Microsemi FG144 Military proasic3/el low power flash fpgas with flash*freeze technology Datasheet

Revision 3
Military ProASIC3/EL Low Power Flash FPGAs
with Flash*Freeze Technology
Features and Benefits
• Architecture Supports Ultra-High Utilization
Advanced and Pro (Professional) I/Os††
Military Temperature Tested and Qualified
•
•
•
•
• Each Device Tested from –55°C to 125°C
Firm-Error Immune
• Not Susceptible to Neutron-Induced Configuration Loss
Low Power
• Dramatic Reduction in Dynamic and Static Power
• 1.2 V to 1.5 V Core and I/O Voltage Support for Low Power†
• Low Power Consumption in Flash*Freeze Mode Allows for
Instantaneous Entry To / Exit From Low-Power Flash*Freeze
Modeƒ
• Supports Single-Voltage System Operation
• Low-Impedance Switches
High Capacity
• 250K to 3M System Gates
• Up to 504 kbits of True Dual-Port SRAM
• Up to 620 User I/Os
Reprogrammable Flash Technology
•
•
•
•
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process
Live-at-Power-Up (LAPU) Level 0 Support
Single-Chip Solution
Retains Programmed Design when Powered Off
High Performance
• 350 MHz (1.5 V systems) and 250 MHz (1.2 V systems) System
Performance
• 3.3 V, 66 MHz, 64-Bit PCI (1.5 V systems) and 66 MHz, 32-Bit
PCI (1.2 V systems)
In-System Programming (ISP) and Security
• Secure ISP Using On-Chip 128-Bit Advanced Encryption
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)
• FlashLock® to Secure FPGA Contents
High-Performance Routing Hierarchy
•
•
•
•
•
•
•
•
Clock Conditioning Circuit (CCC) and PLL
• Six CCC Blocks—One Block with Integrated PLL in ProASIC3
and All Blocks with Integrated PLL in ProASIC3EL
• Configurable Phase Shift, Multiply/Divide, Delay Capabilities,
and External Feedback
• Wide Input Frequency Range 1.5 MHz to 250 MHz (1.2 V
systems) and 350 MHz (1.5 V systems)
SRAMs and FIFOs
• Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,
and ×18 organizations available)
• True Dual-Port SRAM (except ×18)
• 24 SRAM and FIFO Configurations with Synchronous
Operation:
– 250 MHz: For 1.2 V Systems
– 350 MHz: For 1.5 V Systems
ARM® Processor Support in ProASIC3/EL FPGAs
• Segmented, Hierarchical Routing and Clock Structure
• High-Performance, Low-Skew Global Network
Table 1 •
•
•
700 Mbps DDR, LVDS-Capable I/Os
1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation†
Bank-Selectable I/O Voltages—up to 8 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and
LVCMOS 2.5 V / 5.0 V Input†
Differential I/O Standards: LVPECL, LVDS, BLVDS, and M-LVDS
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3
Class I and II (A3PE3000L only)
I/O Registers on Input, Output, and Enable Paths
Hot-Swappable and Cold-Sparing I/Os
Programmable Output Slew Rate and Drive Strength
Programmable Input Delay (A3PE3000L only)
Schmitt Trigger Option on Single-Ended Inputs (A3PE3000L)
Weak Pull-Up/-Down
IEEE 1149.1 (JTAG) Boundary Scan Test
Pin-Compatible Packages across the Military ProASIC®3EL Family
• ARM Cortex™-M1 Soft Processor Available with or without
Debug
Military ProASIC3/EL Low-Power Devices
ProASIC3/EL Devices
A3P250
A3PE600L
ARM Cortex-M1 Devices1
System Gates
250,000
600,000
VersaTiles (D-flip-flops)
6,144
13,824
RAM kbits (1,024 bits)
36
108
4,608-Bit Blocks
8
24
FlashROM Kbits
1
1
Secure (AES) ISP2
Yes
Yes
Integrated PLL in CCCs
1
6
VersaNet Globals
18
18
I/O Banks
4
8
Maximum User I/Os
68
270
Package Pins
VQFP
VQ100
PQFP
FBGA
FG484
Notes:
1. Refer to the Cortex-M1 product brief for more information.
2. AES is not available for ARM-enabled ProASIC3/EL devices.
A3P1000
A3PE3000L
M1A3P1000
1M
24,576
144
32
1
Yes
1
18
4
154
M1A3PE3000L
3M
75,264
504
112
1
Yes
6
18
8
620
PQ208
FG144, FG484
FG484, FG896
† A3P250 and A3P1000 support only 1.5 V core operation.
ƒ Flash*Freeze technology is not available for A3P250 or A3P1000.
††Pro I/Os are not available on A3P250 or A3P1000.
September 2012
© 2011 Microsemi Corporation
I
Military ProASIC3/EL Low Power Flash FPGAs
I/Os Per Package 1
ProASIC3/EL
Low Power Devices
A3P250
A3PE600L
ARM
Cortex-M1 Devices
Package
Differential
SingleSingleEnded I/O2 I/O Pairs Ended I/O2
Differential
I/O Pairs
A3P1000
A3PE3000L
M1A3P1000
M1A3PE3000L
SingleDifferential
Single- Differential
Ended I/O2
I/O Pairs Ended I/O2 I/O Pairs
VQ100
68
13
–
–
–
–
–
–
PQ208
–
–
–
–
154
35
–
–
FG144
–
–
–
–
97
25
–
–
FG484
–
–
270
135
300
74
341
168
FG896
–
–
–
–
–
–
620
300
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the datasheet to
ensure you are complying with design and board migration requirements.
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
3. "G" indicates RoHS-compliant packages. Refer to "Military ProASIC3/EL Ordering Information" on page III for the location of the
"G" in the part number.
4. For A3PE3000L devices, the usage of certain I/O standards is limited as follows:
– SSTL3(I) and (II): up to 40 I/Os per north or south bank
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
5. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended
user I/Os available is reduced by one.
Military ProASIC3/EL Device Status
Military ProASIC3/EL Devices
Status
M1 Military ProASIC3/EL Devices
Status
A3P250
Production
A3PE600L
Production
A3P1000
Production
M1A3P1000
Production
A3PE3000L
Production
M1A3PE3000L
Production
II
R ev i si o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Military ProASIC3/EL Ordering Information
A3P1000
_
1
FG
G
Y
144
M
Application (Temperature Range)
M = Military (–55°C to 125°C Junction Temperature)
Security Feature
Y = Device Includes License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS-Compliant (Green) Packaging
Package Type
VQ = Very Thin Quad Flat Pack (0.5 mm pitch)
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
PQ = Plastic Quad Flat Pack (0.5 mm pitch)
Speed Grade
Blank = Standard
1 = 15% Faster than Standard
Part Number
Military ProASIC3/EL Devices
A3P250 = 250,000 System Gates
A3PE600L = 600,000 System Gates
A3P1000 = 1,000,000 System Gates
A3PE3000L = 3,000,000 System Gates
Military ProASIC3/EL Devices with ARM Cortex-M1
M1A3P1000 = 1,000,000 System Gates
M1A3PE3000L = 3,000,000 System Gates
R e visi on 3
III
Military ProASIC3/EL Low Power Flash FPGAs
Temperature Grade Offerings
Package
A3P250
A3PE600L
ARM Cortex-M1 Devices
A3P1000
A3PE3000L
M1A3P1000
M1A3PE3000L
VQ100
M
–
–
–
PQ208
–
–
M
–
FG144
–
–
M
–
FG484
–
M
M
M
FG896
–
–
–
M
Note: M = Military temperature range: –55°C to 125°C junction temperature
Speed Grade and Temperature Grade Matrix
Temperature Grade
M
Std.
–1
3
3
Note: M = Military temperature range: –55°C to 125°C junction temperature
Contact your local Microsemi SoC Products Group (formerly Actel) representative for device availability:
http://www.actel.com/contact/default.aspx.
IV
R ev i si o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table of Contents
Military ProASIC3/EL Device Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Military ProASIC3/EL DC and Switching Characteristics
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-112
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-125
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-127
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-149
Pin Descriptions and Packaging
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User-Defined Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1
3-2
3-2
3-4
3-5
3-5
3-5
Package Pin Assignments
VQ100
PQ208
FG144
FG484
FG896
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Revision 3
V
1 – Military ProASIC3/EL Device Family Overview
General Description
The military ProASIC3/EL family of flash FPGAs dramatically reduces dynamic power consumption by
40% and static power by 50%. These power savings are coupled with performance, density, true single
chip, 1.2 V to 1.5 V core and I/O operation, reprogrammability, and advanced features.
Microsemi’s proven Flash*Freeze technology enables military ProASIC3EL device users to shut off
dynamic power instantaneously and switch the device to static mode without the need to switch off clocks
or power supplies, and retaining internal states of the device. This greatly simplifies power management.
In addition, optimized software tools using power-driven layout provide instant push-button power
reduction.
Nonvolatile flash technology gives military ProASIC3/EL devices the advantage of being a secure, lowpower, single-chip solution that is live at power-up (LAPU). Military ProASIC3/EL devices offer dramatic
dynamic power savings, giving FPGA users flexibility to combine low power with high performance.
These features enable designers to create high-density systems using existing ASIC or FPGA design
flows and tools.
Military ProASIC3/EL devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as
well as clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). Military
ProASIC3/EL devices support devices from 250K system gates to 3 million system gates with up to 504
kbits of true dual-port SRAM and 620 user I/Os.
M1 military ProASIC3/EL devices support the high-performance, 32-bit Cortex-M1 processor developed
by ARM for implementation in FPGAs. ARM Cortex-M1 is a soft processor that is fully implemented in the
FPGA fabric. It has a three-stage pipeline that offers a good balance between low-power consumption
and speed when implemented in an M1 military ProASIC3/EL device. The processor runs the ARMv6-M
instruction set, has a configurable nested interrupt controller, and can be implemented with or without the
debug block. ARM Cortex-M1 is available at no cost from Microsemi for use in M1 military ProASIC3/EL
FPGAs.
The ARM-enabled devices have ordering numbers that begin with M1 and do not support AES
decryption.
Flash*Freeze Technology†
Military ProASIC3EL devices offer Flash*Freeze technology, which allows instantaneous switching from
an active state to a static state. When Flash*Freeze mode is activated, military ProASIC3EL devices
enter a static state while retaining the contents of registers and SRAM. Power is conserved without the
need for additional external components to turn off I/Os or clocks. Flash*Freeze technology is combined
with in-system programmability, which enables users to quickly and easily upgrade and update their
designs in the final stages of manufacturing or in the field. The ability of military ProASIC3EL devices to
support a 1.2 V core voltage allows for an even greater reduction in power consumption, which enables
low total system power.
When the military ProASIC3EL device enters Flash*Freeze mode, the device automatically shuts off the
clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and
data is retained.
The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage
solution, make military ProASIC3EL devices suitable for low-power data transfer and manipulation in
military-temperature applications where available power may be limited (e.g., in battery-powered
equipment); or where heat dissipation may be limited (e.g., in enclosures with no forced cooling).
† Flash*Freeze technology is not supported on A3P1000.
Revision 3
1 -1
Military ProASIC3/EL Device Family Overview
Flash Advantages
Low Powerƒ
The military ProASIC3EL family of flash-based FPGAs provides a low-power advantage, and when
coupled with high performance, enables designers to make power-smart choices using a single-chip,
reprogrammable, and live-at-power-up device.
Military ProASIC3EL devices offer 40% dynamic power and 50% static power savings by reducing the
core operating voltage to 1.2 V. In addition, the power-driven layout (PDL) feature in Libero® Integrated
Design Environment (IDE) offers up to 30% additional power reduction. With Flash*Freeze technology,
military ProASIC3EL device is able to retain device SRAM and logic while dynamic power is reduced to a
minimum, without the need to stop clock or power supplies. Combining these features provides a lowpower, feature-rich, and high-performance solution.
Security
Nonvolatile, flash-based military ProASIC3/EL devices do not require a boot PROM, so there is no
vulnerable external bitstream that can be easily copied. Military ProASIC3/EL devices incorporate
FlashLock, which provides a unique combination of reprogrammability and design security without
external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.
Military ProASIC3/EL devices utilize a 128-bit flash-based lock and a separate AES key to secure
programmed intellectual property and configuration data. In addition, all FlashROM data in military
ProASIC3/EL devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192)
bit block cipher encryption standard. AES was adopted by the National Institute of Standards and
Technology (NIST) in 2000 and replaces the 1977 DES standard. Military ProASIC3/EL devices have a
built-in AES decryption engine and a flash-based AES key that make them the most comprehensive
programmable logic device security solution available today. Military ProASIC3/EL devices with AESbased security allow for secure, remote field updates over public networks such as the Internet, and
ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.
Security, built into the FPGA fabric, is an inherent component of the military ProASIC3/EL family. The
flash cells are located beneath seven metal layers, and many device design and layout techniques have
been used to make invasive attacks extremely difficult. The military ProASIC3/EL family, with FlashLock
and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your
valuable IP is protected and secure, making remote ISP possible. A military ProASIC3/EL device
provides the most impenetrable security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based military
ProASIC3/EL FPGAs do not require system configuration components such as EEPROMs or
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area,
and increases security and system reliability.
Live at Power-Up
Flash-based military ProASIC3/EL devices support Level 0 of the LAPU classification standard. This
feature helps in system component initialization, execution of critical tasks before the processor wakes
up, setup and configuration of memory blocks, clock generation, and bus activity management. The
LAPU feature of flash-based military ProASIC3/EL devices greatly simplifies total system design and
reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition,
glitches and brownouts in system power will not corrupt the military ProASIC3/EL device's flash
configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system
power is restored. This enables the reduction or complete removal of the configuration PROM, expensive
voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based
military ProASIC3/EL devices simplify total system design and reduce cost and design risk while
increasing system reliability and improving system initialization time.
ƒ A3P1000 only supports 1.5 V core operation.
1-2
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based military ProASIC3/EL devices allow all functionality to be live at power-up; no
external boot PROM is required. On-board security mechanisms prevent access to all the programming
information and enable secure remote updates of the FPGA logic. Designers can perform secure remote
in-system reprogramming to support future design iterations and field upgrades with confidence that
valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the
industry-standard AES algorithm. The military ProASIC3/EL family device architecture mitigates the need
for ASIC migration at higher volumes. This makes the military ProASIC3/EL family a cost-effective ASIC
replacement.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of military ProASIC3/EL
flash-based FPGAs. Once it is programmed, the flash cell configuration element of military ProASIC3/EL
FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or
soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using
error detection and correction (EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The military ProASIC3/EL family offers many benefits, including nonvolatility and reprogrammability,
through an advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS
design techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
Advanced Architecture
The proprietary military ProASIC3/EL architecture provides granularity comparable to standard-cell
ASICs. The military ProASIC3/EL device consists of five distinct and programmable architectural
features (Figure 1-1 on page 1-4 and Figure 1-2):
•
FPGA VersaTiles
•
Dedicated FlashROM
•
Dedicated SRAM/FIFO memory
•
Extensive CCCs and PLLs
•
I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the military ProASIC3/EL core tile, as either a three-input lookup table
(LUT) equivalent or a D-flip-flop/latch with enable, allows for efficient use of the FPGA fabric. The
VersaTile capability is unique to the ProASIC family of third-generation-architecture flash FPGAs.
VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design.
Revision 3
1 -3
Military ProASIC3/EL Device Family Overview
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming
of military ProASIC3/EL devices via an IEEE 1532 JTAG interface.
Bank 0
Bank 1
Bank 3
CCC
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
I/Os
Bank 1
Bank 3
VersaTile
ISP AES
Decryption
User Nonvolatile
FlashROM
Charge Pumps
RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
Bank 2
Figure 1-1 •
Military ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250 and A3P1000)
CCC
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Pro I/Os
VersaTile
ISP AES
Decryption*
Figure 1-2 •
1-4
User Nonvolatile
FlashRom
Flash*Freeze
Technology
Charge
Pumps
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Military ProASIC3EL Device Architecture Overview (A3PE600L and A3PE3000L)
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Flash*Freeze Technology††
Military ProASIC3EL devices offer proven Flash*Freeze technology, which enables designers to
instantaneously shut off dynamic power consumption while retaining all SRAM and register information.
Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by
activating the Flash*Freeze (FF) pin while all power supplies are kept at their original values. In addition,
I/Os and global I/Os can still be driven and can be toggling without impact on power consumption; clocks
can still be driven or can be toggling without impact on power consumption; all core registers and SRAM
cells retain their states. I/Os are tristated during Flash*Freeze mode or can be set to a certain state using
weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks,
JTAG pins, or PLLs. Flash*Freeze technology allows the user to switch to active mode on demand, thus
simplifying the power management of the device.
The FF pin (active low) can be routed internally to the core to allow the user's logic to decide when it is
safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if Flash*Freeze mode
usage is not planned, which is advantageous because of the inherent low-power static and dynamic
capabilities of the military ProASIC3EL device. Refer to Figure 1-3 for an illustration of entering/exiting
Flash*Freeze mode.
Actel ProASIC3EL
FPGA
Flash*Freeze
Mode Control
Flash*Freeze Pin
Figure 1-3 •
Military ProASIC3EL Flash*Freeze Mode
VersaTiles
The military ProASIC3/EL core consists of VersaTiles, which have been enhanced beyond the
ProASICPLUS® core tiles. The military ProASIC3/EL VersaTile supports the following:
•
All 3-input logic functions—LUT-3 equivalent
•
Latch with clear or set
•
D-flip-flop with clear or set
•
Enable D-flip-flop with clear or set
Refer to Figure 1-4 for VersaTile configurations.
LUT-3 Equivalent
X1
X2
X3
LUT-3
Y
D-Flip-Flop with Clear or Set
Data
CLK
CLR
Y
Enable D-Flip-Flop with Clear or Set
Data
CLK
D-FF
Y
D-FF
Enable
CLR
Figure 1-4 •
VersaTile Configurations
††Flash*Freeze technology is not supported for A3P1000.
Revision 3
1 -5
Military ProASIC3/EL Device Family Overview
User Nonvolatile FlashROM
Military ProASIC3/EL devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The
FlashROM can be used in diverse system applications:
•
Internet protocol addressing (wireless or fixed)
•
System calibration settings
•
Device serialization and/or inventory control
•
Subscription-based business models (for example, set-top boxes)
•
Secure key storage for secure communications algorithms
•
Asset management/tracking
•
Date stamping
•
Version management
FlashROM is written using the standard military ProASIC3/EL IEEE 1532 JTAG programming interface.
The core can be individually programmed (erased and written), and on-chip AES decryption can be used
selectively to securely load data over public networks, as in security keys stored in the FlashROM for a
user design.
FlashROM can be programmed via the JTAG programming interface, and its contents can be read back
either through the JTAG programming interface or via direct FPGA core addressing. Note that the
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the
internal logic array.
FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis
using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and
which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM
address define the byte.
Microsemi military ProASIC3/EL development software solutions, Libero IDE and Designer, have
extensive support for the FlashROM. One such feature is auto-generation of sequential programming
files for applications requiring a unique serial number in each part. Another feature allows the inclusion of
static data for system version control. Data for the FlashROM can be generated quickly and easily using
Libero IDE and Designer software tools. Comprehensive programming file support is also included to
allow for easy programming of large numbers of parts with differing FlashROM contents.
SRAM and FIFO
Military ProASIC3/EL devices have embedded SRAM blocks along their north and south sides. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can
be configured with different bit widths on each port. For example, data can be sent through a 4-bit port
and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port
(ROM emulation mode) using the UJTAG macro.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control
unit contains the counters necessary for generation of the read and write address pointers. The
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
Military ProASIC3 devices provide designers with flexible clock conditioning circuit (CCC) capabilities.
Each member of the military ProASIC3 family contains six CCCs, located at the four corners and the
centers of the east and west sides. One CCC (center west side) has a PLL. All six CCC blocks are
usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock
spine access.
Military ProASIC3EL devices also contain six CCCs; however, all six are equipped with a PLL.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
1-6
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
The CCC block has these key features:
•
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz
•
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz
•
2 programmable delay types for clock skew minimization
•
Clock frequency synthesis
Additional CCC specifications:
•
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider
configuration.
•
Output duty cycle = 50% ± 1.5% or better
•
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global
network used
•
Maximum acquisition time is 300 µs
•
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
•
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /
fOUT_CCC
Global Clocking
Military ProASIC3/EL devices have extensive support for multiple clocking domains. In addition to the
CCC and PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid
distribution of high-fanout nets.
I/Os with Advanced I/O Standards
The military ProASIC3/EL family of FPGAs features a flexible I/O structure, supporting a range of
voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). In addition, 1.2 V I/O operation is supported for military
ProASIC3EL devices. Military ProASIC3/EL FPGAs support different I/O standards, including singleended, differential, and voltage-referenced (military ProASIC3EL). The I/Os are organized into banks,
with two, four, or eight (military ProASIC3EL only) banks per device. The configuration of these banks
determines the I/O standards supported. For military ProASIC3EL, each I/O bank is subdivided into VREF
minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os
in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is
configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
•
Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
•
Double-data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).
Military ProASIC3EL banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can
support up to 20 loads.
Revision 3
1 -7
2 – Military ProASIC3/EL DC and Switching
Characteristics
General Specifications
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
absolute maximum ratings are stress ratings only; functional operation of the device at these or any other
conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on
page 2-2 is not implied.
Table 2-1 •
Symbol
Absolute Maximum Ratings1
Parameter
Limits
Units
VCC
DC core supply voltage
–0.3 to 1.65
V
VJTAG
JTAG DC voltage
–0.3 to 3.75
V
VPUMP
Programming voltage
–0.3 to 3.75
V
VCCPLL Analog power supply (PLL)
–0.3 to 1.65
V
VCCI
–0.3 to 3.75
V
–0.3 to 3.75
V
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
V
DC I/O buffer supply voltage for
A3PE600/3000L
DC output buffer supply voltage for
A3P250/A3P1000
VMV
DC input buffer supply voltage for
A3P250/A3P1000
VI
I/O input voltage
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is
lower (when I/O hot-insertion mode is disabled)
TSTG 2
Storage temperature
–65 to +150
°C
2
Junction temperature
+150
°C
TJ
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-7.
2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating
limits, refer to Table 2-2 on page 2-2.
Revision 3
2 -1
Military ProASIC3/EL DC and Switching Characteristics
Table 2-2 •
Recommended Operating Conditions 1
Symbol
Parameter
TA
Ambient temperature
TJ
Junction temperature
VCC
Military
Units
–55 to 125
°C
–55 to 125
°C
1.425 to 1.575
V
1.14 to 1.575
V
1.4 to 3.6
V
3.15 to 3.45
V
0 to 3.6
V
1.5 V DC core supply voltage
1.425 to 1.575
V
1.2 V – 1.5 V DC core supply
voltage3
1.14 to 1.575
V
1.14 to 1.26
V
1.14 to 1.575
V
1.5 V DC supply voltage
1.425 to 1.575
V
1.8 V DC supply voltage
1.7 to 1.9
V
2.5 V DC supply voltage
2.3 to 2.7
V
2.7 to 3.6
V
3.0 to 3.6
V
2.375 to 2.625
V
3.0 to 3.6
V
1.5 V DC core supply
voltage2
1.2 V – 1.5 V wide range DC core
supply voltage 3
VJTAG
JTAG DC voltage
4
VPUMP
Programming voltage
Programming mode
Operation 5
VCCPLL
4
2
Analog power supply (PLL)
VCCI and VMV4 1.2 V DC supply voltage3
1.2 V wide range DC supply voltage
3.0 V DC supply
3
voltage6
3.3 V DC supply voltage
LVDS differential I/O
LVPECL differential I/O
Notes:
1.
2.
3.
4.
All parameters representing voltages are measured with respect to GND unless otherwise specified.
For A3P250 and A3P1000
For A3PE600L and A3PE3000L devices only, operating at VCCI  VCC.
See the "Pin Descriptions and Packaging" section on page 3-1 for instructions and recommendations on tie-off and
supply grouping.
5. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-24 on page 2-24. VCCI should be at the same voltage within a given I/O bank.
6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.
7. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi
recommends that the user follow best design practices using Microsemi’s timing and power simulation tools.
2-2
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
70
102.7
85
100
43.8
20.0
105
15.6
110
12.3
115
9.7
120
125
7.7
6.2
130
5.0
135
140
4.0
3.3
145
150
2.7
2.2
110
100
90
80
70
60
50
40
30
20
10
0
Years
Tj (°C)
HTR
Lifetime
(yrs)
70
85 100 105 110 115 120 125 130 135 140 145 150
Temperature (ºC)
Note:
HTR time is the period during which you would not expect a verify failure due to flash cell leakage.
Figure 2-1 •
High-Temperature Data Retention (HTR)
Table 2-3 •
Overshoot and Undershoot Limits1
Average VCCI–GND Overshoot or Undershoot
Duration as a Percentage of Clock Cycle2
Maximum Overshoot/
Undershoot (125°C)2
2.7 V or less
10%
0.72 V
5%
0.82 V
3V
10%
0.72 V
5%
0.82 V
10%
0.69 V
5%
0.79 V
10%
N/A
5%
N/A
VCCI and VMV
3.3 V
3.6 V
Notes:
1. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the
maximum overshoot/undershoot has to be reduced by 0.15 V.
2. This table does not provide PCI overshoot/undershoot limits.
Revision 3
2 -3
Military ProASIC3/EL DC and Switching Characteristics
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Military)
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits
ensure easy transition from the powered-off state to the powered-up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2
on page 2-5 and Figure 2-3 on page 2-6.
There are five regions to consider during power-up.
Military ProASIC3 I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5 and
Figure 2-3 on page 2-6).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:
2-4
•
During programming, I/Os become tristated and weakly pulled up to VCCI.
•
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic, at least until VCC and VCCPLX exceed brownout
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-2 and Figure 23 on page 2-6 for more details).
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V
± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low-Power Flash Devices" chapter of the Military ProASIC3/EL FPGA Fabric User’s
Guide for information on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
Output buffers, after 200 ns delay from input buffer activation.
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential
but slower because VCCI
is below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL, VOH / VOL,
etc.
VCC = 1.425 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
Figure 2-2 •
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
VCCI
Devices Operating at 1.5 V Core – I/O State as a Function of VCCI and VCC Voltage Levels
Revision 3
2 -5
Military ProASIC3/EL DC and Switching Characteristics
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH / VIL levels, and output
buffers do not meet VOH / VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH / VIL , VOH / VOL , etc.
VCC = 1.14 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Activation trip point:
Va = 0.85 V ± 0.2 V
Deactivation trip point:
Vd = 0.75 V ± 0.2 V
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.15 V
Deactivation trip point:
Vd = 0.8 V ± 0.15 V
Figure 2-3 •
2-6
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.14 V,1.425 V, 1.7 V,
2.3 V, or 3.0 V
VCCI
Device Operating at 1.2 V Core Voltage – I/O State as a Function of VCCI and VCC Voltage
Levels; Only A3PE600L and A3PE3000L Devices Operate at 1.2 V Core Voltage
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Thermal Characteristics
Introduction
The temperature variable in the Designer software refers to the junction temperature, not the ambient
temperature. This is an important distinction because dynamic and static power consumption cause the
chip junction temperature to be higher than the ambient temperature.
EQ 1 can be used to calculate junction temperature.
TJ = Junction Temperature = T + TA
EQ 1
where:
TA = Ambient Temperature
T = Temperature gradient between junction (silicon) and ambient T = ja * P
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-4.
P = Power dissipation
Package Thermal Characteristics
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is
ja. The thermal characteristics for ja are shown for two air flow rates. The recommended maximum
junction temperature is 125°C. EQ 2 shows a sample calculation of the recommended maximum power
dissipation allowed for a 484-pin FBGA package at military temperature and in still air.
125C – 70C- = 2.670
Max. junction temp. (C) – Max. ambient temp. (C) = ---------------------------------Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------20.6C/W
 ja (C/W)
EQ 2
Table 2-4 •
Package Thermal Resistivities
ja
Device
Pin Count
jc
Very Thin Quad Flat Pack (VQ100)
A3P250
100
10.0
35.3
29.4
27.1
C/W
Plastic Quad Flat Pack (PQ208)*
A3P1000
208
3.8
16.2
13.3
11.9
C/W
Fine Pitch Ball Grid Array (FBGA)
A3P1000
144
6.3
31.6
26.2
24.2
C/W
A3PE600L
484
9.5
27.5
21.9
20.2
C/W
A3PE3000L
484
4.7
20.6
15.7
14.0
C/W
A3PE3000L
896
2.4
13.6
10.4
9.4
C/W
Package Type
Still Air 200 ft./min.
500 ft./min. Units
* Embedded heatspreader
Revision 3
2 -7
Military ProASIC3/EL DC and Switching Characteristics
Temperature and Voltage Derating Factors
Table 2-5 •
Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 125°C, VCC = 1.14 V)
Applicable to A3PE600L and A3PE3000L Only
Junction Temperature
Array Voltage VCC (V)
–55°C
–40°C
0°C
25°C
70°C
85°C
125°C
1.14
0.85
0.86
0.89
0.92
0.96
0.97
1.00
1.2
0.82
0.83
0.86
0.88
0.92
0.93
0.96
1.26
0.79
0.80
0.83
0.85
0.89
0.90
0.93
1.30
0.77
0.78
0.81
0.83
0.86
0.88
0.90
1.35
0.74
0.75
0.78
0.80
0.84
0.85
0.88
1.40
0.72
0.73
0.75
0.77
0.81
0.82
0.85
1.425
0.71
0.71
0.74
0.76
0.79
0.80
0.83
1.5
0.67
0.68
0.70
0.72
0.75
0.76
0.79
1.575
0.65
0.66
0.68
0.70
0.73
0.74
0.76
Table 2-6 •
Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 125°C, VCC = 1.425 V)
Applicable to A3P250 and A3P1000 Devices Only
Junction Temperature
Array Voltage VCC (V)
–55°C
–40°C
0°C
25°C
70°C
85°C
125°C
1.425
0.80
0.82
0.87
0.89
0.94
0.96
1.00
1.5
0.76
0.78
0.82
0.84
0.89
0.91
0.95
1.575
0.73
0.75
0.79
0.82
0.86
0.87
0.91
2-8
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Calculating Power Dissipation
Quiescent Supply Current
Table 2-7 •
Power Supply State Per Mode
Power Supply Configurations
Modes/Power Supplies
VCC
VCCPLL
VCCI
VJTAG
VPUMP
Flash*Freeze
On
On
On
On
On/off/floating
Sleep
Off
Off
On
Off
Off
Shutdown
Off
Off
Off
Off
Off
Static and Active
On
On
On
On
On/off/floating
Table 2-8 •
Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode*
Nominal (25°C)
Typical maximum (25ºC)
Military maximum (125ºC)
Note:
Core Voltage
A3PE600L
A3PE3000L
Units
1.2 V
0.55
2.75
mA
1.5 V
0.83
4.2
mA
1.2 V
9
17
mA
1.5 V
12
20
mA
1.2 V
65
165
mA
1.5 V
85
185
mA
*IDD includes VCC, VPUMP, VCCI, VJTAG , and VCCPLL currents. Values do not include I/O static contribution
(PDC6 and PDC7).
Table 2-9 •
Quiescent Supply Current (IDD) Characteristics, Sleep Mode (VCC = 0 V)*
Core Voltage
A3PE600L
A3PE3000L
Units
VCCI / VJTAG = 1.2 V (per bank)
Typical (25°C)
1.2 V
1.7
1.7
µA
VCCI / VJTAG = 1.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.8
1.8
µA
VCCI / VJTAG = 1.8 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.9
1.9
µA
VCCI / VJTAG = 2.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.2
2.2
µA
VCCI / VJTAG = 3.3 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.5
2.5
µA
Note:
*IDD = NBANKS × ICCI. Values do not include I/O static contribution, which is shown in Table 2-21 on page 2-16 (PDC6
and PDC7).
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode*
Core Voltage
A3P250
A3P1000
A3PE600L
A3PE3000L
Units
Nominal (25°C)
1.2 V / 1.5 V
N/A
0
µA
Military (125ºC)
1.2 V / 1.5 V
N/A
0
µA
Note:
*This is applicable to A3PE600L and A3PE3000L only for cold-sparable I/O devices. Not available on A3P250 or
A3P1000.
Revision 3
2 -9
Military ProASIC3/EL DC and Switching Characteristics
Table 2-11 • Quiescent Supply Current (IDD), Static Mode and Active Mode 1
Core Voltage
A3PE600L
A3PE3000L
Units
1.2 V
0.55
2.75
mA
1.5 V
0.83
4.2
mA
1.2 V
9
17
mA
1.5 V
12
20
mA
1.2 V
65
165
mA
1.5 V
85
185
mA
VCCI / VJTAG = 1.2 V (per bank)
Typical (25°C)
1.2 V
1.7
1.7
µA
VCCI / VJTAG = 1.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.8
1.8
µA
VCCI / VJTAG = 1.8 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.9
1.9
µA
VCCI / VJTAG = 2.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.2
2.2
µA
VCCI / VJTAG = 3.3 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.5
2.5
µA
ICCA Current
2
Nominal (25°C)
Typical maximum (25°C)
Military maximum (125°C)
3
ICCI or IJTAG Current
Notes:
1. IDD = NBANKS × ICCI + ICCA. JTAG counts as one bank when powered.
2. Includes VCC , VCCPLL, and VPUMP currents.
3. Values do not include I/O static contribution (PDC6 and PDC7).
Table 2-12 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000
Core Voltage
A3P250
A3P1000
Units
Nominal (25°C)
1.5 V
3
8
mA
Typical maximum (25°C)
1.5 V
15
30
mA
Military maximum (125°C)
1.5 V
65
150
mA
Note:
2- 10
IDD includes VCC , VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution (PDC6 and PDC7),
which is shown in Table 2-21 on page 2-16.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Power per I/O Pin
Table 2-13 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
VCCI (V)
Static Power PDC6
(mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL/LVCMOS
3.3
–
16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger
3.3
–
24.49
Single-Ended
3.3 V LVCMOS Wide Range
3.3
–
16.34
3.3 V LVCMOS – Schmitt trigger Wide Range
3.3
–
24.49
2.5 V LVCMOS
2.5
–
4.71
2.5 V LVCMOS – Schmitt trigger
2.5
–
6.13
1.8 V LVCMOS
1.8
–
1.66
1.8 V LVCMOS – Schmitt trigger
1.8
–
1.78
1.5 V LVCMOS (JESD8-11)
1.5
–
1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger
1.5
–
0.97
1.2 V LVCMOS
1.2
–
0.60
1.2 V LVCMOS (JESD8-11) – Schmitt trigger
1.2
–
0.53
1.2 V LVCMOS Wide Range
1.2
–
0.60
1.2 V LVCMOS Schmitt trigger Wide Range
1.2
–
0.53
3.3 V PCI
3.3
–
17.76
3.3 V PCI – Schmitt trigger
3.3
–
19.10
3.3 V PCI-X
3.3
–
17.76
3.3 V PCI-X – Schmitt trigger
3.3
–
19.10
3.3 V GTL
3.3
2.90
7.14
2.5 V GTL
2.5
2.13
3.54
3.3 V GTL+
3.3
2.81
2.91
Voltage-Referenced
2.5 V GTL+
2.5
2.57
2.61
HSTL (I)
1.5
0.17
0.79
HSTL (II)
1.5
0.17
0.79
SSTL2 (I)
2.5
1.38
3.26
SSTL2 (II)
2.5
1.38
3.26
SSTL3 (I)
3.3
3.21
7.97
SSTL3 (II)
3.3
3.21
7.97
LVDS
2.5
2.26
0.89
LVPECL
3.3
5.71
1.94
Differential
Notes:
1. PDC6 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCCI.
Revision 3
2- 11
Military ProASIC3/EL DC and Switching Characteristics
Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
VMV (V)
Static Power
PDC6 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.22
3.3 V LVCMOS – Wide Range
3.3
–
16.22
2.5 V LVCMOS
2.5
–
4.65
1.8 V LVCMOS
1.8
–
1.65
1.5 V LVCMOS (JESD8-11)
1.5
–
0.98
Single-Ended
3.3 V PCI
3.3
–
17.64
3.3 V PCI-X
3.3
–
17.64
LVDS
2.5
2.26
0.83
LVPECL
3.3
5.72
1.81
Differential
Notes:
1. PDC6 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VMV.
Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
VMV (V)
Static Power
PDC6 (mW) 1
Dynamic Power
PAC9 (µW/MHz) 2
3.3 V LVTTL / 3.3 V LVCMOS
3.3
–
16.23
3.3 V LVCMOS – Wide Range
3.3
–
16.23
2.5 V LVCMOS
2.5
–
4.66
1.8 V LVCMOS
1.8
–
1.64
1.5 V LVCMOS (JESD8-11)
1.5
–
0.99
3.3 V PCI
3.3
–
17.64
3.3 V PCI-X
3.3
–
17.64
Single-Ended
Notes:
1. PDC6 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VMV.
2- 12
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL/LVCMOS
5
3.3
–
148.00
3.3 V LVCMOS Wide Range
5
3.3
–
148.00
2.5 V LVCMOS
5
2.5
–
83.23
1.8 V LVCMOS
5
1.8
–
54.58
1.5 V LVCMOS (JESD8-11)
5
1.5
–
37.05
1.2 V LVCMOS
5
1.2
–
17.94
1.2 V LVCMOS Wide Range
5
1.2
–
17.94
3.3 V PCI
10
3.3
–
204.61
3.3 V PCI-X
10
3.3
–
204.61
3.3 V GTL
10
3.3
–
24.08
2.5 V GTL
10
2.5
–
13.52
3.3 V GTL+
10
3.3
–
24.10
2.5 V GTL+
10
2.5
–
13.54
HSTL (I)
20
1.5
7.08
26.22
HSTL (II)
20
1.5
13.88
27.18
SSTL2 (I)
30
2.5
16.69
105.56
SSTL2 (II)
30
2.5
25.91
116.48
SSTL3 (I)
30
3.3
26.02
114.67
SSTL3 (II)
30
3.3
42.21
131.69
LVDS
–
2.5
7.70
89.58
LVPECL
–
3.3
19.42
167.86
Single-Ended
Voltage-Referenced
Differential
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
Revision 3
2- 13
Military ProASIC3/EL DC and Switching Characteristics
Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
CLOAD (pF)
VCCI (V)
Static Power PDC7
(mW) 2
Dynamic Power
PAC10 (µW/MHz) 3
3.3 V LVTTL /
3.3 V LVCMOS
5
3.3
–
141.97
3.3 V LVCMOS Wide Range
5
3.3
–
141.97
2.5 V LVCMOS
5
2.5
–
79.98
1.8 V LVCMOS
5
1.8
–
52.26
1.5 V LVCMOS (JESD8-11)
5
1.5
–
35.62
3.3 V PCI
10
3.3
–
201.02
3.3 V PCI-X
10
3.3
–
201.02
LVDS
–
2.5
7.74
89.82
LVPECL
–
3.3
19.54
167.55
Single-Ended
Differential
Notes:
1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the
software default.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
CLOAD (pF)
VCCI (V)
Static Power
PDC7 (mW) 2
Dynamic Power
PAC10 (µW/MHz) 3
3.3 V LVTTL /
3.3 V LVCMOS
5
3.3
–
125.97
3.3 V LVCMOS – Wide Range
5
3.3
–
125.97
2.5 V LVCMOS
5
2.5
–
70.82
1.8 V LVCMOS
5
1.8
–
36.39
1.5 V LVCMOS (JESD8-11)
5
1.5
–
25.34
3.3 V PCI
10
3.3
–
184.92
3.3 V PCI-X
10
3.3
–
184.92
Single-Ended
Notes:
1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the
software default.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
2- 14
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Power Consumption of Various Internal Resources
Table 2-19 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3/EL
Devices Operating at 1.2 V VCC
Device-Specific Dynamic Power
(µW/MHz)
Parameter
Definition
A3PE3000L
A3PE600L
PAC1
Clock contribution of a Global Rib
8.34
3.99
PAC2
Clock contribution of a Global Spine
4.28
2.22
PAC3
Clock contribution of a VersaTile row
0.94
0.94
PAC4
Clock contribution of a VersaTile used as a sequential
module
0.08
0.08
PAC5
First contribution of a VersaTile used as a sequential module
0.05
PAC6
Second contribution of a VersaTile used as a sequential
module
0.19
PAC7
Contribution of a VersaTile used as a combinatorial module
0.11
PAC8
Average contribution of a routing net
0.45
PAC9
Contribution of an I/O input pin (standard-dependent)
See Table 2-13 on page 2-11
through Table 2-15 on page 2-12.
