) PW (TSSOP) JG (CDIP) 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS UNIT RθJA Junction-to-ambient thermal resistance 97 85 95 149 — °C/W RθJC(top) Junction-to-case (top) thermal resistance — — — — 14.5 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.5 Thermal Information (20-Pin Package) LMx11 THERMAL METRIC (1) FK (LCCC) UNIT 20 PINS RθJC(top) (1) Junction-to-case (top) thermal resistance 5.61 °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.6 Electrical Characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA LM111 LM211 LM211Q (1) MIN VIO Input offset voltage See (3) IIO Input offset current See (3) IIB Input bias current 1 V ≤ VO ≤ 14 V IIL(S) Low-level strobe current (4) V(strobe) = 0.3 V, VID ≤ –10 mV Common-mode input-voltage range (3) Lower range VICR AVD Large-signal differential-voltage amplification IOH High-level (collector) output leakage current VOL Low-level (collector-toemitter) output voltage VCC+ = 4.5 V, VCC– = 0 V, IOL = 8 mA 0.7 3 25°C 4 75 Full range VOH = 35 V VID = –5 mV 10 25°C Full range VID = –10 mV Full range 100 250 300 –3 –14.5 –14.7 13 13.8 40 200 40 200 0.2 50 70 100 mV nA nA mA –14.5 V V/mV 10 nA 0.5 μA 25°C VID = –6 mV 6 13.8 25°C VID = –10 mV 7.5 13 Full range 25°C 2 10 –3 –14.7 25°C MAX 150 25°C UNIT TYP (2) 20 25°C Full range MIN 4 Full range VID = 5 mV, VOH = 35 V IOL = 50 mA MAX 25°C 5 V ≤ VO ≤ 35 V, RL = 1 kΩ I(strobe) = –3 mA, VID = 5 mV TYP (2) Full range Upper range LM311 0.75 1.5 0.23 0.4 0.2 50 0.75 1.5 nA V 0.23 0.4 ICC+ Supply current from VCC+ VID = –10 mV, output low No load 25°C 5.1 6 5.1 7.5 mA ICC– Supply current from VCC– VID = 10 mV, output high No load 25°C –4.1 –5 –4.1 –5 mA (1) (2) (3) (4) Unless otherwise noted, all characteristics are measured with BALANCE and BAL/STRB open and EMIT OUT grounded. Full range for LM111 is –55°C to 125°C, for LM211 is –40°C to 85°C, for LM211Q is –40°C to 125°C, and for LM311 is 0°C to 70°C. All typical values are at TA = 25°C. The offset voltages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to 1 V with a pullup resistor of 7.5 kΩ to VCC+. These parameters actually define an error band and take into account the worst-case effects of voltage gain and input impedance. The strobe must not be shorted to ground; it must be current driven at –3 mA to –5 mA (see Figure 18 and Figure 31). Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 5 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com 6.7 Switching Characteristics VCC± = ±15 V, TA = 25°C PARAMETER LM111 LM211 LM211Q LM311 TEST CONDITIONS UNIT TYP Response time, low-to-high-level outputSee (1) Response time, high-to-low-level outputSee (1) (1) (2) 6 RC = 500 Ω to 5 V, CL = 5 pF, see (2) 115 ns 165 ns The response time specified is for a 100-mV input step with 5-mV overdrive and is the interval between the input step function and the instant when the output crosses 1.4 V. The package thermal impedance is calculated in accordance with MIL-STD-883. Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 6.8 Typical Characteristics Condition 1 is with BALANCE and BAL/STRB open. Condition 2 is with BALANCE and BAL/STRB connected to VCC+. Figure 1. Input Offset Current vs Free-Air Temperature Condition 1 is with BALANCE and BAL/STRB open. Condition 2 is with BALANCE and BAL/STRB connected to VCC+. Figure 2. Input Bias Current vs Free-Air Temperature Figure 3. Output Response for Various Input Overdrives Figure 4. Output Response for Various Input Overdrives Figure 5. Output Current and Dissipation vs Output Voltage Figure 6. Positive Supply Current vs Positive Supply Voltage Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 7 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com Typical Characteristics (continued) 60 VO − Output Voltage − V 50 VCC+ = 30 V VCC− = 0 TA = 25°C LM111 LM211 LM311 40 30 Emitter Output RL = 600 Ω Collector Output RL = 1 kΩ 20 10 0 −1 −0.5 0 0.5 1 VID − Differential Input Voltage − mV Figure 7. Negative Supply Current vs Negative Supply Voltage 8 Submit Documentation Feedback Figure 8. Voltage Transfer Characteristics and Test Circuits Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 7 Parameter Measurement Information VCC+ VI = 50 V (LM111, LM211) 40 V (LM311) = 30 V VCC+ = 30 V 1 kΩ VID Output Output VID 600 Ω VCC− VCC− Figure 9. Collector Output Transfer Characteristic Test Circuit VCC+ = 15 V Figure 10. Emitter Output Transfer Characteristic Test Circuit VCC+ = 15 V 5V 500 Ω VO VID VID VO VCC− = −15 V RE = 2 kΩ VCC− = −15 V Figure 11. Test Circuit for Figure 3 and Figure 4 Figure 12. Test Circuit for Figure 14 and Figure 15 Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 9 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com 8 Detailed Description 8.1 Overview The LM111, LM211 and LM311 are voltage comparators that have input currents nearly a thousand times lower than legacy standard devices. They are also designed to operate over a wider range of supply voltages: from standard ±15V op amp supplies down to the single 5-V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50 V at currents as high as 50 mA. Both the inputs and the outputs of the LM111, LM211 or the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire ORed. The LM211 is identical to the LM111, except that its performance is specified over a −25°C to +85°C temperature range instead of −55°C to +125°C. The LM311 has a temperature range of 0°C to +70°C. 8.2 Functional Block Diagram Component Count Resistors Diodes EPI FET Transistors BAL/STRB BALANCE 450 Ω 450 Ω 20 2 1 22 VCC+ 2.4 kΩ 750 Ω 2.4 kΩ 600 Ω 70 Ω 1.2 kΩ 1.2 kΩ IN+ 4 kΩ COL OUT IN− 400 Ω 130 Ω 60 Ω 600 Ω 450 Ω 250 Ω 200 Ω 4Ω 2 kΩ EMIT OUT VCC− 8.3 Feature Description LMx11 consists of a PNP input stage to sense voltages near VCC–. It also contains balance and strobe pins for external offset adjustment or trimming. The input stage is followed by a very high gain stage for very fast response after a voltage difference on the input pins have been sensed. 10 Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 Feature Description (continued) This is then followed by the output stage that consists of an open collector NPN (pulldown or low-side) transistor. Unlike most open drain comparators, this NPN output stage has an isolated emitter from VCC–, allowing this device to set the VOL output value for collector output. 8.4 Device Functional Modes 8.4.1 Voltage Comparison The LMx11 operates solely as a voltage comparator, comparing the differential voltage between the positive and negative pins and outputting a logic low or high impedance (logic high with pullup) based on the input differential polarity. Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 11 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Validate and test the design implementation to confirm system functionality. 9.1 Application Information A typical LMx11 application compares a single signal to a reference or two signals against each other. Many users take advantage of the open-drain output to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes LMx11 optimal for level shifting to a higher or lower voltage. 9.2 Typical Application VCC+ 20 kΩ Output Input VCC− Figure 13. Zero-Crossing Detector 9.2.1 Design Requirements For this design example, use the parameters listed in Table 1 as the input parameters. Table 1. Design Parameters PARAMETER VIN Input voltage range VCC+ Positive supply voltage VCC– Negative supply voltage IOUT Output current MIN TYP –15 MAX UNIT 13 V 15 V 20 mA –15 9.2.2 Detailed Design Procedure When using LMx11 in a general comparator application, determine the following: • Input voltage range • Minimum overdrive voltage • Output and drive current • Response time 9.2.2.1 Input Voltage Range When choosing the input voltage range, consider the input common mode voltage range (VICR). Operation outside of this range can yield incorrect comparisons. The following list describes the outcomes of some input voltage situations. 12 Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com • • • • SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 When both IN– and IN+ are both within the common-mode range: – If IN– is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current – If IN– is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting When IN– is higher than common mode and IN+ is within common mode, the output is low and the output transistor is sinking current When IN+ is higher than common mode and IN– is within common mode, the output is high impedance and the output transistor is not conducting When IN– and IN+ are both higher than common mode, the output is undefined 9.2.2.2 Minimum Overdrive Voltage Overdrive voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage (VIO). In order to make an accurate comparison the Overdrive voltage (VOD) must be higher than the input offset voltage (VIO). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive. Figure 14 and Figure 15 show positive and negative response times with respect to overdrive voltage. 9.2.2.3 Output and Drive Current Output current is determined by the pullup resistance and pullup voltage. The output current produces a output low voltage (VOL) from the comparator, in which VOL is proportional to the output current. Use Figure 5 to determine VOL based on the output current. The output current can also effect the transient response. 