PAC10
Contribution of an I/O output pin (standard-dependent)
See Table 2-16 on page 2-13
through Table 2-18 on page 2-14.
PAC11
Average contribution of a RAM block during a read operation
25.00
PAC12
Average contribution of a RAM block during a write operation
30.00
PAC13
Dynamic contribution for PLL
1.74
Revision 3
2- 15
Military ProASIC3/EL DC and Switching Characteristics
Table 2-20 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3 and
ProASIC3/EL Devices at 1.5 V VCC
Device-Specific Dynamic Power (µW/MHz)
Parameter
Definition
A3PE3000L A3PE600L
A3P1000
A3P250
PAC1
Clock contribution of a Global Rib
13.03
6.24
14.50
11.00
PAC2
Clock contribution of a Global Spine
6.69
3.47
2.48
1.58
PAC3
Clock contribution of a VersaTile row
1.46
1.46
0.81
0.81
PAC4
Clock contribution of a VersaTile used as a
sequential module
0.13
0.13
0.12
0.12
PAC5
First contribution of a VersaTile used as a
sequential module
0.07
PAC6
Second contribution of a VersaTile used as a
sequential module
0.29
PAC7
Contribution of a VersaTile
combinatorial Module
0.29
PAC8
Average contribution of a routing net
PAC9
Contribution of an I/O input pin (standard- See Table 2-13 on page 2-11 through Table 2-15 on
dependent)
page 2-12.
PAC10
Contribution of an I/O output pin (standard- See Table 2-16 on page 2-13 through Table 2-18 on
dependent)
page 2-14.
PAC11
Average contribution of a RAM block during a
read operation
25.00
PAC12
Average contribution of a RAM block during a
write operation
30.00
PAC13
Dynamic contribution for PLL
2.60
used
as
a
0.70
Table 2-21 • Different Components Contributing to the Static Power Consumption in Military ProASIC3/EL
Devices
Device-Specific Dynamic Power (µW)
Parameter
Definition
A3PE3000L
A3PE600L
A3P1000
A3P250
0 mW
0 mW
N/A
N/A
PDC0
Array static power in Sleep mode
PDC1
Array static power in Active mode
See Table 2-11 on page 2-10.
PDC2
Array static power in Static (Idle) mode
See Table 2-11 on page 2-10.
PDC3
Array static power in Flash*Freeze mode
PDC4
Static PLL contribution at 1.2 V operating core
voltage (for A3PE600L and A3PE3000L only)
See Table 2-8 on page 2-9.
1.42 mW
Static PLL contribution 1.5 V operating core
voltage
N/A
2.55 mW
PDC5
Bank quiescent power (VCCI-dependent)
PDC6
I/O input pin static power (standard-dependent)
See Table 2-13 on page 2-11. through Table 2-15 on
page 2-12.
PDC7
I/O output pin static power (standard-dependent)
See Table 2-16 on page 2-13 through Table 2-18 on
page 2-14.
Note:
2- 16
See Table 2-8 on page 2-9, Table 2-9 on page 2-9,
Table 2-11 on page 2-10.
For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi
power spreadsheet calculator or SmartPower tool in Libero® Integrated Design Environment (IDE).
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in Libero IDE software.
The power calculation methodology described below uses the following variables:
•
The number of PLLs as well as the number and the frequency of each output clock generated
•
The number of combinatorial and sequential cells used in the design
•
The internal clock frequencies
•
The number and the standard of I/O pins used in the design
•
The number of RAM blocks used in the design
•
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-22 on
page 2-19.
•
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-23 on
page 2-19.
•
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-23 on page 2-19. The calculation should be repeated for each clock domain defined in the
design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = (PDC0 or PDC1 or PDC2 or PDC3) + NBANKS* PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
NBANKS is the number of I/O banks powered in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided in
Table 2-22 on page 2-19.
NROW is the number of VersaTile rows used in the design—guidelines are provided in
Table 2-22 on page 2-19.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a
multi-tile sequential cell is used, it should be accounted for as 1.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on
page 2-19.
FCLK is the global clock signal frequency.
Revision 3
2- 17
Military ProASIC3/EL DC and Switching Characteristics
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on
page 2-19.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on
page 2-19.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-22 on page 2-19.
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-22 on page 2-19.
1 is the I/O buffer enable rate—guidelines are provided in Table 2-23 on page 2-19.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
2 is the RAM enable rate for read operations.
FWRITE-CLOCK is the memory write clock frequency.
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-23 on
page 2-19.
PLL Contribution—PPLL
PPLL = PDC4 + PAC13 * FCLKOUT
FCLKOUT is the output clock frequency.1
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding
contribution (PAC13* FCLKOUT product) to the total PLL contribution.
2- 18
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are
some examples:
•
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the
clock frequency.
•
The average toggle rate of an 8-bit counter is 25%:
–
Bit 0 (LSB) = 100%
–
Bit 1
= 50%
–
Bit 2
= 25%
–
…
–
Bit 7 (MSB) = 0.78125%
–
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
nontristate output buffers are used, the enable rate should be 100%.
Table 2-22 • Toggle Rate Guidelines Recommended for Power Calculation
Component
1
2
Definition
Guideline
Toggle rate of VersaTile outputs
10%
I/O buffer toggle rate
10%
Table 2-23 • Enable Rate Guidelines Recommended for Power Calculation
Component
1
2
3
Definition
Guideline
I/O output buffer enable rate
100%
RAM enable rate for read operations
12.5%
RAM enable rate for write operations
12.5%
Revision 3
2- 19
Military ProASIC3/EL DC and Switching Characteristics
User I/O Characteristics
Timing Model
I/O Module
(Non-Registered)
Combinational Cell
Combinational Cell
Y
LVPECL
Y
tPD = 0.78 ns
tPD = 0.67 ns
tDP = 1.51 ns
I/O Module
(Non-Registered)
Combinational Cell
Y
tDP = 2.09 ns
tPD = 1.21 ns
I/O Module
(Non-Registered)
Combinational Cell
I/O Module
(Registered)
Y
tPY = 1.84 ns
LVPECL
D
LVTTL Output Drive Strength = 12 mA
High Slew Rate
tPD = 0.70 ns
Q
I/O Module
(Non-Registered)
Combinational Cell
Y
tICLKQ = 0.33 ns
tISUD = 0.36 ns
LVCMOS 1.5 V Output Drive Strength = 4 mA
High Slew Rate
tDP = 2.84 ns
tPD = 0.65 ns
Input LVTTL
Clock
Register Cell
tPY = 1.49 ns
D
Combinational Cell
Y
Q
I/O Module
(Non-Registered)
tPY = 2.11 ns
Figure 2-4 •
2- 20
I/O Module
(Registered)
Register Cell
D
Q
D
tPD = 0.65 ns
tCLKQ = 0.76 ns
tSUD = 0.59 ns
LVDS,
B-LVDS,
M-LVDS
LVTTL Output Drive Strength = 8 mA
High Slew Rate
tDP = 2.38 ns
tCLKQ = 0.76 ns
tSUD = 0.9 ns
Input LVTTL
Clock
Input LVTTL
Clock
tPY = 1.49 ns
tPY = 1.49 ns
Q
LVTTL 3.3 V Output Drive
Strength = 12 mA
tDP = 2.09 ns High Slew Rate
tOCLKQ = 0.81 ns
tOSUD = 0.43 ns
Timing Model
Operating Conditions: –1 Speed, Military Temperature Range (TJ = 125°C), Worst-Case
VCC = 1.14 V (example for A3PE3000L and A3PE600L)
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
tPY
tDIN
D
PAD
Q
DIN
Y
CLK
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
To Array
I/O Interface
VIH
PAD
Vtrip
Vtrip
VIL
VCC
50%
50%
Y
GND
tPY
(F)
tPY
(R)
VCC
50%
DIN
GND
Figure 2-5 •
50%
tDOUT
tDOUT
(R)
(F)
Input Buffer Timing Model and Delays (example)
Revision 3
2- 21
Military ProASIC3/EL DC and Switching Characteristics
tDOUT
tDP
D Q
D
PAD
DOUT
Std
Load
CLK
From Array
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
I/O Interface
tDOUT
(R)
D
50%
tDOUT
VCC
(F)
50%
0V
VCC
DOUT
50%
50%
0V
VOH
Vtrip
Vtrip
VOL
PAD
tDP
(R)
Figure 2-6 •
2- 22
tDP
(F)
Output Buffer Model and Delays (example)
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
tEOUT
D
Q
CLK
E
tZL, tZH, tHZ, tLZ, tZLS, tZHS
EOUT
D
Q
PAD
DOUT
CLK
D
tEOUT = MAX(tEOUT(r), tEOUT(f))
I/O Interface
VCC
D
VCC
50%
tEOUT (F)
50%
E
tEOUT (R)
VCC
50%
EOUT
tZL
PAD
50%
50%
tHZ
Vtrip
tZH
50%
tLZ
VCCI
90% VCCI
Vtrip
VOL
10% VCCI
VCC
D
VCC
E
50%
tEOUT (R)
50%
tEOUT (F)
VCC
EOUT
PAD
50%
tZLS
VOH
Vtrip
Figure 2-7 •
50%
50%
tZHS
Vtrip
VOL
Tristate Output Buffer Timing Model and Delays (example)
Revision 3
2- 23
Military ProASIC3/EL DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-24 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Military Conditions—Software Default Settings
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
I/O Standard
Equiv.
Software
Default
Drive
Drive Strength Slew Min.
Strength Option1 Rate V
VIL
VIH
VOL
VOH
IOL2 IOH2
mA mA
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2.4
3.3 V LVTTL / 3.3
V LVCMOS
12 mA
12 mA
High –0.3
0.8
2
3.6
0.4
3.3 V LVCMOS
Wide Range1,3
100 µA
12 mA High –0.3
0.8
2
3.6
0.2
2.5 V LVCMOS
12 mA
12mA
High –0.3
0.7
1.7
3.6
0.7
1.8 V LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6
0.45
12
12
VCCI – 0.2 0.1 0.1
1.7
12
12
VCCI – 0.45 12 12
1.5 V LVCMOS
12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12
12
1.2 V LVCMOS4,5
2 mA
2 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2
2
1.2 V LVCMOS
Wide Range1,4,5
100 µA
2 mA
High –0.3 0.3 * VCCI
3.3 V PCI
0.7 * VCCI
3.6
0.1
VCCI – 0.1 0.1 0.1
Per PCI Specification
3.3 V PCI-X
Per PCI-X Specification
20
mA6
20 mA
High –0.3 VREF – 0.05 VREF + 0.05 3.6
0.4
–
20
20
2.5 V GTL
20
mA6
20 mA
High –0.3 VREF – 0.05 VREF + 0.05 3.6
0.4
–
20
20
3.3 V GTL+
35 mA
35 mA
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.6
–
35
35
2.5 V GTL+
33 mA
33 mA
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.6
–
33
33
HSTL (I)
8 mA
8 mA
3.3 V GTL
mA6
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.4
VCCI – 0.4
8
8
mA6
High –0.3 VREF – 0.1 VREF + 0.1 3.6
0.4
VCCI – 0.4 15
15
HSTL (II)
15
SSTL2 (I)
15 mA
15 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.54
VCCI – 0.62 15
15
SSTL2 (II)
18 mA
18 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.35
VCCI – 0.43 18
18
SSTL3 (I)
14 mA
14 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.7
VCCI – 1.1 14
14
SSTL3 (II)
21 mA
21 mA
High –0.3 VREF – 0.2 VREF + 0.2 3.6
0.5
VCCI – 0.9 21
21
15
Notes:
1. Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration
will not operate at the equivalent software default drive strength These values are for normal ranges only.
2. Currents are measured at 125°C junction temperature.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
4. Applicable to A3PE600L and A3PE3000L devices operating at VCCI VCC.
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
6. Output drive strength is below JEDEC specification.
7. Output slew rate can be extracted using the IBIS Models.
2- 24
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military
Conditions—Software Default Settings
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
I/O Standard
Equiv.
Software
Default
Drive
Drive Strength Slew Min.
Strength Option1 Rate V
VIL
VIH
VOL
VOH
IOL2 IOH2
mA mA
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2.4
3.3 V LVTTL /
12 mA
3.3 V LVCMOS
12 mA
High –0.3
0.8
2
3.6
0.4
3.3 V LVCMOS 100 µA
Wide Range1,3
12 mA
High –0.3
0.8
2
3.6
0.2
0.7
1.7
0.7
0.45
12
VCCI – 0.2 0.1 0.1
2.5 V LVCMOS 12 mA
12 mA
High –0.3
12
12
1.8 V LVCMOS 12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI
VCCI – 0.45 12
12
1.5 V LVCMOS 12 mA
12 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12
12
3.3 V PCI
2.7
1.9
12
1.7
Per PCI specifications
3.3 V PCI-X
Per PCI-X specifications
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. Currents are measured at 125°C junction temperature.
3. Output slew rate can be extracted using the IBIS Models.
4. Output drive strength is below JEDEC specification.
5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military
Conditions—Software Default Settings
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
I/O Standard
Equiv.
Software
Default
Drive
Drive Strength Slew Min.
Strength Option1 Rate V
VIL
VIH
VOL
VOH
IOL2 IOH2
mA mA
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
3.3 V LVTTL /
12 mA
3.3 V LVCMOS
12 mA
High –0.3
0.8
2
3.6
0.4
2.4
3.3 V LVCMOS 100 µA
Wide Range1,3
12 mA
High –0.3
0.8
2
3.6
0.2
VCCI – 0.2
2.5 V LVCMOS 12 mA
12 mA
High –0.3
0.7
1.7
2.7
0.7
1.7
12
12
1.8 V LVCMOS
8 mA
8 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.9
0.45
VCCI – 0.45
8
8
1.5 V LVCMOS
4 mA
4 mA
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
4
4
3.3 V PCI
3.3 V PCI-X
12
12
0.1 0.1
Per PCI specifications
Per PCI-X specifications
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. Currents are measured at 125°C junction temperature.
3. Output slew rate can be extracted using the IBIS Models.
4. Output drive strength is below JEDEC specification.
5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
Revision 3
2- 25
Military ProASIC3/EL DC and Switching Characteristics
Table 2-27 • Summary of Maximum and Minimum DC Input Levels
Applicable to Military Conditions
Military1
2
IIH3
DC I/O Standard
µA
µA
3.3 V LVTTL / 3.3 V LVCMOS
15
15
3.3 V LVCMOS Wide Range
15
15
2.5 V LVCMOS
15
15
1.8 V LVCMOS
15
15
15
15
1.2 V LVCMOS
15
15
1.2 V LVCMOS Wide Range4
15
15
3.3 V PCI
15
15
3.3 V PCI-X
15
15
3.3 V GTL
15
15
2.5 V GTL
15
15
3.3 V GTL+
15
15
2.5 V GTL+
15
15
IIL
1.5 V LVCMOS
4
HSTL (I)
15
15
HSTL (II)
15
15
SSTL2 (I)
15
15
SSTL2 (II)
15
15
SSTL3 (I)
15
15
SSTL3 (II)
15
15
Notes:
1. Military temperature range: –55°C to 125°C.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
4. Applicable to Military A3PE600L and A3PE3000L devices operating at VCCI ≥ VCC.
2- 26
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Summary of I/O Timing Characteristics – Default I/O Software Settings
Table 2-28 • Summary of AC Measuring Points
Input/Output
Supply Voltage
Standard
Input Reference
Board Termination
Voltage (VREF_TYP) Voltage (VTT_REF)
Measuring Trip
Point (Vtrip)
3.3 V LVTTL /
3.3 V LVCMOS
3.30 V
–
–
1.4 V
3.3 V LVCMOS Wide Range
3.30 V
–
–
1.4 V
2.5 V LVCMOS
2.50 V
–
–
1.2 V
1.8 V LVCMOS
2.50 V
–
–
0.90 V
1.5 V LVCMOS
1.80 V
–
–
0.75 V
1.2 V LVCMOS*
1.50 V
–
–
0.6 V
1.2 V LVCMOS Wide Range*
1.20 V
–
–
0.6 V
3.3 V PCI
1.20 V
–
–
0.285 * VCCI (RR)
3.30 V
–
–
0.615 * VCCI (FF))
3.30 V
–
–
0.285 * VCCI (RR)
3.30 V
–
–
0.615 * VCCI (FF)
3.3 V GTL
2.50 V
0.8 V
1.2 V
VREF
2.5 V GTL
3.30 V
0.8 V
1.2 V
VREF
3.3 V GTL+
2.50 V
1.0 V
1.5 V
VREF
2.5 V GTL+
1.50 V
1.0 V
1.5 V
VREF
3.3 V PCI-X
HSTL (I)
1.50 V
0.75 V
0.75 V
VREF
HSTL (II)
3.30 V
0.75 V
0.75 V
VREF
SSTL2 (I)
3.30 V
1.25 V
1.25 V
VREF
SSTL2 (II)
2.50 V
1.25 V
1.25 V
VREF
SSTL3 (I)
2.50 V
1.5 V
1.485 V
VREF
SSTL3 (II)
2.50 V
1.5 V
1.485 V
VREF
LVDS
3.30 V
–
–
Cross point
–
–
Cross point
LVPECL
Note:
*Applicable to A3PE600L and A3PE3000L devices operating at 1.2 V core regions only.
Table 2-29 • I/O AC Parameter Definitions
Parameter
Parameter Definition
tDP
Data to Pad delay through the Output Buffer
tPY
Pad to Data delay through the Input Buffer
tDOUT
Data to Output Buffer delay through the I/O interface
tEOUT
Enable to Output Buffer Tristate Control delay through the I/O interface
tDIN
Input Buffer to Data delay through the I/O interface
tHZ
Enable to Pad delay through the Output Buffer—High to Z
tZH
Enable to Pad delay through the Output Buffer—Z to High
tLZ
Enable to Pad delay through the Output Buffer—Low to Z
tZL
Enable to Pad delay through the Output Buffer—Z to Low
tZHS
Enable to Pad delay through the Output Buffer with delayed enable—Z to High
tZLS
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
Revision 3
2- 27
Military ProASIC3/EL DC and Switching Characteristics
1.2 V Core Operating Voltage
3.3 V LVTTL /
3.3 V LVCMOS
tZHS (ns)
tZLS (ns)
tHZ (ns)
tLZ (ns)
tZH (ns)
tZL (ns)
tE O U T (ns)
tPYS (ns)
tPY (ns)
tDIN (ns)
tDP (ns)
tDOUT (ns)
External Resistor ()
Capacitive Load (pF)2
Slew Rate
Equivalent Software
Default Drive Strength
Option1
Standard
Drive Strength (mA)
Table 2-30 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.14 V, Worst Case
VCCI
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
12 mA
12 mA High 5
– 0.68 2.09 0.05 1.49 2.03 0.44 2.12 1.56 2.76 3.06 3.99 3.43
3.3 V LVCMOS 100 µA
Wide Range3
12 mA High 5
– 0.68 3.01 0.04 1.86 2.69 0.44 3.01 2.22 4.03 4.42 4.89 4.09
2.5 V LVCMOS
12 mA
12 mA High 5
– 0.68 2.12 0.04 1.73 2.17 0.44 2.15 1.74 2.84 2.95 4.03 3.62
1.8 V LVCMOS
12 mA
12 mA High 5
– 0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27 3.81
1.5 V LVCMOS
12 mA
12 mA High 5
– 0.68 2.71 0.04 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63 4.12
1.2 V LVCMOS
2 mA
2 mA
High 5
– 0.68 4.39 0.04 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61
2 mA
High 5
– 0.68 4.39 0.04 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61
1.2 V LVCOMS 100 µA
Wide Range4
3.3 V PCI
3.3 V PCI-X
Per PCI
spec
–
High 10 255 0.68 2.37 0.04 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56
Per PCI-X
spec
–
High 10 255 0.68 2.37 0.04 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56
3.3 V GTL
20 mA6
20 mA6 High 10 25 0.68 1.75 0.05 1.99
–
0.44 1.71 1.75
–
–
3.59 3.62
2.5 V GTL
20
mA6
20 mA6 High 10 25 0.68 1.79 0.05 1.93
–
0.44 1.82 1.79
–
–
3.70 3.67
3.3 V GTL+
35 mA
35 mA High 10 25 0.68 1.74 0.05 1.99
–
0.44 1.76 1.73
–
–
3.64 3.61
2.5 V GTL+
33 mA
33 mA High 10 25 0.68 1.86 0.05 1.93
–
0.44 1.89 1.77
–
–
3.77 3.64
HSTL (I)
8 mA
HSTL (II)
15 mA6
High 20 25 0.68 2.68 0.05 2.34
–
0.44 2.73 2.65
–
–
4.60 4.52
15 mA6 High 20 50 0.68 2.55 0.05 2.34
8 mA
–
0.44 2.59 2.28
–
–
4.47 4.16
SSTL2 (I)
15 mA
15 mA High 30 25 0.68 1.80 0.05 1.78
–
0.44 1.82 1.55
–
–
1.82 1.55
SSTL2 (II)
15 mA
15 mA High 30 50 0.68 1.83 0.05 1.78
–
0.44 1.86 1.49
–
–
1.86 1.49
SSTL3 (I)
14 mA
14 mA High 30 25 0.68 1.95 0.05 1.71
–
0.44 1.98 1.55
–
–
1.98 1.55
SSTL3 (II)
21 mA
21 mA High 30 50 0.68 1.75 0.05 1.71
–
0.44 1.77 1.41
–
–
1.77 1.41
LVDS
24 mA
–
High –
– 0.68 1.59 0.05 2.11
–
–
–
–
–
–
–
–
LVPECL
24 mA
–
High –
– 0.68 1.51 0.05 1.84
–
–
–
–
–
–
–
–
Notes:
1. Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range are applicable to 100 µA drive strength only. The configuration
will not operate at the equivalent software default drive strength. These values are for normal ranges only.
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a
specific output load, refer to Designer software.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
5. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for
connectivity. This resistor is not required during normal operation.
6. Output drive strength is below JEDEC specification.
7. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 28
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
1.5 V Core Voltage
5
–
0.52 2.01 0.03 1.49 1.93 0.34 2.02 1.65 2.71 2.78 3.27 2.89
12 mA High
5
–
0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51 3.08
12 mA
12 mA High
5
–
0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87 3.39
1.5 V LVCMOS
3.3 V PCI
3.3 V PCI-X
3.3 V GTL
tZHS (ns)
12 mA High
12 mA
tZLS (ns)
12 mA
1.8 V LVCMOS
tHZ (ns)
2.5 V LVCMOS
tLZ (ns)
0.52 2.89 0.03 1.61 2.44 0.34 2.88 2.12 3.89 4.25 4.12 3.36
tZH (ns)
–
tZL (ns)
5
tE O U T (ns)
12 mA High
tPYS (ns)
3.3 V LVCOMS 100 µA
Wide Range3
tPY (ns)
0.52 1.97 0.03 1.23 1.78 0.34 1.99 1.46 2.63 2.89 3.23 2.71
tDIN (ns)
–
tDP (ns)
5
tDOUT (ns)
External Resistor ()
12 mA High
3.3 V LVTTL /
3.3 V LVCMOS
Slew Rate
12 mA
Standard
Drive Strength (mA)
Capacitive Load (pF)2
Equivalent Software
Default Drive Strength
Option1
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst Case VCCI
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Per PCI
spec
–
High 10 254 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83
Per PCI-X
spec
–
High 10 254 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83
20 mA5 20 mA5 High 10 25 0.52 1.68 0.03 1.79
mA5
–
0.34 1.58 1.68
–
–
2.83 2.92
2.5 V GTL
20
High 10 25 0.52 1.72 0.03 1.73
–
0.34 1.69 1.72
–
–
2.93 2.97
3.3 V GTL+
35 mA
35 mA High 10 25 0.52 1.66 0.03 1.79
–
0.34 1.63 1.66
–
–
2.88 2.90
2.5 V GTL+
33 mA
33 mA High 10 25 0.52 1.75 0.03 1.73
–
0.34 1.76 1.69
–
–
3.00 2.94
8 mA
8 mA
HSTL (I)
20
mA5
–
0.34 2.59 2.55
–
–
3.84 3.79
HSTL (II)
15 mA5 15 mA5 High 20 50 0.52 2.44 0.03 2.14
High 20 25 0.52 2.57 0.03 2.14
–
0.34 2.46 2.19
–
–
3.71 3.43
SSTL2 (I)
15 mA
15 mA High 30 25 0.52 1.68 0.03 1.58
–
034 1.69 1.46
–
–
1.69 1.46
SSTL2 (II)
18 mA
18 mA High 30 50 0.52 1.72 0.03 1.58
–
0.34 1.73 1.39
–
–
1.73 1.39
SSTL3 (I)
14 mA
14 mA High 30 25 0.52 1.83 0.03 1.51
–
0.34 1.84 1.45
–
–
1.84 1.45
SSTL3 (II)
21 mA
21 mA High 30 50 0.52 1.63 0.03 1.51
–
0.34 1.64 1.31
–
–
1.64 1.31
LVDS
24 mA
–
High
–
–
0.52 1.48 0.03 1.86
–
–
–
–
–
–
–
–
LVPECL
24 mA
–
High
–
–
0.52 1.40 0.03 1.61
–
–
–
–
–
–
–
–
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a
specific output load, refer to Designer software.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for
connectivity. This resistor is not required during normal operation.
5. Output drive strength is below JEDEC specification.
6. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 29
Military ProASIC3/EL DC and Switching Characteristics
High
5
–
0.54 3.47 0.04 1.44 0.39 3.47 2.57 4.65 5.18 6.64 5.75
tZHS (ns)
12 mA
tZLS (ns)
100 µA
tHZ (ns)
3.3 V LVCMOS
Wide Range3
tLZ (ns)
0.54 2.24 0.04 0.95 0.39 2.28 1.70 3.00 3.35 4.38 3.79
tZH (ns)
–
tZL (ns)
5
tEOUT (ns)
External Resistor ()
High
tPY (ns)
Capacitive Load (pF)2
12 mA
tDIN (ns)
Slew Rate
12 mA
tDP (ns)
Equivalent Software
Default Drive Strength
Option1
3.3 V LVTTL /
3.3 V LVCMOS
I/O Standard
tDOUT (ns)
Drive Strength (mA)
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.425 V,
Worst Case VCCI
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
2.5 V LVCMOS
12 mA
12 mA
High
5
–
0.54 2.26 0.04 1.23 0.39 2.30 1.89 3.09 3.22 4.39 3.99
1.8 V LVCMOS
12 mA
12 mA
High
5
–
0.54 2.49 0.04 1.14 0.39 2.54 2.12 3.46 3.82 4.63 4.21
1.5 V LVCMOS
12 mA
12 mA
High
5
–
0.54 2.85 0.04 1.35 0.39 2.90 2.45 3.69 3.93 4.99 4.55
3.3 V PCI
Per PCI
spec.
High
10
254 0.54 2.51 0.04 0.81 0.39 2.55 1.83 3.00 3.35 4.65 3.92
Per PCI-X
spec.
High
10
25 4 0.54 2.51 0.04 0.78 0.39 2.55 1.83 3.00 3.35 4.65 3.92
LVDS
24 mA
High
–
–
0.54 1.76 0.04 1.55
–
–
–
–
–
–
–
LVPECL
24 mA
High
–
–
0.54 1.68 0.04 1.31
–
–
–
–
–
–
–
3.3 V PCI-X
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a
specific output load, refer to Designer software. Software default load is higher.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
2- 30
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
High
5
–
0.54 2.94 0.04 1.42 0.39 2.94 2.22 4.03 4.66 6.12 5.40
2.5 V LVCMOS
12 mA
12 mA
High
5
–
0.54 1.94 0.04 1.21 0.39 1.97 1.62 2.64 2.91 4.07 3.71
1.8 V LVCMOS
8 mA
8 mA
High
5
–
0.54 1.94 0.04 1.21 0.39 1.97 1.62 2.64 2.91 4.07 3.71
1.5 V LVCMOS
4 mA
4 mA
High
5
–
0.54 2.62 0.04 1.33 0.39 2.67 2.23 2.84 2.93 4.77 4.32
Per PCI
spec.
–
High 10
25 4 0.54 2.16 0.04 0.80 0.39 2.20 1.60 2.61 3.01 4.29 3.69
Per PCI-X
spec.
–
High 10
25 4 0.54 2.16 0.04 0.78 0.39 2.20 1.60 2.61 3.01 4.29 3.69
3.3 V PCI
3.3 V PCI-X
tZHS (ns)
12 mA
tZLS (ns)
100 µA
tHZ (ns)
3.3 V LVCMOS
Wide Range3
tLZ (ns)
0.54 1.90 0.04 0.94 0.39 1.94 1.47 2.61 3.01 4.03 3.56
tZH (ns)
–
tZL (ns)
5
tEOUT (ns)
External Resistor
High
tPY (ns)
Capacitive Load (pF)2
12 mA
tDIN (ns)
Slew Rate
12 mA
tDP (ns)
Equivalent Software
Default Drive Strength
Option1
3.3 V LVTTL /
3.3 V LVCMOS
I/O Standard
tDOUT (ns)
Drive Strength (mA)
Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.425 V,
Worst Case VCCI
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a
specific output load, refer to Designer software. Software default load is higher.
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for
connectivity. This resistor is not required during normal operation.
5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Detailed I/O DC Characteristics
Table 2-34 • Input Capacitance
Symbol
Definition
Conditions
Min.
Max.
Units
CIN
Input capacitance
VIN = 0, f = 1.0 MHz
8
pF
CINCLK
Input capacitance on the clock pin
VIN = 0, f = 1.0 MHz
8
pF
Revision 3
2- 31
Military ProASIC3/EL DC and Switching Characteristics
Table 2-35 • I/O Output Buffer Maximum Resistances 1
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Standard
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS4
1.2 V LVCMOS Wide Range4
3.3 V PCI/PCI-X
Drive Strength
RPULL-DOWN () 2
RPULL-UP () 3
4 mA
100
300
8 mA
50
150
12 mA
25
75
16 mA
17
50
24 mA
11
33
100 µA
Same as regular 3.3 V LVCMOS
4 mA
100
200
8 mA
50
100
12 mA
25
50
16 mA
20
40
24 mA
11
22
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
12 mA
20
22
16 mA
20
22
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
2 mA
158
158
100 µA
158
158
Per PCI/PCI-X specification
25
75
3.3 V GTL
20 mA5
11
–
2.5 V GTL
20 mA5
14
–
3.3 V GTL+
35 mA
12
–
2.5 V GTL+
33 mA
15
–
HSTL (I)
8 mA
50
50
HSTL (II)
15 mA5
25
25
SSTL2 (I)
15 mA
27
31
SSTL2 (II)
18 mA
13
15
SSTL3 (I)
14 mA
44
69
SSTL3 (II)
21 mA
18
32
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.actel.com/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec.
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H s p e c .
4. Applicable to A3PE600L and A3PE3000L devices operating in the 1.2 V core range only.
5. Output drive strength is below JEDEC specification.
2- 32
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-36 • I/O Output Buffer Maximum Resistances 1
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
Standard
3.3 V LVTTL / 3.3 V LVCMOS
Drive Strength
RPULL-DOWN
() 2
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
17
50
11
33
24 mA
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
RPULL-UP
() 3
100 µA
Same as regular 3.3 V LVCMOS
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
17
50
24 mA
11
33
2 mA
100
200
4 mA
100
200
6 mA
50
100
8 mA
50
100
12 mA
25
50
16 mA
20
40
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
Per PCI/PCI-X specification
25
75
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.actel.com/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec
Revision 3
2- 33
Military ProASIC3/EL DC and Switching Characteristics
Table 2-37 • I/O Output Buffer Maximum Resistances 1
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
Standard
Drive Strength
RPULL-DOWN
() 2
RPULL-UP
() 3
2 mA
100
300
4 mA
100
300
6 mA
50
150
8 mA
50
150
12 mA
25
75
16 mA
25
75
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
100 µA
2.5 V LVCMOS
100
200
4 mA
100
200
6 mA
50
100
8 mA
50
100
12 mA
25
50
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
2 mA
200
224
4 mA
100
112
Per PCI/PCI-X specification
25
75
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
Same as regular 3.3 V LVCMOS
2 mA
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located at http://www.actel.com/download/ibis/default.aspx.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec
Table 2-38 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
R(WEAK PULL-UP)1
()
R(WEAK PULL-DOWN)2
()
VCCI
Min.
Max.
Min.
Max.
3.3 V
10 k
95 k
13 k
45 k
3.3 V (wide range I/Os)
10 k
95 k
13 k
45 k
2.5 V
11 k
100 k
17 k
74 k
1.8 V
19 k
85 k
23 k
110 k
1.5 V
20 k
120 k
17 k
156 k
1.2 V
30 k
450 k
25 k
300 k
1.2 V (wide range I/Os)
20 k
450 k
17 k
300 k
Notes:
1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN)
2- 34
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-39 • I/O Short Currents IOSH/IOSL
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
3.3 V LVTTL / 3.3 V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
1.2 V LVCMOS
1.2 V LVCMOS Wide Range
3.3 V PCI/PCIX
Drive Strength
IOSL (mA)1
IOSH (mA)1
4 mA
25
27
8 mA
51
54
12 mA
103
109
16 mA
132
127
24 mA
268
181
100 µA
Same specification as regular LVCMOS 3.3 V
4 mA
16
18
8 mA
32
37
12 mA
65
74
16 mA
83
87
24 mA
169
124
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
45
51
12 mA
91
74
16 mA
91
74
2 mA
13
16
4 mA
25
33
6 mA
32
39
8 mA
66
55
12 mA
66
55
2 mA
TBD
TBD
100 µA
TBD
Per PCI/PCI-X specification
TBD
Per PCI Curves
3.3 V GTL
20 mA2
268
181
2.5 V GTL
2
20 mA
169
124
3.3 V GTL+
35 mA
268
181
2.5 V GTL+
33 mA
169
124
HSTL (I)
8 mA
32
39
66
55
HSTL (II)
2
15 mA
SSTL2 (I)
15 mA
83
87
SSTL2 (II)
18 mA
169
124
SSTL3 (I)
14 mA
51
54
SSTL3 (II)
21 mA
103
109
Notes:
1. TJ = 100°C
2. Output drive strength is below JEDEC specification.
Revision 3
2- 35
Military ProASIC3/EL DC and Switching Characteristics
Table 2-40 • I/O Short Currents IOSH/IOSL
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
3.3 V LVTTL / 3.3V LVCMOS
3.3 V LVCMOS Wide Range
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
3.3 V PCI/PCI-X
Note:
2- 36
Drive Strength
IOSL (mA)*
IOSH (mA)*
2 mA
25
27
4 mA
25
27
6 mA
51
54
8 mA
51
54
12 mA
103
109
16 mA
132
127
24 mA
268
181
100 µA
Same specification as regular LVCMOS 3.3 V
2 mA
16
18
4 mA
16
18
6 mA
32
37
8 mA
32
37
12 mA
65
74
16 mA
83
87
24 mA
169
124
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
45
51
12 mA
91
74
16 mA
91
74
2 mA
13
16
4 mA
25
33
6 mA
32
39
8 mA
66
55
12 mA
66
55
Per PCI/PCI-X specification
103
109
*TJ = 100°C
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-41 • I/O Short Currents IOSH/IOSL
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
3.3 V LVTTL / 3.3V LVCMOS
2.5 V LVCMOS
IOSH (mA)*
25
27
4mA
25
27
6mA
51
54
8mA
51
54
12mA
103
109
16mA
103
109
Same specification as regular LVCMOS 3.3 V
2mA
16
18
4mA
16
18
6mA
32
37
8mA
32
37
12mA
65
74
2mA
9
11
4mA
17
22
6mA
35
44
8mA
35
44
2mA
13
16
4mA
25
33
Per PCI/PCI-X specification
103
109
1.8 V LVCMOS
1.5V LVCMOS
Note:
IOSL (mA)*
2mA
100 µA
3.3 V LVCMOS Wide Range
3.3 V PCI/PCI-X
Drive Strength
*TJ = 100°C
Table 2-42 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (typical) for Schmitt Mode Input
Buffers Applicable to A3PE600L and A3PE3000L Only
Input Buffer Configuration
Hysteresis Value (typical)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)
240 mV
2.5 V LVCMOS (Schmitt trigger mode)
140 mV
1.8 V LVCMOS (Schmitt trigger mode)
80 mV
1.5 V LVCMOS (Schmitt trigger mode)
60 mV
1.2 V LVCMOS (Schmitt trigger mode)
40 mV
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of
analysis.
Revision 3
2- 37
Military ProASIC3/EL DC and Switching Characteristics
For example, at 110°C, the short current condition would have to be sustained for more than three
months to cause a reliability concern. The I/O design does not contain any short circuit protection, but
such protection would only be needed in extremely prolonged stress conditions.
Table 2-43 • Duration of Short Circuit Event before Failure
Temperature
Time before Failure
–50ºC
> 20 years
–40°C
> 20 years
0°C
> 20 years
25°C
> 20 years
70°C
5 years
85°C
2 years
100°C
6 months
110°C
3 months
125°C
1 month
Table 2-44 • I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input Buffer
Input Rise/Fall Time (min.)
Input Rise/Fall Time (max.)
Reliability
LVTTL/LVCMOS
No requirement
10 ns *
20 years (110°C)
LVDS/B-LVDS/
M-LVDS/LVPECL
No requirement
10 ns *
10 years (100°C)
Note:
2- 38
*The maximum input rise/fall time is related to the noise induced in the input buffer trace. If the noise is low, the rise
time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more
susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization
of the system to ensure that there is no excessive noise coupling into input signals.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer.
Table 2-45 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
15
15
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
15
15
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
103
109
15
15
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
132
127
15
15
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
268
181
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-46 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
25
27
15
15
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
15
15
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
15
15
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
15
15
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
103
109
15
15
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
132
127
15
15
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
268
181
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Revision 3
2- 39
Military ProASIC3/EL DC and Switching Characteristics
Table 2-47 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
3.3 V LVTTL /
3.3 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.8
2
3.6
0.4
2.4
2
2
25
27
15
15
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
15
15
6 mA
–0.3
0.8
2
3.6
0.4
2.4
6
6
51
54
15
15
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
15
15
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
103
109
15
15
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
103
109
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
Figure 2-8 •
5 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-48 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
2- 40
Input High (V)
Measuring Point* (V)
VREF (Typ) (V)
CLOAD (pF)
3.3
1.4
–
5
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
1.2 V DC Core Voltage
Table 2-49 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.80
6.04
0.05
1.75
2.38
0.52
6.14
4.84
2.68
2.43
8.35
7.05
ns
–1
0.68
5.13
0.05
1.49
2.03
0.44
5.22
4.12
2.28
2.07
7.10
6.00
ns
8 mA
Std.
0.80
4.93
0.05
1.75
2.38
0.52
5.02
4.14
3.02
3.05
7.22
6.34
ns
–1
0.68
4.20
0.05
1.49
2.03
0.44
4.27
3.52
2.57
2.59
6.14
5.40
ns
12 mA
Std.
0.80
4.15
0.05
1.75
2.38
0.52
4.22
3.61
3.25
3.43
6.43
5.81
ns
–1
0.68
3.53
0.05
1.49
2.03
0.44
3.59
3.07
2.76
2.92
5.47
4.95
ns
16 mA
Std.
0.80
3.93
0.05
1.75
2.38
0.52
3.99
3.49
3.29
3.54
6.20
5.70
ns
–1
0.68
3.34
0.05
1.49
2.03
0.44
3.40
2.97
2.80
3.01
5.27
4.85
ns
Std.
0.80
3.81
0.05
1.75
2.38
0.52
3.87
3.51
3.36
3.94
6.08
5.71
ns
–1
0.68
3.24
0.05
1.49
2.03
0.44
3.30
2.98
2.86
3.35
5.17
4.86
ns
24 mA
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
3.40
0.05
1.75
2.38
0.52
3.45
2.60
2.68
2.58
5.66
4.81
ns
–1
0.68
2.89
0.05
1.49
2.03
0.44
2.94
2.21
2.28
2.19
4.81
4.09
ns
8 mA
Std.
0.80
2.79
0.05
1.75
2.38
0.52
2.84
2.08
3.02
3.19
5.04
4.29
ns
–1
0.68
2.38
0.05
1.49
2.03
0.44
2.41
1.77
2.57
2.72
4.29
3.65
ns
12 mA
Std.
0.80
2.45
0.05
1.75
2.38
0.52
2.49
1.83
3.25
3.59
4.70
4.04
ns
–1
0.68
2.09
0.05
1.49
2.03
0.44
2.12
1.56
2.76
3.06
3.99
3.43
ns
16 mA
Std.
0.80
2.40
0.05
1.75
2.38
0.52
2.43
1.79
3.30
3.70
4.64
3.99
ns
–1
0.68
2.04
0.05
1.49
2.03
0.44
2.07
1.52
2.81
3.15
3.95
3.40
ns
24 mA
Std.
0.80
2.42
0.05
1.75
2.38
0.52
2.46
1.72
3.37
4.10
4.66
3.93
ns
–1
0.68
2.06
0.05
1.49
2.03
0.44
2.09
1.47
2.86
3.49
3.97
3.34
ns
4 mA
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 41
Military ProASIC3/EL DC and Switching Characteristics
1.5 V DC Core Voltage
Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
5.90
0.04
1.45
2.09
0.40
5.98
4.73
2.52
2.24
7.45
6.19
ns
–1
0.52
5.02
0.03
1.23
1.78
0.34
5.09
4.02
2.15
1.90
6.34
5.27
ns
8 mA
Std.
0.61
4.80
0.04
1.45
2.09
0.40
4.86
4.02
2.87
2.85
6.32
5.49
ns
–1
0.52
4.08
0.03
1.23
1.78
0.34
4.13
3.42
2.44
2.43
5.38
4.67
ns
12 mA
Std.
0.61
4.02
0.04
1.45
2.09
0.40
4.06
3.49
3.09
3.23
5.53
4.96
ns
–1
0.52
3.42
0.03
1.23
1.78
0.34
3.46
2.97
2.63
2.75
4.70
4.22
ns
16 mA
Std.
0.61
3.79
0.04
1.45
2.09
0.40
3.84
3.38
3.14
3.34
5.30
4.84
ns
–1
0.52
3.23
0.03
1.23
1.78
0.34
3.26
2.87
2.67
2.84
4.51
4.12
ns
24 mA
Std.
0.61
3.67
0.04
1.45
2.09
0.40
3.72
3.39
3.20
3.74
5.18
4.86
ns
–1
0.52
3.13
0.03
1.23
1.78
0.34
3.16
2.88
2.72
3.18
4.41
4.13
ns
4 mA
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.61
3.26
0.04
1.45
2.09
0.40
3.30
2.48
2.52
2.38
4.76
3.95
ns
–1
0.52
2.77
0.03
1.23
1.78
0.34
2.80
2.11
2.15
2.03
4.05
3.36
ns
8 mA
Std.
0.61
2.66
0.04
1.45
2.09
0.40
2.68
1.97
2.87
3.00
4.15
3.43
ns
–1
0.52
2.26
0.03
1.23
1.78
0.34
2.28
1.67
2.44
2.55
3.53
2.92
ns
12 mA
Std.
0.61
2.32
0.04
1.45
2.09
0.40
2.33
1.72
3.09
3.40
3.80
3.18
ns
–1
0.52
1.97
0.03
1.23
1.78
0.34
1.99
1.46
2.63
2.89
3.23
2.71
ns
16 mA
Std.
0.61
2.26
0.04
1.45
2.09
0.40
2.28
1.67
3.15
3.51
3.74
3.14
ns
–1
0.52
1.92
0.03
1.23
1.78
0.34
1.94
1.42
2.68
2.98
3.18
2.67
ns
Std.
0.61
2.28
0.04
1.45
2.09
0.40
2.30
1.61
3.21
3.90
3.77
3.07
ns
–1
0.52
1.94
0.03
1.23
1.78
0.34
1.96
1.37
2.73
3.32
3.20
2.61
ns
24 mA
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 42
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
6.25
0.05
1.12
0.45
6.37
5.29
2.91
2.70
8.83
7.75
ns
–1
0.54
5.32
0.04
0.95
0.39
5.42
4.50
2.47
2.30
7.51
6.59
ns
Std.
0.63
5.25
0.05
1.12
0.45
5.35
4.58
3.28
3.34
7.81
7.04
ns
–1
0.54
4.47
0.04
0.95
0.39
4.55
3.90
2.79
2.85
6.65
5.99
ns
Std.
0.63
5.25
0.05
1.12
0.45
5.35
4.58
3.28
3.34
7.81
7.04
ns
–1
0.54
4.47
0.04
0.95
0.39
4.55
3.90
2.79
2.85
6.65
5.99
ns
Std.
0.63
4.50
0.05
1.12
0.45
4.59
4.05
3.53
3.76
7.05
6.51
ns
–1
0.54
3.83
0.04
0.95
0.39
3.90
3.45
3.00
3.20
5.99
5.54
ns
Std.
0.63
4.27
0.05
1.12
0.45
4.35
3.93
3.58
3.86
6.81
6.39
ns
–1
0.54
3.63
0.04
0.95
0.39
3.70
3.34
3.05
3.29
5.79
5.43
ns
Std.
0.63
4.14
0.05
1.12
0.45
4.22
3.97
3.65
4.27
6.68
6.43
ns
–1
0.54
3.53
0.04
0.95
0.39
3.59
3.38
3.10
3.63
5.68
5.47
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Drive
Strength
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.63
3.55
0.05
1.12
0.45
3.62
2.79
2.91
2.87
6.07
5.25
ns
–1
0.54
3.02
0.04
0.95
0.39
3.08
2.37
2.48
2.44
5.17
4.46
ns
6 mA
Std.
0.63
2.95
0.05
1.12
0.45
3.00
2.25
3.28
3.52
5.46
4.71
ns
–1
0.54
2.51
0.04
0.95
0.39
2.55
1.91
2.79
3.00
4.65
4.01
ns
8 mA
Std.
0.63
2.95
0.05
1.12
0.45
3.00
2.25
3.28
3.52
5.46
4.71
ns
–1
0.54
2.51
0.04
0.95
0.39
2.55
1.91
2.79
3.00
4.65
4.01
ns
12 mA
Std.
0.63
2.64
0.05
1.12
0.45
2.68
1.99
3.53
3.94
5.14
4.45
ns
–-1
0.54
2.24
0.04
0.95
0.39
2.28
1.70
3.00
3.35
4.38
3.79
ns
16 mA
Std.
0.63
2.58
0.05
1.12
0.45
2.63
1.95
3.59
4.05
5.09
4.41
ns
–-1
0.54
2.20
0.04
0.95
0.39
2.24
1.66
3.05
3.44
4.33
3.75
ns
24 mA
Std.
0.63
2.61
0.05
1.12
0.45
2.66
1.89
3.66
4.46
5.12
4.35
ns
–1
0.54
2.22
0.04
0.95
0.39
2.26
1.61
3.11
3.80
4.35
3.70
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 43
Military ProASIC3/EL DC and Switching Characteristics
Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
5.64
0.05
1.10
0.45
5.74
4.78
2.50
2.43
8.20
7.24
ns
–1
0.54
4.79
0.04
0.94
0.39
4.88
4.06
2.13
2.07
6.98
6.16
ns
Std.
0.63
4.64
0.05
1.10
0.45
4.73
4.16
2.84
3.01
7.19
6.62
ns
–1
0.54
3.95
0.04
0.94
0.39
4.02
3.54
2.42
2.56
6.11
5.63
ns
Std.
0.63
4.64
0.05
1.10
0.45
4.73
4.16
2.84
3.01
7.19
6.62
ns
–1
0.54
3.95
0.04
0.94
0.39
4.02
3.54
2.42
2.56
6.11
5.63
ns
Std.
0.63
3.94
0.05
1.10
0.45
4.01
3.67
3.07
3.39
6.47
6.13
ns
–1
0.54
3.35
0.04
0.94
0.39
3.41
3.12
2.61
2.88
5.51
5.21
ns
Std.
0.63
3.94
0.05
1.10
0.45
4.01
3.67
3.07
3.39
6.47
6.13
ns
–1
0.54
3.35
0.04
0.94
0.39
3.41
3.12
2.61
2.88
5.51
5.21
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
3.07
0.05
1.10
0.45
3.13
2.46
2.50
2.57
5.59
4.91
ns
–1
0.54
2.61
0.04
0.94
0.39
2.66
2.09
2.13
2.19
4.75
4.18
ns
Std.
0.63
2.51
0.05
1.10
0.45
2.55
1.97
2.84
3.16
5.01
4.43
ns
–1
0.54
2.13
0.04
0.94
0.39
2.17
1.67
2.41
2.69
4.26
3.76
ns
Std.
0.63
2.51
0.05
1.10
0.45
2.55
1.97
2.84
3.16
5.01
4.43
ns
–1
0.54
2.13
0.04
0.94
0.39
2.17
1.67
2.41
2.69
4.26
3.76
ns
Std.
0.63
2.24
0.05
1.10
0.45
2.28
1.72
3.07
3.54
4.74
4.18
ns
–1
0.54
1.90
0.04
0.94
0.39
1.94
1.47
2.61
3.01
4.03
3.56
ns
Std.
0.63
2.24
0.05
1.10
0.45
2.28
1.72
3.07
3.54
4.74
4.18
ns
–1
0.54
1.90
0.04
0.94
0.39
1.94
1.47
2.61
3.01
4.03
3.56
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
2- 44
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
3.3 V LVCMOS Wide Range
Table 2-57 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
3.3 V
Equiv.
LVCMOS
Software
Wide Range Default
Drive
Drive
Strength
Strength
Option1
Min.
V
Max.
V
Min.
V
100 µA
2 mA
–0.3
0.8
100 µA
4 mA
–0.3
100 µA
6 mA
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Max.
V
Max.
V
Min.
V
µA µA
Max.
mA4
Max.
mA4
µA5 µA5
2
3.6
0.2
VCCI – 0.2 100 100
25
27
15
15
0.8
2
3.6
0.2
VCCI – 0.2 100 100
25
27
15
15
–0.3
0.8
2
3.6
0.2
VCCI – 0.2 100 100
51
54
15
15
VIL
VIH
100 µA
12 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2 100 100
103
109
15
15
100 µA
16 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2 100 100
132
127
15
15
100 µA
24 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2 100 100
268
181
15
15
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 125°C junction temperature.
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.
6. Software default selection highlighted in gray.
Table 2-58 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
3.3 V LVCMOS
Wide Range
Equiv.
Software
Default
Drive
Strength
Option1
Min.
V
Max.
V
100 µA
2 mA
–0.3
0.8
2
3.6
0.2
100 µA
4 mA
–0.3
0.8
2
3.6
0.2
100 µA
6 mA
–0.3
0.8
2
3.6
100 µA
8 mA
–0.3
0.8
2
100 µA
12 mA
–0.3
0.8
100 A
16 mA
–0.3
0.8
Drive Strength
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Min. Max.
V
V
Max.
V
Min.
V
µA
Max.
mA4
Max.
mA4
µA5 µA5
VCCI – 0.2 100 100
25
27
15 15
VCCI – 0.2 100 100
25
27
15 15
0.2
VCCI – 0.2 100 100
51
54
15 15
3.6
0.2
VCCI – 0.2 100 100
51
54
15 15
2
3.6
0.2
VCCI – 0.2 100 100
103
109
15 15
2
3.6
0.2
VCCI – 0.2 100 100
132
127
15 15
VIL
µA
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at
the equivalent software default drive strength. These values are for Normal Ranges ONLY.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 125°C junction temperature.
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.
6. Software default selection highlighted in gray.
Revision 3
2- 45
Military ProASIC3/EL DC and Switching Characteristics
Table 2-59 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
3.3 V
LVCMOS
Wide Range
Equiv.
Software
VIL
Default
Drive
Strength Min. Max.
V
V
Option1
Drive
Strength
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL2 IIH3
Min.
V
Max.
V
Max.
V
Min.
V
Max.
mA4
Max.
mA4
µA µA
µA µA
5
5
100 µA
2 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2
100 100
25
27
15 15
100 µA
4 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2
100 100
25
27
15 15
100 µA
6 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2
100 100
51
54
15 15
100 µA
8 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2
100 100
51
54
15 15
100 µA
12 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2
100 100
103
109
15 15
100 µA
16 mA
–0.3
0.8
2
3.6
0.2
VCCI – 0.2
100 100
132
127
15 15
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 125°C junction temperature.
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.
6. Software default selection highlighted in gray.
Test Point
Datapath
Figure 2-9 •
5 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
AC Loading
Table 2-60 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
2- 46
Input High (V)
Measuring Point* (V)
VREF (Typ) (V)
CLOAD (pF)
3.3
1.4
–
5
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
1.2 V DC Core Voltage
Table 2-61 • 3.3 V LVCMOS Wide Range Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Equiv.
Software
Default
Drive
Drive
Strength
Strength Option1
100 µA
4 mA
Speed
Grade tDOUT
tDP
tDIN
tPY
Std.
0.80
9.08 0.05 2.18
tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
3.16 0.52 9.08 7.17 3.85 3.40 11.28 9.38 ns
–1
0.68
7.72 0.05 1.86
2.69
0.44 7.72 6.10 3.28 2.89 9.60
7.98
ns
100 µA
8 mA
Std.
0.80
7.37 0.05 2.18
3.16
0.52 7.37 6.10 4.38 4.35 9.58
8.31
ns
–1
0.68
6.27 0.05 1.86
2.69
0.44 6.27 5.19 3.73 3.70 8.15
7.07
ns
100 µA
12 mA
Std.
0.80
6.17 0.05 2.18
3.16
0.52 6.17 5.30 4.73 4.94 8.37
7.51
ns
–1
0.68
5.24 0.05 1.86
2.69
0.44 5.24 4.51 4.03 4.20 7.12
6.38
ns
ns
100 µA
100 µA
16 mA
24 mA
Std.
0.80
5.82 0.05 2.18
3.16
0.52 5.82 5.12 4.80 5.11 8.03
7.33
–1
0.68
4.95 0.05 1.86
2.69
0.44 4.95 4.36 4.09 4.34 6.83
6.23
ns
Std.
0.80
5.64 0.05 2.18
3.16
0.52 5.64 5.14 4.90 5.72 7.85
7.35
ns
–1
0.68
4.80 0.05 1.86
2.69
0.44 4.80 4.38 4.17 4.87 6.67
6.25
ns
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges ONLY.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-62 • 3.3 V LVCMOS Wide Range High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
Equiv.
Software
Default
Drive
Drive
Strength
Strength Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY tPYS tEOUT
tZL
5.00
tZH
tLZ
tHZ
tZLS
tZHS Units
100 µA
4 mA
Std.
0.80
5.00 0.05 2.18 3.16 0.52
3.77 3.85 3.62 7.21
5.97
ns
–1
0.68
4.25 0.05 1.86 2.69 0.44
100 µA
8 mA
Std.
0.80
4.07 0.05 2.18 3.16 0.52
4.25
3.21 3.28 3.08 6.13
5.08
ns
4.07
2.98 4.38 4.57 6.27
5.19
ns
–1
0.68
3.46 0.05 1.86 2.69 0.44
100 µA
12 mA
Std.
0.80
3.54 0.05 2.18 3.16 0.52
3.46
2.54 3.73 3.89 5.33
4.41
ns
3.54
2.60 4.73 5.19 5.74
4.81
ns
–1
0.68
3.01 0.05 1.86 2.69 0.44
3.01
2.22 4.03 4.42 4.89
4.09
ns
100 µA
16 mA
Std.
0.80
3.45 0.05 2.18 3.16 0.52
3.45
2.54 4.82 5.36 5.66
4.74
ns
–1
0.68
2.94 0.05 1.86 2.69 0.44
2.94
2.16 4.10 4.56 4.81
4.03
ns
100 µA
24 mA
Std.
0.80
3.49 0.05 2.18 3.16 0.52
3.49
2.44 4.91 5.98 5.69
4.64
ns
–1
0.68
2.97 0.05 1.86 2.69 0.44
2.97
2.07 4.18 5.08 4.84
3.95
ns
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. For specific junction temperature and voltage supply levels, refer to the Table 2-5 on page 2-8 for derating values.
3. Software default selection highlighted in gray.
Revision 3
2- 47
Military ProASIC3/EL DC and Switching Characteristics
1.5 V DC Core Voltage
Table 2-63 • 3.3 V LVCMOS Wide Range Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Equiv.
Software
Default
Drive
Drive
Strength
Strength Option1
100 µA
4 mA
Speed
Grade tDOUT
tDP
tDIN
tPY
Std.
0.61
8.94 0.04 1.90
tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
2.87 0.40 8.92 7.06 3.69 3.20 10.39 8.53 ns
–1
0.52
7.61 0.03 1.61
2.44
0.34 7.59 6.01 3.14 2.72 8.84
7.25
ns
0.40 7.22 5.99 4.23 4.15 8.68
7.45
ns
100 µA
8 mA
Std.
0.61
7.24 0.04 1.90
2.87
–1
0.52
6.16
003 1.61
2.44
0.34 6.14 5.10 3.60 3.53 7.39
6.34
ns
100 µA
12 mA
Std.
0.61
6.03 0.04 1.90
2.87
0.40 6.01 5.19 4.58 4.74 7.47
6.65
ns
–1
0.52
5.13 0.03 1.61
2.44
0.34 5.11 4.41 3.89 4.03 6.36
5.66
ns
100 µA
100 µA
16 mA
24 mA
Std.
0.61
5.68 0.04 1.90
2.87
0.40 5.66 5.01 4.65 4.91 7.13
6.47
ns
–1
0.52
4.83 0.03 1.61
2.44
0.34 4.82 4.26 3.95 4.18 6.06
5.51
ns
Std.
0.61
5.50 0.04 1.90
2.87
0.40 5.48 5.03 4.74 5.53 6.95
6.49
ns
–1
0.52
4.68 0.03 1.61
2.44
0.34 4.66 4.28 4.04 4.70 5.91
5.52
ns
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges ONLY.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-64 • 3.3 V LVCMOS Wide Range High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
Equiv.
Software
Default
Drive
Drive
Strength
Strength Option1
100 µA
100 µA
100 µA
100 µA
100 µA
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
Std.
0.61
tPY tPYS tEOUT tZL
4.86 0.04 1.90 2.87 0.40 4.84
3.65 3.69 3.43 6.31
5.12
ns
–1
0.52
4.14 0.03 1.61 2.44 0.34
4.12
3.11 3.14 2.91 5.37
4.35
ns
tDOUT
tDP
tDIN
tZH
tLZ
tHZ
tZLS
tZHS Units
Std.
0.61
3.93 0.04 1.90 2.87 0.40
3.91
2.87 4.23 4.38 5.37
4.33
ns
–1
0.52
3.34 0.03 1.61 2.44 0.34
3.33
2.44 3.60 3.72 4.57
3.68
ns
Std.
0.61
3.40 0.04 1.90 2.87 0.40
3.38
2.49 4.58 4.99 4.85
3.95
ns
–1
0.52
2.89 0.03 1.61 2.44 0.34
2.88
2.12 3.89 4.25 4.12
3.36
ns
Std.
0.61
3.31 0.04 1.90 2.87 0.40
3.29
2.42 4.66 5.16 4.76
3.89
ns
–1
0.52
2.82 0.03 1.61 2.44 0.34
2.80
2.06 3.96 4.39 4.05
3.31
ns
Std.
0.61
3.35 0.04 1.90 2.87 0.40
3.33
2.32 4.76 5.78 4.80
3.79
ns
–1
0.52
2.85 0.03 1.61 2.44 0.34
2.83
1.98 4.05 4.92 4.08
3.22
ns
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 48
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-65 • 3.3 V LVCMOS Wide Range Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced I/O Banks
Drive
Strength
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
4 mA
Std.
0.63
9.67
0.05 1.70
0.45
9.67 8.03 4.50 4.18 13.40 11.77
–1
0.54
8.22
0.04 1.44
0.39
8.22 6.83 3.83 3.55 11.40 10.01
ns
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
ns
100 µA
6mA
Std.
0.63
8.13
0.05 1.70
0.45
8.13 6.95 5.07 5.17 11.86 10.69
ns
–1
0.54
6.91
0.04 1.44
0.39
6.91 5.92 4.31 4.40 10.09
9.09
ns
100 µA
8 mA
Std.
0.63
8.13
0.05 1.70
0.45
8.13 6.95 5.07 5.17 11.86 10.69
ns
–1
0.54
6.91
0.04 1.44
0.39
6.91 5.92 4.31 4.40 10.09
9.09
ns
ns
100 µA
100 µA
12 mA
16 mA
Std.
0.63
6.96
0.05 1.70
0.45
6.96 6.15 5.45 5.81 10.70
9.89
–1
0.54
5.92
0.04 1.44
0.39
5.92 5.24 4.64 4.94
9.10
8.41
ns
Std.
0.63
6.61
0.05 1.70
0.45
6.61 5.96 5.54 5.97 10.34
9.70
ns
–1
0.54
5.62
0.04 1.44
0.39
5.62 5.07 4.71 5.08
8.25
ns
8.80
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges ONLY.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-66 • 3.3 V LVCMOS Wide Range High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced I/O Banks
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tHZ
tZLS
tZHS Units
100 µA
4 mA
Std.
0.63
5.49
0.05 1.70
0.45
5.49
4.23
4.51 4.44
9.22
7.97
ns
–1
0.54
4.67
0.04 1.44
0.39
4.57
3.60
3.83 3.78
7.84
6.78
ns
100 µA
6 mA
Std.
0.63
4.56
0.05 1.70
0.45
4.56
3.42
5.08 5.45
8.29
7.15
ns
–1
0.54
3.88
0.04 1.44
0.39
3.88
2.91
4.32 4.64
7.05
6.08
ns
100 µA
8 mA
Std.
0.63
4.56
0.05 1.70
0.45
4.56
3.42
5.08 5.45
8.29
7.15
ns
–1
0.54
3.88
0.04 1.44
0.39
3.88
2.91
4.32 4.64
7.05
6.08
ns
100 µA
12 mA
Std.
0.63
4.08
0.05 1.70
0.45
4.08
3.03
5.46 6.09
7.81
6.76
ns
–1
0.54
3.47
0.04 1.44
0.39
3.47
2.57
4.65 5.18
6.64
5.75
ns
100 µA
16 mA
Std.
0.63
4.00
0.05 1.70
0.45
4.00
2.96
5.55 6.26
7.73
6.69
ns
–1
0.54
3.40
0.04 1.44
0.39
3.40
2.51
4.72 5.32
6.58
5.69
ns
Drive
Strength
tLZ
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 49
Military ProASIC3/EL DC and Switching Characteristics
Table 2-67 • 3.3 V LVCMOS Wide Range Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength
100 µA
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
4 mA
Std.
0.63
–1
0.54
tDP
tDIN
8.71
tPY tEOUT tZL
0.05 1.67 0.45 8.71
tZH
tLZ
tHZ
tZLS
tZHS Units
7.25
3.87 3.76 12.45 10.99
7.41
0.04 1.42
0.39
7.41
6.17
3.29 3.19 10.59
9.35
ns
6.31
4.39 4.66 10.91 10.04
ns
ns
100 µA
6 mA
Std.
0.63
7.17
0.05 1.67
0.45
7.17
–1
0.54
6.10
0.04 1.42
0.39
6.10
5.37
3.73 3.96
8.54
ns
100 µA
8 mA
Std.
0.63
7.17
0.05 1.67
0.45
7.17
6.31
4.39 4.66 10.91 10.04
ns
–1
0.54
6.10
0.04 1.42
0.39
6.10
5.37
3.73 3.96
9.28
8.54
ns
ns
100 µA
100 µA
12 mA
16 mA
9.28
Std.
0.63
6.09
0.05 1.67
0.45
6.09
5.57
4.75 5.24
9.83
9.31
–1
0.54
5.18
0.04 1.42
0.39
5.18
4.74
4.04 4.46
8.36
7.92
ns
Std.
0.63
6.09
0.05 1.67
0.45
6.09
5.57
4.75 5.24
9.83
9.31
ns
–1
0.54
5.18
0.04 1.42
0.39
5.18
4.74
4.04 4.46
8.36
7.92
ns
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges ONLY.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-68 • 3.3 V LVCMOS Wide Range High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus I/O Banks
Equiv.
Software
Default
Drive
Strength
Option1
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tHZ
tZLS
tZHS Units
100 µA
4 mA
Std.
0.63
4.75
0.05 1.67
0.45
4.75
3.73
3.87 3.97
8.48
7.46
ns
–1
0.54
4.04
0.04 1.42
0.39
4.04
3.17
3.29 3.38
7.21
6.35
ns
100 µA
6 mA
Std.
0.63
3.87
0.05 1.67
0.45
3.87
2.98
4.38 4.89
7.61
6.72
ns
–1
0.54
3.30
0.04 1.42
0.39
3.30
2.54
3.73 4.16
6.47
5.72
ns
100 µA
8 mA
Std.
0.63
3.87
0.05 1.67
0.45
3.87
2.98
4.38 4.89
7.61
6.72
ns
–1
0.54
3.30
0.04 1.42
0.39
3.30
2.54
3.73 4.16
6.47
5.72
ns
100 µA
12 mA
Std.
0.63
3.46
0.05 1.67
0.45
3.46
2.61
4.74 5.48
7.19
6.35
ns
–1
0.54
2.94
0.04 1.42
0.3
2.94
2.22
4.03 4.66
6.12
5.40
ns
100 µA
16 mA
Std.
0.63
3.46
0.05 1.67
0.45
3.46
2.61
4.74 5.48
7.19
6.35
ns
–1
0.54
2.94
0.04 1.42
0.39
2.94
2.22
4.03 4.66
6.12
5.40
ns
Drive
Strength
tLZ
Notes:
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 50
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.
Table 2-69 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
2.5 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
4 mA
–0.3
0.7
1.7
3.6
0.7
1.7
4
4
16
18
15
15
8 mA
–0.3
0.7
1.7
3.6
0.7
1.7
8
8
32
37
15
15
12 mA
–0.3
0.7
1.7
3.6
0.7
1.7
12 12
65
74
15
15
16 mA
–0.3
0.7
1.7
3.6
0.7
1.7
16 16
83
87
15
15
24 mA
–0.3
0.7
1.7
3.6
0.7
1.7
24 24
169
124
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-70 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
2.5 V LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
16
18
15
15
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
16
18
15
15
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6
6
32
37
15
15
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
15
15
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12 12
65
74
15
15
16 mA
–0.3
0.7
1.7
2.7
0.7
1.7
16 16
83
87
15
15
24 mA
–0.3
0.7
1.7
2.7
0.7
1.7
24 24
169
124
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Revision 3
2- 51
Military ProASIC3/EL DC and Switching Characteristics
Table 2-71 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only
2.5 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA5
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.7
1.7
2.7
0.7
1.7
2
2
16
18
15 15
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
16
18
15 15
6 mA
–0.3
0.7
1.7
2.7
0.7
1.7
6
6
32
37
15 15
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
15 15
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12 12
65
74
15 15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
5 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-10 • AC Loading
Table 2-72 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
2- 52
Input High (V)
Measuring Point* (V)
VREF (Typ) (V)
CLOAD (pF)
2.5
1.2
–
5
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
1.2 V DC Core Voltage
Table 2-73 • 2.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
6.87
0.05
2.04
2.56
0.52
6.99
5.83
2.70
2.19
9.20
8.03
ns
–1
0.68
5.84
0.05
1.73
2.17
0.44
5.95
4.96
2.29
1.86
7.82
6.83
ns
Std.
0.80
5.62
0.05
2.04
2.56
0.52
5.72
4.94
3.08
2.90
7.92
7.14
ns
–1
0.68
4.78
0.05
1.73
2.17
044
4.86
4.20
2.62
2.47
6.74
6.08
ns
Std.
0.80
4.73
0.05
2.04
2.56
0.52
4.81
4.30
3.34
3.38
7.01
6.50
ns
–1
0.68
4.02
0.05
1.73
2.17
0.44
4.09
3.65
2.84
2.87
5.97
5.53
ns
Std.
0.80
4.46
0.05
2.04
2.56
0.52
4.53
4.16
3.39
3.50
6.74
6.36
ns
–1
0.68
3.79
0.05
1.73
2.17
0.44
3.86
3.54
2.89
2.98
5.73
5.41
ns
Std.
0.80
4.34
0.05
2.04
2.56
0.52
4.41
4.17
3.47
3.96
6.62
6.38
ns
–1
0.68
3.69
0.05
1.73
2.17
0.44
3.75
3.55
2.95
3.96
5.63
5.43
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-74 • 2.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
3.51
0.05
2.04
2.56
0.52
3.56
3.13
2.70
2.27
5.77
5.33
ns
–1
0.68
2.98
0.05
1.73
2.17
0.44
3.03
2.66
2.29
1.93
4.91
4.53
ns
Std.
0.80
2.87
0.05
2.04
2.56
0.52
2.92
2.40
3.08
3.01
5.12
4.61
ns
–1
0.68
2.44
0.05
1.73
2.17
0.44
2.48
2.05
2.62
2.56
4.36
3.92
ns
Std.
0.80
2.50
0.05
2.04
2.56
0.52
2.53
2.05
3.34
3.47
4.74
4.25
ns
–1
0.68
2.12
0.05
1.73
2.17
0.44
2.15
1.74
2.84
2.95
4.03
3.62
ns
Std.
0.80
2.43
0.05
2.04
2.56
0.52
2.47
1.98
3.39
3.59
4.67
4.19
ns
–1
0.68
2.07
0.05
1.73
2.17
0.44
2.10
1.69
2.89
3.06
3.97
3.56
ns
Std.
0.80
2.44
0.05
2.04
2.56
0.52
2.48
1.90
3.47
4.08
4.68
4.10
ns
–1
0.68
2.08
0.05
1.73
2.17
0.44
2.11
1.61
2.95
3.47
3.98
3.49
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 53
Military ProASIC3/EL DC and Switching Characteristics
1.5 V DC Core Voltage
Table 2-75 • 2.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
6.73
0.04
1.75
2.26
0.40
6.83
5.71
2.54
1.99
8.30
7.18
ns
–1
0.52
5.73
0.03
1.49
1.93
0.34
5.81
4.86
2.16
1.69
7.06
6.10
ns
Std.
0.61
5.48
0.04
1.75
2.26
0.40
5.56
4.82
2.92
2.71
7.02
6.29
ns
–1
0.52
4.66
0.03
1.49
1.93
0.34
4.73
4.10
2.48
2.30
5.98
5.35
ns
Std.
0.61
4.59
0.04
1.75
2.26
0.40
4.65
4.18
3.18
3.18
6.12
5.65
ns
–1
0.52
3.91
0.03
1.49
1.93
0.34
3.96
3.56
2.71
2.70
5.20
4.80
ns
Std.
0.61
4.32
0.04
1.75
2.26
0.40
4.38
4.04
3.24
3.31
5.84
5.51
ns
–1
0.52
3.68
0.03
1.49
1.93
0.34
3.72
3.44
2.75
2.81
4.97
4.69
ns
Std.
0.61
4.20
0.04
1.75
2.26
0.40
4.26
4.06
3.31
3.76
5.72
5.52
ns
–1
0.52
3.58
0.03
1.49
1.93
0.34
3.62
3.45
2.82
3.20
4.87
4.70
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-76 • 2.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
4 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
3.37
0.04
1.75
2.26
0.40
3.41
3.01
2.54
2.08
4.87
4.48
ns
–1
0.52
2.87
0.03
1.49
1.93
0.34
2.90
2.56
2.16
1.77
4.14
3.81
ns
Std.
0.61
2.74
0.04
1.75
2.26
0.40
2.76
2.29
2.92
2.82
4.23
3.75
ns
–1
0.52
2.33
0.03
1.49
1.93
0.34
2.35
1.95
2.48
2.40
3.60
3.19
ns
Std.
0.61
2.36
0.04
1.75
2.26
0.40
2.38
1.93
3.18
3.27
3.84
3.40
ns
–1
0.52
2.01
0.03
1.49
1.93
0.34
2.02
1.65
2.71
2.78
3.27
2.89
ns
Std.
0.61
2.29
0.04
1.75
2.26
0.40
2.31
1.87
3.24
3.40
3.77
3.33
ns
–1
0.52
1.95
0.03
1.49
1.93
0.34
1.96
1.59
2.75
2.89
3.21
2.84
ns
Std.
0.61
2.31
0.04
1.75
2.26
0.40
2.32
1.78
3.31
3.89
3.79
3.25
ns
–1
0.52
1.96
0.03
1.49
1.93
0.34
1.98
1.52
2.82
3.31
3.22
2.76
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 54
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-77 • 2.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
7.07
0.05
1.44
0.45
7.20
6.32
2.95
2.43
9.66
8.78
ns
–1
0.54
6.02
0.04
1.23
0.39
6.13
5.38
2.51
2.06
8.22
7.47
ns
Std.
0.63
5.91
0.05
1.44
0.45
6.02
5.42
3.35
3.18
8.48
7.88
ns
–1
0.54
5.03
0.04
1.23
0.39
5.12
4.61
2.85
2.70
7.21
6.70
ns
Std.
0.63
5.91
0.05
1.44
0.45
6.02
5.42
3.35
3.18
8.48
7.88
ns
–1
0.54
5.03
0.04
1.23
0.39
5.12
4.61
2.85
2.70
7.21
6.70
ns
Std.
0.63
5.05
0.05
1.44
0.45
5.15
4.79
3.63
3.66
7.61
7.25
ns
–1
0.54
4.30
0.04
1.23
0.39
4.38
4.07
3.09
3.11
6.47
6.17
ns
Std.
0.63
4.78
0.05
1.44
0.45
4.86
4.65
3.70
3.78
7.32
7.10
ns
–1
0.54
4.06
0.04
1.23
0.39
4.14
3.95
3.14
3.22
6.23
6.04
ns
Std.
0.63
4.71
0.05
1.44
0.45
4.73
4.71
3.78
4.26
7.19
7.17
ns
–1
0.54
4.01
0.04
1.23
0.39
4.03
4.01
3.21
3.62
6.12
6.10
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-78 • 2.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
16 mA
24 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
3.63
0.05
1.44
0.45
3.70
3.34
2.94
2.53
6.16
5.80
ns
–1
0.54
3.09
0.04
1.23
0.39
3.15
2.84
2.51
2.16
5.24
4.94
ns
Std.
0.63
2.99
0.05
1.44
0.45
3.04
2.59
3.35
3.30
5.50
5.05
ns
–1
0.54
2.54
0.04
1.23
0.39
2.59
2.20
2.85
2.81
4.68
4.30
ns
Std.
0.63
2.99
0.05
1.44
0.45
3.04
2.59
3.35
3.30
5.50
5.05
ns
–1
0.54
2.54
0.04
1.23
0.39
2.59
2.20
2.85
2.81
4.68
4.30
ns
Std.
0.63
2.65
0.05
1.44
0.45
2.70
2.23
3.63
3.78
5.16
4.69
ns
–1
0.54
2.26
0.04
1.23
0.39
2.30
1.89
3.09
3.22
4.39
3.99
ns
Std.
0.63
2.59
0.05
1.44
0.45
2.64
2.16
3.70
3.90
5.10
4.62
ns
–1
0.54
2.21
0.04
1.23
0.39
2.25
1.83
3.15
3.32
4.34
3.93
ns
Std.
0.63
2.61
0.05
1.44
0.45
2.66
2.08
3.78
4.40
5.12
4.54
ns
–1
0.54
2.22
0.04
1.23
0.39
2.26
1.77
3.22
3.74
4.35
3.87
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 55
Military ProASIC3/EL DC and Switching Characteristics
Table 2-79 • 2.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
6.45
0.05
1.43
0.45
6.56
5.71
2.48
2.19
9.02
8.17
ns
–1
0.54
5.48
0.04
1.21
0.39
5.58
4.86
2.11
1.86
7.68
6.95
ns
Std.
0.63
5.28
0.05
1.43
0.45
5.38
4.92
2.85
2.88
7.84
7.38
ns
–1
0.54
4.50
0.04
1.21
0.39
4.58
4.19
2.42
2.45
6.67
6.28
ns
Std.
0.63
5.28
0.05
1.43
0.45
5.38
4.92
2.85
2.88
7.84
7.38
ns
–1
0.54
4.50
0.04
1.21
0.39
4.58
4.19
2.42
2.45
6.67
6.28
ns
Std.
0.63
4.48
0.05
1.43
0.45
4.56
4.35
3.11
3.31
7.02
6.81
ns
–1
0.54
3.81
0.04
1.21
0.39
3.88
3.70
2.65
2.82
5.97
5.79
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-80 • 2.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Standard Plus I/O Banks
Drive
Strength
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
3.18
0.05
1.43
0.45
3.23
2.92
2.48
2.28
5.69
5.38
ns
–1
0.54
2.70
0.04
1.21
0.39
2.75
2.48
2.11
1.94
4.84
4.58
ns
Std.
0.63
2.57
0.05
1.43
0.45
2.62
2.24
2.84
2.98
5.08
4.70
ns
–1
0.54
2.19
0.04
1.21
0.39
2.23
1.90
2.42
2.54
4.32
4.00
ns
Std.
0.63
2.57
0.05
1.43
0.45
2.62
2.24
2.84
2.98
5.08
4.70
ns
–1
0.54
2.19
0.04
1.21
0.39
2.23
1.90
2.42
2.54
4.32
4.00
ns
Std.
0.63
2.28
0.05
1.43
0.45
2.32
1.90
3.11
3.42
4.78
4.36
ns
–1
0.54
1.94
0.04
1.21
0.39
1.97
1.62
2.64
2.91
4.07
3.71
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
2- 56
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
1.8 V LVCMOS
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-81 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
1.8 V
LVCMOS
VIL
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
2 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 2
2
9
11
15 15
4 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 4
4
17
22
15 15
6 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 6
6
35
44
15 15
8 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 8
8
45
51
15 15
12 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 12 12
91
74
15 15
16 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.45
VCCI – 0.45 16 16
91
74
15 15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-82 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.8 V
LVCMOS
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
2 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
15
15
4 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
15
15
6 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
15
15
8 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
45
51
15
15
12 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 12 12
91
74
15
15
16 mA
–0.3
0.35 * VCCI
0.65 * VCCI
1.9
0.45
VCCI – 0.45 16 16
91
74
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Revision 3
2- 57
Military ProASIC3/EL DC and Switching Characteristics
Table 2-83 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O I/O Banks
1.8 V
LVCMOS
VIL
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
VIH
Max.
V
Min.
V
IIH2
Drive
Strength
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
15
15
4 mA
–0.3 0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
15
15
6 mA
–0.3 0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
15
15
8 mA
–0.3 0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
35
44
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
5 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-11 • AC Loading
Table 2-84 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
2- 58
Input High (V)
Measuring Point* (V)
VREF (Typ) (V)
CLOAD (pF)
1.8
0.9
–
5
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
1.2 V DC Core Voltage
Table 2-85 • 1.8 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
9.16
0.05
2.00
2.82
0.52
9.32
7.69
2.77
1.20
11.53
9.89
ns
–1
0.68
7.79
0.05
1.70
2.40
0.44
7.93
6.54
2.36
1.02
9.81
8.42
ns
Std.
0.80
7.55
0.05
2.00
2.82
0.52
7.68
6.48
3.23
2.76
9.88
8.68
ns
–1
0.68
6.42
0.05
1.70
2.40
0.44
6.53
5.51
2.75
2.35
8.41
7.38
ns
Std.
0.80
6.40
0.05
2.00
2.82
0.52
6.51
5.65
3.54
3.34
8.71
7.85
ns
–1
0.68
5.44
0.05
1.70
2.40
0.44
5.54
4.80
3.01
2.84
7.41
6.68
ns
Std.
0.80
6.01
0.05
2.00
2.82
0.52
6.12
5.48
3.61
3.50
8.32
7.69
ns
–1
0.68
5.11
0.05
1.70
2.40
0.44
5.20
4.66
3.07
2.98
7.08
6.54
ns
Std.
0.80
5.90
0.05
2.00
2.82
0.52
6.00
5.49
3.71
4.08
8.21
7.70
ns
–1
0.68
5.02
0.05
1.70
2.40
0.44
5.11
4.67
3.16
3.47
6.98
6.55
ns
Std.
0.80
5.90
0.05
2.00
2.82
0.52
6.00
5.49
3.71
4.08
8.21
7.70
ns
–1
0.68
5.02
0.05
1.70
2.40
0.44
5.11
4.67
3.16
3.47
6.98
6.55
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-86 • 1.8 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
4.14
0.05
2.00
2.82
0.52
4.21
4.05
2.76
1.23
6.42
6.26
ns
–1
0.68
3.52
0.05
1.70
2.40
0.44
3.58
3.45
2.35
1.04
5.46
5.32
ns
Std.
0.80
3.36
0.05
2.00
2.82
0.52
3.41
3.01
3.22
2.85
5.62
5.21
ns
–1
0.68
2.86
0.05
1.70
2.40
0.44
2.90
2.56
2.74
2.42
4.78
4.43
ns
Std.
0.80
2.88
0.05
2.00
2.82
0.52
2.93
2.49
3.54
3.43
5.13
4.70
ns
–1
0.68
2.45
0.05
1.70
2.40
0.44
2.49
2.12
3.01
2.92
4.36
3.99
ns
Std.
0.80
2.79
0.05
2.00
2.82
0.52
2.83
2.40
3.60
3.59
5.04
4.60
ns
–1
0.68
2.37
0.05
1.70
2.40
0.44
2.41
2.04
3.06
3.05
4.29
3.91
ns
Std.
0.80
2.78
0.05
2.00
2.82
0.52
2.82
2.28
3.71
4.21
5.02
4.48
ns
–1
0.68
2.36
0.05
1.70
2.40
0.44
2.40
1.94
3.16
3.58
4.27
3.81
ns
Std.
0.80
2.78
0.05
2.00
2.82
0.52
2.82
2.28
3.71
4.21
5.02
4.48
ns
–1
0.68
2.36
0.05
1.70
2.40
0.44
2.40
1.94
3.16
3.58
4.27
3.81
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 59
Military ProASIC3/EL DC and Switching Characteristics
1.5 V DC Core Voltage
Table 2-87 • 1.8 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
9.02
0.04
1.69
2.52
0.40
9.17
7.57
2.61
1.01
10.63
9.04
ns
–1
0.52
7.68
0.03
1.44
2.14
0.34
7.80
6.44
2.22
0.86
9.04
7.69
ns
Std.
0.61
7.41
0.04
1.69
2.52
0.40
7.52
6.36
3.07
2.56
8.99
7.83
ns
–1
0.52
6.30
0.03
1.44
2.14
0.34
6.40
5.41
2.62
2.18
7.64
6.66
ns
Std.
0.61
6.26
0.04
1.69
2.52
0.40
6.35
5.53
3.38
3.14
7.82
7.00
ns
–1
0.52
5.33
0.03
1.44
2.14
0.34
5.40
4.71
2.88
2.67
6.65
5.95
ns
Std.
0.61
5.88
0.04
1.69
2.52
0.40
5.96
5.37
3.45
3.30
7.42
6.83
ns
–1
0.52
5.00
0.03
1.44
2.14
0.34
5.07
4.57
2.94
2.81
6.32
5.81
ns
Std.
0.61
5.76
0.04
1.69
2.52
0.40
5.85
5.38
3.55
3.88
7.31
6.84
ns
–1
0.52
4.90
0.03
1.44
2.14
0.34
4.97
4.57
3.02
3.30
6.22
5.82
ns
Std.
0.61
5.76
0.04
1.69
2.52
0.40
5.85
5.38
3.55
3.88
7.31
6.84
ns
–1
0.52
4.90
0.03
1.44
2.14
0.34
4.97
4.57
3.02
3.30
6.22
5.82
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-88 • 1.8 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
4.01
0.04
1.69
2.52
0.40
4.06
3.94
2.60
1.03
5.52
5.40
ns
–1
0.52
3.41
0.03
1.44
2.14
0.34
3.45
3.35
2.21
0.88
4.70
4.60
ns
Std.
0.61
3.22
0.04
1.69
2.52
0.40
3.26
2.89
3.07
2.65
4.72
4.36
ns
–1
0.52
2.74
0.03
1.44
2.14
0.34
2.77
2.46
2.61
2.26
4.02
3.71
ns
Std.
0.61
2.74
0.04
1.69
2.52
0.40
2.77
2.38
3.38
3.23
4.23
3.84
ns
–1
0.52
2.33
0.03
1.44
2.14
0.34
2.36
2.02
2.88
2.75
3.60
3.27
ns
Std.
0.61
2.65
0.04
1.69
2.52
0.40
2.68
2.28
3.45
3.40
4.14
3.75
ns
–1
0.52
2.26
0.03
1.44
2.14
0.34
2.28
1.94
2.93
2.89
3.52
3.19
ns
Std.
0.61
2.64
0.04
1.69
2.52
0.40
2.66
2.16
3.55
4.01
4.13
3.63
ns
–1
0.52
2.24
0.03
1.44
2.14
0.34
2.26
1.84
3.02
3.41
3.51
3.08
ns
Std.
0.61
2.64
0.04
1.69
2.52
0.40
2.66
2.16
3.55
4.01
4.13
3.63
ns
–1
0.52
2.24
0.03
1.44
2.14
034
2.26
1.84
3.02
3.41
3.51
3.08
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 60
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-89 • 1.8 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
9.50
0.05
1.44
0.45
9.68
8.31
3.06
1.76
12.14
10.77
ns
–1
0.54
8.08
0.04
1.23
0.39
8.23
7.07
2.60
1.50
10.32
9.16
ns
Std.
0.63
7.80
0.05
1.44
0.45
7.95
7.06
3.55
3.01
10.41
9.52
ns
–1
0.54
6.64
0.04
1.23
0.39
6.76
6.00
3.02
2.56
8.85
8.10
ns
Std.
0.63
6.70
0.05
1.44
0.45
6.82
6.25
3.89
3.60
9.28
8.70
ns
–1
0.54
5.70
0.04
1.23
0.39
5.80
5.31
3.31
3.06
7.90
7.40
ns
Std.
0.63
6.31
0.05
1.44
0.45
6.43
6.07
3.97
3.75
8.89
8.53
ns
–1
0.54
5.37
0.04
1.23
0.39
5.47
5.17
3.37
3.19
7.56
7.26
ns
Std.
0.63
6.18
0.05
1.44
0.45
6.30
6.15
4.08
4.34
8.76
8.61
ns
–1
0.54
5.26
0.04
1.23
0.39
5.36
5.23
3.47
3.70
7.45
7.32
ns
Std.
0.63
6.18
0.05
1.44
0.45
6.30
6.15
4.08
4.34
8.76
8.61
ns
–1
0.54
5.26
0.04
1.23
0.39
5.36
5.23
3.47
3.70
7.45
7.32
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-90 • 1.8 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
16 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
4.40
0.05
1.34
0.45
4.48
4.30
3.05
1.82
6.94
6.76
ns
–1
0.54
3.74
0.04
1.14
0.39
3.81
3.66
2.59
1.55
5.90
5.75
ns
Std.
0.63
3.44
0.05
1.34
0.45
3.50
3.23
3.54
3.12
5.96
5.69
ns
–1
0.54
2.92
0.04
1.14
0.39
2.98
2.75
3.01
2.66
5.07
4.84
ns
Std.
0.63
3.02
0.05
1.34
0.45
3.07
2.70
3.88
3.72
5.53
5.16
ns
–1
0.54
2.57
0.04
1.14
0.39
2.61
2.30
3.30
3.16
4.71
4.39
ns
Std.
0.63
2.94
0.05
1.34
0.45
2.99
2.60
3.96
3.87
5.45
5.06
ns
–1
0.54
2.50
0.04
1.14
0.39
2.54
2.21
3.37
3.30
4.64
4.31
ns
Std.
0.63
2.93
0.05
1.34
0.45
2.98
2.49
4.07
4.49
5.44
4.95
ns
–1
0.54
2.49
0.04
1.14
0.39
2.54
2.12
3.46
3.82
4.63
4.21
ns
Std.
0.63
2.93
0.05
1.34
0.45
2.98
2.49
4.07
4.49
5.44
4.95
ns
–1
0.54
2.49
0.04
1.14
0.39
2.54
2.12
3.46
3.82
4.63
4.21
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 61
Military ProASIC3/EL DC and Switching Characteristics
Table 2-91 • 1.8 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
8.81
0.05
1.43
0.45
8.98
7.51
2.48
1.61
11.44
9.97
ns
–1
0.54
7.50
0.04
1.21
0.39
7.64
6.39
2.11
1.37
9.73
8.48
ns
Std.
0.63
7.10
0.05
1.43
0.45
7.23
6.43
2.92
2.75
9.69
8.89
ns
–1
0.54
6.04
0.04
1.21
0.39
6.15
5.47
2.48
2.34
8.24
7.56
ns
Std.
0.63
6.06
0.05
1.43
0.45
6.17
5.68
3.23
3.29
8.63
8.14
ns
–1
0.54
5.16
0.04
1.21
0.39
5.25
4.84
2.75
2.80
7.34
6.93
ns
Std.
0.63
6.06
0.05
1.43
0.45
6.17
5.68
3.23
3.29
8.63
8.14
ns
–1
0.54
5.16
0.04
1.21
0.39
5.25
4.84
2.75
2.80
7.34
6.93
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-92 • 1.8 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
3.94
0.05
1.32
0.45
4.01
3.72
2.47
1.67
6.47
6.18
ns
–1
0.54
3.35
0.04
1.12
0.39
3.41
3.16
2.10
1.42
5.51
5.26
ns
Std.
0.63
3.03
0.05
1.32
0.45
3.09
2.75
2.91
2.86
5.55
5.21
ns
–1
0.54
2.58
0.04
1.12
0.39
2.63
2.34
2.48
2.44
4.72
4.43
ns
Std.
0.63
2.65
0.05
1.32
0.45
2.70
2.27
3.22
3.41
5.16
4.73
ns
–1
0.54
2.26
0.04
1.12
0.39
2.30
1.93
2.74
2.90
4.39
4.02
ns
Std.
0.63
2.65
0.05
1.32
0.45
2.70
2.27
3.22
3.41
5.16
4.73
ns
–1
0.54
2.26
0.04
1.12
0.39
2.30
1.93
2.74
2.90
4.39
4.02
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
2- 62
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-93 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
1.5 V
LVCMOS
VIL
VIH
Max.
V
Min.
V
Max.
V
IIL1 IIH2
VOL
VOH
IOL IOH
IOSL
IOSH
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
Drive
Strength
Min.
V
2 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 2
2
13
16
15 15
4 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 4
4
25
33
15 15
6 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 6
6
32
39
15 15
8 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 8
8
66
55
15 15
12 mA
–0.3 0.35 * VCCI 0.65 * VCCI
3.6
0.25 * VCCI 0.75 * VCCI 12 12
66
55
15 15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Table 2-94 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
1.5 V
LVCMOS
VIL
Max.
V
VIH
Min.
V
Max.
V
IIL1 IIH2
VOL
VOH
IOL IOH
IOSL
IOSH
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
Drive
Strength
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 2
2
13
16
15 15
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 4
4
25
33
15 15
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 6
6
32
39
15 15
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 8
8
66
55
15 15
12 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.575
0.25 * VCCI 0.75 * VCCI 12 12
66
55
15 15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Revision 3
2- 63
Military ProASIC3/EL DC and Switching Characteristics
Table 2-95 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks
1.5 V
LVCMOS
VIL
VIH
Max.
V
Min.
V
Max.
V
IIL1 IIH2
VOL
VOH
IOL IOH
IOSL
IOSH
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3 µA4 µA4
Drive
Strength
Min.
V
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI 1.575
0.25 * VCCI 0.75 * VCCI
2
2
13
16
15 15
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI 1.575
0.25 * VCCI 0.75 * VCCI
4
4
25
33
15 15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Software default selection highlighted in gray.
Test Point
Datapath
5 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-12 • AC Loading
Table 2-96 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
2- 64
Input High (V)
Measuring Point* (V)
VREF (Typ) (V)
CLOAD (pF)
1.5
0.75
–
5
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
1.2 V DC Core Voltage
Table 2-97 • 1.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
9.53
0.05
2.19
3.06
0.52
9.69
7.88
3.38
2.67
11.90
10.09
ns
–1
0.68
8.10
0.05
1.86
2.61
0.44
8.25
6.71
2.87
2.27
10.12
8.58
ns
Std.
0.80
8.14
0.05
2.19
3.06
0.52
8.28
6.89
3.74
3.34
10.49
9.09
ns
–1
0.68
6.93
0.05
1.86
2.61
0.44
7.05
5.86
3.18
2.84
8.92
7.74
ns
Std.
0.80
7.64
0.05
2.19
3.06
0.52
7.78
6.70
3.82
3.52
9.98
8.91
ns
–1
0.68
6.50
0.05
1.86
2.61
0.44
6.61
5.70
3.25
2.99
8.49
7.58
ns
Std.
0.80
7.55
0.05
2.19
3.06
0.52
7.68
6.71
3.41
4.19
9.88
8.91
ns
–1
0.68
6.42
0.05
1.86
2.61
0.44
6.53
5.71
2.90
3.56
8.41
7.58
ns
Std.
0.80
7.55
0.05
2.19
3.06
0.52
7.68
6.71
3.41
4.19
9.88
8.91
ns
–1
0.68
6.42
0.05
1.86
2.61
0.44
6.53
5.71
2.90
3.56
8.41
7.58
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-98 • 1.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
3.91
0.05
2.19
3.06
0.52
3.98
3.54
3.37
2.78
6.18
5.75
ns
–1
0.68
3.33
0.05
1.86
2.61
0.44
3.38
3.01
2.86
2.36
5.26
4.89
ns
Std.
0.80
3.34
0.05
2.19
3.06
0.52
3.39
2.90
3.73
3.45
5.60
5.11
ns
–1
0.68
2.84
0.05
1.86
2.61
0.44
2.88
2.47
3.17
2.93
4.76
4.35
ns
Std.
0.80
3.23
0.05
2.19
3.06
0.52
3.28
2.78
3.81
3.64
5.48
4.99
ns
–1
0.68
2.74
0.05
1.86
2.61
0.44
2.79
2.37
3.24
3.09
4.66
4.24
ns
Std.
0.80
3.19
0.05
2.19
3.06
0.52
3.24
2.63
3.93
4.33
5.45
4.84
ns
–1
0.68
2.71
0.05
1.86
2.61
0.44
2.76
2.24
3.34
3.69
4.63
4.12
ns
Std.
0.80
3.19
0.05
2.19
3.06
0.52
3.24
2.63
3.93
4.33
5.45
4.84
ns
–1
0.68
2.71
0.05
1.86
2.61
0.44
2.76
2.24
3.34
3.69
4.63
4.12
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 65
Military ProASIC3/EL DC and Switching Characteristics
1.5 V DC Core Voltage
Table 2-99 • 1.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
9.39
0.04
1.88
2.77
0.40
9.54
7.77
3.22
2.47
11.00
9.24
ns
–1
0.52
7.99
0.03
1.60
2.35
0.34
8.11
6.61
2.74
2.10
9.36
7.86
ns
Std.
0.61
8.01
0.04
1.88
2.77
0.40
8.13
6.77
3.58
3.14
9.59
8.24
ns
–1
0.52
6.81
0.03
1.60
2.35
0.34
6.91
5.76
3.05
2.67
8.16
7.01
ns
Std.
0.61
7.51
0.04
1.88
2.77
0.40
7.62
6.59
3.66
3.32
9.09
8.05
ns
–1
0.52
6.39
0.03
1.60
2.35
0.34
6.48
5.60
3.12
2.83
7.73
6.85
ns
Std.
0.61
7.41
0.04
1.88
2.77
0.40
7.52
6.59
3.41
3.99
8.99
8.06
ns
–1
0.52
6.30
0.03
1.60
2.35
0.34
6.40
5.61
2.90
3.40
7.64
6.85
ns
Std.
0.61
7.41
0.04
1.88
2.77
0.40
7.52
6.59
3.41
3.99
8.99
8.06
ns
–1
0.52
6.30
0.03
1.60
2.35
0.34
6.40
5.61
2.90
3.40
7.64
6.85
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-100 • 1.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
Std.
0.61
3.78
0.04
1.88
2.77
0.40
–1
0.52
3.21
0.03
1.60
2.35
Std.
0.61
3.20
0.04
1.88
–1
0.52
2.72
0.03
Std.
0.61
3.09
–1
0.52
Std.
tZH
tLZ
tHZ
tZLS
tZHS
Units
3.82
3.43 3.21‘ 2.58
5.29
4.89
ns
0.34
3.25
2.92
2.73
2.20
4.50
4.16
ns
2.77
0.40
3.23
2.79
3.57
3.25
4.70
4.25
ns
1.60
2.35
0.34
2.75
2.37
3.04
2.77
4.00
3.62
ns
0.04
1.88
2.77
0.40
3.12
2.67
3.65
3.44
4.59
4.13
ns
2.63
0.03
1.60
2.35
0.34
2.65
2.27
3.11
2.93
3.90
3.52
ns
0.61
3.05
0.04
1.88
2.77
0.40
3.09
2.52
3.77
4.14
4.55
3.98
ns
–1
0.52
2.60
0.03
1.60
2.35
0.34
2.62
2.14
3.21
3.52
3.87
3.39
ns
Std.
0.61
3.05
0.04
1.88
2.77
0.40
3.09
2.52
3.77
4.14
4.55
3.98
ns
–1
0.52
2.60
0.03
1.60
2.35
0.34
2.62
2.14
3.21
3.52
3.87
3.39
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 66
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-101 • 1.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
9.78
0.05
1.44
0.45
9.96
8.57
3.74
2.91
12.42
11.03
ns
–1
0.54
8.32
0.04
1.23
0.39
8.47
7.29
3.18
2.47
10.56
9.38
ns
Std.
0.63
8.44
0.05
1.44
0.45
8.60
7.59
4.12
3.60
11.06
10.05
ns
–1
0.54
7.18
0.04
1.23
0.39
7.32
6.46
3.51
3.06
9.41
8.55
ns
Std.
0.63
7.95
0.05
1.44
0.45
8.10
7.39
4.21
3.78
10.56
9.85
ns
–1
0.54
6.77
0.04
1.23
0.39
6.89
6.29
3.58
3.21
8.98
8.38
ns
Std.
0.63
7.84
0.05
1.44
0.45
7.98
7.47
4.35
4.45
10.44
9.92
ns
–1
0.54
6.67
0.04
1.23
0.39
6.79
6.35
3.70
3.79
8.88
8.44
ns
Std.
0.63
7.84
0.05
1.44
0.45
7.98
7.47
4.35
4.45
10.44
9.92
ns
–1
0.54
6.67
0.04
1.23
0.39
6.79
6.35
3.70
3.79
8.88
8.44
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-102 • 1.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks
Drive
Strength
2 mA
4 mA
6 mA
8 mA
12 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
3.98
0.05
1.58
0.45
4.06
3.80
3.73
3.04
6.52
6.26
ns
–1
0.54
3.39
0.04
1.35
0.39
3.45
3.23
3.17
2.59
5.54
5.32
ns
Std.
0.63
3.47
0.05
1.58
0.45
3.53
3.15
4.11
3.74
5.99
5.61
ns
–1
0.54
2.95
0.04
1.35
0.39
3.01
2.68
3.50
3.18
5.10
4.77
ns
Std.
0.63
3.37
0.05
1.58
0.45
3.43
3.02
4.20
3.92
5.89
5.48
ns
–1
0.54
2.87
0.04
1.35
0.39
2.92
2.57
3.57
3.33
5.01
4.66
ns
Std.
0.63
3.35
0.05
1.58
0.45
3.41
2.88
4.34
4.62
5.87
5.34
ns
–1
0.54
2.85
0.04
1.35
0.39
2.90
2.45
3.69
3.93
4.99
4.55
ns
Std.
0.63
3.35
0.05
1.58
0.45
3.41
2.88
4.34
4.62
5.87
5.34
ns
–1
0.54
2.85
0.04
1.35
0.39
2.90
2.45
3.69
3.93
4.99
4.55
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 67
Military ProASIC3/EL DC and Switching Characteristics
Table 2-103 • 1.5 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Note:
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
8.94
0.05
1.43
0.45
9.11
7.80
2.99
2.67
11.57
10.26
ns
–1
0.54
7.61
0.04
1.21
0.39
7.75
6.64
2.54
2.27
9.84
8.73
ns
Std.
0.63
7.68
0.05
1.43
0.45
7.83
6.91
3.34
3.30
10.29
9.37
ns
–1
0.54
6.54
0.04
1.21
0.39
6.66
5.88
2.84
2.80
8.75
7.97
ns
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-104 • 1.5 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Standard Plus I/O Banks
Drive
Strength
2 mA
4 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
3.55
0.05
1.56
0.45
3.61
3.22
2.98
2.80
6.07
5.68
ns
–1
0.54
3.02
0.04
1.33
0.39
3.07
2.74
2.54
2.39
5.16
4.83
ns
Std.
0.63
3.09
0.05
1.56
0.45
3.14
2.62
3.34
3.44
5.60
5.08
ns
–1
0.54
2.62
0.04
1.33
0.39
2.67
2.23
2.84
2.93
4.77
4.32
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
2- 68
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
1.2 V LVCMOS (JESD8-12A)
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V
applications. It uses a 1.2 V input buffer and a push-pull output buffer.
Table 2-105 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
1.2 V
LVCMOS1
VIL
Drive
Strength
Min.
V
2 mA
–0.3
VIH
Max.
V
Min.
V
0.35 * VCCI 0.65 * VCCI
Max.
V
3.6
VOL
VOH
IOL IOH
IOSH
Max.
V
Min.
V
mA mA
Max.4
mA
0.25 * VCCI 0.75 * VCCI
2
2
TBD
IIL2 IIH3
IOSL
Max.4
mA µA5 µA5
TBD
15
15
Notes:
1. Applicable to A3PE600L and A3PE3000L devices only.
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
4. Currents are measured at 100°C junction temperature and maximum voltage.
5. Currents are measured at 125°C junction temperature.
6. Software default selection highlighted in gray.
Test Point
Datapath
5 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-13 • AC Loading
Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
Input High (V)
Measuring Point* (V)
VREF (Typ) (V)
CLOAD (pF)
1.2
0.6
–
5
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Revision 3
2- 69
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
1.2 V DC Core Voltage
Table 2-107 • 1.2 V LVCMOS Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
Note:
Speed
Grade
tDOUT
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tZLS
tZHS
Units
Std.
0.80
12.61 0.05
2.65
3.75
0.52
12.10
9.50
5.11 4.66
14.31
11.71
ns
–1
0.68
10.72 0.05
2.25
3.19
0.44
10.30
8.08
4.35 3.97
12.17
9.96
ns
tDP
tHZ
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-108 • 1.2 V LVCMOS High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
Drive
Strength
2 mA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tHZ
tZLS
tZHS
Unit
s
Std.
0.80
5.16
0.05
2.65
3.75
0.52
4.98
4.39
5.10 4.81
7.19
6.60
ns
–1
0.68
4.39
0.05
2.25
3.19
0.44
4.24
3.74
4.34 4.09
6.11
5.61
ns
tLZ
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 70
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
1.2 V LVCMOS Wide Range
Table 2-109 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Operating at 1.2 V Core Voltage
1.2 V
Equiv.
LVCMOS
Software
Wide Range1 Default
Drive
Drive
Strength Min.
Strength
Option2 V
100 µA
2 mA
VIL
VIH
Max.
V
Min.
V
–0.3 0.3 * VCCI 0.7 * VCCI
Max.
V
VOL
VOH
IOL IOH IOSH IOSL IIL3 IIH4
Max.
V
Min.
V
Max. Max.
µA µA mA5 mA5 µA6 µA6
3.6 0.25 * VCCI 0.75 * VCCI 100 100 TBD TBD
15 15
Notes:
1. Applicable to A3PE600L and A3PE3000L devices only.
2. Note that 1.2 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the
equivalent software default drive strength. These values are for normal ranges only.
3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
5. Currents are measured at 100°C junction temperature and maximum voltage.
6. Currents are measured at 125°C junction temperature.
7. Software default selection highlighted in gray.
Test Point
Datapath
5 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
5 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-14 • AC Loading
Table 2-110 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
Input High (V)
Measuring Point* (V)
VREF (Typ) (V)
CLOAD (pF)
1.2
0.6
–
5
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Revision 3
2- 71
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
Table 2-111 • 1.2 V LVCMOS Wide Range Low Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
Drive
Strength
100 µA
Note:
Speed
Grade
tDOUT
Std.
–1
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
0.80
12.61 0.05
2.65
3.75
0.52
12.10
9.50
0.68
10.72 0.05
2.25
3.19
0.44
10.30
8.08
tHZ
tZLS
tZHS
Units
5.11 4.66
14.31
11.71
ns
4.35 3.97
12.17
9.96
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-112 • 1.2 V LVCMOS Wide Range High Slew
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only
Drive
Strength
100 µA
Speed
Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tHZ
tZLS
tZHS
Unit
s
Std.
0.80
5.16
0.05
2.65
3.75
0.52
4.98
4.39
5.10 4.81
7.19
6.60
ns
–1
0.68
4.39
0.05
2.25
3.19
0.44
4.24
3.74
4.34 4.09
6.11
5.61
ns
tLZ
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
2- 72
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus
applications.
Table 2-113 • Minimum and Maximum DC Input and Output Levels
3.3 V PCI/PCI-X
Drive Strength
VIL
Min.
V
Max.
V
VIH
Min.
V
Max.
V
Per PCI specification
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
Per PCI curves
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
AC loadings are defined per the PCI/PCI-X specifications for the database; Microsemi loadings for
enable path characterization are described in Figure 2-15.
R to VCCI for tDP (F)
R to GND for tDP (R)
R = 25
Test Point
Datapath
10 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS
10 pF for tZH / tZHS / tZL / tZLS
5 pF for tHZ / tLZ
Figure 2-15 • AC Loading
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is
described in Table 2-114.
Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
0
Note:
Input High (V)
Measuring Point* (V)
3.3
0.285 * VCCI for tDP(R)
0.615 * VCCI for tDP(F)
VREF (Typ) (V)
CLOAD (pF)
10
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Revision 3
2- 73
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
1.2 V DC Core Voltage
Table 2-115 • 3.3 V PCI/PCI-X
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.80
2.78
0.05
2.71
3.68
0.52
2.83
1.97
3.26
3.59
5.03
4.18
ns
–1
0.68
2.37
0.05
2.31
3.13
0.44
2.40
1.68
2.77
3.06
4.28
3.56
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
1.5 V DC Core Voltage
Table 2-116 • 3.3 V PCI/PCI-X
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed Grade
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
2.65
0.04
2.39
3.38
0.40
2.67
1.86
3.10
3.40
4.14
3.33
ns
–1
0.52
2.25
0.03
2.03
2.88
0.34
2.27
1.58
2.64
2.89
3.52
2.83
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-117 • 3.3 V PCI/PCI-X
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
2.95
0.05
0.95
0.45
3.00
2.15
3.53
3.94
5.46
4.61
ns
–1
0.54
2.51
0.04
0.81
0.39
2.55
1.83
3.00
3.35
4.65
3.92
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Table 2-118 • 3.3 V PCI/PCI-X
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Plus I/O Banks
Speed Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.63
2.54
0.05
0.94
0.45
2.59
1.87
3.07
3.54
5.04
4.33
ns
–1
0.54
2.16
0.04
0.80
0.39
2.20
1.60
2.61
3.01
4.29
3.69
ns
Note:
2- 74
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Voltage-Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input
buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.
Table 2-119 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL
VIL
Drive
Strength
Min.
V
5
20 mA
–0.3
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
3.6
0.4
–
20
268
181
VIH
Max.
V
Min.
V
VREF – 0.05 VREF + 0.05
20
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-16 • AC Loading
Table 2-120 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.05
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-121 • 3.3 V GTL
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V, VREF = 0.8 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.05
0.05
2.34
0.52
2.01
2.05
–
–
4.22
4.26
ns
0.68
1.75
0.05
1.99
0.44
1.71
1.75
–
–
3.59
3.62
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 75
Military ProASIC3/EL DC and Switching Characteristics
Table 2-122 • 3.3 V GTL
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 0.8 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
2- 76
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
1.97
0.04
2.11
0.40
1.86
1.97
–
–
3.32
3.43
ns
0.52
1.68
0.03
1.79
0.34
1.58
1.68
–
–
2.83
2.92
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.
Table 2-123 • Minimum and Maximum DC Input and Output Levels
2.5 V GTL
VIL
Drive
Strength
Min.
V
20 mA5
–0.3
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
3.6
0.4
–
20 20
169
124
VIH
Max.
V
Min.
V
VREF – 0.05 VREF + 0.05
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-17 • AC Loading
Table 2-124 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.05
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-125 • 2.5 V GTL
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V, VREF = 0.8 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.11
0.05
2.26
0.52
2.14
2.11
–
–
4.34
4.31
ns
0.68
1.79
0.05
1.93
0.44
1.82
1.79
–
–
3.70
3.68
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-126 • 2.5 V GTL
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 0.8 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
2.02
0.04
2.04
0.40
1.98
2.02
–
–
3.45
3.49
ns
0.52
1.72
0.03
1.73
0.34
1.69
1.72
–
–
2.93
2.97
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 77
Military ProASIC3/EL DC and Switching Characteristics
3.3 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.
Table 2-127 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL+
VIL
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
3.6
0.6
–
35
268
181
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
35 mA
–0.3 VREF – 0.1 VREF + 0.1
35
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-18 • AC Loading
Table 2-128 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-129 • 3.3 V GTL+
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V, VREF = 1.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.04
0.05
2.34
0.52
2.07
2.03
–
–
4.28
4.24
ns
0.68
1.74
0.05
1.99
0.44
1.76
1.73
–
–
3.64
3.61
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-130 • 3.3 V GTL+
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
2- 78
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
1.95
0.04
2.11
0.40
1.92
1.95
–
–
3.38
3.41
ns
0.52
1.66
0.03
1.79
0.34
1.63
1.66
–
–
2.88
2.90
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.
Table 2-131 • Minimum and Maximum DC Input and Output Levels
2.5 V GTL+
VIL
VIH
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
µA4 µA4
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
33 mA
–0.3
VREF – 0.1
VREF + 0.1
3.6
0.6
–
33 33
169
124
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-19 • AC Loading
Table 2-132 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-133 • 2.5 V GTL+
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V, VREF = 1.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.19
0.05
2.27
0.52
2.22
2.08
–
–
4.43
4.28
ns
0.68
1.86
0.05
1.93
0.44
1.89
1.77
–
–
3.77
3.64
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-134 • 2.5 V GTL+
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
2.05
0.04
2.04
0.40
2.07
1.99
–
–
3.53
3.46
ns
–1
0.52
1.75
0.03
1.73
0.34
1.76
1.69
–
–
3.00
2.94
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 79
Military ProASIC3/EL DC and Switching Characteristics
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a pushpull output buffer.
Table 2-135 • Minimum and Maximum DC Input and Output Levels
HSTL Class I
VIL
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
Max.
mA mA mA3
Max.
mA3
µA4 µA4
3.6
0.4
VCCI – 0.4
VIH
Drive
Strength
Min.
V
Max.
V
Min.
V
8 mA
–0.3 VREF – 0.1 VREF + 0.1
8
8
32
39
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
HSTL
Class I
VTT
50
Test Point
20 pF
Figure 2-20 • AC Loading
Table 2-136 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Note:
Input High (V)
Measuring Point*
(V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-137 • HSTL Class I
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V, VREF = 0.75 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
Std.
0.80
3.15
0.05
2.76
0.52
–1
0.68
2.68
0.05
2.34
0.44
Note:
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
3.20
3.11
–
–
5.41
5.32
ns
2.73
2.65
–
–
4.60
4.52
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-138 • HSTL Class I
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 1.4 V, VREF = 0.75 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
2- 80
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
3.02
0.04
2.52
0.40
3.05
3.00
–
–
4.51
4.46
ns
0.52
2.57
0.03
2.14
0.34
2.59
2.55
–
–
3.84
3.79
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a
push-pull output buffer.
Table 2-139 • Minimum and Maximum DC Input and Output Levels
HSTL Class II
VIL
Drive
Strength
Min.
V
5
15 mA
–0.3
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
Max.
mA mA mA3
Max.
mA3
µA4 µA4
3.6
0.4
VIH
Max.
V
Min.
V
VREF – 0.1 VREF + 0.1
VCCI – 0.4 15 15
66
55
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
5. Output drive strength is below JEDEC specification.
HSTL
Class II
VTT
25
Test Point
20 pF
Figure 2-21 • AC Loading
Table 2-140 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.1
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-141 • HSTL Class II
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V, VREF = 0.75 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
3.00
0.05
2.76
0.52
3.05
2.69
–
–
5.25
4.89
ns
0.68
2.55
0.05
2.34
0.44
2.59
2.28
–
–
4.47
4.16
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 81
Military ProASIC3/EL DC and Switching Characteristics
Table 2-142 • HSTL Class II
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 1.4 V, VREF = 0.75 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
2- 82
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
2.86
0.04
2.52
0.40
2.89
2.57
–
–
4.36
4.04
ns
0.52
2.44
0.03
2.14
0.34
2.46
2.19
–
–
3.71
3.43
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices
support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-143 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class I
VIL
Drive
Strength
Min.
V
15 mA
–0.3
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
3.6
0.54
83
87
15 15
VIH
Max.
V
Min.
V
VREF – 0.2 VREF + 0.2
VCCI – 0.62 15 15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
VTT
SSTL2
Class I
50
Test Point
25
30 pF
Figure 2-22 • AC Loading
Table 2-144 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-145 • SSTL2 Class I
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.11
0.05
2.09
0.52
2.14
1.83
–
–
2.14
1.83
ns
0.68
1.80
0.05
1.78
0.44
1.82
1.55
–
–
1.82
1.55
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-146 • SSTL2 Class I
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
Std.
0.61
1.98
0.04
1.85
0.40
1.99
1.71
–
–
1.99
1.71
ns
–1
0.52
1.68
0.03
1.58
0.34
1.69
1.46
–
–
1.69
1.46
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 83
Military ProASIC3/EL DC and Switching Characteristics
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices
support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-147 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class II
VIL
Drive
Strength
Min.
V
18 mA
–0.3
VOL
VOH
IOL IOH
Max.
V
Max.
V
Min.
V
Max.
mA mA mA3
3.6
0.35
VIH
Max.
V
Min.
V
VREF – 0.2 VREF + 0.2
VCCI – 0.43 18 18
IOSL
169
IOSH
IIL1 IIH2
Max.
mA3 µA4 µA4
124
15 15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
VTT
SSTL2
Class II
25
Test Point
25
30 pF
Figure 2-23 • AC Loading
Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-149 • SSTL2 Class II
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.15
0.05
2.09
0.52
2.18
1.75
–
–
2.18
1.75
ns
0.68
1.83
0.05
1.78
0.44
1.86
1.49
–
–
1.86
1.49
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-150 • SSTL2 Class II
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 2.3 V, VREF = 1.25 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
2- 84
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
2.02
0.04
1.85
0.40
2.03
1.64
–
–
2.03
1.64
ns
0.52
1.72
0.03
1.58
0.34
1.73
1.39
–
–
1.73
1.39
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices
support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-151 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class I
VIL
Drive
Strength
Min.
V
14 mA
–0.3
VOL
VOH
IOL IOH
IOSL
IOSH
IIL1 IIH2
Max.
V
Max.
V
Min.
V
mA mA
Max.
mA3
Max.
mA3
µA4 µA4
3.6
0.7
51
54
VIH
Max.
V
Min.
V
VREF – 0.2 VREF + 0.2
VCCI – 1.1 14 14
15
15
Notes:
1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
3. Currents are measured at 100°C junction temperature and maximum voltage.
4. Currents are measured at 125°C junction temperature.
VTT
SSTL3
Class I
50
Test Point
25
30 pF
Figure 2-24 • AC Loading
Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-153 • SSTL3 Class I
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.29
0.05
2.00
0.52
2.32
1.82
–
–
2.32
1.82
ns
0.68
1.95
0.05
1.71
0.44
1.98
1.55
–
–
1.98
1.55
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-154 • SSTL3 Class I
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
2.15
0.04
1.77
0.40
2.17
1.70
–
–
2.17
1.70
ns
0.52
1.83
0.03
1.51
0.34
1.84
1.45
–
–
1.84
1.45
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 85
Military ProASIC3/EL DC and Switching Characteristics
SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices
support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-155 • Minimum and Maximum DC Input and Output Levels
VOL
VOH
IOL IOH IOSL
IOSH
Drive
Strength
Min.
V
Max.
V
Min.
V
Max.
V
Max.
V
Min.
V
Max.
mA mA mA1
Max.
mA1 µA2 µA2
21 mA
–0.3
VREF – 0.2
VREF + 0.2
3.6
0.5
VCCI – 0.9
21 21
109
SSTL3 Class II
VIL
VIH
103
IIL
IIH
15 15
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 125°C junction temperature.
VTT
SSTL3
Class II
25
Test Point
25
30 pF
Figure 2-25 • AC Loading
Table 2-156 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
VREF – 0.2
Note:
Input High (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Timing Characteristics
Table 2-157 • SSTL3 Class II
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.80
2.05
0.05
2.00
0.52
2.08
1.65
–
–
2.08
1.65
ns
0.68
1.75
0.05
1.71
0.44
1.77
1.41
–
–
1.77
1.41
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-158 • SSTL3 Class II
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed
Grade
Std.
–1
Note:
2- 86
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.61
1.91
0.04
1.77
0.40
1.92
1.54
–
–
1.92
1.54
ns
0.52
1.63
0.03
1.51
0.34
1.64
1.31
–
–
1.64
1.31
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by Designer software when the user
instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-26. The
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.
Along with LVDS I/O, military ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (MLVDS) configuration (up to 40 nodes).
Bourns Part Number: CAT16-LV4F12
OUTBUF_LVDS
FPGA
P
165 
140 
N
165 
P
Z0 = 50 
Z0 = 50 
FPGA
+
–
100 
INBUF_LVDS
N
Figure 2-26 • LVDS Circuit Diagram and Board-Level Implementation
Revision 3
2- 87
Military ProASIC3/EL DC and Switching Characteristics
Table 2-159 • Minimum and Maximum DC Input and Output Levels
DC Parameter
VCCI
Description
Supply Voltage
1
Min.
Typ.
Max.
Units
2.375
2.5
2.625
V
VOL
Output Low Voltage
0.9
1.075
1.25
V
VOH
Output High Voltage
1.25
1.425
1.6
V
IOL
Output Lower Current
0.65
0.91
1.16
mA
IOH2
Output High Current
0.65
0.91
1.16
mA
VI
Input Voltage
0
–
2.925
V
IIH
3,4
Input High Leakage Current
–
–
10
µA
IIL
3,5
Input Low Leakage Current
–
–
10
µA
VODIFF
Differential Output Voltage
250
350
450
mV
VOCM
Output Common Mode Voltage
1.125
1.25
1.375
V
VICM
Input Common Mode Voltage
0.05
1.25
2.35
V
Input Differential Voltage
100
350
–
mV
2
6
VIDIFF
Notes:
1.
2.
3.
4.
±5%
IOL/IOH is defined by VODIFF/(Resistor Network).
Currents are measured at 125°C junction temperature.
IIH is the input leakage current per IO pin over recommended operating conditions VIH < VIN < VCCI.
Input current is larger when operating outside recommended ranges.
5. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN <
VIL.
6. Differential input voltage = ±350 mV.
Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
1.075
Note:
2- 88
Input High (V)
Measuring Point* (V)
1.325
Cross point
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
1.2 V DC Core Voltage
Table 2-161 • LVDS
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
Units
0.80
1.87
0.05
2.48
ns
0.68
1.59
0.05
2.11
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
1.5 V DC Core Voltage
Table 2-162 • LVDS
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.61
1.75
0.04
2.18
ns
–1
0.52
1.48
0.03
1.86
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-163 • LVDS
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.63
2.07
0.05
1.82
ns
–1
0.54
1.76
0.04
1.55
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 89
Military ProASIC3/EL DC and Switching Characteristics
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus since the driver can be located anywhere on the bus. These configurations can be
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-27. The input and output buffer delays are available in
the LVDS section in Table 2-159 on page 2-88.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60  and
RT = 70 , given Z0 = 50  (2") and Zstub = 50  (~1.5").
Receiver
Transceiver
EN
R
+
-
+
Z0
RT Z
0
Zstub
D
EN
T
RS RS
Zstub
Driver
-
+
RS RS
Zstub
Zstub
Receiver
EN
EN
R
-
+
RS RS
Zstub
Zstub
Transceiver
EN
T
-
+
RS RS
Zstub
Zstub
R S RS
...
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Figure 2-27 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
2- 90
BIBUF_LVDS
-
R e visio n 3
RT
Military ProASIC3/EL Low Power Flash FPGAs
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires
external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-28. The
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver
resistors are different from those used in the LVDS implementation because the output standard
specifications are different.
Bourns Part Number: CAT16-PC4F12
OUTBUF_LVPECL
FPGA
P
100 
Z0 = 50 
100 
INBUF_LVPECL
+
–
100 
187 W
N
FPGA
P
Z0 = 50 
N
Figure 2-28 • LVPECL Circuit Diagram and Board-Level Implementation
Table 2-164 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Max.
Min.
3.0
Max.
Min.
3.3
Max.
3.6
Units
VCCI
Supply Voltage
VOL
Output Low Voltage
0.96
1.27
1.06
1.43
1.30
1.57
V
VOH
Output High Voltage
1.8
2.11
1.92
2.28
2.13
2.41
V
VIL, VIH
Input Low, Input High Voltages
0
3.3
0
3.6
0
3.9
V
VODIFF
Differential Output Voltage
0.625
0.97
0.625
0.97
0.625
0.97
V
VOCM
Output Common-Mode Voltage
1.762
1.98
1.762
1.98
1.762
1.98
V
VICM
Input Common-Mode Voltage
1.01
2.57
1.01
2.57
1.01
2.57
V
VIDIFF
Input Differential Voltage
300
300
V
300
mV
Table 2-165 • AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V)
1.64
Note:
Input High (V)
Measuring Point* (V)
1.94
Cross point
*Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points.
Revision 3
2- 91
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
1.2 V DC Core Voltage
Table 2-166 • LVPECL
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed Grade
Std.
–1
Note:
tDOUT
tDP
tDIN
tPY
Units
0.80
1.78
0.05
2.16
ns
0.68
1.51
0.05
1.84
ns
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
1.5 V DC Core Voltage
Table 2-167 • LVPECL
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.61
1.65
0.04
1.89
ns
–1
0.52
1.40
0.03
1.61
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-168 • LVPECL
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only
Speed Grade
tDOUT
tDP
tDIN
tPY
Units
Std.
0.63
1.98
0.05
1.54
ns
–1
0.54
1.68
0.04
1.31
ns
Note:
2- 92
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Preset
INBUF
Preset
L
DOUT
Data_out
E
Y
F
Core
Array
G
PRE
D
Q
DFN1E1P1
TRIBUF
CLKBUF
CLK
INBUF
Enable
PRE
D
Q
C DFN1E1P1
INBUF
Data
Pad Out
D
E
E
EOUT
B
H
I
A
J
K
INBUF
INBUF
D_Enable
CLK
CLKBUF
Enable
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
PRE
D
Q
DFN1E1P1
E
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Figure 2-29 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
Revision 3
2- 93
Military ProASIC3/EL DC and Switching Characteristics
Table 2-169 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
F, H
tOHD
Data Hold Time for the Output Data Register
F, H
tOSUE
Enable Setup Time for the Output Data Register
G, H
tOHE
Enable Hold Time for the Output Data Register
G, H
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
L, H
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
L, H
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
J, H
tOEHD
Data Hold Time for the Output Enable Register
J, H
tOESUE
Enable Setup Time for the Output Enable Register
K, H
tOEHE
Enable Hold Time for the Output Enable Register
K, H
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
I, H
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
I, H
tICLKQ
Clock-to-Q of the Input Data Register
A, E
tISUD
Data Setup Time for the Input Data Register
C, A
tIHD
Data Hold Time for the Input Data Register
C, A
tISUE
Enable Setup Time for the Input Data Register
B, A
tIHE
Enable Hold Time for the Input Data Register
B, A
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
D, E
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
D, A
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
D, A
* See Figure 2-29 on page 2-93 for more information.
2- 94
R e visio n 3
H, DOUT
L, DOUT
H, EOUT
I, EOUT
Military ProASIC3/EL Low Power Flash FPGAs
Fully Registered I/O Buffers with Synchronous Enable and
Asynchronous Clear
D
CC
Q
DFN1E1C1
EE
Core
Array
D
Q
DFN1E1C1
TRIBUF
INBUF
Data
Data_out FF
Pad Out
DOUT
Y
GG
INBUF
Enable
BB
EOUT
E
E
CLR
CLR
LL
INBUF
CLR
CLKBUF
CLK
HH
AA
JJ
DD
KK
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
D
Q
DFN1E1C1
E
INBUF
CLKBUF
CLK
Enable
INBUF
D_Enable
CLR
Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Figure 2-30 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
Revision 3
2- 95
Military ProASIC3/EL DC and Switching Characteristics
Table 2-170 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
FF, HH
tOHD
Data Hold Time for the Output Data Register
FF, HH
tOSUE
Enable Setup Time for the Output Data Register
GG, HH
tOHE
Enable Hold Time for the Output Data Register
GG, HH
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
LL, HH
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
LL, HH
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
JJ, HH
tOEHD
Data Hold Time for the Output Enable Register
JJ, HH
tOESUE
Enable Setup Time for the Output Enable Register
KK, HH
tOEHE
Enable Hold Time for the Output Enable Register
KK, HH
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
II, EOUT
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
II, HH
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
II, HH
tICLKQ
Clock-to-Q of the Input Data Register
AA, EE
tISUD
Data Setup Time for the Input Data Register
CC, AA
tIHD
Data Hold Time for the Input Data Register
CC, AA
tISUE
Enable Setup Time for the Input Data Register
BB, AA
tIHE
Enable Hold Time for the Input Data Register
BB, AA
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
DD, EE
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
DD, AA
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
DD, AA
* See Figure 2-30 on page 2-95 for more information.
2- 96
R e visio n 3
HH, DOUT
LL, DOUT
HH, EOUT
Military ProASIC3/EL Low Power Flash FPGAs
Input Register
tICKMPWH tICKMPWL
CLK
50%
50%
Enable
50%
1
50%
50%
50%
tIHD
tISUD
Data
50%
50%
50%
0
tIWPRE
50%
tIRECPRE
tIREMPRE
50%
50%
tIHE
Preset
tISUE
50%
tIWCLR
50%
Clear
tIRECCLR
50%
tIREMCLR
50%
tIPRE2Q
Out_1
50%
50%
tICLR2Q
50%
tICLKQ
Figure 2-31 • Input Register Timing Diagram
Revision 3
2- 97
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
Table 2-171 • Input Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tICLKQ
Clock-to-Q of the Input Data Register
0.33 0.39
ns
tISUD
Data Setup Time for the Input Data Register
0.36 0.43
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.51 0.60
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.63 0.74
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.63 0.74
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.31 0.36
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.31 0.36
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tICKMPWH
Clock Minimum Pulse Width HIGH for the Input Data Register
0.31 0.36
ns
tICKMPWL
Clock Minimum Pulse Width LOW for the Input Data Register
0.28 0.32
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-172 • Input Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tICLKQ
Clock-to-Q of the Input Data Register
0.25 0.30
ns
tISUD
Data Setup Time for the Input Data Register
0.28 0.33
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.39 0.46
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.48 0.56
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.48 0.56
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.24 0.28
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.24 0.28
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19 0.22
ns
tICKMPWH
Clock Minimum Pulse Width HIGH for the Input Data Register
0.31 0.36
ns
tICKMPWL
Clock Minimum Pulse Width LOW for the Input Data Register
0.28 0.32
ns
Note:
2- 98
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-173 • Input Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
Description
–1
Std. Units
tICLKQ
Clock-to-Q of the Input Data Register
0.29 0.34
ns
tISUD
Data Setup Time for the Input Data Register
0.32 0.37
ns
tIHD
Data Hold Time for the Input Data Register
0.00 0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.45 0.53
ns
tIHE
Enable Hold Time for the Input Data Register
0.00 0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.55 0.64
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.55 0.64
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00 0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.27 0.31
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00 0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.27 0.31
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.25 0.30
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.25 0.30
ns
tICKMPWH
Clock Minimum Pulse Width HIGH for the Input Data Register
0.41 0.48
ns
tICKMPWL
Clock Minimum Pulse Width LOW for the Input Data Register
0.37 0.43
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 99
Military ProASIC3/EL DC and Switching Characteristics
Output Register
tOCKMPWH tOCKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOSUD tOHD
1
Data_out
Enable
50%
50%
0
50%
tOWPRE
tOHE
Preset
tOSUE
tOREMPRE
tORECPRE
50%
50%
50%
tOWCLR
50%
Clear
50%
tOPRE2Q
DOUT
50%
50%
tOCLR2Q
tOCLKQ
Figure 2-32 • Output Register Timing Diagram
2- 10 0
R e visio n 3
tORECCLR
50%
tOREMCLR
50%
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
Table 2-174 • Output Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.81 0.96
ns
tOSUD
Data Setup Time for the Output Data Register
0.43 0.51
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.61 0.71
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
1.11 1.31
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
1.11 1.31
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.31 0.36
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.31 0.36
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOCKMPWH
Clock Minimum Pulse Width HIGH for the Output Data Register
0.31 0.36
ns
tOCKMPWL
Clock Minimum Pulse Width LOW for the Output Data Register
0.28 0.32
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-175 • Output Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.62 0.73
ns
tOSUD
Data Setup Time for the Output Data Register
0.33 0.39
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.46 0.55
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
0.85 1.00
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
0.85 1.00
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.24 0.28
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.24 0.28
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19 0.22
ns
tOCKMPWH
Clock Minimum Pulse Width HIGH for the Output Data Register
0.31 0.36
ns
tOCKMPWL
Clock Minimum Pulse Width LOW for the Output Data Register
0.28 0.32
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 101
Military ProASIC3/EL DC and Switching Characteristics
Table 2-176 • Output Data Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
Description
–1
Std. Units
tOCLKQ
Clock-to-Q of the Output Data Register
0.71 0.83
ns
tOSUD
Data Setup Time for the Output Data Register
0.38 0.44
ns
tOHD
Data Hold Time for the Output Data Register
0.00 0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.53 0.62
ns
tOHE
Enable Hold Time for the Output Data Register
0.00 0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
0.97 1.14
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
0.97 1.14
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00 0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.27 0.31
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00 0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.27 0.31
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.25 0.30
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.25 0.30
ns
tOCKMPWH
Clock Minimum Pulse Width HIGH for the Output Data Register
0.41 0.48
ns
tOCKMPWL
Clock Minimum Pulse Width LOW for the Output Data Register
0.37 0.43
ns
Note:
2- 10 2
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Output Enable Register
tOECKMPWH tOECKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOESUD tOEHD
1
D_Enable
Enable
Preset
50%
0 50%
50%
tOESUEtOEHE
tOEWPRE
tOEREMPRE
tOERECPRE
50%
50%
50%
tOEWCLR
50%
Clear
tOEPRE2Q
EOUT
50%
tOERECCLR
50%
tOEREMCLR
50%
tOECLR2Q
50%
50%
tOECLKQ
Figure 2-33 • Output Enable Register Timing Diagram
Revision 3
2- 103
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
Table 2-177 • Output Enable Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.62 0.72
ns
tOESUD
Data Setup Time for the Output Enable Register
0.43 0.51
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.60 0.71
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.92 1.08
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.92 1.08
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.31 0.36
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.31 0.36
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register
0.31 0.36
ns
Clock Minimum Pulse Width LOW for the Output Enable Register
0.28 0.32
ns
tOECKMPWL
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-178 • Output Enable Register Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.47 0.55
ns
tOESUD
Data Setup Time for the Output Enable Register
0.33 0.39
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.46 0.54
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.70 0.83
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.70 0.83
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.24 0.28
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.24 0.28
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19 0.22
ns
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register
0.31 0.36
ns
Clock Minimum Pulse Width LOW for the Output Enable Register
0.28 0.32
ns
tOECKMPWL
Note:
2- 10 4
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-179 • Output Enable Register Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
Description
–1
Std. Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.54 0.63
ns
tOESUD
Data Setup Time for the Output Enable Register
0.38 0.44
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00 0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.52 0.62
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00 0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
0.80 0.94
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
0.80 0.94
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.27 0.31
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00 0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.27 0.31
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.25 0.30
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.25 0.30
ns
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register
0.41 0.48
ns
Clock Minimum Pulse Width LOW for the Output Enable Register
0.37 0.43
ns
tOECKMPWL
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 105
Military ProASIC3/EL DC and Switching Characteristics
DDR Module Specifications
Input DDR Module
Input DDR
INBUF
Data
A
D
Out_QF
(to core)
E
Out_QR
(to core)
FF1
B
CLK
CLKBUF
FF2
C
CLR
INBUF
DDR_IN
Figure 2-34 • Input DDR Timing Model
Table 2-180 • Parameter Definitions
Parameter Name
2- 10 6
Parameter Definition
Measuring Nodes (from, to)
tDDRICLKQ1
Clock-to-Out Out_QR
B, D
tDDRICLKQ2
Clock-to-Out Out_QF
B, E
tDDRISUD
Data Setup Time of DDR input
A, B
tDDRIHD
Data Hold Time of DDR input
A, B
tDDRICLR2Q1
Clear-to-Out Out_QR
C, D
tDDRICLR2Q2
Clear-to-Out Out_QF
C, E
tDDRIREMCLR
Clear Removal
C, B
tDDRIRECCLR
Clear Recovery
C, B
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
CLK
tDDRISUD
Data
1
2
3
4
5
6
tDDRIHD
7
8
9
tDDRIRECCLR
CLR
tDDRIREMCLR
tDDRICLKQ1
tDDRICLR2Q1
Out_QF
2
6
4
tDDRICLKQ2
tDDRICLR2Q2
Out_QR
3
5
7
Figure 2-35 • Input DDR Timing Diagram
Timing Characteristics
Table 2-181 • Input DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.38
0.45
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.54
0.63
ns
tDDRISUD1
Data Setup for Input DDR (fall)
0.39
0.46
ns
tDDRISUD2
Data Setup for Input DDR (rise)
0.34
0.40
ns
tDDRIHD1
Data Hold for Input DDR (fall)
0.00
0.00
ns
tDDRIHD2
Data Hold for Input DDR (rise)
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.64
0.75
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.79
0.93
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.31
0.36
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.19
0.22
ns
tDDRICKMPWH
Clock Minimum Pulse Width HIGH for Input DDR
0.31
0.36
ns
tDDRICKMPWL
Clock Minimum Pulse Width LOW for Input DDR
0.28
0.32
ns
FDDRIMAX
Maximum Frequency for Input DDR
TBD
TBD
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 107
Military ProASIC3/EL DC and Switching Characteristics
Table 2-182 • Input DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for any A3PE600L/A3PE3000L
Parameter
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
Description
0.29
0.34
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.41
0.48
ns
tDDRISUD1
Data Setup for Input DDR (fall)
0.30
0.35
ns
tDDRISUD2
Data Setup for Input DDR (rise)
0.26
0.31
ns
tDDRIHD1
Data Hold for Input DDR (fall)
0.00
0.00
ns
tDDRIHD2
Data Hold for Input DDR (rise)
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.49
0.58
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.60
0.71
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.24
0.28
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.19
0.22
ns
tDDRICKMPWH
Clock Minimum Pulse Width HIGH for Input DDR
0.31
0.36
ns
tDDRICKMPWL
Clock Minimum Pulse Width LOW for Input DDR
0.28
0.32
ns
FDDRIMAX
Maximum Frequency for Input DDR
TBD
TBD
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-183 • Input DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
–1
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
Description
0.33
0.39
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.47
0.55
ns
tDDRISUD1
Data Setup for Input DDR (fall)
0.30
0.35
ns
tDDRISUD2
Data Setup for Input DDR (rise)
0.30
0.35
ns
tDDRIHD1
Data Hold for Input DDR (fall)
0.00
0.00
ns
tDDRIHD2
Data Hold for Input DDR (rise)
0.00
0.00
ns
tDDRICLR2Q1
Asynchronous Clear-to-Out Out_QR for Input DDR
0.56
0.65
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.69
0.81
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.27
0.31
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.25
0.30
ns
tDDRICKMPWH
Clock Minimum Pulse Width HIGH for Input DDR
0.41
0.48
ns
tDDRICKMPWL
Clock Minimum Pulse Width LOW for Input DDR
0.37
0.43
ns
FDDRIMAX
Maximum Frequency for Input DDR
TBD
TBD
MHz
Note:
2- 10 8
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Output DDR Module
Output DDR
A
Data_F
(from core)
X
FF1
B
CLK
CLKBUF
E
X
C
X
D
Data_R
(from core)
Out
0
X
1
X
OUTBUF
FF2
B
X
CLR
INBUF
C
X
DDR_OUT
Figure 2-36 • Output DDR Timing Model
Table 2-184 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDROCLKQ
Clock-to-Out
B, E
tDDROCLR2Q
Asynchronous Clear-to-Out
C, E
tDDROREMCLR
Clear Removal
C, B
tDDRORECCLR
Clear Recovery
C, B
tDDROSUD1
Data Setup Data_F
A, B
tDDROSUD2
Data Setup Data_R
D, B
tDDROHD1
Data Hold Data_F
A, B
tDDROHD2
Data Hold Data_R
D, B
Revision 3
2- 109
Military ProASIC3/EL DC and Switching Characteristics
CLK
tDDROSUD2 tDDROHD2
1
Data_F
2
5
tDDROHD1
tDDROREMCLR
Data_R 6
4
3
7
8
9
10
11
tDDRORECCLR
tDDROREMCLR
CLR
tDDROCLR2Q
tDDROCLKQ
Out
2
7
8
3
9
4
10
Figure 2-37 • Output DDR Timing Diagram
Timing Characteristics
Table 2-185 • Output DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
0.97
1.14
ns
tDDRISUD1
Data_F Data Setup for Output DDR
0.52
0.62
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.52
0.62
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
1.11
1.30
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.31
0.36
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.19
0.22
ns
tDDROCKMPWH
Clock Minimum Pulse Width HIGH for the Output DDR
0.31
0.36
ns
tDDROCKMPWL
Clock Minimum Pulse Width LOW for the Output DDR
0.28
0.32
ns
FDDOMAX
Maximum Frequency for the Output DDR
TBD
TBD
MHz
Note:
2- 11 0
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-186 • Output DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
0.74
0.87
ns
tDDRISUD1
Data_F Data Setup for Output DDR
0.40
0.47
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.40
0.47
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
0.85
1.00
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.24
0.28
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.19
0.22
ns
tDDROCKMPWH
Clock Minimum Pulse Width HIGH for the Output DDR
0.31
0.36
ns
tDDROCKMPWL
Clock Minimum Pulse Width LOW for the Output DDR
0.28
0.32
ns
FDDOMAX
Maximum Frequency for the Output DDR
TBD
TBD
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Table 2-187 • Output DDR Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
Description
–1
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
0.84
0.99
ns
tDDRISUD1
Data_F Data Setup for Output DDR
0.46
0.54
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.46
0.54
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
0.96
1.13
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.27
0.31
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.25
0.30
ns
tDDROCKMPWH
Clock Minimum Pulse Width HIGH for the Output DDR
0.41
0.48
ns
tDDROCKMPWL
Clock Minimum Pulse Width LOW for the Output DDR
0.37
0.43
ns
FDDOMAX
Maximum Frequency for the Output DDR
TBD
TBD
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 111
Military ProASIC3/EL DC and Switching Characteristics
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The military ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section,
timing characteristics are presented for a sample of the library. For more details, refer to the IGLOO,
Fusion, and ProASIC3 Macro Library Guide.
A
A
B
A
OR2
Y
AND2
A
Y
B
B
B
XOR2
A
B
C
Y
A
A
B
C
NAND3
A
MAJ3
B
Y
C
Figure 2-38 • Sample of Combinatorial Cells
R e visio n 3
NAND2
XOR3
Y
Y
Y
0
MUX2
B
S
2- 11 2
NOR2
B
A
A
Y
INV
1
Y
Military ProASIC3/EL Low Power Flash FPGAs
tPD
A
NAND2 or
Any Combinatorial
Logic
B
Y
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR))
where edges are applicable for the particular
combinatorial cell
VCC
50%
50%
A, B, C
GND
VCC
50%
50%
OUT
GND
VCC
tPD
tPD
(FF)
(RR)
OUT
tPD
(FR)
50%
tPD
50%
GND
(RF)
Figure 2-39 • Timing Model and Waveforms
Revision 3
2- 113
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
Table 2-188 • Combinatorial Cell Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and
A3PE3000L
Combinatorial Cell
Equation
Parameter
–1
Std.
Units
Y = !A
tPD
0.56
0.65
ns
Y=A·B
tPD
0.65
0.77
ns
Y = !(A · B)
tPD
0.65
0.77
ns
Y=A+B
tPD
0.67
0.79
ns
NOR2
Y = !(A + B)
tPD
0.67
0.79
ns
XOR2
Y = A B
tPD
1.02
1.20
ns
MAJ3
Y = MAJ(A , B, C)
tPD
0.97
1.14
ns
XOR3
Y = A  B C
tPD
1.21
1.42
ns
MUX2
Y = A !S + B S
tPD
0.70
0.82
ns
AND3
Y=A·B·C
tPD
0.78
0.91
ns
INV
AND2
NAND2
OR2
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-189 • Combinatorial Cell Propagation Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for any A3PE600L/A3PE3000L
Combinatorial Cell
Equation
Parameter
–1
Std.
Units
Y = !A
tPD
0.43
0.50
ns
Y=A·B
tPD
0.50
0.59
ns
Y = !(A · B)
tPD
0.50
0.59
ns
Y=A+B
tPD
0.51
0.61
ns
NOR2
Y = !(A + B)
tPD
0.51
0.61
ns
XOR2
Y = A B
tPD
0.78
0.92
ns
MAJ3
Y = MAJ(A , B, C)
tPD
0.74
0.87
ns
XOR3
Y = A  B C
tPD
0.93
1.09
ns
MUX2
Y = A !S + B S
tPD
0.54
0.63
ns
AND3
Y=A·B·C
tPD
0.59
0.70
ns
INV
AND2
NAND2
OR2
Note:
2- 11 4
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-190 • Combinatorial Cell Propagation Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and
A3P1000
Combinatorial Cell
INV
Equation
Parameter
–1
Std.
Units
Y = !A
tPD
0.48
0.57
ns
Y=A·B
tPD
0.57
0.67
ns
Y = !(A · B)
tPD
0.57
0.67
ns
Y=A+B
tPD
0.59
0.69
ns
NOR2
Y = !(A + B)
tPD
0.59
0.69
ns
XOR2
Y = A B
tPD
0.89
1.04
ns
MAJ3
Y = MAJ(A , B, C)
tPD
0.84
0.99
ns
XOR3
Y = A  B C
tPD
1.05
1.24
ns
MUX2
Y = A !S + B S
tPD
0.61
0.72
ns
Y=A·B·C
tPD
0.68
0.79
ns
AND2
NAND2
OR2
AND3
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
Revision 3
2- 115
Military ProASIC3/EL DC and Switching Characteristics
VersaTile Specifications as a Sequential Module
The military ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches.
Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are
presented for a representative sample from the library. For more details, refer to the IGLOO, Fusion, and
ProASIC3 Macro Library Guide.
Data
D
Q
Out
Data
En
DFN1
CLK
D
Out
Q
DFN1E1
CLK
PRE
Data
D
Q
Out
En
DFN1C1
CLK
CLK
CLR
Figure 2-40 • Sample of Sequential Cells
2- 11 6
Data
R e visio n 3
D
Q
DFI1E1P1
Out
Military ProASIC3/EL Low Power Flash FPGAs
tCKMPWH tCKMPWL
CLK
50%
50%
tSUD
50%
Data
EN
PRE
50%
tRECPRE
tREMPRE
50%
50%
tRECCLR
tWCLR
50%
CLR
tPRE2Q
50%
Out
50%
50%
0
tWPRE
tHE
50%
50%
tHD
50%
tSUE
50%
50%
50%
tREMCLR
50%
tCLR2Q
50%
50%
tCLKQ
Figure 2-41 • Timing Model and Waveforms
Revision 3
2- 117
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
Table 2-191 • Register Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
0.76
0.90
ns
tSUD
Data Setup Time for the Core Register
0.59
0.70
ns
tHD
Data Hold Time for the Core Register
0.00
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.63
0.74
ns
tHE
Enable Hold Time for the Core Register
0.00
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.55
0.65
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.55
0.65
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.31
0.36
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.31
0.36
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.30
0.34
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.30
0.34
ns
tCKMPWH
Clock Minimum Pulse Width HIGH for the Core Register
0.56
0.64
ns
tCKMPWL
Clock Minimum Pulse Width LOW for the Core Register
0.56
0.64
ns
Note:
2- 11 8
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-192 • Register Delays
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
0.58
0.69
ns
tSUD
Data Setup Time for the Core Register
0.45
0.53
ns
tHD
Data Hold Time for the Core Register
0.00
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.48
0.57
ns
tHE
Enable Hold Time for the Core Register
0.00
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.42
0.50
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.42
0.50
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.24
0.28
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.24
0.28
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.30
0.34
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.30
0.34
ns
tCKMPWH
Clock Minimum Pulse Width HIGH for the Core Register
0.56
0.64
ns
tCKMPWL
Clock Minimum Pulse Width LOW for the Core Register
0.56
0.64
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 119
Military ProASIC3/EL DC and Switching Characteristics
Table 2-193 • Register Delays
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
Description
–1
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
0.66
0.78
ns
tSUD
Data Setup Time for the Core Register
0.52
0.61
ns
tHD
Data Hold Time for the Core Register
0.00
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.55
0.64
ns
tHE
Enable Hold Time for the Core Register
0.00
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.48
0.56
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.48
0.56
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.27
0.31
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.27
0.31
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.25
0.30
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.25
0.30
ns
tCKMPWH
Clock Minimum Pulse Width HIGH for the Core Register
0.41
0.48
ns
tCKMPWL
Clock Minimum Pulse Width LOW for the Core Register
0.37
0.43
ns
Note:
2- 12 0
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Global Resource Characteristics
A3P1000 Clock Tree Topology
Clock delays are device-specific. Figure 2-42 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-42 is driven by a CCC located on the west side of the A3P1000 device.
It is used to drive all D-flip-flops in the device.
Central
Global Rib
VersaTile
Rows
CCC
Global Spine
Figure 2-42 • Example of Global Tree Use in an A3P1000 Device for Clock Routing
Revision 3
2- 121
Military ProASIC3/EL DC and Switching Characteristics
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer
to the "Clock Conditioning Circuits" section on page 2-125. Table 2-194 to Table 2-197 on page 2-123
present minimum and maximum global clock delays within each device. Minimum and maximum delays
are measured with minimum and maximum loading.
Timing Characteristics
1.2 V DC Core Voltage
Table 2-194 • A3PE600L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V
–1
Parameter
Description
1
Std.
2
1
Min.
Max.
Min.
Max.2 Units
tRCKL
Input LOW Delay for Global Clock
0.95
1.23
1.12
1.44
ns
tRCKH
Input HIGH Delay for Global Clock
0.94
1.26
1.10
1.48
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
ns
ns
0.32
0.38
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-195 • A3PE3000L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V
–1
Parameter
Description
1
Std.
Min.
Max.2
Min.1
Max.2 Units
tRCKL
Input LOW Delay for Global Clock
1.81
2.09
2.13
2.42
ns
tRCKH
Input HIGH Delay for Global Clock
1.80
2.13
2.12
2.45
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.32
0.38
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
2- 12 2
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
1.5 V DC Core Voltage
Table 2-196 • A3PE600L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
–1
Std.
Description
Min.1
Max.
Min.
tRCKL
Input Low Delay for Global Clock
0.82
1.07
0.97
1.26
ns
tRCKH
Input High Delay for Global Clock
0.81
1.10
0.95
1.30
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
Parameter
2
1
0.30
Max.2 Units
0.35
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-197 • A3PE3000L Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
–1
Std.
Description
Min.
Max.2
tRCKL
Input Low Delay for Global Clock
1.62
1.87
1.90
2.20
ns
tRCKH
Input High Delay for Global Clock
1.61
1.90
1.89
2.24
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
Parameter
1
0.30
Min.1
Max.2 Units
0.35
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Revision 3
2- 123
Military ProASIC3/EL DC and Switching Characteristics
Table 2-198 • A3P250 Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
–1
Std.
Description
Min.1
Max.
Min.
tRCKL
Input Low Delay for Global Clock
0.97
1.24
1.14
1.46
ns
tRCKH
Input High Delay for Global Clock
0.94
1.27
1.11
1.49
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
Parameter
2
1
0.32
Max.2 Units
0.38
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
Table 2-199 • A3P1000 Global Resource
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V
–1
Std.
Description
Min.1
Max.2
Min.1
tRCKL
Input Low Delay for Global Clock
1.18
1.44
1.39
1.70
ns
tRCKH
Input High Delay for Global Clock
1.17
1.48
1.37
1.74
ns
tRCKMPWH
Minimum Pulse Width High for Global Clock
ns
tRCKMPWL
Minimum Pulse Width Low for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
Parameter
0.32
Max.2 Units
0.37
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
2- 12 4
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-200 • Military ProASIC3/EL CCC/PLL Specification
For Devices Operating at 1.2 V DC Core Voltage: Applicable to A3PE600L and A3PE3000L Only
Parameter
Clock Conditioning
fIN_CCC
Min.
Circuitry Input Frequency
Clock Conditioning Circuitry Output Frequency fOUT_CCC
Delay Increments in Programmable Delay Blocks
Max.
Units
1.5
250
MHz
0.75
250
MHz
1, 2
Typ.
360
Number of Programmable Values in Each Programmable Delay Block
Serial Clock (SCLK) for Dynamic
ps
32
PLL3
100
MHz
1
ns
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
25
ns
LockControl = 1
1.5
ns
48.5
51.5
%
1.2
15.65
ns
0.025
15.65
ns
Input cycle-to-cycle jitter (peak magnitude)
Acquisition Time
Tracking
Jitter4
Output Duty Cycle
Delay Range in Block: Programmable Delay
1 1,2
Delay Range in Block: Programmable Delay 2
Delay Range in Block: Fixed Delay
1,2
1,2
3.5
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
ns
Max. Peak-to-Peak Period
Jitter5,6
SSO  2
SSO  4
SSO  8
SSO  16
0.75 MHz to 50 MHz
0.50%
0.60%
0.80%
1.60%
50 MHz to 160 MHz
2.50%
4.00%
6.00%
12.00%
Notes:
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-8 for deratings.
2. TJ = 25°C, VCC = 1.2 V.
3. Maximum value obtained for a –1 speed grade device in worst-case military conditions. For specific junction
temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
5. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14V, VQ/PQ/TQ
type of packages, 20 pF load.
6. Switching I/Os are placed outside of the PLL bank.
Revision 3
2- 125
Military ProASIC3/EL DC and Switching Characteristics
Table 2-201 • Military ProASIC3/EL CCC/PLL Specification
For Devices Operating at 1.5 V DC Core Voltage
Parameter
Max.
Units
Clock Conditioning Circuitry Input Frequency fIN_CCC
Min.
1.5
350
MHz
Clock Conditioning Circuitry Output Frequency fOUT_CCC
0.75
350
MHz
Delay Increments in Programmable Delay Blocks
1, 2
Typ.
160
Number of Programmable Values in Each Programmable Delay Block
ps
32
Serial Clock (SCLK) for Dynamic PLL3
110
MHz
Input cycle-to-cycle jitter (peak magnitude)
1.5
ns
Acquisition Time
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
1.6
ns
Tracking Jitter4
LockControl = 1
0.8
ns
48.5
51.5
%
Delay Range in Block: Programmable Delay 1
1,2
0.6
5.56
ns
Delay Range in Block: Programmable Delay 2
1,2
0.025
5.56
ns
Output Duty Cycle
Delay Range in Block: Fixed Delay
1,2
2.2
ns
Max. Peak-to-Peak Period Jitter 5,6
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
SSO  2 SSO  4 SSO  8 SSO  16
0.75 MHz to 50 MHz
0.50%
0.50%
0.70%
1.00%
50 MHz to 250 MHz
1.00%
3.00%
5.00%
9.00%
250 MHz to 350 MHz
2.50%
4.00%
6.00%
12.00%
Notes:
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-8 for deratings.
2. TJ = 25°C, VCC = 1.5 V.
3. Maximum value obtained for a -1 speed grade device in worst-case military conditions. For specific junction temperature
and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
5. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.425 V,
VQ/PQ/TQ type of packages, 20 pF load.
6. Switching I/Os are placed outside of the PLL bank.
Output Signal
Tperiod_max
Note:
Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-43 • Peak-to-Peak Jitter Definition
2- 12 6
Tperiod_min
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Embedded SRAM and FIFO Characteristics
SRAM
RAM512X18
RAM4K9
ADDRA11
ADDRA10
DOUTA8
DOUTA7
RADDR8
RADDR7
RD17
RD16
ADDRA0
DINA8
DINA7
DOUTA0
RADDR0
RD0
RW1
RW0
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
PIPE
REN
RCLK
ADDRB11
ADDRB10
DOUTB8
DOUTB7
ADDRB0
DOUTB0
DINB8
DINB7
WADDR8
WADDR7
WADDR0
WD17
WD16
WD0
DINB0
WW1
WW0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
WEN
WCLK
RESET
RESET
Figure 2-44 • RAM Models
Revision 3
2- 127
Military ProASIC3/EL DC and Switching Characteristics
Timing Waveforms
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
tENH
WEN_B
tCKQ1
DO
Dn
D0
D1
D2
tDOH1
Figure 2-45 • RAM Read for Pass-Through Output
tCYC
tCKH
tCKL
CLK
t
AS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENH
tENS
WEN_B
tCKQ2
DO
Dn
D0
D1
tDOH2
Figure 2-46 • RAM Read for Pipelined Output
2- 12 8
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
tENH
WEN_B
tDS
DI0
DI
tDH
DI1
Dn
DO
D2
Figure 2-47 • RAM Write, Output Retained (WMODE = 0)
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
WEN_B
tDS
DI0
DI
DO
(pass-through)
DO
(pipelined)
tDH
DI1
Dn
DI2
DI0
DI1
DI0
Dn
DI1
Figure 2-48 • RAM Write, Output as Write Data (WMODE = 1)
Revision 3
2- 129
Military ProASIC3/EL DC and Switching Characteristics
tCYC
tCKH
tCKL
CLK
RESET_B
tRSTBQ
DO
Dm
Dn
Figure 2-49 • RAM Reset
2- 13 0
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Timing Characteristics
Table 2-202 • RAM4K9
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.35 0.41
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN_B, WEN_B setup time
0.20 0.23
ns
tENH
REN_B, WEN_B hold time
0.13 0.16
ns
tBKS
BLK_B setup time
0.32 0.38
ns
tBKH
BLK_B hold time
0.03 0.03
ns
tDS
Input data (DI) setup time
0.25 0.30
ns
tDH
Input data (DI) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DO (output retained, WMODE = 0)
3.26 3.84
ns
Clock High to new data valid on DO (flow-through, WMODE = 1)
2.47 2.91
ns
tCKQ2
Clock High to new data valid on DO (pipelined)
1.24 1.46
ns
tC2CWWL
Address collision clk-to-clk delay for reliable write after write on same address – 0.25 0.30
applicable to closing edge
ns
tC2CRWH
Address collision clk-to-clk delay for reliable read access after write on same 0.27 0.32
address – applicable to opening edge
ns
tC2CRWH
Address collision clk-to-clk delay for reliable write access after read on same 0.37 0.44
address – applicable to opening edge
ns
tRSTBQ
RESET_B Low to data out Low on DO (flow-through)
1.28 1.50
ns
RESET_B Low to data out Low on DO (pipelined)
1.28 1.50
ns
tREMRSTB
RESET_B removal
0.40 0.47
ns
tRECRSTB
RESET_B recovery
2.08 2.44
ns
tMPWRSTB
RESET_B minimum pulse width
0.66 0.76
ns
tCYC
Clock cycle time
6.08 6.99
ns
FMAX
Maximum frequency
164
Note:
143
MHz
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 131
Military ProASIC3/EL DC and Switching Characteristics
Table 2-203 • RAM4K9
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.26 0.31
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN_B, WEN_B setup time
0.15 0.18
ns
tENH
REN_B, WEN_B hold time
0.10 0.12
ns
tBKS
BLK_B setup time
0.25 0.29
ns
tBKH
BLK_B hold time
0.02 0.02
ns
tDS
Input data (DI) setup time
0.19 0.23
ns
tDH
Input data (DI) hold time
0.00 0.00
ns
tCKQ1
Clock HIGH to new data valid on DO (output retained, WMODE = 0)
2.50 2.93
ns
Clock HIGH to new data valid on DO (flow-through, WMODE = 1)
1.89 2.22
ns
tCKQ2
Clock HIGH to new data valid on DO (pipelined)
0.95 1.11
ns
tC2CWWL
Address collision clk-to-clk delay for reliable write after write on same address – 0.24 0.29
applicable to closing edge
ns
tC2CRWH
Address collision clk-to-clk delay for reliable read access after write on same 0.20 0.24
address – applicable to opening edge
ns
tC2CRWH
Address collision clk-to-clk delay for reliable write access after read on same 0.25 0.30
address – applicable to opening edge
ns
tRSTBQ
RESET_B Low to data out Low on DO (flow-through)
0.98 1.15
ns
RESET_B Low to data out Low on DO (pipelined)
0.98 1.15
ns
tREMRSTB
RESET_B removal
0.30 0.36
ns
tRECRSTB
RESET_B recovery
1.59 1.87
ns
tMPWRSTB
RESET_B minimum pulse width
0.59 0.67
ns
tCYC
Clock cycle time
5.39 6.20
ns
FMAX
Maximum frequency
185
Note:
2- 13 2
161
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
MHz
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-204 • RAM4K9
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.30 0.35
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN_B, WEN_B setup time
0.17 0.20
ns
tENH
REN_B, WEN_B hold time
0.12 0.14
ns
tBKS
BLK_B setup time
0.28 0.33
ns
tBKH
BLK_B hold time
0.02 0.03
ns
tDS
Input data (DI) setup time
0.22 0.26
ns
tDH
Input data (DI) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DO (output retained, WMODE = 0)
2.84 2.53
ns
Clock High to new data valid on DO (flow-through, WMODE = 1)
2.15 3.33
ns
tCKQ2
Clock High to new data valid on DO (pipelined)
1.08 1.27
ns
tC2CWWL
Address collision clk-to-clk delay for reliable write after write on same address – 0.28 0.33
applicable to closing edge
ns
tC2CWWH
Address collision clk-to-clk delay for reliable write after write on same address – 0.26 0.30
applicable to rising edge
ns
tC2CRWH
Address collision clk-to-clk delay for reliable read access after write on same 0.38 0.45
address – applicable to opening edge
ns
tC2CWRH
Address collision clk-to-clk delay for reliable write access after read on same 0.42 0.49
address – applicable to opening edge
ns
tRSTBQ
RESET_B Low to data out Low on DO (flow-through)
1.11 1.31
ns
RESET_B Low to data out Low on DO (pipelined)
1.11 1.31
ns
tREMRSTB
RESET_B removal
0.34 0.40
ns
tRECRSTB
RESET_B recovery
1.81 2.12
ns
tMPWRSTB
RESET_B minimum pulse width
0.26 0.30
ns
tCYC
Clock cycle time
3.89 4.57
ns
FMAX
Maximum frequency
257
Note:
219
MHz
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
Revision 3
2- 133
Military ProASIC3/EL DC and Switching Characteristics
Table 2-205 • RAM512X18
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.35 0.41
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN_B, WEN_B setup time
0.13 0.15
ns
tENH
REN_B, WEN_B hold time
0.08 0.09
ns
tDS
Input data (DI) setup time
0.25 0.30
ns
tDH
Input data (DI) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DO (output retained, WMODE = 0)
2.99 3.52
ns
tCKQ2
Clock High to new data valid on DO (pipelined)
1.24 1.46
ns
tC2CRWH
Address collision clk-to-clk delay for reliable read access after write on same 0.25 0.29
address – applicable to opening edge
ns
tC2CWRH
Address collision clk-to-clk delay for reliable write access after read on same 0.31 0.36
address – applicable to opening edge
ns
tRSTBQ
RESET_B Low to data out Low on DO (flow through)
1.28 1.50
ns
RESET_B Low to data out Low on DO (pipelined)
1.28 1.50
ns
tREMRSTB
RESET_B removal
0.40 0.47
ns
tRECRSTB
RESET_B recovery
2.08 2.44
ns
tMPWRSTB
RESET_B minimum pulse width
0.66 0.76
ns
tCYC
Clock cycle time
6.08 6.99
ns
FMAX
Maximum frequency
164
Note:
2- 13 4
143
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
R e visio n 3
MHz
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-206 • RAM512X18
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.26 0.31
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN_B, WEN_B setup time
0.10 0.11
ns
tENH
REN_B, WEN_B hold time
0.06 0.07
ns
tDS
Input data (DI) setup time
0.19 0.23
ns
tDH
Input data (DI) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DO (output retained, WMODE = 0)
2.29 2.69
ns
tCKQ2
Clock High to new data valid on DO (pipelined)
0.95 1.12
ns
tC2CRWH
Address collision clk-to-clk delay for reliable read access after write on same 0.18 0.21
address – applicable to opening edge
ns
tC2CWRH
Address collision clk-to-clk delay for reliable write access after read on same 0.21 0.25
address – applicable to opening edge
ns
tRSTBQ
RESET_B Low to data out Low on DO (flow through)
0.98 1.15
ns
RESET_B Low to data out Low on DO (pipelined)
0.98 1.15
ns
tREMRSTB
RESET_B removal
0.30 0.36
ns
tRECRSTB
RESET_B recovery
1.59 1.87
ns
tMPWRSTB
RESET_B minimum pulse width
0.59 0.67
ns
tCYC
Clock cycle time
5.39 6.20
ns
FMAX
Maximum frequency
185
Note:
161
MHz
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values.
Revision 3
2- 135
Military ProASIC3/EL DC and Switching Characteristics
Table 2-207 • RAM512X18
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000
Parameter
Description
–1
Std. Units
tAS
Address setup time
0.30 0.35
ns
tAH
Address hold time
0.00 0.00
ns
tENS
REN_B, WEN_B setup time
0.11 0.13
ns
tENH
REN_B, WEN_B hold time
0.07 0.08
ns
tDS
Input data (DI) setup time
0.22 0.26
ns
tDH
Input data (DI) hold time
0.00 0.00
ns
tCKQ1
Clock High to new data valid on DO (output retained, WMODE = 0)
2.60 3.06
ns
tCKQ2
Clock High to new data valid on DO (pipelined)
1.08 1.27
ns
tC2CRWH
Address collision clk-to-clk delay for reliable read access after write on same 0.43 0.50
address – applicable to opening edge
ns
tC2CWRH
Address collision clk-to-clk delay for reliable write access after read on same 0.50 0.59
address – applicable to opening edge
ns
tRSTBQ
RESET_B Low to data out Low on DO (flow through)
1.11 1.31
ns
RESET_B Low to data out Low on DO (pipelined)
1.11 1.31
ns
tREMRSTB
RESET_B removal
0.34 0.40
ns
tRECRSTB
RESET_B recovery
1.81 2.12
ns
tMPWRSTB
RESET_B minimum pulse width
0.26 0.30
ns
tCYC
Clock cycle time
3.89 4.57
ns
FMAX
Maximum frequency
257
Note:
2- 13 6
219
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values.
R e visio n 3
MHz
Military ProASIC3/EL Low Power Flash FPGAs
FIFO
FIFO4K18
RW2
RW1
RW0
WW2
WW1
WW0
ESTOP
FSTOP
RD17
RD16
RD0
FULL
AFULL
EMPTY
AEMPTY
AEVAL11
AEVAL10
AEVAL0
AFVAL11
AFVAL10
AFVAL0
REN
RBLK
RCLK
WD17
WD16
WD0
WEN
WBLK
WCLK
RPIPE
RESET
Figure 2-50 • FIFO Model
Revision 3
2- 137
Military ProASIC3/EL DC and Switching Characteristics
Timing Waveforms
RCLK/
WCLK
tMPWRSTB
tRSTCK
RESET_B
tRSTFG
EMPTY
tRSTAF
AEMPTY
tRSTFG
FULL
tRSTAF
AFULL
WA/RA
(Address Counter)
MATCH (A0)
Figure 2-51 • FIFO Reset
tCYC
RCLK
tRCKEF
EMPTY
tCKAF
AEMPTY
WA/RA
(Address Counter) NO MATCH
NO MATCH
Figure 2-52 • FIFO EMPTY Flag and AEMPTY Flag Assertion
2- 13 8
R e visio n 3
Dist = AEF_TH
MATCH (EMPTY)
Military ProASIC3/EL Low Power Flash FPGAs
tCYC
WCLK
tWCKFF
FULL
tCKAF
AFULL
WA/RA NO MATCH
(Address Counter)
NO MATCH
Dist = AFF_TH
MATCH (FULL)
Figure 2-53 • FIFO FULL Flag and AFULL Flag Assertion
WCLK
WA/RA MATCH
(Address Counter) (EMPTY)
RCLK
NO MATCH
1st Rising
Edge
After 1st
Write
NO MATCH
NO MATCH
NO MATCH
Dist = AEF_TH + 1
2nd Rising
Edge
After 1st
Write
tRCKEF
EMPTY
tCKAF
AEMPTY
Figure 2-54 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
RCLK
WA/RA
(Address Counter)
WCLK
MATCH (FULL)
NO MATCH
1st Rising
Edge
After 1st
Read
NO MATCH
NO MATCH
NO MATCH
Dist = AFF_TH – 1
1st Rising
Edge
After 2nd
Read
tWCKF
FULL
tCKAF
AFULL
Figure 2-55 • FIFO FULL Flag and AFULL Flag Deassertion
Revision 3
2- 139
Military ProASIC3/EL DC and Switching Characteristics
Timing Characteristics
Table 2-208 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.14 V for A3PE600L and
A3PE3000L
Parameter
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
1.91
2.24
ns
tENH
REN_B, WEN_B Hold Time
0.03
0.03
ns
tBKS
BLK_B Setup Time
0.40
0.47
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.25
0.30
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
3.26
3.84
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.24
1.46
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.38
2.80
ns
tWCKFF
WCLK HIGH to Full Flag Valid
2.26
2.66
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
8.57
10.08
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.34
2.76
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
8.48
9.97
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.28
1.50
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.28
1.50
ns
tREMRSTB
RESET_B Removal
0.40
0.47
ns
tRECRSTB
RESET_B Recovery
2.08
2.44
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.66
0.76
ns
tCYC
Clock Cycle Time
6.08
6.99
ns
FMAX
Maximum Frequency for FIFO
164
143
MHz
Note:
2- 14 0
Description
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-209 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and
A3PE3000L
Parameter
Description
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
1.46
1.71
ns
tENH
REN_B, WEN_B Hold Time
0.02
0.02
ns
tBKS
BLK_B Setup Time
0.40
0.47
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.19
0.23
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
2.50
2.93
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
0.95
1.11
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
1.82
2.14
ns
tWCKFF
WCLK HIGH to Full Flag Valid
1.73
2.03
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
6.56
7.71
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
1.79
2.11
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
6.49
7.63
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
0.98
1.15
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
0.98
1.15
ns
tREMRSTB
RESET_B Removal
0.30
0.36
ns
tRECRSTB
RESET_B Recovery
1.59
1.87
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.59
0.67
ns
tCYC
Clock Cycle Time
5.39
6.20
ns
FMAX
Maximum Frequency for FIFO
185
161
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Revision 3
2- 141
Military ProASIC3/EL DC and Switching Characteristics
Table 2-210 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P1000
Parameter
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
1.66
1.95
ns
tENH
REN_B, WEN_B Hold Time
0.00
0.00
ns
tBKS
BLK_B Setup Time
1.66
1.95
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.22
0.26
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
2.84
3.33
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.08
1.27
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.07
2.43
ns
tWCKFF
WCLK HIGH to Full Flag Valid
1.96
2.31
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
7.45
8.76
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.04
2.40
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
7.38
8.67
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.11
1.31
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.11
1.31
ns
tREMRSTB
RESET_B Removal
0.34
0.40
ns
tRECRSTB
RESET_B Recovery
1.81
2.12
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.26
0.30
ns
tCYC
Clock Cycle Time
3.89
4.57
ns
FMAX
Maximum Frequency for FIFO
257
219
MHz
Note:
2- 14 2
Description
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-211 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (256×16)
Parameter
Description
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
3.92
4.61
ns
tENH
REN_B, WEN_B Hold Time
0.00
0.00
ns
tBKS
BLK_B Setup Time
1.66
1.95
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.22
0.26
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
2.61
3.06
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.14
1.34
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.07
2.43
ns
tWCKFF
WCLK HIGH to Full Flag Valid
1.96
2.31
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
7.45
8.76
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.04
2.40
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
7.38
8.67
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.11
1.31
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.11
1.31
ns
tREMRSTB
RESET_B Removal
0.34
0.40
ns
tRECRSTB
RESET_B Recovery
1.81
2.12
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.26
0.30
ns
tCYC
Clock Cycle Time
3.89
4.57
ns
FMAX
Maximum Frequency for FIFO
257
219
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
Revision 3
2- 143
Military ProASIC3/EL DC and Switching Characteristics
Table 2-212 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (512×8)
Parameter
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
4.52
5.31
ns
tENH
REN_B, WEN_B Hold Time
0.00
0.00
ns
tBKS
BLK_B Setup Time
1.66
1.95
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.22
0.26
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
2.61
3.06
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.14
1.34
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.07
2.43
ns
tWCKFF
WCLK HIGH to Full Flag Valid
1.96
2.31
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
7.45
8.76
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.04
2.40
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
7.38
8.67
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.11
1.31
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.11
1.31
ns
tREMRSTB
RESET_B Removal
0.34
0.40
ns
tRECRSTB
RESET_B Recovery
1.81
2.12
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.26
0.30
ns
tCYC
Clock Cycle Time
3.89
4.57
ns
FMAX
Maximum Frequency for FIFO
257
219
MHz
Note:
2- 14 4
Description
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-213 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (1k×4)
Parameter
Description
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
4.88
5.73
ns
tENH
REN_B, WEN_B Hold Time
0.00
0.00
ns
tBKS
BLK_B Setup Time
1.66
1.95
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.22
0.26
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
2.84
3.33
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.08
1.27
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.07
2.43
ns
tWCKFF
WCLK HIGH to Full Flag Valid
1.96
2.31
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
7.45
8.76
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.04
2.40
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
7.38
8.67
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.11
1.31
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.11
1.31
ns
tREMRSTB
RESET_B Removal
0.34
0.40
ns
tRECRSTB
RESET_B Recovery
1.81
2.12
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.26
0.30
ns
tCYC
Clock Cycle Time
3.89
4.57
ns
FMAX
Maximum Frequency for FIFO
257
219
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
Revision 3
2- 145
Military ProASIC3/EL DC and Switching Characteristics
Table 2-214 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (2k×2)
Parameter
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
5.28
6.21
ns
tENH
REN_B, WEN_B Hold Time
0.00
0.00
ns
tBKS
BLK_B Setup Time
1.66
1.95
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.22
0.26
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
2.84
3.33
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.08
1.27
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.07
2.43
ns
tWCKFF
WCLK HIGH to Full Flag Valid
1.96
2.31
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
7.45
8.76
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.04
2.40
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
7.38
8.67
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.11
1.31
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.11
1.31
ns
tREMRSTB
RESET_B Removal
0.34
0.40
ns
tRECRSTB
RESET_B Recovery
1.81
2.12
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.26
0.30
ns
tCYC
Clock Cycle Time
3.89
4.57
ns
FMAX
Maximum Frequency for FIFO
257
219
MHz
Note:
2- 14 6
Description
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
Table 2-215 • FIFO
Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (4k×1)
Parameter
Description
–1
Std.
Units
tENS
REN_B, WEN_B Setup Time
5.85
6.87
ns
tENH
REN_B, WEN_B Hold Time
0.00
0.00
ns
tBKS
BLK_B Setup Time
1.66
1.95
ns
tBKH
BLK_B Hold Time
0.00
0.00
ns
tDS
Input Data (DI) Setup Time
0.22
0.26
ns
tDH
Input Data (DI) Hold Time
0.00
0.00
ns
tCKQ1
Clock HIGH to New Data Valid on DO (flow-through)
2.84
3.33
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.08
1.27
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
2.07
2.43
ns
tWCKFF
WCLK HIGH to Full Flag Valid
1.96
2.31
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
7.45
8.76
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
2.04
2.40
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
7.38
8.67
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (flow-through)
1.11
1.31
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
1.11
1.31
ns
tREMRSTB
RESET_B Removal
0.34
0.40
ns
tRECRSTB
RESET_B Recovery
1.81
2.12
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.26
0.30
ns
tCYC
Clock Cycle Time
3.89
4.57
ns
FMAX
Maximum Frequency for FIFO
257
219
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
Revision 3
2- 147
Military ProASIC3/EL DC and Switching Characteristics
Embedded FlashROM Characteristics
tSU
CLK
tSU
tHOLD
Address
tSU
tHOLD
A0
tHOLD
A1
tCKQ2
tCKQ2
D0
Data
tCKQ2
D0
D1
Figure 2-56 • Timing Diagram
Timing Characteristics
Table 2-216 • Embedded FlashROM Access Time
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and
A3PE3000L
Parameter
Description
–1
Std.
Units
tSU
Address Setup Time
0.74
0.87
ns
tHOLD
Address Hold Time
0.00
0.00
ns
tCK2Q
Clock to Out
16.18
19.02
ns
FMAX
Maximum Clock Frequency
15
15
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-217 • Embedded FlashROM Access Time
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L
Parameter
Description
–1
Std.
Units
tSU
Address Setup Time
0.58
0.68
ns
tHOLD
Address Hold Time
0.00
0.00
ns
tCK2Q
Clock to Out
12.77
15.01
ns
FMAX
Maximum Clock Frequency
15
15
MHz
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-218 • Embedded FlashROM Access Time
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and
A3P1000
Parameter
–1
Std.
Units
tSU
Address Setup Time
0.64
0.75
ns
tHOLD
Address Hold Time
0.00
0.00
ns
tCK2Q
Clock to Out
19.54
22.97
ns
FMAX
Maximum Clock Frequency
15
15
MHz
Note:
2- 14 8
Description
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating
values.
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O
Characteristics" section on page 2-20 for more details.
Timing Characteristics
Table 2-219 • JTAG 1532
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and
A3PE3000L
Parameter
Description
–1
Std.
Units
tDISU
Test Data Input Setup Time
0.80
0.94
ns
tDIHD
Test Data Input Hold Time
1.60
1.88
ns
tTMSSU
Test Mode Select Setup Time
0.80
0.94
ns
tTMDHD
Test Mode Select Hold Time
1.60
1.88
ns
tTCK2Q
Clock to Q (data out)
6.39
7.52
ns
tRSTB2Q
Reset to Q (data out)
26.63
31.33
ns
FTCKMAX
TCK Maximum Frequency
18.70
15.90
MHz
tTRSTREM
ResetB Removal Time
0.48
0.56
ns
tTRSTREC
ResetB Recovery Time
0.00
0.00
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
TBD
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Table 2-220 • JTAG 1532
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for All Dies
Parameter
Description
–1
Std.
Units
tDISU
Test Data Input Setup Time
0.60
0.71
ns
tDIHD
Test Data Input Hold Time
1.21
1.42
ns
tTMSSU
Test Mode Select Setup Time
0.60
0.71
ns
tTMDHD
Test Mode Select Hold Time
1.21
1.42
ns
tTCK2Q
Clock to Q (data out)
6.04
7.10
ns
tRSTB2Q
Reset to Q (data out)
24.15
28.41
ns
FTCKMAX
TCK Maximum Frequency
22.00
19.00
MHz
tTRSTREM
ResetB Removal Time
0.00
0.00
ns
tTRSTREC
ResetB Recovery Time
0.24
0.28
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
TBD
ns
Note:
For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating
values.
Revision 3
2- 149
3 – Pin Descriptions and Packaging
Supply Pins
GND
Ground
Ground supply voltage to the core, I/O outputs, and I/O logic.
GNDQ
Ground (quiet)
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always
be connected to GND on the board.
VCC
Core Supply Voltage
Supply voltage to the FPGA core, nominally 1.5 V for A3P250 and A3P100 devices and 1.2 V or 1.5 V for
A3PE600L and A3PE3000L devices. VCC is required for powering the JTAG state machine in addition to
VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC
and VJTAG must remain powered to allow JTAG signals to pass through the device.
For A3PE600L and A3PE3000L devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice
versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power
operation when VCC is at 1.2 V.
VCCIBx
I/O Supply Voltage
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to
eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a
separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V,
1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied
to GND.
VMVx
I/O Supply Voltage (quiet)
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the
VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI
domain. This minimizes the noise transfer within the package and improves input signal integrity. Each
bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank
run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each
I/O bank. VMVx can be 1.2 V (A3PE600L and A3PE3000L only), 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal
voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should
be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding
VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).
VCCPLA/B/C/D/E/F
PLL Supply Voltage
Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device.
•
1.5 V for A3P250 and A3P1000 devices
•
1.2 V or 1.5 V for A3PE600L or A3PE3000L devices
When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the
unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to
ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple
VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning
Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the Miliary ProASIC3/EL
Device Family User’s Guide for a complete board solution for the PLL analog power supply and ground.
•
There is one VCCPLF pin on A3P250 and A3P1000 devices.
•
There are six VCCPLX pins on A3PE600L and A3PE3000L devices.
Revision 3
3 -1
Pin Descriptions and Packaging
VCOMPLA/B/C/D/E/F
PLL Ground
Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie
unused VCCPLx and VCOMPLx pins to ground.
•
There is one VCOMPLF pin on A3P250 and A3P1000 devices.
•
There are six VCOMPL pins (PLL ground) on A3PE600L and A3PE3000L devices.
VJTAG
JTAG Supply Voltage
Military ProASIC3/EL devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be
run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank
gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG
interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to
GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is
insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can
be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals
will not be able to transition the device, even in bypass mode.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
VPUMP
Programming Supply Voltage
A3P250 and A3P1000 devices support single-voltage ISP of the configuration flash and FlashROM. For
programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left
floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming
power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of
oscillation from the charge pump circuitry.
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent
filtering capacitors rather than supplying them from a common rail.
User-Defined Supply Pins
VREF
I/O Voltage Reference
Reference voltage for I/O minibanks in A3PE600L and A3PE3000L devices. VREF pins are configured
by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage
reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and
(II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its
minibank.
User Pins
I/O
User Input/Output
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected.
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os are instantly configured to the desired user configuration.
Unused I/Os are configured as follows:
3-2
•
Output buffer is disabled (with tristate value of high impedance)
•
Input buffer is disabled (with tristate value of high impedance)
•
Weak pull-up is programmed
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
GL
Globals
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power
Flash Devices and Mixed Signal FPGAs " chapter of the Military ProASIC3/EL FPGA Fabric User’s
Guide. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used
for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled
GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals.
The inputs to the global network are multiplexed, and only one input can be used as a global input.
Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter (for A3P250 and A3P1000) or "I/O
Structures in IGLOOe and ProASIC3E Devices" (for A3PE600L and A3PE3000L) of the Military
ProASIC3/EL FPGA Fabric User’s Guide for an explanation of the naming of global pins.
FF
Flash*Freeze Mode Activation Pin
Flash*Freeze is available on A3PE600L and A3PE3000L devices. The FF pin is a dedicated input pin
used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a
single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used
in the design, the FF pin is available as a regular I/O. The FF pin can be configured as a Schmitt trigger
input.
When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering
Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.
The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in
which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin
should be treated as a sensitive asynchronous signal. When defining pin placement and board layout,
simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be
considered.
Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both
Flash*Freeze mode and normal operation mode. No user intervention is required.
Table 3-1 shows the Flash*Freeze pin location on the available packages for Military ProASIC3/EL
devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller
devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology
and Low Power Modes" chapter of the Military ProASIC3/EL FPGA Fabric User’s Guide for more
information on I/O states during Flash*Freeze mode.
Table 3-1 • Flash*Freeze Pin Location in Military ProASIC3/EL Packages (device-independent)
Military ProASIC3/EL Packages
Flash*Freeze Pin
FG484
W6
FG896
AH4
Revision 3
3 -3
Pin Descriptions and Packaging
JTAG Pins
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run
at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to
operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the
part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a
separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB
design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST
pin could be tied to GND.
TCK
Test Clock
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor
placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.
Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements. Refer to Table 3-2
for more information.
Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins
VJTAG
Tie-Off Resistance
VJTAG at 3.3 V
200  to 1 k
VJTAG at 2.5 V
200  to 1 k
VJTAG at 1.8 V
500  to 1 k
VJTAG at 1.5 V
500  to 1 k
Notes:
1. Equivalent parallel resistance if more than one device is on the JTAG chain
2. The TCK pin can be pulled up/down.
3. The TRST pin is pulled down.
TDI
Test Data Input
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor
on the TDI pin.
TDO
Test Data Output
Serial output for JTAG boundary scan, ISP, and UJTAG usage.
TMS
Test Mode Select
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin.
TRST
Boundary Scan Reset Pin
The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pulldown resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor
values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The
values in Table 3-2 correspond to the resistor recommended when a single device is used, and the
equivalent parallel resistor when multiple devices are connected via a JTAG chain.
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA
pin.
Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.
3-4
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Special Function Pins
NC
No Connect
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.
DC
Do Not Connect
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
Packaging
Semiconductor technology is constantly shrinking in size while growing in capability and functional
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved
to provide improved performance and flexibility.
Microsemi consistently delivers packages that provide the necessary mechanical and environmental
protection to ensure consistent reliability and performance. Microsemi IC packaging technology
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,
Microsemi offers a variety of packages designed to meet your most demanding application and economic
requirements for today's embedded and mobile systems.
Related Documents
User’s Guides
Military ProASIC3/EL Device Family User’s Guide
http://www.actel.com/documents/Mil_PA3_EL_UG.pdf
Packaging
The following documents provide packaging information and device selection for low power flash
devices.
Product Catalog
http://www.actel.com/documents/ProdCat_PIB.pdf
Lists devices currently recommended for new designs and the packages available for each member of
the family. Use this document or the datasheet tables to determine the best package for your design, and
which package drawing to use.
Package Mechanical Drawings
http://www.actel.com/documents/PckgMechDrwngs.pdf
This document contains the package mechanical drawings for all packages currently or previously
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.
Additional packaging materials are at http://www.actel.com/products/solutions/package/docs.aspx.
Revision 3
3 -5
4 – Package Pin Assignments
VQ100
100
1
Note: This is the top view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Revision 3
4 -1
Package Pin Assignments
VQ100*
VQ100*
VQ100*
Pin Number
A3P250 Function
Pin Number
A3P250 Function
Pin Number
A3P250 Function
1
GND
37
VCC
73
GBA2/IO41PDB1
2
GAA2/IO118UDB3
38
GND
74
VMV1
3
IO118VDB3
39
VCCIB2
75
GNDQ
4
GAB2/IO117UDB3
40
IO77RSB2
76
GBA1/IO40RSB0
5
IO117VDB3
41
IO74RSB2
77
GBA0/IO39RSB0
6
GAC2/IO116UDB3
42
IO71RSB2
78
GBB1/IO38RSB0
7
IO116VDB3
43
GDC2/IO63RSB2
79
GBB0/IO37RSB0
8
IO112PSB3
44
GDB2/IO62RSB2
80
GBC1/IO36RSB0
9
GND
45
GDA2/IO61RSB2
81
GBC0/IO35RSB0
10
GFB1/IO109PDB3
46
GNDQ
82
IO29RSB0
11
GFB0/IO109NDB3
47
TCK
83
IO27RSB0
12
VCOMPLF
48
TDI
84
IO25RSB0
13
GFA0/IO108NPB3
49
TMS
85
IO23RSB0
14
VCCPLF
50
VMV2
86
IO21RSB0
15
GFA1/IO108PPB3
51
GND
87
VCCIB0
16
GFA2/IO107PSB3
52
VPUMP
88
GND
17
VCC
53
NC
89
VCC
18
VCCIB3
54
TDO
90
IO15RSB0
19
GFC2/IO105PSB3
55
TRST
91
IO13RSB0
20
GEC1/IO100PDB3
56
VJTAG
92
IO11RSB0
21
GEC0/IO100NDB3
57
GDA1/IO60USB1
93
GAC1/IO05RSB0
22
GEA1/IO98PDB3
58
GDC0/IO58VDB1
94
GAC0/IO04RSB0
23
GEA0/IO98NDB3
59
GDC1/IO58UDB1
95
GAB1/IO03RSB0
24
VMV3
60
IO52NDB1
96
GAB0/IO02RSB0
25
GNDQ
61
GCB2/IO52PDB1
97
GAA1/IO01RSB0
26
GEA2/IO97RSB2
62
GCA1/IO50PDB1
98
GAA0/IO00RSB0
27
GEB2/IO96RSB2
63
GCA0/IO50NDB1
99
GNDQ
28
GEC2/IO95RSB2
64
GCC0/IO48NDB1
100
VMV0
29
IO93RSB2
65
GCC1/IO48PDB1
30
IO92RSB2
66
VCCIB1
31
IO91RSB2
67
GND
32
IO90RSB2
68
VCC
33
IO88RSB2
69
IO43NDB1
34
IO86RSB2
70
GBC2/IO43PDB1
35
IO85RSB2
71
GBB2/IO42PSB1
36
IO84RSB2
72
IO41NDB1
4-2
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
PQ208
1
208
208-Pin PQFP
Note: This is the top view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Revision 3
4 -3
Package Pin Assignments
PQ208
PQ208
PQ208
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
1
GND
37
IO199PDB3
73
IO162RSB2
2
GAA2/IO225PDB3
38
IO199NDB3
74
IO160RSB2
3
IO225NDB3
39
IO197PSB3
75
IO158RSB2
4
GAB2/IO224PDB3
40
VCCIB3
76
IO156RSB2
5
IO224NDB3
41
GND
77
IO154RSB2
6
GAC2/IO223PDB3
42
IO191PDB3
78
IO152RSB2
7
IO223NDB3
43
IO191NDB3
79
IO150RSB2
8
IO222PDB3
44
GEC1/IO190PDB3
80
IO148RSB2
9
IO222NDB3
45
GEC0/IO190NDB3
81
GND
10
IO220PDB3
46
GEB1/IO189PDB3
82
IO143RSB2
11
IO220NDB3
47
GEB0/IO189NDB3
83
IO141RSB2
12
IO218PDB3
48
GEA1/IO188PDB3
84
IO139RSB2
13
IO218NDB3
49
GEA0/IO188NDB3
85
IO137RSB2
14
IO216PDB3
50
VMV3
86
IO135RSB2
15
IO216NDB3
51
GNDQ
87
IO133RSB2
16
VCC
52
GND
88
VCC
17
GND
53
VMV2
89
VCCIB2
18
VCCIB3
54
GEA2/IO187RSB2
90
IO128RSB2
19
IO212PDB3
55
GEB2/IO186RSB2
91
IO126RSB2
20
IO212NDB3
56
GEC2/IO185RSB2
92
IO124RSB2
21
GFC1/IO209PDB3
57
IO184RSB2
93
IO122RSB2
22
GFC0/IO209NDB3
58
IO183RSB2
94
IO120RSB2
23
GFB1/IO208PDB3
59
IO182RSB2
95
IO118RSB2
24
GFB0/IO208NDB3
60
IO181RSB2
96
GDC2/IO116RSB2
25
VCOMPLF
61
IO180RSB2
97
GND
26
GFA0/IO207NPB3
62
VCCIB2
98
GDB2/IO115RSB2
27
VCCPLF
63
IO178RSB2
99
GDA2/IO114RSB2
28
GFA1/IO207PPB3
64
IO176RSB2
100
GNDQ
29
GND
65
GND
101
TCK
30
GFA2/IO206PDB3
66
IO174RSB2
102
TDI
31
IO206NDB3
67
IO172RSB2
103
TMS
32
GFB2/IO205PDB3
68
IO170RSB2
104
VMV2
33
IO205NDB3
69
IO168RSB2
105
GND
34
GFC2/IO204PDB3
70
IO166RSB2
106
VPUMP
35
IO204NDB3
71
VCC
107
GNDQ
36
VCC
72
VCCIB2
108
TDO
4-4
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
PQ208
PQ208
PQ208
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
109
TRST
145
IO84PDB1
181
IO33RSB0
110
VJTAG
146
IO82NDB1
182
IO31RSB0
111
GDA0/IO113NDB1
147
IO82PDB1
183
IO29RSB0
112
GDA1/IO113PDB1
148
IO80NDB1
184
IO27RSB0
113
GDB0/IO112NDB1
149
GBC2/IO80PDB1
185
IO25RSB0
114
GDB1/IO112PDB1
150
IO79NDB1
186
VCCIB0
115
GDC0/IO111NDB1
151
GBB2/IO79PDB1
187
VCC
116
GDC1/IO111PDB1
152
IO78NDB1
188
IO22RSB0
117
IO109NDB1
153
GBA2/IO78PDB1
189
IO20RSB0
118
IO109PDB1
154
VMV1
190
IO18RSB0
119
IO106NDB1
155
GNDQ
191
IO16RSB0
120
IO106PDB1
156
GND
192
IO15RSB0
121
IO104PSB1
157
VMV0
193
IO14RSB0
122
GND
158
GBA1/IO77RSB0
194
IO13RSB0
123
VCCIB1
159
GBA0/IO76RSB0
195
GND
124
IO99NDB1
160
GBB1/IO75RSB0
196
IO12RSB0
125
IO99PDB1
161
GBB0/IO74RSB0
197
IO11RSB0
126
NC
162
GND
198
IO10RSB0
127
IO96NDB1
163
GBC1/IO73RSB0
199
IO09RSB0
128
GCC2/IO96PDB1
164
GBC0/IO72RSB0
200
VCCIB0
129
GCB2/IO95PSB1
165
IO70RSB0
201
GAC1/IO05RSB0
130
GND
166
IO67RSB0
202
GAC0/IO04RSB0
131
GCA2/IO94PSB1
167
IO63RSB0
203
GAB1/IO03RSB0
132
GCA1/IO93PDB1
168
IO60RSB0
204
GAB0/IO02RSB0
133
GCA0/IO93NDB1
169
IO57RSB0
205
GAA1/IO01RSB0
134
GCB0/IO92NDB1
170
VCCIB0
206
GAA0/IO00RSB0
135
GCB1/IO92PDB1
171
VCC
207
GNDQ
136
GCC0/IO91NDB1
172
IO54RSB0
208
VMV0
137
GCC1/IO91PDB1
173
IO51RSB0
138
IO88NDB1
174
IO48RSB0
139
IO88PDB1
175
IO45RSB0
140
VCCIB1
176
IO42RSB0
141
GND
177
IO40RSB0
142
VCC
178
GND
143
IO86PSB1
179
IO38RSB0
144
IO84NDB1
180
IO35RSB0
Revision 3
4 -5
Package Pin Assignments
FG144
A1 Ball Pad Corner
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
4-6
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG144
FG144
FG144
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
Pin Number
A3P1000 Function
A1
GNDQ
D1
IO213PDB3
G1
GFA1/IO207PPB3
A2
VMV0
D2
IO213NDB3
G2
GND
A3
GAB0/IO02RSB0
D3
IO223NDB3
G3
VCCPLF
A4
GAB1/IO03RSB0
D4
GAA2/IO225PPB3
G4
GFA0/IO207NPB3
A5
IO10RSB0
D5
GAC0/IO04RSB0
G5
GND
A6
GND
D6
GAC1/IO05RSB0
G6
GND
A7
IO44RSB0
D7
GBC0/IO72RSB0
G7
GND
A8
VCC
D8
GBC1/IO73RSB0
G8
GDC1/IO111PPB1
A9
IO69RSB0
D9
GBB2/IO79PDB1
G9
IO96NDB1
A10
GBA0/IO76RSB0
D10
IO79NDB1
G10
GCC2/IO96PDB1
A11
GBA1/IO77RSB0
D11
IO80NPB1
G11
IO95NDB1
A12
GNDQ
D12
GCB1/IO92PPB1
G12
GCB2/IO95PDB1
B1
GAB2/IO224PDB3
E1
VCC
H1
VCC
B2
GND
E2
GFC0/IO209NDB3
H2
GFB2/IO205PDB3
B3
GAA0/IO00RSB0
E3
GFC1/IO209PDB3
H3
GFC2/IO204PSB3
B4
GAA1/IO01RSB0
E4
VCCIB3
H4
GEC1/IO190PDB3
B5
IO13RSB0
E5
IO225NPB3
H5
VCC
B6
IO26RSB0
E6
VCCIB0
H6
IO105PDB1
B7
IO35RSB0
E7
VCCIB0
H7
IO105NDB1
B8
IO60RSB0
E8
GCC1/IO91PDB1
H8
GDB2/IO115RSB2
B9
GBB0/IO74RSB0
E9
VCCIB1
H9
GDC0/IO111NPB1
B10
GBB1/IO75RSB0
E10
VCC
H10
VCCIB1
B11
GND
E11
GCA0/IO93NDB1
H11
IO101PSB1
B12
VMV1
E12
IO94NDB1
H12
VCC
C1
IO224NDB3
F1
GFB0/IO208NPB3
J1
GEB1/IO189PDB3
C2
GFA2/IO206PPB3
F2
VCOMPLF
J2
IO205NDB3
C3
GAC2/IO223PDB3
F3
GFB1/IO208PPB3
J3
VCCIB3
C4
VCC
F4
IO206NPB3
J4
GEC0/IO190NDB3
C5
IO16RSB0
F5
GND
J5
IO160RSB2
C6
IO29RSB0
F6
GND
J6
IO157RSB2
C7
IO32RSB0
F7
GND
J7
VCC
C8
IO63RSB0
F8
GCC0/IO91NDB1
J8
TCK
C9
IO66RSB0
F9
GCB0/IO92NPB1
J9
GDA2/IO114RSB2
C10
GBA2/IO78PDB1
F10
GND
J10
TDO
C11
IO78NDB1
F11
GCA1/IO93PDB1
J11
GDA1/IO113PDB1
C12
GBC2/IO80PPB1
F12
GCA2/IO94PDB1
J12
GDB1/IO112PDB1
Revision 3
4 -7
Package Pin Assignments
FG144
Pin Number
A3P1000 Function
K1
GEB0/IO189NDB3
K2
GEA1/IO188PDB3
K3
GEA0/IO188NDB3
K4
GEA2/IO187RSB2
K5
IO169RSB2
K6
IO152RSB2
K7
GND
K8
IO117RSB2
K9
GDC2/IO116RSB2
K10
GND
K11
GDA0/IO113NDB1
K12
GDB0/IO112NDB1
L1
GND
L2
VMV3
L3
GEB2/IO186RSB2
L4
IO172RSB2
L5
VCCIB2
L6
IO153RSB2
L7
IO144RSB2
L8
IO140RSB2
L9
TMS
L10
VJTAG
L11
VMV2
L12
TRST
M1
GNDQ
M2
GEC2/IO185RSB2
M3
IO173RSB2
M4
IO168RSB2
M5
IO161RSB2
M6
IO156RSB2
M7
IO145RSB2
M8
IO141RSB2
M9
TDI
M10
VCCIB2
M11
VPUMP
M12
GNDQ
4-8
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Revision 3
4 -9
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
A1
GND
B14
NC
D5
GAA0/IO00NDB0V0
A2
GND
B15
NC
D6
GAA1/IO00PDB0V0
A3
VCCIB0
B16
IO30NDB1V1
D7
GAB0/IO01NDB0V0
A4
IO06NDB0V1
B17
IO30PDB1V1
D8
IO05PDB0V0
A5
IO06PDB0V1
B18
IO32PDB1V1
D9
IO10PDB0V1
A6
IO08NDB0V1
B19
NC
D10
IO12PDB0V2
A7
IO08PDB0V1
B20
NC
D11
IO16NDB0V2
A8
IO11PDB0V1
B21
VCCIB2
D12
IO23NDB1V0
A9
IO17PDB0V2
B22
GND
D13
IO23PDB1V0
A10
IO18NDB0V2
C1
VCCIB7
D14
IO28NDB1V1
A11
IO18PDB0V2
C2
NC
D15
IO28PDB1V1
A12
IO22PDB1V0
C3
NC
D16
GBB1/IO34PDB1V1
A13
IO26PDB1V0
C4
NC
D17
GBA0/IO35NDB1V1
A14
IO29NDB1V1
C5
GND
D18
GBA1/IO35PDB1V1
A15
IO29PDB1V1
C6
IO04NDB0V0
D19
GND
A16
IO31NDB1V1
C7
IO04PDB0V0
D20
NC
A17
IO31PDB1V1
C8
VCC
D21
NC
A18
IO32NDB1V1
C9
VCC
D22
NC
A19
NC
C10
IO14NDB0V2
E1
NC
A20
VCCIB1
C11
IO19NDB0V2
E2
NC
A21
GND
C12
NC
E3
GND
A22
GND
C13
NC
E4
GAB2/IO133PDB7V1
B1
GND
C14
VCC
E5
GAA2/IO134PDB7V1
B2
VCCIB7
C15
VCC
E6
GNDQ
B3
NC
C16
NC
E7
GAB1/IO01PDB0V0
B4
IO03NDB0V0
C17
NC
E8
IO05NDB0V0
B5
IO03PDB0V0
C18
GND
E9
IO10NDB0V1
B6
IO07NDB0V1
C19
NC
E10
IO12NDB0V2
B7
IO07PDB0V1
C20
NC
E11
IO16PDB0V2
B8
IO11NDB0V1
C21
NC
E12
IO20NDB1V0
B9
IO17NDB0V2
C22
VCCIB2
E13
IO24NDB1V0
B10
IO14PDB0V2
D1
NC
E14
IO24PDB1V0
B11
IO19PDB0V2
D2
NC
E15
GBC1/IO33PDB1V1
B12
IO22NDB1V0
D3
NC
E16
GBB0/IO34NDB1V1
B13
IO26NDB1V0
D4
GND
E17
GNDQ
4- 10
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
E18
GBA2/IO36PDB2V0
G9
IO09NDB0V1
H22
NC
E19
IO42NDB2V0
G10
IO09PDB0V1
J1
IO123NDB7V0
E20
GND
G11
IO13PDB0V2
J2
IO123PDB7V0
E21
NC
G12
IO21PDB1V0
J3
NC
E22
NC
G13
IO25PDB1V0
J4
IO124PDB7V0
F1
NC
G14
IO27NDB1V0
J5
IO125PDB7V0
F2
IO131NDB7V1
G15
GNDQ
J6
IO126PDB7V0
F3
IO131PDB7V1
G16
VCOMPLB
J7
IO130NDB7V1
F4
IO133NDB7V1
G17
GBB2/IO37PDB2V0
J8
VCCIB7
F5
IO134NDB7V1
G18
IO39PDB2V0
J9
GND
F6
VMV7
G19
IO39NDB2V0
J10
VCC
F7
VCCPLA
G20
IO43PDB2V0
J11
VCC
F8
GAC0/IO02NDB0V0
G21
IO43NDB2V0
J12
VCC
F9
GAC1/IO02PDB0V0
G22
NC
J13
VCC
F10
IO15NDB0V2
H1
NC
J14
GND
F11
IO15PDB0V2
H2
NC
J15
VCCIB2
F12
IO20PDB1V0
H3
VCC
J16
IO38NDB2V0
F13
IO25NDB1V0
H4
IO128NDB7V1
J17
IO40NDB2V0
F14
IO27PDB1V0
H5
IO129NDB7V1
J18
IO40PDB2V0
F15
GBC0/IO33NDB1V1
H6
IO132NDB7V1
J19
IO45PDB2V1
F16
VCCPLB
H7
IO130PDB7V1
J20
NC
F17
VMV2
H8
VMV0
J21
IO48PDB2V1
F18
IO36NDB2V0
H9
VCCIB0
J22
IO46PDB2V1
F19
IO42PDB2V0
H10
VCCIB0
K1
IO121NDB7V0
F20
NC
H11
IO13NDB0V2
K2
IO121PDB7V0
F21
NC
H12
IO21NDB1V0
K3
NC
F22
NC
H13
VCCIB1
K4
IO124NDB7V0
G1
IO127NDB7V1
H14
VCCIB1
K5
IO125NDB7V0
G2
IO127PDB7V1
H15
VMV1
K6
IO126NDB7V0
G3
NC
H16
GBC2/IO38PDB2V0
K7
GFC1/IO120PPB7V0
G4
IO128PDB7V1
H17
IO37NDB2V0
K8
VCCIB7
G5
IO129PDB7V1
H18
IO41NDB2V0
K9
VCC
G6
GAC2/IO132PDB7V1
H19
IO41PDB2V0
K10
GND
G7
VCOMPLA
H20
VCC
K11
GND
G8
GNDQ
H21
NC
K12
GND
Revision 3
4- 11
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
K13
GND
M4
GFA2/IO117PDB6V1
N17
IO57NPB3V0
K14
VCC
M5
GFA1/IO118PDB6V1
N18
IO55NPB3V0
K15
VCCIB2
M6
VCCPLF
N19
IO57PPB3V0
K16
GCC1/IO50PPB2V1
M7
IO116NDB6V1
N20
NC
K17
IO44NDB2V1
M8
GFB2/IO116PDB6V1
N21
IO56NDB3V0
K18
IO44PDB2V1
M9
VCC
N22
IO58PDB3V0
K19
IO49NPB2V1
M10
GND
P1
NC
K20
IO45NDB2V1
M11
GND
P2
IO111PDB6V1
K21
IO48NDB2V1
M12
GND
P3
IO115NDB6V1
K22
IO46NDB2V1
M13
GND
P4
IO113NPB6V1
L1
NC
M14
VCC
P5
IO109PPB6V0
L2
IO122PDB7V0
M15
GCB2/IO54PPB3V0
P6
IO108PDB6V0
L3
IO122NDB7V0
M16
GCA1/IO52PPB3V0
P7
IO108NDB6V0
L4
GFB0/IO119NPB7V0
M17
GCC2/IO55PPB3V0
P8
VCCIB6
L5
GFA0/IO118NDB6V1
M18
VCCPLC
P9
GND
L6
GFB1/IO119PPB7V0
M19
GCA2/IO53PDB3V0
P10
VCC
L7
VCOMPLF
M20
IO53NDB3V0
P11
VCC
L8
GFC0/IO120NPB7V0
M21
IO56PDB3V0
P12
VCC
L9
VCC
M22
NC
P13
VCC
L10
GND
N1
IO114PDB6V1
P14
GND
L11
GND
N2
IO111NDB6V1
P15
VCCIB3
L12
GND
N3
NC
P16
GDB0/IO66NPB3V1
L13
GND
N4
GFC2/IO115PDB6V1
P17
IO60NDB3V1
L14
VCC
N5
IO113PPB6V1
P18
IO60PDB3V1
L15
GCC0/IO50NPB2V1
N6
IO112PDB6V1
P19
IO61PDB3V1
L16
GCB1/IO51PPB2V1
N7
IO112NDB6V1
P20
NC
L17
GCA0/IO52NPB3V0
N8
VCCIB6
P21
IO59PDB3V0
L18
VCOMPLC
N9
VCC
P22
IO58NDB3V0
L19
GCB0/IO51NPB2V1
N10
GND
R1
NC
L20
IO49PPB2V1
N11
GND
R2
IO110PDB6V0
L21
IO47NDB2V1
N12
GND
R3
VCC
L22
IO47PDB2V1
N13
GND
R4
IO109NPB6V0
M1
NC
N14
VCC
R5
IO106NDB6V0
M2
IO114NDB6V1
N15
VCCIB3
R6
IO106PDB6V0
M3
IO117NDB6V1
N16
IO54NPB3V0
R7
GEC0/IO104NPB6V0
4- 12
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
R8
VMV5
T21
IO64PDB3V1
V12
IO83PDB5V0
R9
VCCIB5
T22
IO62NDB3V1
V13
IO77NDB4V1
R10
VCCIB5
U1
NC
V14
IO77PDB4V1
R11
IO84NDB5V0
U2
IO107PDB6V0
V15
IO69NDB4V0
R12
IO84PDB5V0
U3
IO107NDB6V0
V16
GDB2/IO69PDB4V0
R13
VCCIB4
U4
GEB1/IO103PDB6V0
V17
TDI
R14
VCCIB4
U5
GEB0/IO103NDB6V0
V18
GNDQ
R15
VMV3
U6
VMV6
V19
TDO
R16
VCCPLD
U7
VCCPLE
V20
GND
R17
GDB1/IO66PPB3V1
U8
IO101NPB5V2
V21
NC
R18
GDC1/IO65PDB3V1
U9
IO95PPB5V1
V22
IO63NDB3V1
R19
IO61NDB3V1
U10
IO92PDB5V1
W1
NC
R20
VCC
U11
IO90PDB5V1
W2
NC
R21
IO59NDB3V0
U12
IO82PDB5V0
W3
NC
R22
IO62PDB3V1
U13
IO76NDB4V1
W4
GND
T1
NC
U14
IO76PDB4V1
W5
IO100NDB5V2
T2
IO110NDB6V0
U15
VMV4
W6
FF/GEB2/IO100PDB5V2
T3
NC
U16
TCK
W7
IO99NDB5V2
T4
IO105PDB6V0
U17
VPUMP
W8
IO88NDB5V0
T5
IO105NDB6V0
U18
TRST
W9
IO88PDB5V0
T6
GEC1/IO104PPB6V0
U19
GDA0/IO67NDB3V1
W10
IO89NDB5V0
T7
VCOMPLE
U20
NC
W11
IO80NDB4V1
T8
GNDQ
U21
IO64NDB3V1
W12
IO81NDB4V1
T9
GEA2/IO101PPB5V2
U22
IO63PDB3V1
W13
IO81PDB4V1
T10
IO92NDB5V1
V1
NC
W14
IO70NDB4V0
T11
IO90NDB5V1
V2
NC
W15
GDC2/IO70PDB4V0
T12
IO82NDB5V0
V3
GND
W16
IO68NDB4V0
T13
IO74NDB4V1
V4
GEA1/IO102PDB6V0
W17
GDA2/IO68PDB4V0
T14
IO74PDB4V1
V5
GEA0/IO102NDB6V0
W18
TMS
T15
GNDQ
V6
GNDQ
W19
GND
T16
VCOMPLD
V7
GEC2/IO99PDB5V2
W20
NC
T17
VJTAG
V8
IO95NPB5V1
W21
NC
T18
GDC0/IO65NDB3V1
V9
IO91NDB5V1
W22
NC
T19
GDA1/IO67PDB3V1
V10
IO91PDB5V1
Y1
VCCIB6
T20
NC
V11
IO83NDB5V0
Y2
NC
Revision 3
4- 13
Package Pin Assignments
FG484
FG484
Pin
Number
A3PE600L Function
Pin
Number
A3PE600L Function
Y3
NC
AA16
IO71NDB4V0
Y4
IO98NDB5V2
AA17
IO71PDB4V0
Y5
GND
AA18
NC
Y6
IO94NDB5V1
AA19
NC
Y7
IO94PDB5V1
AA20
NC
Y8
VCC
AA21
VCCIB3
Y9
VCC
AA22
GND
Y10
IO89PDB5V0
AB1
GND
Y11
IO80PDB4V1
AB2
GND
Y12
IO78NPB4V1
AB3
VCCIB5
Y13
NC
AB4
IO97NDB5V2
Y14
VCC
AB5
IO97PDB5V2
Y15
VCC
AB6
IO93NDB5V1
Y16
NC
AB7
IO93PDB5V1
Y17
NC
AB8
IO87NDB5V0
Y18
GND
AB9
IO87PDB5V0
Y19
NC
AB10
NC
Y20
NC
AB11
NC
Y21
NC
AB12
IO75NDB4V1
Y22
VCCIB3
AB13
IO75PDB4V1
AA1
GND
AB14
IO72NDB4V0
AA2
VCCIB6
AB15
IO72PDB4V0
AA3
NC
AB16
IO73NDB4V0
AA4
IO98PDB5V2
AB17
IO73PDB4V0
AA5
IO96NDB5V2
AB18
NC
AA6
IO96PDB5V2
AB19
NC
AA7
IO86NDB5V0
AB20
VCCIB4
AA8
IO86PDB5V0
AB21
GND
AA9
IO85PDB5V0
AB22
GND
AA10
IO85NDB5V0
AA11
IO78PPB4V1
AA12
IO79NDB4V1
AA13
IO79PDB4V1
AA14
NC
AA15
NC
4- 14
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
A1
GND
B14
IO58RSB0
D5
GAA0/IO00RSB0
A2
GND
B15
IO63RSB0
D6
GAA1/IO01RSB0
A3
VCCIB0
B16
IO66RSB0
D7
GAB0/IO02RSB0
A4
IO07RSB0
B17
IO68RSB0
D8
IO16RSB0
A5
IO09RSB0
B18
IO70RSB0
D9
IO22RSB0
A6
IO13RSB0
B19
NC
D10
IO28RSB0
A7
IO18RSB0
B20
NC
D11
IO35RSB0
A8
IO20RSB0
B21
VCCIB1
D12
IO45RSB0
A9
IO26RSB0
B22
GND
D13
IO50RSB0
A10
IO32RSB0
C1
VCCIB3
D14
IO55RSB0
A11
IO40RSB0
C2
IO220PDB3
D15
IO61RSB0
A12
IO41RSB0
C3
NC
D16
GBB1/IO75RSB0
A13
IO53RSB0
C4
NC
D17
GBA0/IO76RSB0
A14
IO59RSB0
C5
GND
D18
GBA1/IO77RSB0
A15
IO64RSB0
C6
IO10RSB0
D19
GND
A16
IO65RSB0
C7
IO14RSB0
D20
NC
A17
IO67RSB0
C8
VCC
D21
NC
A18
IO69RSB0
C9
VCC
D22
NC
A19
NC
C10
IO30RSB0
E1
IO219NDB3
A20
VCCIB0
C11
IO37RSB0
E2
NC
A21
GND
C12
IO43RSB0
E3
GND
A22
GND
C13
NC
E4
GAB2/IO224PDB3
B1
GND
C14
VCC
E5
GAA2/IO225PDB3
B2
VCCIB3
C15
VCC
E6
GNDQ
B3
NC
C16
NC
E7
GAB1/IO03RSB0
B4
IO06RSB0
C17
NC
E8
IO17RSB0
B5
IO08RSB0
C18
GND
E9
IO21RSB0
B6
IO12RSB0
C19
NC
E10
IO27RSB0
B7
IO15RSB0
C20
NC
E11
IO34RSB0
B8
IO19RSB0
C21
NC
E12
IO44RSB0
B9
IO24RSB0
C22
VCCIB1
E13
IO51RSB0
B10
IO31RSB0
D1
IO219PDB3
E14
IO57RSB0
B11
IO39RSB0
D2
IO220NDB3
E15
GBC1/IO73RSB0
B12
IO48RSB0
D3
NC
E16
GBB0/IO74RSB0
B13
IO54RSB0
D4
GND
E17
IO71RSB0
Revision 3
4- 15
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
E18
GBA2/IO78PDB1
G9
IO23RSB0
H22
NC
E19
IO81PDB1
G10
IO29RSB0
J1
IO212NDB3
E20
GND
G11
IO33RSB0
J2
IO212PDB3
E21
NC
G12
IO46RSB0
J3
NC
E22
IO84PDB1
G13
IO52RSB0
J4
IO217NDB3
F1
NC
G14
IO60RSB0
J5
IO218NDB3
F2
IO215PDB3
G15
GNDQ
J6
IO216PDB3
F3
IO215NDB3
G16
IO80NDB1
J7
IO216NDB3
F4
IO224NDB3
G17
GBB2/IO79PDB1
J8
VCCIB3
F5
IO225NDB3
G18
IO79NDB1
J9
GND
F6
VMV3
G19
IO82NPB1
J10
VCC
F7
IO11RSB0
G20
IO85PDB1
J11
VCC
F8
GAC0/IO04RSB0
G21
IO85NDB1
J12
VCC
F9
GAC1/IO05RSB0
G22
NC
J13
VCC
F10
IO25RSB0
H1
NC
J14
GND
F11
IO36RSB0
H2
NC
J15
VCCIB1
F12
IO42RSB0
H3
VCC
J16
IO83NPB1
F13
IO49RSB0
H4
IO217PDB3
J17
IO86NPB1
F14
IO56RSB0
H5
IO218PDB3
J18
IO90PPB1
F15
GBC0/IO72RSB0
H6
IO221NDB3
J19
IO87NDB1
F16
IO62RSB0
H7
IO221PDB3
J20
NC
F17
VMV0
H8
VMV0
J21
IO89PDB1
F18
IO78NDB1
H9
VCCIB0
J22
IO89NDB1
F19
IO81NDB1
H10
VCCIB0
K1
IO211PDB3
F20
IO82PPB1
H11
IO38RSB0
K2
IO211NDB3
F21
NC
H12
IO47RSB0
K3
NC
F22
IO84NDB1
H13
VCCIB0
K4
IO210PPB3
G1
IO214NDB3
H14
VCCIB0
K5
IO213NDB3
G2
IO214PDB3
H15
VMV1
K6
IO213PDB3
G3
NC
H16
GBC2/IO80PDB1
K7
GFC1/IO209PPB3
G4
IO222NDB3
H17
IO83PPB1
K8
VCCIB3
G5
IO222PDB3
H18
IO86PPB1
K9
VCC
G6
GAC2/IO223PDB3
H19
IO87PDB1
K10
GND
G7
IO223NDB3
H20
VCC
K11
GND
G8
GNDQ
H21
NC
K12
GND
4- 16
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
K13
GND
M4
GFA2/IO206PDB3
N17
IO100NPB1
K14
VCC
M5
GFA1/IO207PDB3
N18
IO102NDB1
K15
VCCIB1
M6
VCCPLF
N19
IO102PDB1
K16
GCC1/IO91PPB1
M7
IO205NDB3
N20
NC
K17
IO90NPB1
M8
GFB2/IO205PDB3
N21
IO101NPB1
K18
IO88PDB1
M9
VCC
N22
IO103PDB1
K19
IO88NDB1
M10
GND
P1
NC
K20
IO94NPB1
M11
GND
P2
IO199PDB3
K21
IO98NDB1
M12
GND
P3
IO199NDB3
K22
IO98PDB1
M13
GND
P4
IO202NDB3
L1
NC
M14
VCC
P5
IO202PDB3
L2
IO200PDB3
M15
GCB2/IO95PPB1
P6
IO196PPB3
L3
IO210NPB3
M16
GCA1/IO93PPB1
P7
IO193PPB3
L4
GFB0/IO208NPB3
M17
GCC2/IO96PPB1
P8
VCCIB3
L5
GFA0/IO207NDB3
M18
IO100PPB1
P9
GND
L6
GFB1/IO208PPB3
M19
GCA2/IO94PPB1
P10
VCC
L7
VCOMPLF
M20
IO101PPB1
P11
VCC
L8
GFC0/IO209NPB3
M21
IO99PPB1
P12
VCC
L9
VCC
M22
NC
P13
VCC
L10
GND
N1
IO201NDB3
P14
GND
L11
GND
N2
IO201PDB3
P15
VCCIB1
L12
GND
N3
NC
P16
GDB0/IO112NPB1
L13
GND
N4
GFC2/IO204PDB3
P17
IO106NDB1
L14
VCC
N5
IO204NDB3
P18
IO106PDB1
L15
GCC0/IO91NPB1
N6
IO203NDB3
P19
IO107PDB1
L16
GCB1/IO92PPB1
N7
IO203PDB3
P20
NC
L17
GCA0/IO93NPB1
N8
VCCIB3
P21
IO104PDB1
L18
IO96NPB1
N9
VCC
P22
IO103NDB1
L19
GCB0/IO92NPB1
N10
GND
R1
NC
L20
IO97PDB1
N11
GND
R2
IO197PPB3
L21
IO97NDB1
N12
GND
R3
VCC
L22
IO99NPB1
N13
GND
R4
IO197NPB3
M1
NC
N14
VCC
R5
IO196NPB3
M2
IO200NDB3
N15
VCCIB1
R6
IO193NPB3
M3
IO206NDB3
N16
IO95NPB1
R7
GEC0/IO190NPB3
Revision 3
4- 17
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
R8
VMV3
T21
IO108PDB1
V12
IO143RSB2
R9
VCCIB2
T22
IO105NDB1
V13
IO138RSB2
R10
VCCIB2
U1
IO195PDB3
V14
IO131RSB2
R11
IO147RSB2
U2
IO195NDB3
V15
IO125RSB2
R12
IO136RSB2
U3
IO194NPB3
V16
GDB2/IO115RSB2
R13
VCCIB2
U4
GEB1/IO189PDB3
V17
TDI
R14
VCCIB2
U5
GEB0/IO189NDB3
V18
GNDQ
R15
VMV2
U6
VMV2
V19
TDO
R16
IO110NDB1
U7
IO179RSB2
V20
GND
R17
GDB1/IO112PPB1
U8
IO171RSB2
V21
NC
R18
GDC1/IO111PDB1
U9
IO165RSB2
V22
IO109NDB1
R19
IO107NDB1
U10
IO159RSB2
W1
NC
R20
VCC
U11
IO151RSB2
W2
IO191PDB3
R21
IO104NDB1
U12
IO137RSB2
W3
NC
R22
IO105PDB1
U13
IO134RSB2
W4
GND
T1
IO198PDB3
U14
IO128RSB2
W5
IO183RSB2
T2
IO198NDB3
U15
VMV1
W6
GEB2/IO186RSB2
T3
NC
U16
TCK
W7
IO172RSB2
T4
IO194PPB3
U17
VPUMP
W8
IO170RSB2
T5
IO192PPB3
U18
TRST
W9
IO164RSB2
T6
GEC1/IO190PPB3
U19
GDA0/IO113NDB1
W10
IO158RSB2
T7
IO192NPB3
U20
NC
W11
IO153RSB2
T8
GNDQ
U21
IO108NDB1
W12
IO142RSB2
T9
GEA2/IO187RSB2
U22
IO109PDB1
W13
IO135RSB2
T10
IO161RSB2
V1
NC
W14
IO130RSB2
T11
IO155RSB2
V2
NC
W15
GDC2/IO116RSB2
T12
IO141RSB2
V3
GND
W16
IO120RSB2
T13
IO129RSB2
V4
GEA1/IO188PDB3
W17
GDA2/IO114RSB2
T14
IO124RSB2
V5
GEA0/IO188NDB3
W18
TMS
T15
GNDQ
V6
IO184RSB2
W19
GND
T16
IO110PDB1
V7
GEC2/IO185RSB2
W20
NC
T17
VJTAG
V8
IO168RSB2
W21
NC
T18
GDC0/IO111NDB1
V9
IO163RSB2
W22
NC
T19
GDA1/IO113PDB1
V10
IO157RSB2
Y1
VCCIB3
T20
NC
V11
IO149RSB2
Y2
IO191NDB3
4- 18
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
FG484
Pin
Number
A3P1000 Function
Pin
Number
A3P1000 Function
Y3
NC
AA16
IO122RSB2
Y4
IO182RSB2
AA17
IO119RSB2
Y5
GND
AA18
IO117RSB2
Y6
IO177RSB2
AA19
NC
Y7
IO174RSB2
AA20
NC
Y8
VCC
AA21
VCCIB1
Y9
VCC
AA22
GND
Y10
IO154RSB2
AB1
GND
Y11
IO148RSB2
AB2
GND
Y12
IO140RSB2
AB3
VCCIB2
Y13
NC
AB4
IO180RSB2
Y14
VCC
AB5
IO176RSB2
Y15
VCC
AB6
IO173RSB2
Y16
NC
AB7
IO167RSB2
Y17
NC
AB8
IO162RSB2
Y18
GND
AB9
IO156RSB2
Y19
NC
AB10
IO150RSB2
Y20
NC
AB11
IO145RSB2
Y21
NC
AB12
IO144RSB2
Y22
VCCIB1
AB13
IO132RSB2
AA1
GND
AB14
IO127RSB2
AA2
VCCIB3
AB15
IO126RSB2
AA3
NC
AB16
IO123RSB2
AA4
IO181RSB2
AB17
IO121RSB2
AA5
IO178RSB2
AB18
IO118RSB2
AA6
IO175RSB2
AB19
NC
AA7
IO169RSB2
AB20
VCCIB2
AA8
IO166RSB2
AB21
GND
AA9
IO160RSB2
AB22
GND
AA10
IO152RSB2
AA11
IO146RSB2
AA12
IO139RSB2
AA13
IO133RSB2
AA14
NC
AA15
NC
Revision 3
4- 19
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
A1
GND
AA14
IO170NDB4V2
B5
IO08PDB0V0
A2
GND
AA15
IO170PDB4V2
B6
IO14NDB0V1
A3
VCCIB0
AA16
IO166NDB4V1
B7
IO14PDB0V1
A4
IO10NDB0V1
AA17
IO166PDB4V1
B8
IO18NDB0V2
A5
IO10PDB0V1
AA18
IO160NDB4V0
B9
IO24NDB0V2
A6
IO16NDB0V1
AA19
IO160PDB4V0
B10
IO34PDB0V4
A7
IO16PDB0V1
AA20
IO158NPB4V0
B11
IO40PDB0V4
A8
IO18PDB0V2
AA21
VCCIB3
B12
IO46NDB1V0
A9
IO24PDB0V2
AA22
GND
B13
IO54NDB1V1
A10
IO28NDB0V3
AB1
GND
B14
IO62NDB1V2
A11
IO28PDB0V3
AB2
GND
B15
IO62PDB1V2
A12
IO46PDB1V0
AB3
VCCIB5
B16
IO68NDB1V3
A13
IO54PDB1V1
AB4
IO216NDB5V2
B17
IO68PDB1V3
A14
IO56NDB1V1
AB5
IO216PDB5V2
B18
IO72PDB1V3
A15
IO56PDB1V1
AB6
IO210NDB5V2
B19
IO74PDB1V4
A16
IO64NDB1V2
AB7
IO210PDB5V2
B20
IO76NPB1V4
A17
IO64PDB1V2
AB8
IO208NDB5V1
B21
VCCIB2
A18
IO72NDB1V3
AB9
IO208PDB5V1
B22
GND
A19
IO74NDB1V4
AB10
IO197NDB5V0
C1
VCCIB7
A20
VCCIB1
AB11
IO197PDB5V0
C2
IO303PDB7V3
A21
GND
AB12
IO174NDB4V2
C3
IO305PDB7V3
A22
GND
AB13
IO174PDB4V2
C4
IO06NPB0V0
AA1
GND
AB14
IO172NDB4V2
C5
GND
AA2
VCCIB6
AB15
IO172PDB4V2
C6
IO12NDB0V1
AA3
IO228PDB5V4
AB16
IO168NDB4V1
C7
IO12PDB0V1
AA4
IO224PDB5V3
AB17
IO168PDB4V1
C8
VCC
AA5
IO218NDB5V3
AB18
IO162NDB4V1
C9
VCC
AA6
IO218PDB5V3
AB19
IO162PDB4V1
C10
IO34NDB0V4
AA7
IO212NDB5V2
AB20
VCCIB4
C11
IO40NDB0V4
AA8
IO212PDB5V2
AB21
GND
C12
IO48NDB1V0
AA9
IO198PDB5V0
AB22
GND
C13
IO48PDB1V0
AA10
IO198NDB5V0
B1
GND
C14
VCC
AA11
IO188PPB4V4
B2
VCCIB7
C15
VCC
AA12
IO180NDB4V3
B3
IO06PPB0V0
C16
IO70NDB1V3
AA13
IO180PDB4V3
B4
IO08NDB0V0
C17
IO70PDB1V3
4- 20
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
C18
GND
E9
IO22NDB0V2
F22
IO98NDB2V2
C19
IO76PPB1V4
E10
IO30NDB0V3
G1
IO289NDB7V1
C20
IO88NDB2V0
E11
IO38PDB0V4
G2
IO289PDB7V1
C21
IO94PPB2V1
E12
IO44NDB1V0
G3
IO291PPB7V2
C22
VCCIB2
E13
IO58NDB1V2
G4
IO295PDB7V2
D1
IO293PDB7V2
E14
IO58PDB1V2
G5
IO297PDB7V2
D2
IO303NDB7V3
E15
GBC1/IO79PDB1V4
G6
GAC2/IO307PDB7V4
D3
IO305NDB7V3
E16
GBB0/IO80NDB1V4
G7
VCOMPLA
D4
GND
E17
GNDQ
G8
GNDQ
D5
GAA0/IO00NDB0V0
E18
GBA2/IO82PDB2V0
G9
IO26NDB0V3
D6
GAA1/IO00PDB0V0
E19
IO86NDB2V0
G10
IO26PDB0V3
D7
GAB0/IO01NDB0V0
E20
GND
G11
IO36PDB0V4
D8
IO20PDB0V2
E21
IO90NDB2V1
G12
IO42PDB1V0
D9
IO22PDB0V2
E22
IO98PDB2V2
G13
IO50PDB1V1
D10
IO30PDB0V3
F1
IO299NPB7V3
G14
IO60NDB1V2
D11
IO38NDB0V4
F2
IO301NDB7V3
G15
GNDQ
D12
IO52NDB1V1
F3
IO301PDB7V3
G16
VCOMPLB
D13
IO52PDB1V1
F4
IO308NDB7V4
G17
GBB2/IO83PDB2V0
D14
IO66NDB1V3
F5
IO309NDB7V4
G18
IO92PDB2V1
D15
IO66PDB1V3
F6
VMV7
G19
IO92NDB2V1
D16
GBB1/IO80PDB1V4
F7
VCCPLA
G20
IO102PDB2V2
D17
GBA0/IO81NDB1V4
F8
GAC0/IO02NDB0V0
G21
IO102NDB2V2
D18
GBA1/IO81PDB1V4
F9
GAC1/IO02PDB0V0
G22
IO105NDB2V2
D19
GND
F10
IO32NDB0V3
H1
IO286PSB7V1
D20
IO88PDB2V0
F11
IO32PDB0V3
H2
IO291NPB7V2
D21
IO90PDB2V1
F12
IO44PDB1V0
H3
VCC
D22
IO94NPB2V1
F13
IO50NDB1V1
H4
IO295NDB7V2
E1
IO293NDB7V2
F14
IO60PDB1V2
H5
IO297NDB7V2
E2
IO299PPB7V3
F15
GBC0/IO79NDB1V4
H6
IO307NDB7V4
E3
GND
F16
VCCPLB
H7
IO287PDB7V1
E4
GAB2/IO308PDB7V4
F17
VMV2
H8
VMV0
E5
GAA2/IO309PDB7V4
F18
IO82NDB2V0
H9
VCCIB0
E6
GNDQ
F19
IO86PDB2V0
H10
VCCIB0
E7
GAB1/IO01PDB0V0
F20
IO96PDB2V1
H11
IO36NDB0V4
E8
IO20NDB0V2
F21
IO96NDB2V1
H12
IO42NDB1V0
Revision 3
4- 21
Package Pin Assignments
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
H13
VCCIB1
K4
IO279NDB7V0
L17
GCA0/IO114NPB3V0
H14
VCCIB1
K5
IO283NDB7V1
L18
VCOMPLC
H15
VMV1
K6
IO281NDB7V0
L19
GCB0/IO113NPB2V3
H16
GBC2/IO84PDB2V0
K7
GFC1/IO275PPB7V0
L20
IO110PPB2V3
H17
IO83NDB2V0
K8
VCCIB7
L21
IO111NDB2V3
H18
IO100NDB2V2
K9
VCC
L22
IO111PDB2V3
H19
IO100PDB2V2
K10
GND
M1
GNDQ
H20
VCC
K11
GND
M2
IO255NPB6V2
H21
VMV2
K12
GND
M3
IO272NDB6V4
H22
IO105PDB2V2
K13
GND
M4
GFA2/IO272PDB6V4
J1
IO285NDB7V1
K14
VCC
M5
GFA1/IO273PDB6V4
J2
IO285PDB7V1
K15
VCCIB2
M6
VCCPLF
J3
VMV7
K16
GCC1/IO112PPB2V3
M7
IO271NDB6V4
J4
IO279PDB7V0
K17
IO108NDB2V3
M8
GFB2/IO271PDB6V4
J5
IO283PDB7V1
K18
IO108PDB2V3
M9
VCC
J6
IO281PDB7V0
K19
IO110NPB2V3
M10
GND
J7
IO287NDB7V1
K20
IO106NPB2V3
M11
GND
J8
VCCIB7
K21
IO109NDB2V3
M12
GND
J9
GND
K22
IO107NDB2V3
M13
GND
J10
VCC
L1
IO257PSB6V2
M14
VCC
J11
VCC
L2
IO276PDB7V0
M15
GCB2/IO116PPB3V0
J12
VCC
L3
IO276NDB7V0
M16
GCA1/IO114PPB3V0
J13
VCC
L4
GFB0/IO274NPB7V0
M17
GCC2/IO117PPB3V0
J14
GND
L5
GFA0/IO273NDB6V4
M18
VCCPLC
J15
VCCIB2
L6
GFB1/IO274PPB7V0
M19
GCA2/IO115PDB3V0
J16
IO84NDB2V0
L7
VCOMPLF
M20
IO115NDB3V0
J17
IO104NDB2V2
L8
GFC0/IO275NPB7V0
M21
IO126PDB3V1
J18
IO104PDB2V2
L9
VCC
M22
IO124PSB3V1
J19
IO106PPB2V3
L10
GND
N1
IO255PPB6V2
J20
GNDQ
L11
GND
N2
IO253NDB6V2
J21
IO109PDB2V3
L12
GND
N3
VMV6
J22
IO107PDB2V3
L13
GND
N4
GFC2/IO270PPB6V4
K1
IO277NDB7V0
L14
VCC
N5
IO261PPB6V3
K2
IO277PDB7V0
L15
GCC0/IO112NPB2V3
N6
IO263PDB6V3
K3
GNDQ
L16
GCB1/IO113PPB2V3
N7
IO263NDB6V3
4- 22
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG484
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
N8
VCCIB6
P21
IO130PDB3V2
T12
IO194NDB5V0
N9
VCC
P22
IO128NDB3V1
T13
IO186NDB4V4
N10
GND
R1
IO247NDB6V1
T14
IO186PDB4V4
N11
GND
R2
IO245PDB6V1
T15
GNDQ
N12
GND
R3
VCC
T16
VCOMPLD
N13
GND
R4
IO249NPB6V1
T17
VJTAG
N14
VCC
R5
IO251NDB6V2
T18
GDC0/IO151NDB3V4
N15
VCCIB3
R6
IO251PDB6V2
T19
GDA1/IO153PDB3V4
N16
IO116NPB3V0
R7
GEC0/IO236NPB6V0
T20
IO144PDB3V3
N17
IO132NPB3V2
R8
VMV5
T21
IO140PDB3V3
N18
IO117NPB3V0
R9
VCCIB5
T22
IO134NDB3V2
N19
IO132PPB3V2
R10
VCCIB5
U1
IO240PPB6V0
N20
GNDQ
R11
IO196NDB5V0
U2
IO238PDB6V0
N21
IO126NDB3V1
R12
IO196PDB5V0
U3
IO238NDB6V0
N22
IO128PDB3V1
R13
VCCIB4
U4
GEB1/IO235PDB6V0
P1
IO247PDB6V1
R14
VCCIB4
U5
GEB0/IO235NDB6V0
P2
IO253PDB6V2
R15
VMV3
U6
VMV6
P3
IO270NPB6V4
R16
VCCPLD
U7
VCCPLE
P4
IO261NPB6V3
R17
GDB1/IO152PPB3V4
U8
IO233NPB5V4
P5
IO249PPB6V1
R18
GDC1/IO151PDB3V4
U9
IO222PPB5V3
P6
IO259PDB6V3
R19
IO138NDB3V3
U10
IO206PDB5V1
P7
IO259NDB6V3
R20
VCC
U11
IO202PDB5V1
P8
VCCIB6
R21
IO130NDB3V2
U12
IO194PDB5V0
P9
GND
R22
IO134PDB3V2
U13
IO176NDB4V2
P10
VCC
T1
IO243PPB6V1
U14
IO176PDB4V2
P11
VCC
T2
IO245NDB6V1
U15
VMV4
P12
VCC
T3
IO243NPB6V1
U16
TCK
P13
VCC
T4
IO241PDB6V0
U17
VPUMP
P14
GND
T5
IO241NDB6V0
U18
TRST
P15
VCCIB3
T6
GEC1/IO236PPB6V0
U19
GDA0/IO153NDB3V4
P16
GDB0/IO152NPB3V4
T7
VCOMPLE
U20
IO144NDB3V3
P17
IO136NDB3V2
T8
GNDQ
U21
IO140NDB3V3
P18
IO136PDB3V2
T9
GEA2/IO233PPB5V4
U22
IO142PDB3V3
P19
IO138PDB3V3
T10
IO206NDB5V1
V1
IO239PDB6V0
P20
VMV3
T11
IO202NDB5V1
V2
IO240NPB6V0
Revision 3
4- 23
Package Pin Assignments
FG484
FG484
Pin
Number
A3PE3000L Function
Pin
Number
A3PE3000L Function
V3
GND
W16
IO154NDB4V0
V4
GEA1/IO234PDB6V0
W17
GDA2/IO154PDB4V0
V5
GEA0/IO234NDB6V0
W18
TMS
V6
GNDQ
W19
GND
V7
GEC2/IO231PDB5V4
W20
IO150NDB3V4
V8
IO222NPB5V3
W21
IO146NDB3V4
V9
IO204NDB5V1
W22
IO148PPB3V4
V10
IO204PDB5V1
Y1
VCCIB6
V11
IO195NDB5V0
Y2
IO237NDB6V0
V12
IO195PDB5V0
Y3
IO228NDB5V4
V13
IO178NDB4V3
Y4
IO224NDB5V3
V14
IO178PDB4V3
Y5
GND
V15
IO155NDB4V0
Y6
IO220NDB5V3
V16
GDB2/IO155PDB4V0
Y7
IO220PDB5V3
V17
TDI
Y8
VCC
V18
GNDQ
Y9
VCC
V19
TDO
Y10
IO200PDB5V0
V20
GND
Y11
IO192PDB4V4
V21
IO146PDB3V4
Y12
IO188NPB4V4
V22
IO142NDB3V3
Y13
IO187PSB4V4
W1
IO239NDB6V0
Y14
VCC
W2
IO237PDB6V0
Y15
VCC
W3
IO230PSB5V4
Y16
IO164NDB4V1
W4
GND
Y17
IO164PDB4V1
W5
IO232NDB5V4
Y18
GND
W6
FF/GEB2/IO232PDB5V4
Y19
IO158PPB4V0
W7
IO231NDB5V4
Y20
IO150PDB3V4
W8
IO214NDB5V2
Y21
IO148NPB3V4
W9
IO214PDB5V2
Y22
VCCIB3
W10
IO200NDB5V0
W11
IO192NDB4V4
W12
IO184NDB4V3
W13
IO184PDB4V3
W14
IO156NDB4V0
W15
GDC2/IO156PDB4V0
4- 24
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG896
A1 Ball Pad Corner
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
Note: This is the bottom view.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
Revision 3
4- 25
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
4- 26
A2
GND
AA9
GEB1/IO235PPB6V0
AB15
IO198PDB5V0
A3
GND
AA10
VCC
AB16
IO192NDB4V4
A4
IO14NPB0V1
AA11
IO226PPB5V4
AB17
IO192PDB4V4
A5
GND
AA12
VCCIB5
AB18
IO178NDB4V3
A6
IO07NPB0V0
AA13
VCCIB5
AB19
IO178PDB4V3
A7
GND
AA14
VCCIB5
AB20
IO174NDB4V2
A8
IO09NDB0V1
AA15
VCCIB5
AB21
IO162NPB4V1
A9
IO17NDB0V2
AA16
VCCIB4
AB22
VCC
A10
IO17PDB0V2
AA17
VCCIB4
AB23
VCCPLD
A11
IO21NDB0V2
AA18
VCCIB4
AB24
VCCIB3
A12
IO21PDB0V2
AA19
VCCIB4
AB25
IO150PDB3V4
A13
IO33NDB0V4
AA20
IO174PDB4V2
AB26
IO148PDB3V4
A14
IO33PDB0V4
AA21
VCC
AB27
IO147NDB3V4
A15
IO35NDB0V4
AA22
IO142NPB3V3
AB28
IO145PDB3V3
A16
IO35PDB0V4
AA23
IO144NDB3V3
AB29
IO143PDB3V3
A17
IO41NDB1V0
AA24
IO144PDB3V3
AB30
IO137PDB3V2
A18
IO43NDB1V0
AA25
IO146NDB3V4
AC1
IO254PDB6V2
A19
IO43PDB1V0
AA26
IO146PDB3V4
AC2
IO254NDB6V2
A20
IO45NDB1V0
AA27
IO147PDB3V4
AC3
IO240PDB6V0
A21
IO45PDB1V0
AA28
IO139NDB3V3
AC4
GEC1/IO236PDB6V0
A22
IO57NDB1V2
AA29
IO139PDB3V3
AC5
IO237PDB6V0
A23
IO57PDB1V2
AA30
IO133NDB3V2
AC6
IO237NDB6V0
A24
GND
AB1
IO256NDB6V2
AC7
VCOMPLE
A25
IO69PPB1V3
AB2
IO244PDB6V1
AC8
GND
A26
GND
AB3
IO244NDB6V1
AC9
IO226NPB5V4
A27
GBC1/IO79PPB1V4
AB4
IO241PDB6V0
AC10
IO222NDB5V3
A28
GND
AB5
IO241NDB6V0
AC11
IO216NPB5V2
A29
GND
AB6
IO243NPB6V1
AC12
IO210NPB5V2
AA1
IO256PDB6V2
AB7
VCCIB6
AC13
IO204NDB5V1
AA2
IO248PDB6V1
AB8
VCCPLE
AC14
IO204PDB5V1
AA3
IO248NDB6V1
AB9
VCC
AC15
IO194NDB5V0
AA4
IO246NDB6V1
AB10
IO222PDB5V3
AC16
IO188NDB4V4
AA5
GEA1/IO234PDB6V0
AB11
IO218PPB5V3
AC17
IO188PDB4V4
AA6
GEA0/IO234NDB6V0
AB12
IO206NDB5V1
AC18
IO182PPB4V3
AA7
IO243PPB6V1
AB13
IO206PDB5V1
AC19
IO170NPB4V2
AA8
IO245NDB6V1
AB14
IO198NDB5V0
AC20
IO164NDB4V1
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
AC21
IO164PDB4V1
AD26
VCCIB3
AE30
IO149PDB3V4
AC22
IO162PPB4V1
AD27
GDA0/IO153NDB3V4
AF1
GND
AC23
GND
AD28
GDC0/IO151NDB3V4
AF2
IO238PPB6V0
AC24
VCOMPLD
AD29
GDC1/IO151PDB3V4
AF3
VCCIB6
AC25
IO150NDB3V4
AD30
GND
AF4
IO220NPB5V3
AC26
IO148NDB3V4
AE1
IO242PPB6V1
AF5
VCC
AC27
GDA1/IO153PDB3V4
AE2
VCC
AF6
IO228NDB5V4
AC28
IO145NDB3V3
AE3
IO239PDB6V0
AF7
VCCIB5
AC29
IO143NDB3V3
AE4
IO239NDB6V0
AF8
IO230PDB5V4
AC30
IO137NDB3V2
AE5
VMV6
AF9
IO229NDB5V4
AD1
GND
AE5
VMV6
AF10
IO229PDB5V4
AD2
IO242NPB6V1
AE6
GND
AF11
IO214PPB5V2
AD3
IO240NDB6V0
AE7
GNDQ
AF12
IO208NDB5V1
AD4
GEC0/IO236NDB6V0
AE8
IO230NDB5V4
AF13
IO208PDB5V1
AD5
VCCIB6
AE9
IO224NPB5V3
AF14
IO200PDB5V0
AD6
GNDQ
AE10
IO214NPB5V2
AF15
IO196NDB5V0
AD6
GNDQ
AE11
IO212NDB5V2
AF16
IO186NDB4V4
AD7
VCC
AE12
IO212PDB5V2
AF17
IO186PDB4V4
AD8
VMV5
AE13
IO202NPB5V1
AF18
IO180NDB4V3
AD9
VCCIB5
AE14
IO200NDB5V0
AF19
IO180PDB4V3
AD10
IO224PPB5V3
AE15
IO196PDB5V0
AF20
IO168NDB4V1
AD11
IO218NPB5V3
AE16
IO190NDB4V4
AF21
IO168PDB4V1
AD12
IO216PPB5V2
AE17
IO184PDB4V3
AF22
IO160NDB4V0
AD13
IO210PPB5V2
AE18
IO184NDB4V3
AF23
IO158NPB4V0
AD14
IO202PPB5V1
AE19
IO172PDB4V2
AF24
VCCIB4
AD15
IO194PDB5V0
AE20
IO172NDB4V2
AF25
IO154NPB4V0
AD16
IO190PDB4V4
AE21
IO166NDB4V1
AF26
VCC
AD17
IO182NPB4V3
AE22
IO160PDB4V0
AF27
TDO
AD18
IO176NDB4V2
AE23
GNDQ
AF28
VCCIB3
AD19
IO176PDB4V2
AE24
VMV4
AF29
GNDQ
AD20
IO170PPB4V2
AE25
GND
AF29
GNDQ
AD21
IO166PDB4V1
AE26
GDB0/IO152NDB3V4
AF30
GND
AD22
VCCIB4
AE27
GDB1/IO152PDB3V4
AG1
IO238NPB6V0
AD23
TCK
AE28
VMV3
AG2
VCC
AD24
VCC
AE28
VMV3
AG3
IO232NPB5V4
AD25
TRST
AE29
VCC
AG4
GND
Revision 3
4- 27
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
4- 28
AG5
IO220PPB5V3
AH10
IO225PPB5V3
AJ16
IO183NDB4V3
AG6
IO228PDB5V4
AH11
IO223PPB5V3
AJ17
IO183PDB4V3
AG7
IO231NDB5V4
AH12
IO211NDB5V2
AJ18
IO179NPB4V3
AG8
GEC2/IO231PDB5V4
AH13
IO211PDB5V2
AJ19
IO177PDB4V2
AG9
IO225NPB5V3
AH14
IO205PPB5V1
AJ20
IO173NDB4V2
AG10
IO223NPB5V3
AH15
IO195NDB5V0
AJ21
IO173PDB4V2
AG11
IO221PDB5V3
AH16
IO185NDB4V3
AJ22
IO163NDB4V1
AG12
IO221NDB5V3
AH17
IO185PDB4V3
AJ23
IO163PDB4V1
AG13
IO205NPB5V1
AH18
IO181PDB4V3
AJ24
IO167NPB4V1
AG14
IO199NDB5V0
AH19
IO177NDB4V2
AJ25
VCC
AG15
IO199PDB5V0
AH20
IO171NPB4V2
AJ26
IO156NPB4V0
AG16
IO187NDB4V4
AH21
IO165PPB4V1
AJ27
VCC
AG17
IO187PDB4V4
AH22
IO161PPB4V0
AJ28
TMS
AG18
IO181NDB4V3
AH23
IO157NDB4V0
AJ29
GND
AG19
IO171PPB4V2
AH24
IO157PDB4V0
AJ30
GND
AG20
IO165NPB4V1
AH25
IO155NDB4V0
AK2
GND
AG21
IO161NPB4V0
AH26
VCCIB4
AK3
GND
AG22
IO159NDB4V0
AH27
TDI
AK4
IO217PPB5V2
AG23
IO159PDB4V0
AH28
VCC
AK5
GND
AG24
IO158PPB4V0
AH29
VPUMP
AK6
IO215PPB5V2
AG25
GDB2/IO155PDB4V0
AH30
GND
AK7
GND
AG26
GDA2/IO154PPB4V0
AJ1
GND
AK8
IO207NDB5V1
AG27
GND
AJ2
GND
AK9
IO207PDB5V1
AG28
VJTAG
AJ3
GEA2/IO233PPB5V4
AK10
IO201NDB5V0
AG29
VCC
AJ4
VCC
AK11
IO201PDB5V0
AG30
IO149NDB3V4
AJ5
IO217NPB5V2
AK12
IO193NDB4V4
AH1
GND
AJ6
VCC
AK13
IO193PDB4V4
AH2
IO233NPB5V4
AJ7
IO215NPB5V2
AK14
IO197PDB5V0
AH3
VCC
AJ8
IO213NDB5V2
AK15
IO191NDB4V4
AH4
FF/GEB2/IO232PPB5
V4
AJ9
IO213PDB5V2
AK16
IO191PDB4V4
AJ10
IO209NDB5V1
AK17
IO189NDB4V4
AH5
VCCIB5
AJ11
IO209PDB5V1
AK18
IO189PDB4V4
AH6
IO219NDB5V3
AJ12
IO203NDB5V1
AK19
IO179PPB4V3
AH7
IO219PDB5V3
AJ13
IO203PDB5V1
AK20
IO175NDB4V2
AH8
IO227NDB5V4
AJ14
IO197NDB5V0
AK21
IO175PDB4V2
AH9
IO227PDB5V4
AJ15
IO195PDB5V0
AK22
IO169NDB4V1
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
AK23
IO169PDB4V1
B30
GND
D6
GAC1/IO02PDB0V0
AK24
GND
C1
GND
D7
IO06NPB0V0
AK25
IO167PPB4V1
C2
IO309NPB7V4
D8
GAB0/IO01NDB0V0
AK26
GND
C3
VCC
D9
IO05NDB0V0
AK27
GDC2/IO156PPB4V0
C4
GAA0/IO00NPB0V0
D10
IO11NDB0V1
AK28
GND
C5
VCCIB0
D11
IO11PDB0V1
AK29
GND
C6
IO03PDB0V0
D12
IO23NDB0V2
B1
GND
C7
IO03NDB0V0
D13
IO23PDB0V2
B2
GND
C8
GAB1/IO01PDB0V0
D14
IO27PDB0V3
B3
GAA2/IO309PPB7V4
C9
IO05PDB0V0
D15
IO40PDB0V4
B4
VCC
C10
IO15NPB0V1
D16
IO47NDB1V0
B5
IO14PPB0V1
C11
IO25NDB0V3
D17
IO47PDB1V0
B6
VCC
C12
IO25PDB0V3
D18
IO55NPB1V1
B7
IO07PPB0V0
C13
IO31NPB0V3
D19
IO65NDB1V3
B8
IO09PDB0V1
C14
IO27NDB0V3
D20
IO65PDB1V3
B9
IO15PPB0V1
C15
IO39NDB0V4
D21
IO71NDB1V3
B10
IO19NDB0V2
C16
IO39PDB0V4
D22
IO71PDB1V3
B11
IO19PDB0V2
C17
IO55PPB1V1
D23
IO73NDB1V4
B12
IO29NDB0V3
C18
IO51PDB1V1
D24
IO73PDB1V4
B13
IO29PDB0V3
C19
IO59NDB1V2
D25
IO74NDB1V4
B14
IO31PPB0V3
C20
IO63NDB1V2
D26
GBB0/IO80NPB1V4
B15
IO37NDB0V4
C21
IO63PDB1V2
D27
GND
B16
IO37PDB0V4
C22
IO67NDB1V3
D28
GBA0/IO81NPB1V4
B17
IO41PDB1V0
C23
IO67PDB1V3
D29
VCC
B18
IO51NDB1V1
C24
IO75NDB1V4
D30
GBA2/IO82PPB2V0
B19
IO59PDB1V2
C25
IO75PDB1V4
E1
GND
B20
IO53PDB1V1
C26
VCCIB1
E2
IO303NPB7V3
B21
IO53NDB1V1
C27
IO64PPB1V2
E3
VCCIB7
B22
IO61NDB1V2
C28
VCC
E4
IO305PPB7V3
B23
IO61PDB1V2
C29
GBA1/IO81PPB1V4
E5
VCC
B24
IO69NPB1V3
C30
GND
E6
GAC0/IO02NDB0V0
B25
VCC
D1
IO303PPB7V3
E7
VCCIB0
B26
GBC0/IO79NPB1V4
D2
VCC
E8
IO06PPB0V0
B27
VCC
D3
IO305NPB7V3
E9
IO24NDB0V2
B28
IO64NPB1V2
D4
GND
E10
IO24PDB0V2
B29
GND
D5
GAA1/IO00PPB0V0
E11
IO13NDB0V1
Revision 3
4- 29
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
4- 30
E12
IO13PDB0V1
F17
IO48PDB1V0
G21
IO66PDB1V3
E13
IO34NDB0V4
F18
IO50NDB1V1
G22
VCCIB1
E14
IO34PDB0V4
F19
IO58NDB1V2
G23
VMV1
E15
IO40NDB0V4
F20
IO60PDB1V2
G24
VCC
E16
IO49NDB1V1
F21
IO77NDB1V4
G25
GNDQ
E17
IO49PDB1V1
F22
IO72NDB1V3
G25
GNDQ
E18
IO50PDB1V1
F23
IO72PDB1V3
G26
VCCIB2
E19
IO58PDB1V2
F24
GNDQ
G27
IO86NDB2V0
E20
IO60NDB1V2
F25
GND
G28
IO92NDB2V1
E21
IO77PDB1V4
F26
VMV2
G29
IO100PPB2V2
E22
IO68NDB1V3
F26
VMV2
G30
GND
E23
IO68PDB1V3
F27
IO86PDB2V0
H1
IO294PDB7V2
E24
VCCIB1
F28
IO92PDB2V1
H2
IO294NDB7V2
E25
IO74PDB1V4
F29
VCC
H3
IO300NDB7V3
E26
VCC
F30
IO100NPB2V2
H4
IO300PDB7V3
E27
GBB1/IO80PPB1V4
G1
GND
H5
IO295PDB7V2
E28
VCCIB2
G2
IO296NPB7V2
H6
IO299PDB7V3
E29
IO82NPB2V0
G3
IO306NDB7V4
H7
VCOMPLA
E30
GND
G4
IO297NDB7V2
H8
GND
F1
IO296PPB7V2
G5
VCCIB7
H9
IO08NDB0V0
F2
VCC
G6
GNDQ
H10
IO08PDB0V0
F3
IO306PDB7V4
G6
GNDQ
H11
IO18PDB0V2
F4
IO297PDB7V2
G7
VCC
H12
IO26NPB0V3
F5
VMV7
G8
VMV0
H13
IO28NDB0V3
F5
VMV7
G9
VCCIB0
H14
IO28PDB0V3
F6
GND
G10
IO10NDB0V1
H15
IO38PPB0V4
F7
GNDQ
G11
IO16NDB0V1
H16
IO42NDB1V0
F8
IO12NDB0V1
G12
IO22PDB0V2
H17
IO52NDB1V1
F9
IO12PDB0V1
G13
IO26PPB0V3
H18
IO52PDB1V1
F10
IO10PDB0V1
G14
IO38NPB0V4
H19
IO62NDB1V2
F11
IO16PDB0V1
G15
IO36NDB0V4
H20
IO62PDB1V2
F12
IO22NDB0V2
G16
IO46NDB1V0
H21
IO70NDB1V3
F13
IO30NDB0V3
G17
IO46PDB1V0
H22
IO70PDB1V3
F14
IO30PDB0V3
G18
IO56NDB1V1
H23
GND
F15
IO36PDB0V4
G19
IO56PDB1V1
H24
VCOMPLB
F16
IO48NDB1V0
G20
IO66NDB1V3
H25
GBC2/IO84PDB2V0
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
H26
IO84NDB2V0
K2
IO288PDB7V1
L8
IO293PDB7V2
H27
IO96PDB2V1
K3
IO304NDB7V3
L9
IO293NDB7V2
H28
IO96NDB2V1
K4
IO304PDB7V3
L10
IO307NPB7V4
H29
IO89PDB2V0
K5
GAB2/IO308PDB7V4
L11
VCC
H30
IO89NDB2V0
K6
IO308NDB7V4
L12
VCC
J1
IO290NDB7V2
K7
IO301PDB7V3
L13
VCC
J2
IO290PDB7V2
K8
IO301NDB7V3
L14
VCC
J3
IO302NDB7V3
K9
GAC2/IO307PPB7V4
L15
VCC
J4
IO302PDB7V3
K10
VCC
L16
VCC
J5
IO295NDB7V2
K11
IO04PPB0V0
L17
VCC
J6
IO299NDB7V3
K12
VCCIB0
L18
VCC
J7
VCCIB7
K13
VCCIB0
L19
VCC
J8
VCCPLA
K14
VCCIB0
L20
VCC
J9
VCC
K15
VCCIB0
L21
IO78NPB1V4
J10
IO04NPB0V0
K16
VCCIB1
L22
IO104NPB2V2
J11
IO18NDB0V2
K17
VCCIB1
L23
IO98NDB2V2
J12
IO20NDB0V2
K18
VCCIB1
L24
IO98PDB2V2
J13
IO20PDB0V2
K19
VCCIB1
L25
IO87PDB2V0
J14
IO32NDB0V3
K20
IO76PPB1V4
L26
IO87NDB2V0
J15
IO32PDB0V3
K21
VCC
L27
IO97PDB2V1
J16
IO42PDB1V0
K22
IO78PPB1V4
L28
IO101PDB2V2
J17
IO44NDB1V0
K23
IO88NDB2V0
L29
IO103PDB2V2
J18
IO44PDB1V0
K24
IO88PDB2V0
L30
IO119NDB3V0
J19
IO54NDB1V1
K25
IO94PDB2V1
M1
IO282NDB7V1
J20
IO54PDB1V1
K26
IO94NDB2V1
M2
IO282PDB7V1
J21
IO76NPB1V4
K27
IO85PDB2V0
M3
IO292NDB7V2
J22
VCC
K28
IO85NDB2V0
M4
IO292PDB7V2
J23
VCCPLB
K29
IO93PDB2V1
M5
IO283NDB7V1
J24
VCCIB2
K30
IO93NDB2V1
M6
IO285PDB7V1
J25
IO90PDB2V1
L1
IO286NDB7V1
M7
IO287PDB7V1
J26
IO90NDB2V1
L2
IO286PDB7V1
M8
IO289PDB7V1
J27
GBB2/IO83PDB2V0
L3
IO298NDB7V3
M9
IO289NDB7V1
J28
IO83NDB2V0
L4
IO298PDB7V3
M10
VCCIB7
J29
IO91PDB2V1
L5
IO283PDB7V1
M11
VCC
J30
IO91NDB2V1
L6
IO291NDB7V2
M12
GND
K1
IO288NDB7V1
L7
IO291PDB7V2
M13
GND
Revision 3
4- 31
Package Pin Assignments
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
4- 32
M14
GND
N20
VCC
P26
IO111NPB2V3
M15
GND
N21
VCCIB2
P27
IO105PDB2V2
M16
GND
N22
IO106NDB2V3
P28
IO105NDB2V2
M17
GND
N23
IO106PDB2V3
P29
GCC2/IO117PDB3V0
M18
GND
N24
IO108PDB2V3
P30
IO117NDB3V0
M19
GND
N25
IO108NDB2V3
R1
GFC2/IO270PDB6V4
M20
VCC
N26
IO95NDB2V1
R2
GFB1/IO274PPB7V0
M21
VCCIB2
N27
IO99NDB2V2
R3
VCOMPLF
M22
NC
N28
IO99PDB2V2
R4
GFA0/IO273NDB6V4
M23
IO104PPB2V2
N29
IO107PDB2V3
R5
GFB0/IO274NPB7V0
M24
IO102PDB2V2
N30
IO107NDB2V3
R6
IO271NDB6V4
M25
IO102NDB2V2
P1
IO276NDB7V0
R7
GFB2/IO271PDB6V4
M26
IO95PDB2V1
P2
IO278NDB7V0
R8
IO269PDB6V4
M27
IO97NDB2V1
P3
IO280NDB7V0
R9
IO269NDB6V4
M28
IO101NDB2V2
P4
IO284NDB7V1
R10
VCCIB7
M29
IO103NDB2V2
P5
IO279NDB7V0
R11
VCC
M30
IO119PDB3V0
P6
GFC1/IO275PDB7V0
R12
GND
N1
IO276PDB7V0
P7
GFC0/IO275NDB7V0
R13
GND
N2
IO278PDB7V0
P8
IO277PDB7V0
R14
GND
N3
IO280PDB7V0
P9
IO277NDB7V0
R15
GND
N4
IO284PDB7V1
P10
VCCIB7
R16
GND
N5
IO279PDB7V0
P11
VCC
R17
GND
N6
IO285NDB7V1
P12
GND
R18
GND
N7
IO287NDB7V1
P13
GND
R19
GND
N8
IO281NDB7V0
P14
GND
R20
VCC
N9
IO281PDB7V0
P15
GND
R21
VCCIB2
N10
VCCIB7
P16
GND
R22
GCC0/IO112NDB2V3
N11
VCC
P17
GND
R23
GCB2/IO116PDB3V0
N12
GND
P18
GND
R24
IO118PDB3V0
N13
GND
P19
GND
R25
IO111PPB2V3
N14
GND
P20
VCC
R26
IO122PPB3V1
N15
GND
P21
VCCIB2
R27
GCA0/IO114NPB3V0
N16
GND
P22
GCC1/IO112PDB2V3
R28
VCOMPLC
N17
GND
P23
IO110PDB2V3
R29
GCB1/IO113PPB2V3
N18
GND
P24
IO110NDB2V3
R30
IO115NPB3V0
N19
GND
P25
IO109PPB2V3
T1
IO270NDB6V4
R e visio n 3
Military ProASIC3/EL Low Power Flash FPGAs
FG896
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
T2
VCCPLF
U8
IO265NDB6V3
V14
GND
T3
GFA2/IO272PPB6V4
U9
IO263NDB6V3
V15
GND
T4
GFA1/IO273PDB6V4
U10
VCCIB6
V16
GND
T5
IO272NPB6V4
U11
VCC
V17
GND
T6
IO267NDB6V4
U12
GND
V18
GND
T7
IO267PDB6V4
U13
GND
V19
GND
T8
IO265PDB6V3
U14
GND
V20
VCC
T9
IO263PDB6V3
U15
GND
V21
VCCIB3
T10
VCCIB6
U16
GND
V22
IO120NDB3V0
T11
VCC
U17
GND
V23
IO128NDB3V1
T12
GND
U18
GND
V24
IO132PDB3V2
T13
GND
U19
GND
V25
IO130PPB3V2
T14
GND
U20
VCC
V26
IO126NDB3V1
T15
GND
U21
VCCIB3
V27
IO129NDB3V1
T16
GND
U22
IO120PDB3V0
V28
IO127NDB3V1
T17
GND
U23
IO128PDB3V1
V29
IO125NDB3V1
T18
GND
U24
IO124PDB3V1
V30
IO123PDB3V1
T19
GND
U25
IO124NDB3V1
W1
IO266NDB6V4
T20
VCC
U26
IO126PDB3V1
W2
IO262NDB6V3
T21
VCCIB3
U27
IO129PDB3V1
W3
IO260NDB6V3
T22
IO109NPB2V3
U28
IO127PDB3V1
W4
IO252NDB6V2
T23
IO116NDB3V0
U29
IO125PDB3V1
W5
IO251NDB6V2
T24
IO118NDB3V0
U30
IO121NDB3V0
W6
IO251PDB6V2
T25
IO122NPB3V1
V1
IO268NDB6V4
W7
IO255NDB6V2
T26
GCA1/IO114PPB3V0
V2
IO262PDB6V3
W8
IO249PPB6V1
T27
GCB0/IO113NPB2V3
V3
IO260PDB6V3
W9
IO253PDB6V2
T28
GCA2/IO115PPB3V0
V4
IO252PDB6V2
W10
VCCIB6
T29
VCCPLC
V5
IO257NPB6V2
W11
VCC
T30
IO121PDB3V0
V6
IO261NPB6V3
W12
GND
U1
IO268PDB6V4
V7
IO255PDB6V2
W13
GND
U2
IO264NDB6V3
V8
IO259PDB6V3
W14
GND
U3
IO264PDB6V3
V9
IO259NDB6V3
W15
GND
U4
IO258PDB6V3
V10
VCCIB6
W16
GND
U5
IO258NDB6V3
V11
VCC
W17
GND
U6
IO257PPB6V2
V12
GND
W18
GND
U7
IO261PPB6V3
V13
GND
W19
GND
Revision 3
4- 33
Package Pin Assignments
FG896
FG896
Pin Number A3PE3000L Function
Pin Number A3PE3000L Function
4- 34
W20
VCC
Y26
IO136PPB3V2
W21
VCCIB3
Y27
IO141NDB3V3
W22
IO134PDB3V2
Y28
IO135NDB3V2
W23
IO138PDB3V3
Y29
IO131NDB3V2
W24
IO132NDB3V2
Y30
IO133PDB3V2
W25
IO136NPB3V2
W26
IO130NPB3V2
W27
IO141PDB3V3
W28
IO135PDB3V2
W29
IO131PDB3V2
W30
IO123NDB3V1
Y1
IO266PDB6V4
Y2
IO250PDB6V2
Y3
IO250NDB6V2
Y4
IO246PDB6V1
Y5
IO247NDB6V1
Y6
IO247PDB6V1
Y7
IO249NPB6V1
Y8
IO245PDB6V1
Y9
IO253NDB6V2
Y10
GEB0/IO235NPB6V0
Y11
VCC
Y12
VCC
Y13
VCC
Y14
VCC
Y15
VCC
Y16
VCC
Y17
VCC
Y18
VCC
Y19
VCC
Y20
VCC
Y21
IO142PPB3V3
Y22
IO134NDB3V2
Y23
IO138NDB3V3
Y24
IO140NDB3V3
Y25
IO140PDB3V3
R e visio n 3
5 – Datasheet Information
List of Changes
The following table lists critical changes that were made in each revision of the datasheet.
Revision
Changes
Page
Revision 3
The "Security" section was modified to clarify that Microsemi does not support read-back
(September 2012) of programmed data.
1-2
Revision 2
(June 2012)
The FG484 package was added for A3P1000 in Table 1 • Military ProASIC3/EL LowPower Devices, the I/Os Per Package 1 table , and the "Temperature Grade Offerings"
table (SAR 39010).
I, II,
IV
The "FG484" pin table for A3P1000 has been added (SAR 39010).
4-15
Revision 1
(June 2011)
In the "High Performance" section, 66-Bit PCI was corrected to 64-Bit PCI (SAR 31977).
I
The A3P250 device and VQ100 package were added to product tables in the "Military
ProASIC3/EL Low Power Flash FPGAs" chapter (SAR 30526).
I
The Y security option and Licensed DPA Logo were added to the "Military ProASIC3/EL
Ordering Information" section. The trademarked Licensed DPA Logo identifies that a
product is covered by a DPA counter-measures license from Cryptography Research
(SAR 32151).
III
The A3P250 device was added to applicable tables in the "Military ProASIC3/EL DC and
Switching Characteristics" chapter (SAR 30526).
2-1
The VPUMP voltage for operation mode was changed from "0 to 3.45 V" to "0 to 3.6 V" in
Table 2-2 • Recommended Operating Conditions 1(SAR 25220).
2-2
3.3 V LVCMOS wide range and 1.2 V LVCMOS wide range were added to applicable
tables in the following sections (SAR 28061):
Table 2-2 • Recommended Operating Conditions 1
"Power per I/O Pin"
"Overview of I/O Performance"
"Summary of I/O Timing Characteristics – Default I/O Software Settings"
"User I/O Characteristics"
"Detailed I/O DC Characteristics"
"Single-Ended I/O Characteristics" (SAR 31925)
The "Quiescent Supply Current " section was updated.
2-2
2-11
2-24
2-27
2-20
2-31
2-39
2-9
Table 2-7 • Power Supply State Per Mode is new (SAR 24882, 24112, 32549).
New values were added to the following tables (SAR 30619):
Table 2-8 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode*
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode*
Table 2-11 • Quiescent Supply Current (IDD), Static Mode and Active Mode 1 (the name
of this table changed from "No Flash*Freeze Mode" to "Static Mode and Active Mode" per
SAR 32549)
Table 2-12 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000
The military maximum current for A3P1000 was revised in the following table (SAR
30620):
Table 2-12 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000
Revision 3
5 -1
Datasheet Information
Revision
Changes
Page
All timing and power tables were updated to reflect changes in the software resulting from 2-11
characterization and bug fixes (SAR 32394).
to
2-14
8
Revision 1
(continued)
In the following tables for A3P250 and A3P1000, the note regarding dynamic power was 2-14,
revised to, "Dynamic Power consumption is given for software default drive strength and 2-14
output slew. Output load is lower than the software default" (SAR 32449).
Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software
Settings 1
Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software
Settings
Values for A3PE600L and A3P250 were added to Table 2-20 • Different Components 2-15,
Contributing to Dynamic Power Consumption in Military ProASIC3 and ProASIC3/EL 2-16
Devices at 1.5 V VCC. Values in the table, and in Table 2-19 • Different Components
Contributing to Dynamic Power Consumption in Military ProASIC3/EL Devices Operating
at 1.2 V VCC, were updated were updated to reflect changes in the software resulting
from characterization and bug fixes (SAR 30528).
Table 2-21 • Different Components Contributing to the Static Power Consumption in 2-16,
Military ProASIC3/EL Devices and the "Total Static Power Consumption—PSTAT" 2-17
calculation were updated to add PDC0 (SAR 32549).
The "Timing Model" was updated (SAR 29793).
2-20
The title of Table 2-28 • Summary of AC Measuring Points was changed from "Summary 2-27
of AC Memory Points" (SAR 32446).
The following note was added to Table 2-30, Table 2-31, and Table 2-31, Summary of I/O 2-28
Timing Characteristics (SAR 32449):
"Output delays provided in this table were extracted with an output load indicated in the
Capacitive Load column. For a specific output load, refer to Designer software."
2-32
Table 2-35 • I/O Output Buffer Maximum Resistances 1 Applicable to Pro I/Os for throu
gh
A3PE600L and A3PE3000L Only
2-35
Table 2-39 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and
A3PE3000L Only (SAR 31717)
Resistances and short circuit currents were updated (SARs 29793, 31717):
Tables for Pro I/Os in the "Single-Ended I/O Characteristics" section (SAR 31717).
The drive strength was changed from 25 mA to 20 mA for 3.3 V and 2.5 V GTL
(SAR 31978). This affects the following tables:
2-24
Table 2-30 • Summary of I/O Timing Characteristics—Software Default Settings (SAR 2-28
32394)
2-29
2-32
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings
Table 2-24 • Summary of Maximum and Minimum DC Input and Output Levels
Table 2-35 • I/O Output Buffer Maximum Resistances 1 Applicable to Pro I/Os for
A3PE600L and A3PE3000L Only
2-35
Table 2-39 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and
A3PE3000L Only
2-75
Table 2-119 • Minimum and Maximum DC Input and Output Levels
2-77
Table 2-123 • Minimum and Maximum DC Input and Output Levels
The values in Table 2-38 • I/O Weak Pull-Up/Pull-Down Resistances were revised (SAR 2-34
29793, 28061).
5-2
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Revision
Changes
Page
The AC Loading diagrams in the "Single-Ended I/O Characteristics" section were 2-39
updated to match summary of I/O timing tables in the "Summary of I/O Timing
Characteristics – Default I/O Software Settings" section (SAR 32449).
Revision 1
(continued)
The tables in the "Voltage-Referenced I/O Characteristics" section and "Differential I/O 2-75
Characteristics" section were updated with current values (SARs 29793, 32391, 32394). 2-87
Two note references were added to Table 2-159 • Minimum and Maximum DC Input and 2-88
Output Levels to clarify the following notes: ±5% [VCCI] and differential input voltage =
±350 mV [VDIFF] (SAR 29428).
The "Global Tree Timing Characteristics" section was updated.
Table 2-198 • A3P250 Global Resource is new (SAR 30526).
2-12
2
Available values were added or revised in the following tables (SAR 30698):
Table 2-194 • A3PE600L Global Resource
Table 2-199 • A3P1000 Global Resource
Table 2-196 • A3PE600L Global Resource
Table 2-200 • Military ProASIC3/EL CCC/PLL Specification and Table 2-201 • Military 2-12
ProASIC3/EL CCC/PLL Specification were updated with current values (SAR 32521).
5
The following figures were removed (SAR 29991):
N/A
Figure 2-49 • Write Access after Write onto Same Address
Figure 2-50 • Read Access after Write onto Same Address
Figure 2-51 • Write Access after Read onto Same Address
The naming of the address collision parameters in the SRAM "Timing Characteristics" 2-13
section was changed, and values were updated accordingly (SAR 29991).
1
The values for tCKQ1 in Table 2-202 • RAM4K9, Table 2-203 • RAM4K9, and Table 2-204 2-13
• RAM4K9 were reversed with respect to WMODE and have been corrected (SAR
1,
32343).
2-13
2,
2-13
3
Table 2-211 • FIFO through Table 2-215 • FIFO are new (SAR 32394).
2-14
3,
2-14
7
Tables in the "Embedded FlashROM Characteristics" section were updated (SAR 32392). 2-14
8
The "Pin Descriptions and Packaging" chapter was added (SAR 21642).
3-1
Package names used in the "Package Pin Assignments" section were revised to match
standards given in Package Mechanical Drawings (SAR 27395).
4-1
The "VQ100*" pin table for A3P250 is new (SAR 31975).
4-2
The "FG144" pin table for A3P1000 was updated to remove the Flash*Freeze (FF) 4-7,
designation from pin L3. This package does not support Flash*Freeze functionality. Pin 4-10
W6 of the "FG484" for A3PE600L was designated as the Flash*Freeze control pin for that
package (SAR 24084).
Revision 3
5 -3
Datasheet Information
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device, as
highlighted in the "Military ProASIC3/EL Device Status" table on page II, is designated as either "Product
Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.
Safety Critical, Life Support, and High-Reliability Applications
Policy
The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.actel.com/documents/ORT_Report.pdf. Microsemi also offers a variety of
enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliability information.
5-4
R e vi s i o n 3
Military ProASIC3/EL Low Power Flash FPGAs
Revision 3
5 -5
Microsemi Corporation (NASDAQ: MSCC) offers the industry’s most comprehensive portfolio of
semiconductor technology. Committed to solving the most critical system challenges, Microsemi’s
products include high-performance, high-reliability analog and RF devices, mixed signal integrated
circuits, FPGAs and customizable SoCs, and complete subsystems. Microsemi serves leading
system manufacturers around the world in the defense, security, aerospace, enterprise,
commercial, and industrial markets. Learn more at www.microsemi.com.
Microsemmi Corporate Headquarters
2381 Morse Avenue, Irvine, CA 92614
Phone: 949-221-7100·Fax: 949-756-0308
www.microsemi.com
© 2011 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi
Corporation. All other trademarks and service marks are the property of their respective owners.
51700106-3/9.12
Datasheet Information
5-8
R e vi s i o n 3
Similar pages