9.2.2.4 Response Time The load capacitance (CL), pullup resistance (RPULLUP), and equivalent collector-emitter resistance (RCE) levels determine the transient response. Equation 1 approximates the positive response time. Equation 2 approximates the negative response time. RCE can be determine by taking the slope of Figure 5 in the linear region at the desired temperature, or by Equation 3. tP @ RPULLUP ´ CL (1) tN @ RCE ´ CL V RCE = OL IOUT (2) where • • VOL is the low-level output voltage IOUT is the output current Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 (3) Submit Documentation Feedback 13 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com 9.2.3 Application Curves µ µ Figure 14. Output Response for Various Input Overdrives Figure 15. Output Response for Various Input Overdrives 9.3 System Examples Figure 16 through Figure 33 show various applications for the LM111, LM211, and LM311 comparators. VCC+ 20 kΩ 1 kΩ Square Wave Output (fanout to two Series 54 gates, or equivalent) 10 kΩ 1200 pF 20 kΩ 39 kΩ Figure 16. 100-kHz Free-Running Multivibrator VCC+ 3 kΩ 3 kΩ BALANCE BAL/ STRB If offset balancing is not used, the BALANCE and BAL/STRB pins must be unconnected. It is also acceptable to short pins together. Figure 17. Offset Balancing 14 Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 System Examples (continued) BAL/STRB TTL Strobe 2N2222 1 kΩ Do not connect strobe pin directly to ground, because the output is turned off whenever current is pulled from the strobe pin. Figure 18. Strobing 5V 1 kΩ 82 kΩ 240 kΩ Input† Output to TTL ‡ 47 kΩ 82 kΩ † ‡ Resistor values shown are for a 0- to 30-V logic swing and a 15-V threshold. May be added to control speed and reduce susceptibility to noise spikes Figure 19. TTL Interface With High-Level Logic 5V VCC+ 100 kΩ 2 kΩ 4.5 kΩ 2 kΩ 100 kHz 10 pF Output to TTL Output 1 kΩ 100 kΩ 0.1 µF 50 kΩ Magnetic Transducer Figure 20. Detector for Magnetic Transducer Figure 21. 100-kHz Crystal Oscillator Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 15 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com System Examples (continued) From D/A Network VCC+ VCC+ Output 22 kΩ Analog Input† BALANCE Input BAL/STRB 0.1 µF TTL Strobe 2N2222 Sample 1 kΩ † Figure 22. Comparator and Solenoid Driver Typical input current is 50 pA with inputs strobed off. Figure 23. Strobing Both Input and Output Stages Simultaneously VCC+ VCC+ = 5 V 500 Ω 3.9 kΩ 3 kΩ 10 kΩ 3 kΩ Output 2N3708 BAL/ STRB BALANCE Output to MOS Input + 1.5 µF 1 kΩ 10 kΩ 2N2222 VCC− = −10 V Figure 24. Low-Voltage Adjustable Reference Supply Figure 25. Zero-Crossing Detector Driving MOS Logic VCC+ = 5 V 3.9 kΩ 30 kΩ† 2N3708 1 kΩ 1 kΩ 1N914 Output + 1N914 Input From TTL 2N2222 1.5 µF 2N2222 2.7 kΩ 2N2222 † 510 Ω 2.2 kΩ Adjust to set clamp level Figure 26. Precision Squarer 16 Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 System Examples (continued) VCC+ = 5 V 5V Opto Isolator From TTL Gate 5 kΩ 1 kΩ TTL Output 100 Ω 1 kΩ 50 kΩ 0.01 µF 1 kΩ Figure 27. Digital Transmission Isolator VCC+ = 15 V 2 kΩ Input TL081 − Output 10 kΩ + + 1.5 µF 1 MΩ VCC− = −15 V Figure 28. Positive-Peak Detector VCC+ = 15 V 1 MΩ TL081 10 kΩ 2 kΩ + Input Output − + 15 µF VCC− = −15 V Figure 29. Negative-Peak Detector Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 17 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com System Examples (continued) VCC+ = 5 V 3.9 kΩ 1N2175 2N3708 1 kΩ Output to TTL 2N2222 R1† 30 kΩ † R1 sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing dark current by an order of magnitude. Figure 30. Precision Photodiode Comparator VCC+ Inputs BAL/STRB ‡ VCC− TTL Strobe 2N3708 1 kΩ ‡ Transient voltage and inductive kickback protection Figure 31. Relay Driver With Strobe 18 Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 System Examples (continued) VCC+ 620 Ω BAL/STRB 300 Ω 1 100 kΩ Output 100 kΩ BAL/STRB 2 10 kΩ Input 0.1 µF 300 Ω 47 Ω 620 Ω VCC− Figure 32. Switching Power Amplifier VCC+ 39 kΩ 620 Ω 300 kΩ 620 Ω BAL/STRB 1 15 kΩ Reference VCC− 620 Ω 0.22 µF Outputs V+ 510 Ω 15 kΩ 510 Ω Input 620 Ω BAL/STRB 2 VCC− 39 kΩ 620 Ω 300 kΩ 620 Ω Figure 33. Switching Power Amplifiers Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 19 LM111, LM211, LM311 SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 www.ti.com 10 Power Supply Recommendations For fast response and comparison applications with noisy or AC inputs, use a bypass capacitor on the supply pin to reject any variation on the supply voltage. This variation can affect the common-mode range of the comparator input and create an inaccurate comparison. 11 Layout 11.1 Layout Guidelines To create an accurate comparator application without hysteresis, maintain a stable power supply with minimized noise and glitches, which can affect the high level input common-mode voltage range. To achieve this accuracy, add a bypass capacitor between the supply voltage and ground. Place a bypass capacitor on the positive power supply and negative supply (if available). 11.2 Layout Example Ground Bypass Capacitor Negative Supply or Ground Only needed for dual power supplies EMIT OUT 1IN+ 1INí VCC- 1 2 3 4 0.1PF VCC+ 7 COL OUT 6 BAL/STROB 5 BALANCE 8 Positive Supply 0.1PF Ground Figure 34. LMx11 Layout Example 20 Submit Documentation Feedback Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 LM111, LM211, LM311 www.ti.com SLCS007I – SEPTEMBER 1973 – REVISED JUNE 2015 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 2. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY LM111 Click here Click here Click here Click here Click here LM211 Click here Click here Click here Click here Click here LM311 Click here Click here Click here Click here Click here 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. Copyright © 1973–2015, Texas Instruments Incorporated Product Folder Links: LM111 LM211 LM311 Submit Documentation Feedback 21 PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) JM38510/10304BPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510 /10304BPA LM111FKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 LM111FKB LM111JG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM111JG LM111JGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 LM111JGB LM211D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 LM211 LM211P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 LM211P LM211PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 LM211P LM211PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211PWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211PWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 L211 LM211QD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM211QDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q LM211QDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q LM211QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LM211Q LM311-MWC ACTIVE WAFERSALE YS 0 1 Green (RoHS & no Sb/Br) Call TI Level-1-NA-UNLIM -40 to 85 LM311D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 LM311 LM311DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 LM311 LM311P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 LM311P LM311PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 LM311P LM311PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PSRE4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 LM311PWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI LM311PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 L311 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty LM311PWRG4 ACTIVE TSSOP PW 8 LM311Y OBSOLETE M38510/10304BPA ACTIVE DIESALE Y 0 CDIP JG 8 2000 1 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TBD Call TI Call TI TBD A42 N / A for Pkg Type Op Temp (°C) Device Marking (4/5) 0 to 70 -55 to 125 L311 JM38510 /10304BPA (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2016 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LM211 : • Automotive: LM211-Q1 • Enhanced Product: LM211-EP NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 4-Nov-2015 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant LM211DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM211PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LM311DR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LM311DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM311DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM311DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM311DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LM311PSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 LM311PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 4-Nov-2015 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM211DR SOIC D 8 2500 340.5 338.1 20.6 LM211DR SOIC D 8 2500 367.0 367.0 35.0 LM211DRG4 SOIC D 8 2500 340.5 338.1 20.6 LM211DRG4 SOIC D 8 2500 367.0 367.0 35.0 LM211PWR TSSOP PW 8 2000 367.0 367.0 35.0 LM311DR SOIC D 8 2500 364.0 364.0 27.0 LM311DR SOIC D 8 2500 367.0 367.0 35.0 LM311DR SOIC D 8 2500 340.5 338.1 20.6 LM311DRG4 SOIC D 8 2500 367.0 367.0 35.0 LM311DRG4 SOIC D 8 2500 340.5 338.1 20.6 LM311PSR SO PS 8 2000 367.0 367.0 38.0 LM311PWR TSSOP PW 8 2000 367.0 367.0 35.0 Pack Materials-Page 2 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OUTLINE PW0008A TSSOP - 1.2 mm max height SCALE 2.800 SMALL OUTLINE PACKAGE C 6.6 TYP 6.2 SEATING PLANE PIN 1 ID AREA A 0.1 C 6X 0.65 8 1 3.1 2.9 NOTE 3 2X 1.95 4 5 B 4.5 4.3 NOTE 4 SEE DETAIL A 8X 0.30 0.19 0.1 C A 1.2 MAX B (0.15) TYP 0.25 GAGE PLANE 0 -8 0.15 0.05 0.75 0.50 DETAIL A TYPICAL 4221848/A 02/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153, variation AA. www.ti.com EXAMPLE BOARD LAYOUT PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM 1 8 (R0.05) TYP SYMM 6X (0.65) 5 4 (5.8) LAND PATTERN EXAMPLE SCALE:10X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.05 MAX ALL AROUND 0.05 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221848/A 02/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN PW0008A TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE 8X (1.5) 8X (0.45) SYMM (R0.05) TYP 1 8 SYMM 6X (0.65) 5 4 (5.8) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221848/A 02/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated