Revision 3 Military ProASIC3/EL Low Power Flash FPGAs with Flash*Freeze Technology Features and Benefits • Architecture Supports Ultra-High Utilization Advanced and Pro (Professional) I/Os†† Military Temperature Tested and Qualified • • • • • Each Device Tested from –55°C to 125°C Firm-Error Immune • Not Susceptible to Neutron-Induced Configuration Loss Low Power • Dramatic Reduction in Dynamic and Static Power • 1.2 V to 1.5 V Core and I/O Voltage Support for Low Power† • Low Power Consumption in Flash*Freeze Mode Allows for Instantaneous Entry To / Exit From Low-Power Flash*Freeze Modeƒ • Supports Single-Voltage System Operation • Low-Impedance Switches High Capacity • 250K to 3M System Gates • Up to 504 kbits of True Dual-Port SRAM • Up to 620 User I/Os Reprogrammable Flash Technology • • • • 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process Live-at-Power-Up (LAPU) Level 0 Support Single-Chip Solution Retains Programmed Design when Powered Off High Performance • 350 MHz (1.5 V systems) and 250 MHz (1.2 V systems) System Performance • 3.3 V, 66 MHz, 64-Bit PCI (1.5 V systems) and 66 MHz, 32-Bit PCI (1.2 V systems) In-System Programming (ISP) and Security • Secure ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption via JTAG (IEEE 1532–compliant) • FlashLock® to Secure FPGA Contents High-Performance Routing Hierarchy • • • • • • • • Clock Conditioning Circuit (CCC) and PLL • Six CCC Blocks—One Block with Integrated PLL in ProASIC3 and All Blocks with Integrated PLL in ProASIC3EL • Configurable Phase Shift, Multiply/Divide, Delay Capabilities, and External Feedback • Wide Input Frequency Range 1.5 MHz to 250 MHz (1.2 V systems) and 350 MHz (1.5 V systems) SRAMs and FIFOs • Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9, and ×18 organizations available) • True Dual-Port SRAM (except ×18) • 24 SRAM and FIFO Configurations with Synchronous Operation: – 250 MHz: For 1.2 V Systems – 350 MHz: For 1.5 V Systems ARM® Processor Support in ProASIC3/EL FPGAs • Segmented, Hierarchical Routing and Clock Structure • High-Performance, Low-Skew Global Network Table 1 • • • 700 Mbps DDR, LVDS-Capable I/Os 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation† Bank-Selectable I/O Voltages—up to 8 Banks per Chip Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS 2.5 V / 5.0 V Input† Differential I/O Standards: LVPECL, LVDS, BLVDS, and M-LVDS Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II (A3PE3000L only) I/O Registers on Input, Output, and Enable Paths Hot-Swappable and Cold-Sparing I/Os Programmable Output Slew Rate and Drive Strength Programmable Input Delay (A3PE3000L only) Schmitt Trigger Option on Single-Ended Inputs (A3PE3000L) Weak Pull-Up/-Down IEEE 1149.1 (JTAG) Boundary Scan Test Pin-Compatible Packages across the Military ProASIC®3EL Family • ARM Cortex™-M1 Soft Processor Available with or without Debug Military ProASIC3/EL Low-Power Devices ProASIC3/EL Devices A3P250 A3PE600L ARM Cortex-M1 Devices1 System Gates 250,000 600,000 VersaTiles (D-flip-flops) 6,144 13,824 RAM kbits (1,024 bits) 36 108 4,608-Bit Blocks 8 24 FlashROM Kbits 1 1 Secure (AES) ISP2 Yes Yes Integrated PLL in CCCs 1 6 VersaNet Globals 18 18 I/O Banks 4 8 Maximum User I/Os 68 270 Package Pins VQFP VQ100 PQFP FBGA FG484 Notes: 1. Refer to the Cortex-M1 product brief for more information. 2. AES is not available for ARM-enabled ProASIC3/EL devices. A3P1000 A3PE3000L M1A3P1000 1M 24,576 144 32 1 Yes 1 18 4 154 M1A3PE3000L 3M 75,264 504 112 1 Yes 6 18 8 620 PQ208 FG144, FG484 FG484, FG896 † A3P250 and A3P1000 support only 1.5 V core operation. ƒ Flash*Freeze technology is not available for A3P250 or A3P1000. ††Pro I/Os are not available on A3P250 or A3P1000. September 2012 © 2011 Microsemi Corporation I Military ProASIC3/EL Low Power Flash FPGAs I/Os Per Package 1 ProASIC3/EL Low Power Devices A3P250 A3PE600L ARM Cortex-M1 Devices Package Differential SingleSingleEnded I/O2 I/O Pairs Ended I/O2 Differential I/O Pairs A3P1000 A3PE3000L M1A3P1000 M1A3PE3000L SingleDifferential Single- Differential Ended I/O2 I/O Pairs Ended I/O2 I/O Pairs VQ100 68 13 – – – – – – PQ208 – – – – 154 35 – – FG144 – – – – 97 25 – – FG484 – – 270 135 300 74 341 168 FG896 – – – – – – 620 300 Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the datasheet to ensure you are complying with design and board migration requirements. 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two. 3. "G" indicates RoHS-compliant packages. Refer to "Military ProASIC3/EL Ordering Information" on page III for the location of the "G" in the part number. 4. For A3PE3000L devices, the usage of certain I/O standards is limited as follows: – SSTL3(I) and (II): up to 40 I/Os per north or south bank – LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank – SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank 5. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user I/Os available is reduced by one. Military ProASIC3/EL Device Status Military ProASIC3/EL Devices Status M1 Military ProASIC3/EL Devices Status A3P250 Production A3PE600L Production A3P1000 Production M1A3P1000 Production A3PE3000L Production M1A3PE3000L Production II R ev i si o n 3 Military ProASIC3/EL Low Power Flash FPGAs Military ProASIC3/EL Ordering Information A3P1000 _ 1 FG G Y 144 M Application (Temperature Range) M = Military (–55°C to 125°C Junction Temperature) Security Feature Y = Device Includes License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS-Compliant (Green) Packaging Package Type VQ = Very Thin Quad Flat Pack (0.5 mm pitch) FG = Fine Pitch Ball Grid Array (1.0 mm pitch) PQ = Plastic Quad Flat Pack (0.5 mm pitch) Speed Grade Blank = Standard 1 = 15% Faster than Standard Part Number Military ProASIC3/EL Devices A3P250 = 250,000 System Gates A3PE600L = 600,000 System Gates A3P1000 = 1,000,000 System Gates A3PE3000L = 3,000,000 System Gates Military ProASIC3/EL Devices with ARM Cortex-M1 M1A3P1000 = 1,000,000 System Gates M1A3PE3000L = 3,000,000 System Gates R e visi on 3 III Military ProASIC3/EL Low Power Flash FPGAs Temperature Grade Offerings Package A3P250 A3PE600L ARM Cortex-M1 Devices A3P1000 A3PE3000L M1A3P1000 M1A3PE3000L VQ100 M – – – PQ208 – – M – FG144 – – M – FG484 – M M M FG896 – – – M Note: M = Military temperature range: –55°C to 125°C junction temperature Speed Grade and Temperature Grade Matrix Temperature Grade M Std. –1 3 3 Note: M = Military temperature range: –55°C to 125°C junction temperature Contact your local Microsemi SoC Products Group (formerly Actel) representative for device availability: http://www.actel.com/contact/default.aspx. IV R ev i si o n 3 Military ProASIC3/EL Low Power Flash FPGAs Table of Contents Military ProASIC3/EL Device Family Overview General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Military ProASIC3/EL DC and Switching Characteristics General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-112 Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121 Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-125 Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-127 Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148 JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-149 Pin Descriptions and Packaging Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User-Defined Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3-2 3-2 3-4 3-5 3-5 3-5 Package Pin Assignments VQ100 PQ208 FG144 FG484 FG896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Revision 3 V 1 – Military ProASIC3/EL Device Family Overview General Description The military ProASIC3/EL family of flash FPGAs dramatically reduces dynamic power consumption by 40% and static power by 50%. These power savings are coupled with performance, density, true single chip, 1.2 V to 1.5 V core and I/O operation, reprogrammability, and advanced features. Microsemi’s proven Flash*Freeze technology enables military ProASIC3EL device users to shut off dynamic power instantaneously and switch the device to static mode without the need to switch off clocks or power supplies, and retaining internal states of the device. This greatly simplifies power management. In addition, optimized software tools using power-driven layout provide instant push-button power reduction. Nonvolatile flash technology gives military ProASIC3/EL devices the advantage of being a secure, lowpower, single-chip solution that is live at power-up (LAPU). Military ProASIC3/EL devices offer dramatic dynamic power savings, giving FPGA users flexibility to combine low power with high performance. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. Military ProASIC3/EL devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). Military ProASIC3/EL devices support devices from 250K system gates to 3 million system gates with up to 504 kbits of true dual-port SRAM and 620 user I/Os. M1 military ProASIC3/EL devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. ARM Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low-power consumption and speed when implemented in an M1 military ProASIC3/EL device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. ARM Cortex-M1 is available at no cost from Microsemi for use in M1 military ProASIC3/EL FPGAs. The ARM-enabled devices have ordering numbers that begin with M1 and do not support AES decryption. Flash*Freeze Technology† Military ProASIC3EL devices offer Flash*Freeze technology, which allows instantaneous switching from an active state to a static state. When Flash*Freeze mode is activated, military ProASIC3EL devices enter a static state while retaining the contents of registers and SRAM. Power is conserved without the need for additional external components to turn off I/Os or clocks. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of military ProASIC3EL devices to support a 1.2 V core voltage allows for an even greater reduction in power consumption, which enables low total system power. When the military ProASIC3EL device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained. The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage solution, make military ProASIC3EL devices suitable for low-power data transfer and manipulation in military-temperature applications where available power may be limited (e.g., in battery-powered equipment); or where heat dissipation may be limited (e.g., in enclosures with no forced cooling). † Flash*Freeze technology is not supported on A3P1000. Revision 3 1 -1 Military ProASIC3/EL Device Family Overview Flash Advantages Low Powerƒ The military ProASIC3EL family of flash-based FPGAs provides a low-power advantage, and when coupled with high performance, enables designers to make power-smart choices using a single-chip, reprogrammable, and live-at-power-up device. Military ProASIC3EL devices offer 40% dynamic power and 50% static power savings by reducing the core operating voltage to 1.2 V. In addition, the power-driven layout (PDL) feature in Libero® Integrated Design Environment (IDE) offers up to 30% additional power reduction. With Flash*Freeze technology, military ProASIC3EL device is able to retain device SRAM and logic while dynamic power is reduced to a minimum, without the need to stop clock or power supplies. Combining these features provides a lowpower, feature-rich, and high-performance solution. Security Nonvolatile, flash-based military ProASIC3/EL devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. Military ProASIC3/EL devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. Military ProASIC3/EL devices utilize a 128-bit flash-based lock and a separate AES key to secure programmed intellectual property and configuration data. In addition, all FlashROM data in military ProASIC3/EL devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. Military ProASIC3/EL devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. Military ProASIC3/EL devices with AESbased security allow for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. Security, built into the FPGA fabric, is an inherent component of the military ProASIC3/EL family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The military ProASIC3/EL family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected and secure, making remote ISP possible. A military ProASIC3/EL device provides the most impenetrable security for programmable logic designs. Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based military ProASIC3/EL FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. Live at Power-Up Flash-based military ProASIC3/EL devices support Level 0 of the LAPU classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The LAPU feature of flash-based military ProASIC3/EL devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the military ProASIC3/EL device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based military ProASIC3/EL devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. ƒ A3P1000 only supports 1.5 V core operation. 1-2 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based military ProASIC3/EL devices allow all functionality to be live at power-up; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The military ProASIC3/EL family device architecture mitigates the need for ASIC migration at higher volumes. This makes the military ProASIC3/EL family a cost-effective ASIC replacement. Firm-Error Immunity Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of military ProASIC3/EL flash-based FPGAs. Once it is programmed, the flash cell configuration element of military ProASIC3/EL FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. Advanced Flash Technology The military ProASIC3/EL family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. Advanced Architecture The proprietary military ProASIC3/EL architecture provides granularity comparable to standard-cell ASICs. The military ProASIC3/EL device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and Figure 1-2): • FPGA VersaTiles • Dedicated FlashROM • Dedicated SRAM/FIFO memory • Extensive CCCs and PLLs • I/O structure The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the military ProASIC3/EL core tile, as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable, allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. Revision 3 1 -3 Military ProASIC3/EL Device Family Overview In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of military ProASIC3/EL devices via an IEEE 1532 JTAG interface. Bank 0 Bank 1 Bank 3 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block I/Os Bank 1 Bank 3 VersaTile ISP AES Decryption User Nonvolatile FlashROM Charge Pumps RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block Bank 2 Figure 1-1 • Military ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250 and A3P1000) CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block Pro I/Os VersaTile ISP AES Decryption* Figure 1-2 • 1-4 User Nonvolatile FlashRom Flash*Freeze Technology Charge Pumps RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block Military ProASIC3EL Device Architecture Overview (A3PE600L and A3PE3000L) R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs Flash*Freeze Technology†† Military ProASIC3EL devices offer proven Flash*Freeze technology, which enables designers to instantaneously shut off dynamic power consumption while retaining all SRAM and register information. Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the Flash*Freeze (FF) pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption; clocks can still be driven or can be toggling without impact on power consumption; all core registers and SRAM cells retain their states. I/Os are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLLs. Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device. The FF pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low-power static and dynamic capabilities of the military ProASIC3EL device. Refer to Figure 1-3 for an illustration of entering/exiting Flash*Freeze mode. Actel ProASIC3EL FPGA Flash*Freeze Mode Control Flash*Freeze Pin Figure 1-3 • Military ProASIC3EL Flash*Freeze Mode VersaTiles The military ProASIC3/EL core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The military ProASIC3/EL VersaTile supports the following: • All 3-input logic functions—LUT-3 equivalent • Latch with clear or set • D-flip-flop with clear or set • Enable D-flip-flop with clear or set Refer to Figure 1-4 for VersaTile configurations. LUT-3 Equivalent X1 X2 X3 LUT-3 Y D-Flip-Flop with Clear or Set Data CLK CLR Y Enable D-Flip-Flop with Clear or Set Data CLK D-FF Y D-FF Enable CLR Figure 1-4 • VersaTile Configurations ††Flash*Freeze technology is not supported for A3P1000. Revision 3 1 -5 Military ProASIC3/EL Device Family Overview User Nonvolatile FlashROM Military ProASIC3/EL devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Internet protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • Subscription-based business models (for example, set-top boxes) • Secure key storage for secure communications algorithms • Asset management/tracking • Date stamping • Version management FlashROM is written using the standard military ProASIC3/EL IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design. FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. Microsemi military ProASIC3/EL development software solutions, Libero IDE and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. SRAM and FIFO Military ProASIC3/EL devices have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro. In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. PLL and CCC Military ProASIC3 devices provide designers with flexible clock conditioning circuit (CCC) capabilities. Each member of the military ProASIC3 family contains six CCCs, located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. Military ProASIC3EL devices also contain six CCCs; however, all six are equipped with a PLL. The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. 1-6 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs The CCC block has these key features: • Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz • Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz • 2 programmable delay types for clock skew minimization • Clock frequency synthesis Additional CCC specifications: • Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration. • Output duty cycle = 50% ± 1.5% or better • Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used • Maximum acquisition time is 300 µs • Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns • Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / fOUT_CCC Global Clocking Military ProASIC3/EL devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets. I/Os with Advanced I/O Standards The military ProASIC3/EL family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). In addition, 1.2 V I/O operation is supported for military ProASIC3EL devices. Military ProASIC3/EL FPGAs support different I/O standards, including singleended, differential, and voltage-referenced (military ProASIC3EL). The I/Os are organized into banks, with two, four, or eight (military ProASIC3EL only) banks per device. The configuration of these banks determines the I/O standards supported. For military ProASIC3EL, each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage. Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: • Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II) • Double-data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II). Military ProASIC3EL banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads. Revision 3 1 -7 2 – Military ProASIC3/EL DC and Switching Characteristics General Specifications Operating Conditions Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. absolute maximum ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied. Table 2-1 • Symbol Absolute Maximum Ratings1 Parameter Limits Units VCC DC core supply voltage –0.3 to 1.65 V VJTAG JTAG DC voltage –0.3 to 3.75 V VPUMP Programming voltage –0.3 to 3.75 V VCCPLL Analog power supply (PLL) –0.3 to 1.65 V VCCI –0.3 to 3.75 V –0.3 to 3.75 V –0.3 V to 3.6 V (when I/O hot insertion mode is enabled) V DC I/O buffer supply voltage for A3PE600/3000L DC output buffer supply voltage for A3P250/A3P1000 VMV DC input buffer supply voltage for A3P250/A3P1000 VI I/O input voltage –0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) TSTG 2 Storage temperature –65 to +150 °C 2 Junction temperature +150 °C TJ Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-7. 2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2. Revision 3 2 -1 Military ProASIC3/EL DC and Switching Characteristics Table 2-2 • Recommended Operating Conditions 1 Symbol Parameter TA Ambient temperature TJ Junction temperature VCC Military Units –55 to 125 °C –55 to 125 °C 1.425 to 1.575 V 1.14 to 1.575 V 1.4 to 3.6 V 3.15 to 3.45 V 0 to 3.6 V 1.5 V DC core supply voltage 1.425 to 1.575 V 1.2 V – 1.5 V DC core supply voltage3 1.14 to 1.575 V 1.14 to 1.26 V 1.14 to 1.575 V 1.5 V DC supply voltage 1.425 to 1.575 V 1.8 V DC supply voltage 1.7 to 1.9 V 2.5 V DC supply voltage 2.3 to 2.7 V 2.7 to 3.6 V 3.0 to 3.6 V 2.375 to 2.625 V 3.0 to 3.6 V 1.5 V DC core supply voltage2 1.2 V – 1.5 V wide range DC core supply voltage 3 VJTAG JTAG DC voltage 4 VPUMP Programming voltage Programming mode Operation 5 VCCPLL 4 2 Analog power supply (PLL) VCCI and VMV4 1.2 V DC supply voltage3 1.2 V wide range DC supply voltage 3.0 V DC supply 3 voltage6 3.3 V DC supply voltage LVDS differential I/O LVPECL differential I/O Notes: 1. 2. 3. 4. All parameters representing voltages are measured with respect to GND unless otherwise specified. For A3P250 and A3P1000 For A3PE600L and A3PE3000L devices only, operating at VCCI VCC. See the "Pin Descriptions and Packaging" section on page 3-1 for instructions and recommendations on tie-off and supply grouping. 5. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-24 on page 2-24. VCCI should be at the same voltage within a given I/O bank. 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation. 7. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi’s timing and power simulation tools. 2-2 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs 70 102.7 85 100 43.8 20.0 105 15.6 110 12.3 115 9.7 120 125 7.7 6.2 130 5.0 135 140 4.0 3.3 145 150 2.7 2.2 110 100 90 80 70 60 50 40 30 20 10 0 Years Tj (°C) HTR Lifetime (yrs) 70 85 100 105 110 115 120 125 130 135 140 145 150 Temperature (ºC) Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • High-Temperature Data Retention (HTR) Table 2-3 • Overshoot and Undershoot Limits1 Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle2 Maximum Overshoot/ Undershoot (125°C)2 2.7 V or less 10% 0.72 V 5% 0.82 V 3V 10% 0.72 V 5% 0.82 V 10% 0.69 V 5% 0.79 V 10% N/A 5% N/A VCCI and VMV 3.3 V 3.6 V Notes: 1. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V. 2. This table does not provide PCI overshoot/undershoot limits. Revision 3 2 -3 Military ProASIC3/EL DC and Switching Characteristics I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Military) Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-2 on page 2-5 and Figure 2-3 on page 2-6. There are five regions to consider during power-up. Military ProASIC3 I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-5 and Figure 2-3 on page 2-6). 2. VCCI > VCC – 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V VCC Trip Point: Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: 2-4 • During programming, I/Os become tristated and weakly pulled up to VCCI. • JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic, at least until VCC and VCCPLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-2 and Figure 23 on page 2-6 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low-Power Flash Devices" chapter of the Military ProASIC3/EL FPGA Fabric User’s Guide for information on clock and lock recovery. Internal Power-Up Activation Sequence 1. Core 2. Input buffers Output buffers, after 200 ns delay from input buffer activation. VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 4: I/O buffers are ON. I/Os are functional (except differential but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Region 1: I/O Buffers are OFF Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH / VIL, VOH / VOL, etc. VCC = 1.425 V Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI / VCC are below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Activation trip point: Va = 0.85 V ± 0.25 V Deactivation trip point: Vd = 0.75 V ± 0.25 V Region 1: I/O buffers are OFF Activation trip point: Va = 0.9 V ± 0.3 V Deactivation trip point: Vd = 0.8 V ± 0.3 V Figure 2-2 • Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification. Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.425 V or 1.7 V or 2.3 V or 3.0 V VCCI Devices Operating at 1.5 V Core – I/O State as a Function of VCCI and VCC Voltage Levels Revision 3 2 -5 Military ProASIC3/EL DC and Switching Characteristics VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 4: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Region 1: I/O Buffers are OFF Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH / VIL , VOH / VOL , etc. VCC = 1.14 V Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI/VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Activation trip point: Va = 0.85 V ± 0.2 V Deactivation trip point: Vd = 0.75 V ± 0.2 V Region 1: I/O buffers are OFF Activation trip point: Va = 0.9 V ± 0.15 V Deactivation trip point: Vd = 0.8 V ± 0.15 V Figure 2-3 • 2-6 Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification. Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.14 V,1.425 V, 1.7 V, 2.3 V, or 3.0 V VCCI Device Operating at 1.2 V Core Voltage – I/O State as a Function of VCCI and VCC Voltage Levels; Only A3PE600L and A3PE3000L Devices Operate at 1.2 V Core Voltage R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs Thermal Characteristics Introduction The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction temperature to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature. TJ = Junction Temperature = T + TA EQ 1 where: TA = Ambient Temperature T = Temperature gradient between junction (silicon) and ambient T = ja * P ja = Junction-to-ambient of the package. ja numbers are located in Table 2-4. P = Power dissipation Package Thermal Characteristics The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is ja. The thermal characteristics for ja are shown for two air flow rates. The recommended maximum junction temperature is 125°C. EQ 2 shows a sample calculation of the recommended maximum power dissipation allowed for a 484-pin FBGA package at military temperature and in still air. 125C – 70C- = 2.670 Max. junction temp. (C) – Max. ambient temp. (C) = ---------------------------------Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------20.6C/W ja (C/W) EQ 2 Table 2-4 • Package Thermal Resistivities ja Device Pin Count jc Very Thin Quad Flat Pack (VQ100) A3P250 100 10.0 35.3 29.4 27.1 C/W Plastic Quad Flat Pack (PQ208)* A3P1000 208 3.8 16.2 13.3 11.9 C/W Fine Pitch Ball Grid Array (FBGA) A3P1000 144 6.3 31.6 26.2 24.2 C/W A3PE600L 484 9.5 27.5 21.9 20.2 C/W A3PE3000L 484 4.7 20.6 15.7 14.0 C/W A3PE3000L 896 2.4 13.6 10.4 9.4 C/W Package Type Still Air 200 ft./min. 500 ft./min. Units * Embedded heatspreader Revision 3 2 -7 Military ProASIC3/EL DC and Switching Characteristics Temperature and Voltage Derating Factors Table 2-5 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 125°C, VCC = 1.14 V) Applicable to A3PE600L and A3PE3000L Only Junction Temperature Array Voltage VCC (V) –55°C –40°C 0°C 25°C 70°C 85°C 125°C 1.14 0.85 0.86 0.89 0.92 0.96 0.97 1.00 1.2 0.82 0.83 0.86 0.88 0.92 0.93 0.96 1.26 0.79 0.80 0.83 0.85 0.89 0.90 0.93 1.30 0.77 0.78 0.81 0.83 0.86 0.88 0.90 1.35 0.74 0.75 0.78 0.80 0.84 0.85 0.88 1.40 0.72 0.73 0.75 0.77 0.81 0.82 0.85 1.425 0.71 0.71 0.74 0.76 0.79 0.80 0.83 1.5 0.67 0.68 0.70 0.72 0.75 0.76 0.79 1.575 0.65 0.66 0.68 0.70 0.73 0.74 0.76 Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 125°C, VCC = 1.425 V) Applicable to A3P250 and A3P1000 Devices Only Junction Temperature Array Voltage VCC (V) –55°C –40°C 0°C 25°C 70°C 85°C 125°C 1.425 0.80 0.82 0.87 0.89 0.94 0.96 1.00 1.5 0.76 0.78 0.82 0.84 0.89 0.91 0.95 1.575 0.73 0.75 0.79 0.82 0.86 0.87 0.91 2-8 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs Calculating Power Dissipation Quiescent Supply Current Table 2-7 • Power Supply State Per Mode Power Supply Configurations Modes/Power Supplies VCC VCCPLL VCCI VJTAG VPUMP Flash*Freeze On On On On On/off/floating Sleep Off Off On Off Off Shutdown Off Off Off Off Off Static and Active On On On On On/off/floating Table 2-8 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode* Nominal (25°C) Typical maximum (25ºC) Military maximum (125ºC) Note: Core Voltage A3PE600L A3PE3000L Units 1.2 V 0.55 2.75 mA 1.5 V 0.83 4.2 mA 1.2 V 9 17 mA 1.5 V 12 20 mA 1.2 V 65 165 mA 1.5 V 85 185 mA *IDD includes VCC, VPUMP, VCCI, VJTAG , and VCCPLL currents. Values do not include I/O static contribution (PDC6 and PDC7). Table 2-9 • Quiescent Supply Current (IDD) Characteristics, Sleep Mode (VCC = 0 V)* Core Voltage A3PE600L A3PE3000L Units VCCI / VJTAG = 1.2 V (per bank) Typical (25°C) 1.2 V 1.7 1.7 µA VCCI / VJTAG = 1.5 V (per bank) Typical (25°C) 1.2 V / 1.5 V 1.8 1.8 µA VCCI / VJTAG = 1.8 V (per bank) Typical (25°C) 1.2 V / 1.5 V 1.9 1.9 µA VCCI / VJTAG = 2.5 V (per bank) Typical (25°C) 1.2 V / 1.5 V 2.2 2.2 µA VCCI / VJTAG = 3.3 V (per bank) Typical (25°C) 1.2 V / 1.5 V 2.5 2.5 µA Note: *IDD = NBANKS × ICCI. Values do not include I/O static contribution, which is shown in Table 2-21 on page 2-16 (PDC6 and PDC7). Table 2-10 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode* Core Voltage A3P250 A3P1000 A3PE600L A3PE3000L Units Nominal (25°C) 1.2 V / 1.5 V N/A 0 µA Military (125ºC) 1.2 V / 1.5 V N/A 0 µA Note: *This is applicable to A3PE600L and A3PE3000L only for cold-sparable I/O devices. Not available on A3P250 or A3P1000. Revision 3 2 -9 Military ProASIC3/EL DC and Switching Characteristics Table 2-11 • Quiescent Supply Current (IDD), Static Mode and Active Mode 1 Core Voltage A3PE600L A3PE3000L Units 1.2 V 0.55 2.75 mA 1.5 V 0.83 4.2 mA 1.2 V 9 17 mA 1.5 V 12 20 mA 1.2 V 65 165 mA 1.5 V 85 185 mA VCCI / VJTAG = 1.2 V (per bank) Typical (25°C) 1.2 V 1.7 1.7 µA VCCI / VJTAG = 1.5 V (per bank) Typical (25°C) 1.2 V / 1.5 V 1.8 1.8 µA VCCI / VJTAG = 1.8 V (per bank) Typical (25°C) 1.2 V / 1.5 V 1.9 1.9 µA VCCI / VJTAG = 2.5 V (per bank) Typical (25°C) 1.2 V / 1.5 V 2.2 2.2 µA VCCI / VJTAG = 3.3 V (per bank) Typical (25°C) 1.2 V / 1.5 V 2.5 2.5 µA ICCA Current 2 Nominal (25°C) Typical maximum (25°C) Military maximum (125°C) 3 ICCI or IJTAG Current Notes: 1. IDD = NBANKS × ICCI + ICCA. JTAG counts as one bank when powered. 2. Includes VCC , VCCPLL, and VPUMP currents. 3. Values do not include I/O static contribution (PDC6 and PDC7). Table 2-12 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000 Core Voltage A3P250 A3P1000 Units Nominal (25°C) 1.5 V 3 8 mA Typical maximum (25°C) 1.5 V 15 30 mA Military maximum (125°C) 1.5 V 65 150 mA Note: 2- 10 IDD includes VCC , VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution (PDC6 and PDC7), which is shown in Table 2-21 on page 2-16. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Power per I/O Pin Table 2-13 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Pro I/Os for A3PE600L and A3PE3000L Only VCCI (V) Static Power PDC6 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V LVTTL/LVCMOS 3.3 – 16.34 3.3 V LVTTL/LVCMOS – Schmitt trigger 3.3 – 24.49 Single-Ended 3.3 V LVCMOS Wide Range 3.3 – 16.34 3.3 V LVCMOS – Schmitt trigger Wide Range 3.3 – 24.49 2.5 V LVCMOS 2.5 – 4.71 2.5 V LVCMOS – Schmitt trigger 2.5 – 6.13 1.8 V LVCMOS 1.8 – 1.66 1.8 V LVCMOS – Schmitt trigger 1.8 – 1.78 1.5 V LVCMOS (JESD8-11) 1.5 – 1.01 1.5 V LVCMOS (JESD8-11) – Schmitt trigger 1.5 – 0.97 1.2 V LVCMOS 1.2 – 0.60 1.2 V LVCMOS (JESD8-11) – Schmitt trigger 1.2 – 0.53 1.2 V LVCMOS Wide Range 1.2 – 0.60 1.2 V LVCMOS Schmitt trigger Wide Range 1.2 – 0.53 3.3 V PCI 3.3 – 17.76 3.3 V PCI – Schmitt trigger 3.3 – 19.10 3.3 V PCI-X 3.3 – 17.76 3.3 V PCI-X – Schmitt trigger 3.3 – 19.10 3.3 V GTL 3.3 2.90 7.14 2.5 V GTL 2.5 2.13 3.54 3.3 V GTL+ 3.3 2.81 2.91 Voltage-Referenced 2.5 V GTL+ 2.5 2.57 2.61 HSTL (I) 1.5 0.17 0.79 HSTL (II) 1.5 0.17 0.79 SSTL2 (I) 2.5 1.38 3.26 SSTL2 (II) 2.5 1.38 3.26 SSTL3 (I) 3.3 3.21 7.97 SSTL3 (II) 3.3 3.21 7.97 LVDS 2.5 2.26 0.89 LVPECL 3.3 5.71 1.94 Differential Notes: 1. PDC6 is the static power (where applicable) measured on VCCI. 2. PAC9 is the total dynamic power measured on VCCI. Revision 3 2- 11 Military ProASIC3/EL DC and Switching Characteristics Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only VMV (V) Static Power PDC6 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.22 3.3 V LVCMOS – Wide Range 3.3 – 16.22 2.5 V LVCMOS 2.5 – 4.65 1.8 V LVCMOS 1.8 – 1.65 1.5 V LVCMOS (JESD8-11) 1.5 – 0.98 Single-Ended 3.3 V PCI 3.3 – 17.64 3.3 V PCI-X 3.3 – 17.64 LVDS 2.5 2.26 0.83 LVPECL 3.3 5.72 1.81 Differential Notes: 1. PDC6 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VMV. Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only VMV (V) Static Power PDC6 (mW) 1 Dynamic Power PAC9 (µW/MHz) 2 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.23 3.3 V LVCMOS – Wide Range 3.3 – 16.23 2.5 V LVCMOS 2.5 – 4.66 1.8 V LVCMOS 1.8 – 1.64 1.5 V LVCMOS (JESD8-11) 1.5 – 0.99 3.3 V PCI 3.3 – 17.64 3.3 V PCI-X 3.3 – 17.64 Single-Ended Notes: 1. PDC6 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VMV. 2- 12 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1 Applicable to Pro I/Os for A3PE600L and A3PE3000L Only CLOAD (pF) VCCI (V) Static Power PDC7 (mW)2 Dynamic Power PAC10 (µW/MHz)3 3.3 V LVTTL/LVCMOS 5 3.3 – 148.00 3.3 V LVCMOS Wide Range 5 3.3 – 148.00 2.5 V LVCMOS 5 2.5 – 83.23 1.8 V LVCMOS 5 1.8 – 54.58 1.5 V LVCMOS (JESD8-11) 5 1.5 – 37.05 1.2 V LVCMOS 5 1.2 – 17.94 1.2 V LVCMOS Wide Range 5 1.2 – 17.94 3.3 V PCI 10 3.3 – 204.61 3.3 V PCI-X 10 3.3 – 204.61 3.3 V GTL 10 3.3 – 24.08 2.5 V GTL 10 2.5 – 13.52 3.3 V GTL+ 10 3.3 – 24.10 2.5 V GTL+ 10 2.5 – 13.54 HSTL (I) 20 1.5 7.08 26.22 HSTL (II) 20 1.5 13.88 27.18 SSTL2 (I) 30 2.5 16.69 105.56 SSTL2 (II) 30 2.5 25.91 116.48 SSTL3 (I) 30 3.3 26.02 114.67 SSTL3 (II) 30 3.3 42.21 131.69 LVDS – 2.5 7.70 89.58 LVPECL – 3.3 19.42 167.86 Single-Ended Voltage-Referenced Differential Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC7 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCCI. Revision 3 2- 13 Military ProASIC3/EL DC and Switching Characteristics Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1 Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only CLOAD (pF) VCCI (V) Static Power PDC7 (mW) 2 Dynamic Power PAC10 (µW/MHz) 3 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 141.97 3.3 V LVCMOS Wide Range 5 3.3 – 141.97 2.5 V LVCMOS 5 2.5 – 79.98 1.8 V LVCMOS 5 1.8 – 52.26 1.5 V LVCMOS (JESD8-11) 5 1.5 – 35.62 3.3 V PCI 10 3.3 – 201.02 3.3 V PCI-X 10 3.3 – 201.02 LVDS – 2.5 7.74 89.82 LVPECL – 3.3 19.54 167.55 Single-Ended Differential Notes: 1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the software default. 2. PDC7 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCCI. Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only CLOAD (pF) VCCI (V) Static Power PDC7 (mW) 2 Dynamic Power PAC10 (µW/MHz) 3 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 125.97 3.3 V LVCMOS – Wide Range 5 3.3 – 125.97 2.5 V LVCMOS 5 2.5 – 70.82 1.8 V LVCMOS 5 1.8 – 36.39 1.5 V LVCMOS (JESD8-11) 5 1.5 – 25.34 3.3 V PCI 10 3.3 – 184.92 3.3 V PCI-X 10 3.3 – 184.92 Single-Ended Notes: 1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the software default. 2. PDC7 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCCI. 2- 14 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Power Consumption of Various Internal Resources Table 2-19 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3/EL Devices Operating at 1.2 V VCC Device-Specific Dynamic Power (µW/MHz) Parameter Definition A3PE3000L A3PE600L PAC1 Clock contribution of a Global Rib 8.34 3.99 PAC2 Clock contribution of a Global Spine 4.28 2.22 PAC3 Clock contribution of a VersaTile row 0.94 0.94 PAC4 Clock contribution of a VersaTile used as a sequential module 0.08 0.08 PAC5 First contribution of a VersaTile used as a sequential module 0.05 PAC6 Second contribution of a VersaTile used as a sequential module 0.19 PAC7 Contribution of a VersaTile used as a combinatorial module 0.11 PAC8 Average contribution of a routing net 0.45 PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-13 on page 2-11 through Table 2-15 on page 2-12. PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-16 on page 2-13 through Table 2-18 on page 2-14. PAC11 Average contribution of a RAM block during a read operation 25.00 PAC12 Average contribution of a RAM block during a write operation 30.00 PAC13 Dynamic contribution for PLL 1.74 Revision 3 2- 15 Military ProASIC3/EL DC and Switching Characteristics Table 2-20 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3 and ProASIC3/EL Devices at 1.5 V VCC Device-Specific Dynamic Power (µW/MHz) Parameter Definition A3PE3000L A3PE600L A3P1000 A3P250 PAC1 Clock contribution of a Global Rib 13.03 6.24 14.50 11.00 PAC2 Clock contribution of a Global Spine 6.69 3.47 2.48 1.58 PAC3 Clock contribution of a VersaTile row 1.46 1.46 0.81 0.81 PAC4 Clock contribution of a VersaTile used as a sequential module 0.13 0.13 0.12 0.12 PAC5 First contribution of a VersaTile used as a sequential module 0.07 PAC6 Second contribution of a VersaTile used as a sequential module 0.29 PAC7 Contribution of a VersaTile combinatorial Module 0.29 PAC8 Average contribution of a routing net PAC9 Contribution of an I/O input pin (standard- See Table 2-13 on page 2-11 through Table 2-15 on dependent) page 2-12. PAC10 Contribution of an I/O output pin (standard- See Table 2-16 on page 2-13 through Table 2-18 on dependent) page 2-14. PAC11 Average contribution of a RAM block during a read operation 25.00 PAC12 Average contribution of a RAM block during a write operation 30.00 PAC13 Dynamic contribution for PLL 2.60 used as a 0.70 Table 2-21 • Different Components Contributing to the Static Power Consumption in Military ProASIC3/EL Devices Device-Specific Dynamic Power (µW) Parameter Definition A3PE3000L A3PE600L A3P1000 A3P250 0 mW 0 mW N/A N/A PDC0 Array static power in Sleep mode PDC1 Array static power in Active mode See Table 2-11 on page 2-10. PDC2 Array static power in Static (Idle) mode See Table 2-11 on page 2-10. PDC3 Array static power in Flash*Freeze mode PDC4 Static PLL contribution at 1.2 V operating core voltage (for A3PE600L and A3PE3000L only) See Table 2-8 on page 2-9. 1.42 mW Static PLL contribution 1.5 V operating core voltage N/A 2.55 mW PDC5 Bank quiescent power (VCCI-dependent) PDC6 I/O input pin static power (standard-dependent) See Table 2-13 on page 2-11. through Table 2-15 on page 2-12. PDC7 I/O output pin static power (standard-dependent) See Table 2-16 on page 2-13 through Table 2-18 on page 2-14. Note: 2- 16 See Table 2-8 on page 2-9, Table 2-9 on page 2-9, Table 2-11 on page 2-10. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero® Integrated Design Environment (IDE). R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero IDE software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • The number of combinatorial and sequential cells used in the design • The internal clock frequencies • The number and the standard of I/O pins used in the design • The number of RAM blocks used in the design • Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-22 on page 2-19. • Enable rates of output buffers—guidelines are provided for typical applications in Table 2-23 on page 2-19. • Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-23 on page 2-19. The calculation should be repeated for each clock domain defined in the design. Methodology Total Power Consumption—PTOTAL PTOTAL = PSTAT + PDYN PSTAT is the total static power consumption. PDYN is the total dynamic power consumption. Total Static Power Consumption—PSTAT PSTAT = (PDC0 or PDC1 or PDC2 or PDC3) + NBANKS* PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7 NINPUTS is the number of I/O input buffers used in the design. NOUTPUTS is the number of I/O output buffers used in the design. NBANKS is the number of I/O banks powered in the design. Total Dynamic Power Consumption—PDYN PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL Global Clock Contribution—PCLOCK PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK NSPINE is the number of global spines used in the user design—guidelines are provided in Table 2-22 on page 2-19. NROW is the number of VersaTile rows used in the design—guidelines are provided in Table 2-22 on page 2-19. FCLK is the global clock signal frequency. NS-CELL is the number of VersaTiles used as sequential modules in the design. PAC1, PAC2, PAC3, and PAC4 are device-dependent. Sequential Cells Contribution—PS-CELL PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on page 2-19. FCLK is the global clock signal frequency. Revision 3 2- 17 Military ProASIC3/EL DC and Switching Characteristics Combinatorial Cells Contribution—PC-CELL PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK NC-CELL is the number of VersaTiles used as combinatorial modules in the design. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on page 2-19. FCLK is the global clock signal frequency. Routing Net Contribution—PNET PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK NS-CELL is the number of VersaTiles used as sequential modules in the design. NC-CELL is the number of VersaTiles used as combinatorial modules in the design. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-22 on page 2-19. FCLK is the global clock signal frequency. I/O Input Buffer Contribution—PINPUTS PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK NINPUTS is the number of I/O input buffers used in the design. 2 is the I/O buffer toggle rate—guidelines are provided in Table 2-22 on page 2-19. FCLK is the global clock signal frequency. I/O Output Buffer Contribution—POUTPUTS POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK NOUTPUTS is the number of I/O output buffers used in the design. 2 is the I/O buffer toggle rate—guidelines are provided in Table 2-22 on page 2-19. 1 is the I/O buffer enable rate—guidelines are provided in Table 2-23 on page 2-19. FCLK is the global clock signal frequency. RAM Contribution—PMEMORY PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3 NBLOCKS is the number of RAM blocks used in the design. FREAD-CLOCK is the memory read clock frequency. 2 is the RAM enable rate for read operations. FWRITE-CLOCK is the memory write clock frequency. 3 is the RAM enable rate for write operations—guidelines are provided in Table 2-23 on page 2-19. PLL Contribution—PPLL PPLL = PDC4 + PAC13 * FCLKOUT FCLKOUT is the output clock frequency.1 1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution. 2- 18 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: • The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. • The average toggle rate of an 8-bit counter is 25%: – Bit 0 (LSB) = 100% – Bit 1 = 50% – Bit 2 = 25% – … – Bit 7 (MSB) = 0.78125% – Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 Enable Rate Definition Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table 2-22 • Toggle Rate Guidelines Recommended for Power Calculation Component 1 2 Definition Guideline Toggle rate of VersaTile outputs 10% I/O buffer toggle rate 10% Table 2-23 • Enable Rate Guidelines Recommended for Power Calculation Component 1 2 3 Definition Guideline I/O output buffer enable rate 100% RAM enable rate for read operations 12.5% RAM enable rate for write operations 12.5% Revision 3 2- 19 Military ProASIC3/EL DC and Switching Characteristics User I/O Characteristics Timing Model I/O Module (Non-Registered) Combinational Cell Combinational Cell Y LVPECL Y tPD = 0.78 ns tPD = 0.67 ns tDP = 1.51 ns I/O Module (Non-Registered) Combinational Cell Y tDP = 2.09 ns tPD = 1.21 ns I/O Module (Non-Registered) Combinational Cell I/O Module (Registered) Y tPY = 1.84 ns LVPECL D LVTTL Output Drive Strength = 12 mA High Slew Rate tPD = 0.70 ns Q I/O Module (Non-Registered) Combinational Cell Y tICLKQ = 0.33 ns tISUD = 0.36 ns LVCMOS 1.5 V Output Drive Strength = 4 mA High Slew Rate tDP = 2.84 ns tPD = 0.65 ns Input LVTTL Clock Register Cell tPY = 1.49 ns D Combinational Cell Y Q I/O Module (Non-Registered) tPY = 2.11 ns Figure 2-4 • 2- 20 I/O Module (Registered) Register Cell D Q D tPD = 0.65 ns tCLKQ = 0.76 ns tSUD = 0.59 ns LVDS, B-LVDS, M-LVDS LVTTL Output Drive Strength = 8 mA High Slew Rate tDP = 2.38 ns tCLKQ = 0.76 ns tSUD = 0.9 ns Input LVTTL Clock Input LVTTL Clock tPY = 1.49 ns tPY = 1.49 ns Q LVTTL 3.3 V Output Drive Strength = 12 mA tDP = 2.09 ns High Slew Rate tOCLKQ = 0.81 ns tOSUD = 0.43 ns Timing Model Operating Conditions: –1 Speed, Military Temperature Range (TJ = 125°C), Worst-Case VCC = 1.14 V (example for A3PE3000L and A3PE600L) R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs tPY tDIN D PAD Q DIN Y CLK tPY = MAX(tPY(R), tPY(F)) tDIN = MAX(tDIN(R), tDIN(F)) To Array I/O Interface VIH PAD Vtrip Vtrip VIL VCC 50% 50% Y GND tPY (F) tPY (R) VCC 50% DIN GND Figure 2-5 • 50% tDOUT tDOUT (R) (F) Input Buffer Timing Model and Delays (example) Revision 3 2- 21 Military ProASIC3/EL DC and Switching Characteristics tDOUT tDP D Q D PAD DOUT Std Load CLK From Array tDP = MAX(tDP(R), tDP(F)) tDOUT = MAX(tDOUT(R), tDOUT(F)) I/O Interface tDOUT (R) D 50% tDOUT VCC (F) 50% 0V VCC DOUT 50% 50% 0V VOH Vtrip Vtrip VOL PAD tDP (R) Figure 2-6 • 2- 22 tDP (F) Output Buffer Model and Delays (example) R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs tEOUT D Q CLK E tZL, tZH, tHZ, tLZ, tZLS, tZHS EOUT D Q PAD DOUT CLK D tEOUT = MAX(tEOUT(r), tEOUT(f)) I/O Interface VCC D VCC 50% tEOUT (F) 50% E tEOUT (R) VCC 50% EOUT tZL PAD 50% 50% tHZ Vtrip tZH 50% tLZ VCCI 90% VCCI Vtrip VOL 10% VCCI VCC D VCC E 50% tEOUT (R) 50% tEOUT (F) VCC EOUT PAD 50% tZLS VOH Vtrip Figure 2-7 • 50% 50% tZHS Vtrip VOL Tristate Output Buffer Timing Model and Delays (example) Revision 3 2- 23 Military ProASIC3/EL DC and Switching Characteristics Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-24 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings Applicable to Pro I/Os for A3PE600L and A3PE3000L Only I/O Standard Equiv. Software Default Drive Drive Strength Slew Min. Strength Option1 Rate V VIL VIH VOL VOH IOL2 IOH2 mA mA Max. V Min. V Max. V Max. V Min. V 2.4 3.3 V LVTTL / 3.3 V LVCMOS 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 3.3 V LVCMOS Wide Range1,3 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 2.5 V LVCMOS 12 mA 12mA High –0.3 0.7 1.7 3.6 0.7 1.8 V LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 12 12 VCCI – 0.2 0.1 0.1 1.7 12 12 VCCI – 0.45 12 12 1.5 V LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 1.2 V LVCMOS4,5 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 1.2 V LVCMOS Wide Range1,4,5 100 µA 2 mA High –0.3 0.3 * VCCI 3.3 V PCI 0.7 * VCCI 3.6 0.1 VCCI – 0.1 0.1 0.1 Per PCI Specification 3.3 V PCI-X Per PCI-X Specification 20 mA6 20 mA High –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 2.5 V GTL 20 mA6 20 mA High –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 3.3 V GTL+ 35 mA 35 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 – 35 35 2.5 V GTL+ 33 mA 33 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 – 33 33 HSTL (I) 8 mA 8 mA 3.3 V GTL mA6 High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 8 8 mA6 High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 15 15 HSTL (II) 15 SSTL2 (I) 15 mA 15 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.54 VCCI – 0.62 15 15 SSTL2 (II) 18 mA 18 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.35 VCCI – 0.43 18 18 SSTL3 (I) 14 mA 14 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.7 VCCI – 1.1 14 14 SSTL3 (II) 21 mA 21 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.5 VCCI – 0.9 21 21 15 Notes: 1. Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength These values are for normal ranges only. 2. Currents are measured at 125°C junction temperature. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable to A3PE600L and A3PE3000L devices operating at VCCI VCC. 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. 6. Output drive strength is below JEDEC specification. 7. Output slew rate can be extracted using the IBIS Models. 2- 24 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only I/O Standard Equiv. Software Default Drive Drive Strength Slew Min. Strength Option1 Rate V VIL VIH VOL VOH IOL2 IOH2 mA mA Max. V Min. V Max. V Max. V Min. V 2.4 3.3 V LVTTL / 12 mA 3.3 V LVCMOS 12 mA High –0.3 0.8 2 3.6 0.4 3.3 V LVCMOS 100 µA Wide Range1,3 12 mA High –0.3 0.8 2 3.6 0.2 0.7 1.7 0.7 0.45 12 VCCI – 0.2 0.1 0.1 2.5 V LVCMOS 12 mA 12 mA High –0.3 12 12 1.8 V LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI VCCI – 0.45 12 12 1.5 V LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 3.3 V PCI 2.7 1.9 12 1.7 Per PCI specifications 3.3 V PCI-X Per PCI-X specifications Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. Currents are measured at 125°C junction temperature. 3. Output slew rate can be extracted using the IBIS Models. 4. Output drive strength is below JEDEC specification. 5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only I/O Standard Equiv. Software Default Drive Drive Strength Slew Min. Strength Option1 Rate V VIL VIH VOL VOH IOL2 IOH2 mA mA Max. V Min. V Max. V Max. V Min. V 3.3 V LVTTL / 12 mA 3.3 V LVCMOS 12 mA High –0.3 0.8 2 3.6 0.4 2.4 3.3 V LVCMOS 100 µA Wide Range1,3 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 2.5 V LVCMOS 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 1.8 V LVCMOS 8 mA 8 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 1.5 V LVCMOS 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 3.3 V PCI 3.3 V PCI-X 12 12 0.1 0.1 Per PCI specifications Per PCI-X specifications Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. Currents are measured at 125°C junction temperature. 3. Output slew rate can be extracted using the IBIS Models. 4. Output drive strength is below JEDEC specification. 5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Revision 3 2- 25 Military ProASIC3/EL DC and Switching Characteristics Table 2-27 • Summary of Maximum and Minimum DC Input Levels Applicable to Military Conditions Military1 2 IIH3 DC I/O Standard µA µA 3.3 V LVTTL / 3.3 V LVCMOS 15 15 3.3 V LVCMOS Wide Range 15 15 2.5 V LVCMOS 15 15 1.8 V LVCMOS 15 15 15 15 1.2 V LVCMOS 15 15 1.2 V LVCMOS Wide Range4 15 15 3.3 V PCI 15 15 3.3 V PCI-X 15 15 3.3 V GTL 15 15 2.5 V GTL 15 15 3.3 V GTL+ 15 15 2.5 V GTL+ 15 15 IIL 1.5 V LVCMOS 4 HSTL (I) 15 15 HSTL (II) 15 15 SSTL2 (I) 15 15 SSTL2 (II) 15 15 SSTL3 (I) 15 15 SSTL3 (II) 15 15 Notes: 1. Military temperature range: –55°C to 125°C. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 4. Applicable to Military A3PE600L and A3PE3000L devices operating at VCCI ≥ VCC. 2- 26 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Summary of I/O Timing Characteristics – Default I/O Software Settings Table 2-28 • Summary of AC Measuring Points Input/Output Supply Voltage Standard Input Reference Board Termination Voltage (VREF_TYP) Voltage (VTT_REF) Measuring Trip Point (Vtrip) 3.3 V LVTTL / 3.3 V LVCMOS 3.30 V – – 1.4 V 3.3 V LVCMOS Wide Range 3.30 V – – 1.4 V 2.5 V LVCMOS 2.50 V – – 1.2 V 1.8 V LVCMOS 2.50 V – – 0.90 V 1.5 V LVCMOS 1.80 V – – 0.75 V 1.2 V LVCMOS* 1.50 V – – 0.6 V 1.2 V LVCMOS Wide Range* 1.20 V – – 0.6 V 3.3 V PCI 1.20 V – – 0.285 * VCCI (RR) 3.30 V – – 0.615 * VCCI (FF)) 3.30 V – – 0.285 * VCCI (RR) 3.30 V – – 0.615 * VCCI (FF) 3.3 V GTL 2.50 V 0.8 V 1.2 V VREF 2.5 V GTL 3.30 V 0.8 V 1.2 V VREF 3.3 V GTL+ 2.50 V 1.0 V 1.5 V VREF 2.5 V GTL+ 1.50 V 1.0 V 1.5 V VREF 3.3 V PCI-X HSTL (I) 1.50 V 0.75 V 0.75 V VREF HSTL (II) 3.30 V 0.75 V 0.75 V VREF SSTL2 (I) 3.30 V 1.25 V 1.25 V VREF SSTL2 (II) 2.50 V 1.25 V 1.25 V VREF SSTL3 (I) 2.50 V 1.5 V 1.485 V VREF SSTL3 (II) 2.50 V 1.5 V 1.485 V VREF LVDS 3.30 V – – Cross point – – Cross point LVPECL Note: *Applicable to A3PE600L and A3PE3000L devices operating at 1.2 V core regions only. Table 2-29 • I/O AC Parameter Definitions Parameter Parameter Definition tDP Data to Pad delay through the Output Buffer tPY Pad to Data delay through the Input Buffer tDOUT Data to Output Buffer delay through the I/O interface tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface tDIN Input Buffer to Data delay through the I/O interface tHZ Enable to Pad delay through the Output Buffer—High to Z tZH Enable to Pad delay through the Output Buffer—Z to High tLZ Enable to Pad delay through the Output Buffer—Low to Z tZL Enable to Pad delay through the Output Buffer—Z to Low tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low Revision 3 2- 27 Military ProASIC3/EL DC and Switching Characteristics 1.2 V Core Operating Voltage 3.3 V LVTTL / 3.3 V LVCMOS tZHS (ns) tZLS (ns) tHZ (ns) tLZ (ns) tZH (ns) tZL (ns) tE O U T (ns) tPYS (ns) tPY (ns) tDIN (ns) tDP (ns) tDOUT (ns) External Resistor () Capacitive Load (pF)2 Slew Rate Equivalent Software Default Drive Strength Option1 Standard Drive Strength (mA) Table 2-30 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.14 V, Worst Case VCCI Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 12 mA 12 mA High 5 – 0.68 2.09 0.05 1.49 2.03 0.44 2.12 1.56 2.76 3.06 3.99 3.43 3.3 V LVCMOS 100 µA Wide Range3 12 mA High 5 – 0.68 3.01 0.04 1.86 2.69 0.44 3.01 2.22 4.03 4.42 4.89 4.09 2.5 V LVCMOS 12 mA 12 mA High 5 – 0.68 2.12 0.04 1.73 2.17 0.44 2.15 1.74 2.84 2.95 4.03 3.62 1.8 V LVCMOS 12 mA 12 mA High 5 – 0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27 3.81 1.5 V LVCMOS 12 mA 12 mA High 5 – 0.68 2.71 0.04 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63 4.12 1.2 V LVCMOS 2 mA 2 mA High 5 – 0.68 4.39 0.04 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61 2 mA High 5 – 0.68 4.39 0.04 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61 1.2 V LVCOMS 100 µA Wide Range4 3.3 V PCI 3.3 V PCI-X Per PCI spec – High 10 255 0.68 2.37 0.04 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56 Per PCI-X spec – High 10 255 0.68 2.37 0.04 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56 3.3 V GTL 20 mA6 20 mA6 High 10 25 0.68 1.75 0.05 1.99 – 0.44 1.71 1.75 – – 3.59 3.62 2.5 V GTL 20 mA6 20 mA6 High 10 25 0.68 1.79 0.05 1.93 – 0.44 1.82 1.79 – – 3.70 3.67 3.3 V GTL+ 35 mA 35 mA High 10 25 0.68 1.74 0.05 1.99 – 0.44 1.76 1.73 – – 3.64 3.61 2.5 V GTL+ 33 mA 33 mA High 10 25 0.68 1.86 0.05 1.93 – 0.44 1.89 1.77 – – 3.77 3.64 HSTL (I) 8 mA HSTL (II) 15 mA6 High 20 25 0.68 2.68 0.05 2.34 – 0.44 2.73 2.65 – – 4.60 4.52 15 mA6 High 20 50 0.68 2.55 0.05 2.34 8 mA – 0.44 2.59 2.28 – – 4.47 4.16 SSTL2 (I) 15 mA 15 mA High 30 25 0.68 1.80 0.05 1.78 – 0.44 1.82 1.55 – – 1.82 1.55 SSTL2 (II) 15 mA 15 mA High 30 50 0.68 1.83 0.05 1.78 – 0.44 1.86 1.49 – – 1.86 1.49 SSTL3 (I) 14 mA 14 mA High 30 25 0.68 1.95 0.05 1.71 – 0.44 1.98 1.55 – – 1.98 1.55 SSTL3 (II) 21 mA 21 mA High 30 50 0.68 1.75 0.05 1.71 – 0.44 1.77 1.41 – – 1.77 1.41 LVDS 24 mA – High – – 0.68 1.59 0.05 2.11 – – – – – – – – LVPECL 24 mA – High – – 0.68 1.51 0.05 1.84 – – – – – – – – Notes: 1. Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range are applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a specific output load, refer to Designer software. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. 5. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for connectivity. This resistor is not required during normal operation. 6. Output drive strength is below JEDEC specification. 7. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 28 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 1.5 V Core Voltage 5 – 0.52 2.01 0.03 1.49 1.93 0.34 2.02 1.65 2.71 2.78 3.27 2.89 12 mA High 5 – 0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51 3.08 12 mA 12 mA High 5 – 0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87 3.39 1.5 V LVCMOS 3.3 V PCI 3.3 V PCI-X 3.3 V GTL tZHS (ns) 12 mA High 12 mA tZLS (ns) 12 mA 1.8 V LVCMOS tHZ (ns) 2.5 V LVCMOS tLZ (ns) 0.52 2.89 0.03 1.61 2.44 0.34 2.88 2.12 3.89 4.25 4.12 3.36 tZH (ns) – tZL (ns) 5 tE O U T (ns) 12 mA High tPYS (ns) 3.3 V LVCOMS 100 µA Wide Range3 tPY (ns) 0.52 1.97 0.03 1.23 1.78 0.34 1.99 1.46 2.63 2.89 3.23 2.71 tDIN (ns) – tDP (ns) 5 tDOUT (ns) External Resistor () 12 mA High 3.3 V LVTTL / 3.3 V LVCMOS Slew Rate 12 mA Standard Drive Strength (mA) Capacitive Load (pF)2 Equivalent Software Default Drive Strength Option1 Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst Case VCCI Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Per PCI spec – High 10 254 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83 Per PCI-X spec – High 10 254 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83 20 mA5 20 mA5 High 10 25 0.52 1.68 0.03 1.79 mA5 – 0.34 1.58 1.68 – – 2.83 2.92 2.5 V GTL 20 High 10 25 0.52 1.72 0.03 1.73 – 0.34 1.69 1.72 – – 2.93 2.97 3.3 V GTL+ 35 mA 35 mA High 10 25 0.52 1.66 0.03 1.79 – 0.34 1.63 1.66 – – 2.88 2.90 2.5 V GTL+ 33 mA 33 mA High 10 25 0.52 1.75 0.03 1.73 – 0.34 1.76 1.69 – – 3.00 2.94 8 mA 8 mA HSTL (I) 20 mA5 – 0.34 2.59 2.55 – – 3.84 3.79 HSTL (II) 15 mA5 15 mA5 High 20 50 0.52 2.44 0.03 2.14 High 20 25 0.52 2.57 0.03 2.14 – 0.34 2.46 2.19 – – 3.71 3.43 SSTL2 (I) 15 mA 15 mA High 30 25 0.52 1.68 0.03 1.58 – 034 1.69 1.46 – – 1.69 1.46 SSTL2 (II) 18 mA 18 mA High 30 50 0.52 1.72 0.03 1.58 – 0.34 1.73 1.39 – – 1.73 1.39 SSTL3 (I) 14 mA 14 mA High 30 25 0.52 1.83 0.03 1.51 – 0.34 1.84 1.45 – – 1.84 1.45 SSTL3 (II) 21 mA 21 mA High 30 50 0.52 1.63 0.03 1.51 – 0.34 1.64 1.31 – – 1.64 1.31 LVDS 24 mA – High – – 0.52 1.48 0.03 1.86 – – – – – – – – LVPECL 24 mA – High – – 0.52 1.40 0.03 1.61 – – – – – – – – Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a specific output load, refer to Designer software. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for connectivity. This resistor is not required during normal operation. 5. Output drive strength is below JEDEC specification. 6. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 29 Military ProASIC3/EL DC and Switching Characteristics High 5 – 0.54 3.47 0.04 1.44 0.39 3.47 2.57 4.65 5.18 6.64 5.75 tZHS (ns) 12 mA tZLS (ns) 100 µA tHZ (ns) 3.3 V LVCMOS Wide Range3 tLZ (ns) 0.54 2.24 0.04 0.95 0.39 2.28 1.70 3.00 3.35 4.38 3.79 tZH (ns) – tZL (ns) 5 tEOUT (ns) External Resistor () High tPY (ns) Capacitive Load (pF)2 12 mA tDIN (ns) Slew Rate 12 mA tDP (ns) Equivalent Software Default Drive Strength Option1 3.3 V LVTTL / 3.3 V LVCMOS I/O Standard tDOUT (ns) Drive Strength (mA) Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.425 V, Worst Case VCCI Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only 2.5 V LVCMOS 12 mA 12 mA High 5 – 0.54 2.26 0.04 1.23 0.39 2.30 1.89 3.09 3.22 4.39 3.99 1.8 V LVCMOS 12 mA 12 mA High 5 – 0.54 2.49 0.04 1.14 0.39 2.54 2.12 3.46 3.82 4.63 4.21 1.5 V LVCMOS 12 mA 12 mA High 5 – 0.54 2.85 0.04 1.35 0.39 2.90 2.45 3.69 3.93 4.99 4.55 3.3 V PCI Per PCI spec. High 10 254 0.54 2.51 0.04 0.81 0.39 2.55 1.83 3.00 3.35 4.65 3.92 Per PCI-X spec. High 10 25 4 0.54 2.51 0.04 0.78 0.39 2.55 1.83 3.00 3.35 4.65 3.92 LVDS 24 mA High – – 0.54 1.76 0.04 1.55 – – – – – – – LVPECL 24 mA High – – 0.54 1.68 0.04 1.31 – – – – – – – 3.3 V PCI-X Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a specific output load, refer to Designer software. Software default load is higher. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for connectivity. This resistor is not required during normal operation. 5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. 2- 30 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs High 5 – 0.54 2.94 0.04 1.42 0.39 2.94 2.22 4.03 4.66 6.12 5.40 2.5 V LVCMOS 12 mA 12 mA High 5 – 0.54 1.94 0.04 1.21 0.39 1.97 1.62 2.64 2.91 4.07 3.71 1.8 V LVCMOS 8 mA 8 mA High 5 – 0.54 1.94 0.04 1.21 0.39 1.97 1.62 2.64 2.91 4.07 3.71 1.5 V LVCMOS 4 mA 4 mA High 5 – 0.54 2.62 0.04 1.33 0.39 2.67 2.23 2.84 2.93 4.77 4.32 Per PCI spec. – High 10 25 4 0.54 2.16 0.04 0.80 0.39 2.20 1.60 2.61 3.01 4.29 3.69 Per PCI-X spec. – High 10 25 4 0.54 2.16 0.04 0.78 0.39 2.20 1.60 2.61 3.01 4.29 3.69 3.3 V PCI 3.3 V PCI-X tZHS (ns) 12 mA tZLS (ns) 100 µA tHZ (ns) 3.3 V LVCMOS Wide Range3 tLZ (ns) 0.54 1.90 0.04 0.94 0.39 1.94 1.47 2.61 3.01 4.03 3.56 tZH (ns) – tZL (ns) 5 tEOUT (ns) External Resistor High tPY (ns) Capacitive Load (pF)2 12 mA tDIN (ns) Slew Rate 12 mA tDP (ns) Equivalent Software Default Drive Strength Option1 3.3 V LVTTL / 3.3 V LVCMOS I/O Standard tDOUT (ns) Drive Strength (mA) Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings –1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.425 V, Worst Case VCCI Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a specific output load, refer to Designer software. Software default load is higher. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-15 on page 2-73 for connectivity. This resistor is not required during normal operation. 5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Detailed I/O DC Characteristics Table 2-34 • Input Capacitance Symbol Definition Conditions Min. Max. Units CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF Revision 3 2- 31 Military ProASIC3/EL DC and Switching Characteristics Table 2-35 • I/O Output Buffer Maximum Resistances 1 Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Standard 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS4 1.2 V LVCMOS Wide Range4 3.3 V PCI/PCI-X Drive Strength RPULL-DOWN () 2 RPULL-UP () 3 4 mA 100 300 8 mA 50 150 12 mA 25 75 16 mA 17 50 24 mA 11 33 100 µA Same as regular 3.3 V LVCMOS 4 mA 100 200 8 mA 50 100 12 mA 25 50 16 mA 20 40 24 mA 11 22 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 12 mA 20 22 16 mA 20 22 2 mA 200 224 4 mA 100 112 6 mA 67 75 8 mA 33 37 12 mA 33 37 2 mA 158 158 100 µA 158 158 Per PCI/PCI-X specification 25 75 3.3 V GTL 20 mA5 11 – 2.5 V GTL 20 mA5 14 – 3.3 V GTL+ 35 mA 12 – 2.5 V GTL+ 33 mA 15 – HSTL (I) 8 mA 50 50 HSTL (II) 15 mA5 25 25 SSTL2 (I) 15 mA 27 31 SSTL2 (II) 18 mA 13 15 SSTL3 (I) 14 mA 44 69 SSTL3 (II) 21 mA 18 32 Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.actel.com/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec. 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H s p e c . 4. Applicable to A3PE600L and A3PE3000L devices operating in the 1.2 V core range only. 5. Output drive strength is below JEDEC specification. 2- 32 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-36 • I/O Output Buffer Maximum Resistances 1 Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only Standard 3.3 V LVTTL / 3.3 V LVCMOS Drive Strength RPULL-DOWN () 2 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 17 50 11 33 24 mA 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X RPULL-UP () 3 100 µA Same as regular 3.3 V LVCMOS 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 17 50 24 mA 11 33 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 16 mA 20 40 2 mA 200 224 4 mA 100 112 6 mA 67 75 8 mA 33 37 12 mA 33 37 Per PCI/PCI-X specification 25 75 Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.actel.com/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec Revision 3 2- 33 Military ProASIC3/EL DC and Switching Characteristics Table 2-37 • I/O Output Buffer Maximum Resistances 1 Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only Standard Drive Strength RPULL-DOWN () 2 RPULL-UP () 3 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 25 75 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 100 µA 2.5 V LVCMOS 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 2 mA 200 224 4 mA 100 112 Per PCI/PCI-X specification 25 75 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X Same as regular 3.3 V LVCMOS 2 mA Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.actel.com/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec Table 2-38 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values R(WEAK PULL-UP)1 () R(WEAK PULL-DOWN)2 () VCCI Min. Max. Min. Max. 3.3 V 10 k 95 k 13 k 45 k 3.3 V (wide range I/Os) 10 k 95 k 13 k 45 k 2.5 V 11 k 100 k 17 k 74 k 1.8 V 19 k 85 k 23 k 110 k 1.5 V 20 k 120 k 17 k 156 k 1.2 V 30 k 450 k 25 k 300 k 1.2 V (wide range I/Os) 20 k 450 k 17 k 300 k Notes: 1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN) 2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN) 2- 34 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-39 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS 1.2 V LVCMOS Wide Range 3.3 V PCI/PCIX Drive Strength IOSL (mA)1 IOSH (mA)1 4 mA 25 27 8 mA 51 54 12 mA 103 109 16 mA 132 127 24 mA 268 181 100 µA Same specification as regular LVCMOS 3.3 V 4 mA 16 18 8 mA 32 37 12 mA 65 74 16 mA 83 87 24 mA 169 124 2 mA 9 11 4 mA 17 22 6 mA 35 44 8 mA 45 51 12 mA 91 74 16 mA 91 74 2 mA 13 16 4 mA 25 33 6 mA 32 39 8 mA 66 55 12 mA 66 55 2 mA TBD TBD 100 µA TBD Per PCI/PCI-X specification TBD Per PCI Curves 3.3 V GTL 20 mA2 268 181 2.5 V GTL 2 20 mA 169 124 3.3 V GTL+ 35 mA 268 181 2.5 V GTL+ 33 mA 169 124 HSTL (I) 8 mA 32 39 66 55 HSTL (II) 2 15 mA SSTL2 (I) 15 mA 83 87 SSTL2 (II) 18 mA 169 124 SSTL3 (I) 14 mA 51 54 SSTL3 (II) 21 mA 103 109 Notes: 1. TJ = 100°C 2. Output drive strength is below JEDEC specification. Revision 3 2- 35 Military ProASIC3/EL DC and Switching Characteristics Table 2-40 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only 3.3 V LVTTL / 3.3V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X Note: 2- 36 Drive Strength IOSL (mA)* IOSH (mA)* 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 12 mA 103 109 16 mA 132 127 24 mA 268 181 100 µA Same specification as regular LVCMOS 3.3 V 2 mA 16 18 4 mA 16 18 6 mA 32 37 8 mA 32 37 12 mA 65 74 16 mA 83 87 24 mA 169 124 2 mA 9 11 4 mA 17 22 6 mA 35 44 8 mA 45 51 12 mA 91 74 16 mA 91 74 2 mA 13 16 4 mA 25 33 6 mA 32 39 8 mA 66 55 12 mA 66 55 Per PCI/PCI-X specification 103 109 *TJ = 100°C R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-41 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only 3.3 V LVTTL / 3.3V LVCMOS 2.5 V LVCMOS IOSH (mA)* 25 27 4mA 25 27 6mA 51 54 8mA 51 54 12mA 103 109 16mA 103 109 Same specification as regular LVCMOS 3.3 V 2mA 16 18 4mA 16 18 6mA 32 37 8mA 32 37 12mA 65 74 2mA 9 11 4mA 17 22 6mA 35 44 8mA 35 44 2mA 13 16 4mA 25 33 Per PCI/PCI-X specification 103 109 1.8 V LVCMOS 1.5V LVCMOS Note: IOSL (mA)* 2mA 100 µA 3.3 V LVCMOS Wide Range 3.3 V PCI/PCI-X Drive Strength *TJ = 100°C Table 2-42 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (typical) for Schmitt Mode Input Buffers Applicable to A3PE600L and A3PE3000L Only Input Buffer Configuration Hysteresis Value (typical) 3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) 240 mV 2.5 V LVCMOS (Schmitt trigger mode) 140 mV 1.8 V LVCMOS (Schmitt trigger mode) 80 mV 1.5 V LVCMOS (Schmitt trigger mode) 60 mV 1.2 V LVCMOS (Schmitt trigger mode) 40 mV The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis. Revision 3 2- 37 Military ProASIC3/EL DC and Switching Characteristics For example, at 110°C, the short current condition would have to be sustained for more than three months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-43 • Duration of Short Circuit Event before Failure Temperature Time before Failure –50ºC > 20 years –40°C > 20 years 0°C > 20 years 25°C > 20 years 70°C 5 years 85°C 2 years 100°C 6 months 110°C 3 months 125°C 1 month Table 2-44 • I/O Input Rise Time, Fall Time, and Related I/O Reliability Input Buffer Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability LVTTL/LVCMOS No requirement 10 ns * 20 years (110°C) LVDS/B-LVDS/ M-LVDS/LVPECL No requirement 10 ns * 10 years (100°C) Note: 2- 38 *The maximum input rise/fall time is related to the noise induced in the input buffer trace. If the noise is low, the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Single-Ended I/O Characteristics 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Table 2-45 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 15 15 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 15 15 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 15 15 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 15 15 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Table 2-46 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 15 15 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 15 15 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 15 15 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 15 15 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 15 15 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 15 15 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Revision 3 2- 39 Military ProASIC3/EL DC and Switching Characteristics Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 15 15 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 15 15 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 15 15 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 15 15 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 15 15 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 103 109 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath Figure 2-8 • 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ AC Loading Table 2-48 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: 2- 40 Input High (V) Measuring Point* (V) VREF (Typ) (V) CLOAD (pF) 3.3 1.4 – 5 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics 1.2 V DC Core Voltage Table 2-49 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 4 mA Std. 0.80 6.04 0.05 1.75 2.38 0.52 6.14 4.84 2.68 2.43 8.35 7.05 ns –1 0.68 5.13 0.05 1.49 2.03 0.44 5.22 4.12 2.28 2.07 7.10 6.00 ns 8 mA Std. 0.80 4.93 0.05 1.75 2.38 0.52 5.02 4.14 3.02 3.05 7.22 6.34 ns –1 0.68 4.20 0.05 1.49 2.03 0.44 4.27 3.52 2.57 2.59 6.14 5.40 ns 12 mA Std. 0.80 4.15 0.05 1.75 2.38 0.52 4.22 3.61 3.25 3.43 6.43 5.81 ns –1 0.68 3.53 0.05 1.49 2.03 0.44 3.59 3.07 2.76 2.92 5.47 4.95 ns 16 mA Std. 0.80 3.93 0.05 1.75 2.38 0.52 3.99 3.49 3.29 3.54 6.20 5.70 ns –1 0.68 3.34 0.05 1.49 2.03 0.44 3.40 2.97 2.80 3.01 5.27 4.85 ns Std. 0.80 3.81 0.05 1.75 2.38 0.52 3.87 3.51 3.36 3.94 6.08 5.71 ns –1 0.68 3.24 0.05 1.49 2.03 0.44 3.30 2.98 2.86 3.35 5.17 4.86 ns 24 mA Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 3.40 0.05 1.75 2.38 0.52 3.45 2.60 2.68 2.58 5.66 4.81 ns –1 0.68 2.89 0.05 1.49 2.03 0.44 2.94 2.21 2.28 2.19 4.81 4.09 ns 8 mA Std. 0.80 2.79 0.05 1.75 2.38 0.52 2.84 2.08 3.02 3.19 5.04 4.29 ns –1 0.68 2.38 0.05 1.49 2.03 0.44 2.41 1.77 2.57 2.72 4.29 3.65 ns 12 mA Std. 0.80 2.45 0.05 1.75 2.38 0.52 2.49 1.83 3.25 3.59 4.70 4.04 ns –1 0.68 2.09 0.05 1.49 2.03 0.44 2.12 1.56 2.76 3.06 3.99 3.43 ns 16 mA Std. 0.80 2.40 0.05 1.75 2.38 0.52 2.43 1.79 3.30 3.70 4.64 3.99 ns –1 0.68 2.04 0.05 1.49 2.03 0.44 2.07 1.52 2.81 3.15 3.95 3.40 ns 24 mA Std. 0.80 2.42 0.05 1.75 2.38 0.52 2.46 1.72 3.37 4.10 4.66 3.93 ns –1 0.68 2.06 0.05 1.49 2.03 0.44 2.09 1.47 2.86 3.49 3.97 3.34 ns 4 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 41 Military ProASIC3/EL DC and Switching Characteristics 1.5 V DC Core Voltage Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 5.90 0.04 1.45 2.09 0.40 5.98 4.73 2.52 2.24 7.45 6.19 ns –1 0.52 5.02 0.03 1.23 1.78 0.34 5.09 4.02 2.15 1.90 6.34 5.27 ns 8 mA Std. 0.61 4.80 0.04 1.45 2.09 0.40 4.86 4.02 2.87 2.85 6.32 5.49 ns –1 0.52 4.08 0.03 1.23 1.78 0.34 4.13 3.42 2.44 2.43 5.38 4.67 ns 12 mA Std. 0.61 4.02 0.04 1.45 2.09 0.40 4.06 3.49 3.09 3.23 5.53 4.96 ns –1 0.52 3.42 0.03 1.23 1.78 0.34 3.46 2.97 2.63 2.75 4.70 4.22 ns 16 mA Std. 0.61 3.79 0.04 1.45 2.09 0.40 3.84 3.38 3.14 3.34 5.30 4.84 ns –1 0.52 3.23 0.03 1.23 1.78 0.34 3.26 2.87 2.67 2.84 4.51 4.12 ns 24 mA Std. 0.61 3.67 0.04 1.45 2.09 0.40 3.72 3.39 3.20 3.74 5.18 4.86 ns –1 0.52 3.13 0.03 1.23 1.78 0.34 3.16 2.88 2.72 3.18 4.41 4.13 ns 4 mA Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 4 mA Std. 0.61 3.26 0.04 1.45 2.09 0.40 3.30 2.48 2.52 2.38 4.76 3.95 ns –1 0.52 2.77 0.03 1.23 1.78 0.34 2.80 2.11 2.15 2.03 4.05 3.36 ns 8 mA Std. 0.61 2.66 0.04 1.45 2.09 0.40 2.68 1.97 2.87 3.00 4.15 3.43 ns –1 0.52 2.26 0.03 1.23 1.78 0.34 2.28 1.67 2.44 2.55 3.53 2.92 ns 12 mA Std. 0.61 2.32 0.04 1.45 2.09 0.40 2.33 1.72 3.09 3.40 3.80 3.18 ns –1 0.52 1.97 0.03 1.23 1.78 0.34 1.99 1.46 2.63 2.89 3.23 2.71 ns 16 mA Std. 0.61 2.26 0.04 1.45 2.09 0.40 2.28 1.67 3.15 3.51 3.74 3.14 ns –1 0.52 1.92 0.03 1.23 1.78 0.34 1.94 1.42 2.68 2.98 3.18 2.67 ns Std. 0.61 2.28 0.04 1.45 2.09 0.40 2.30 1.61 3.21 3.90 3.77 3.07 ns –1 0.52 1.94 0.03 1.23 1.78 0.34 1.96 1.37 2.73 3.32 3.20 2.61 ns 24 mA Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 42 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 6.25 0.05 1.12 0.45 6.37 5.29 2.91 2.70 8.83 7.75 ns –1 0.54 5.32 0.04 0.95 0.39 5.42 4.50 2.47 2.30 7.51 6.59 ns Std. 0.63 5.25 0.05 1.12 0.45 5.35 4.58 3.28 3.34 7.81 7.04 ns –1 0.54 4.47 0.04 0.95 0.39 4.55 3.90 2.79 2.85 6.65 5.99 ns Std. 0.63 5.25 0.05 1.12 0.45 5.35 4.58 3.28 3.34 7.81 7.04 ns –1 0.54 4.47 0.04 0.95 0.39 4.55 3.90 2.79 2.85 6.65 5.99 ns Std. 0.63 4.50 0.05 1.12 0.45 4.59 4.05 3.53 3.76 7.05 6.51 ns –1 0.54 3.83 0.04 0.95 0.39 3.90 3.45 3.00 3.20 5.99 5.54 ns Std. 0.63 4.27 0.05 1.12 0.45 4.35 3.93 3.58 3.86 6.81 6.39 ns –1 0.54 3.63 0.04 0.95 0.39 3.70 3.34 3.05 3.29 5.79 5.43 ns Std. 0.63 4.14 0.05 1.12 0.45 4.22 3.97 3.65 4.27 6.68 6.43 ns –1 0.54 3.53 0.04 0.95 0.39 3.59 3.38 3.10 3.63 5.68 5.47 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 4 mA Std. 0.63 3.55 0.05 1.12 0.45 3.62 2.79 2.91 2.87 6.07 5.25 ns –1 0.54 3.02 0.04 0.95 0.39 3.08 2.37 2.48 2.44 5.17 4.46 ns 6 mA Std. 0.63 2.95 0.05 1.12 0.45 3.00 2.25 3.28 3.52 5.46 4.71 ns –1 0.54 2.51 0.04 0.95 0.39 2.55 1.91 2.79 3.00 4.65 4.01 ns 8 mA Std. 0.63 2.95 0.05 1.12 0.45 3.00 2.25 3.28 3.52 5.46 4.71 ns –1 0.54 2.51 0.04 0.95 0.39 2.55 1.91 2.79 3.00 4.65 4.01 ns 12 mA Std. 0.63 2.64 0.05 1.12 0.45 2.68 1.99 3.53 3.94 5.14 4.45 ns –-1 0.54 2.24 0.04 0.95 0.39 2.28 1.70 3.00 3.35 4.38 3.79 ns 16 mA Std. 0.63 2.58 0.05 1.12 0.45 2.63 1.95 3.59 4.05 5.09 4.41 ns –-1 0.54 2.20 0.04 0.95 0.39 2.24 1.66 3.05 3.44 4.33 3.75 ns 24 mA Std. 0.63 2.61 0.05 1.12 0.45 2.66 1.89 3.66 4.46 5.12 4.35 ns –1 0.54 2.22 0.04 0.95 0.39 2.26 1.61 3.11 3.80 4.35 3.70 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 43 Military ProASIC3/EL DC and Switching Characteristics Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 5.64 0.05 1.10 0.45 5.74 4.78 2.50 2.43 8.20 7.24 ns –1 0.54 4.79 0.04 0.94 0.39 4.88 4.06 2.13 2.07 6.98 6.16 ns Std. 0.63 4.64 0.05 1.10 0.45 4.73 4.16 2.84 3.01 7.19 6.62 ns –1 0.54 3.95 0.04 0.94 0.39 4.02 3.54 2.42 2.56 6.11 5.63 ns Std. 0.63 4.64 0.05 1.10 0.45 4.73 4.16 2.84 3.01 7.19 6.62 ns –1 0.54 3.95 0.04 0.94 0.39 4.02 3.54 2.42 2.56 6.11 5.63 ns Std. 0.63 3.94 0.05 1.10 0.45 4.01 3.67 3.07 3.39 6.47 6.13 ns –1 0.54 3.35 0.04 0.94 0.39 3.41 3.12 2.61 2.88 5.51 5.21 ns Std. 0.63 3.94 0.05 1.10 0.45 4.01 3.67 3.07 3.39 6.47 6.13 ns –1 0.54 3.35 0.04 0.94 0.39 3.41 3.12 2.61 2.88 5.51 5.21 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 3.07 0.05 1.10 0.45 3.13 2.46 2.50 2.57 5.59 4.91 ns –1 0.54 2.61 0.04 0.94 0.39 2.66 2.09 2.13 2.19 4.75 4.18 ns Std. 0.63 2.51 0.05 1.10 0.45 2.55 1.97 2.84 3.16 5.01 4.43 ns –1 0.54 2.13 0.04 0.94 0.39 2.17 1.67 2.41 2.69 4.26 3.76 ns Std. 0.63 2.51 0.05 1.10 0.45 2.55 1.97 2.84 3.16 5.01 4.43 ns –1 0.54 2.13 0.04 0.94 0.39 2.17 1.67 2.41 2.69 4.26 3.76 ns Std. 0.63 2.24 0.05 1.10 0.45 2.28 1.72 3.07 3.54 4.74 4.18 ns –1 0.54 1.90 0.04 0.94 0.39 1.94 1.47 2.61 3.01 4.03 3.56 ns Std. 0.63 2.24 0.05 1.10 0.45 2.28 1.72 3.07 3.54 4.74 4.18 ns –1 0.54 1.90 0.04 0.94 0.39 1.94 1.47 2.61 3.01 4.03 3.56 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. 2- 44 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 3.3 V LVCMOS Wide Range Table 2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only 3.3 V Equiv. LVCMOS Software Wide Range Default Drive Drive Strength Strength Option1 Min. V Max. V Min. V 100 µA 2 mA –0.3 0.8 100 µA 4 mA –0.3 100 µA 6 mA VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Max. V Max. V Min. V µA µA Max. mA4 Max. mA4 µA5 µA5 2 3.6 0.2 VCCI – 0.2 100 100 25 27 15 15 0.8 2 3.6 0.2 VCCI – 0.2 100 100 25 27 15 15 –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 51 54 15 15 VIL VIH 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 103 109 15 15 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 132 127 15 15 100 µA 24 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 268 181 15 15 Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 125°C junction temperature. 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification. 6. Software default selection highlighted in gray. Table 2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V LVCMOS Wide Range Equiv. Software Default Drive Strength Option1 Min. V Max. V 100 µA 2 mA –0.3 0.8 2 3.6 0.2 100 µA 4 mA –0.3 0.8 2 3.6 0.2 100 µA 6 mA –0.3 0.8 2 3.6 100 µA 8 mA –0.3 0.8 2 100 µA 12 mA –0.3 0.8 100 A 16 mA –0.3 0.8 Drive Strength VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Min. Max. V V Max. V Min. V µA Max. mA4 Max. mA4 µA5 µA5 VCCI – 0.2 100 100 25 27 15 15 VCCI – 0.2 100 100 25 27 15 15 0.2 VCCI – 0.2 100 100 51 54 15 15 3.6 0.2 VCCI – 0.2 100 100 51 54 15 15 2 3.6 0.2 VCCI – 0.2 100 100 103 109 15 15 2 3.6 0.2 VCCI – 0.2 100 100 132 127 15 15 VIL µA Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 125°C junction temperature. 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification. 6. Software default selection highlighted in gray. Revision 3 2- 45 Military ProASIC3/EL DC and Switching Characteristics Table 2-59 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVCMOS Wide Range Equiv. Software VIL Default Drive Strength Min. Max. V V Option1 Drive Strength VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Min. V Max. V Max. V Min. V Max. mA4 Max. mA4 µA µA µA µA 5 5 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 25 27 15 15 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 25 27 15 15 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 51 54 15 15 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 51 54 15 15 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 103 109 15 15 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VCCI – 0.2 100 100 132 127 15 15 Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 125°C junction temperature. 5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification. 6. Software default selection highlighted in gray. Test Point Datapath Figure 2-9 • 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ AC Loading Table 2-60 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: 2- 46 Input High (V) Measuring Point* (V) VREF (Typ) (V) CLOAD (pF) 3.3 1.4 – 5 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics 1.2 V DC Core Voltage Table 2-61 • 3.3 V LVCMOS Wide Range Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Equiv. Software Default Drive Drive Strength Strength Option1 100 µA 4 mA Speed Grade tDOUT tDP tDIN tPY Std. 0.80 9.08 0.05 2.18 tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 3.16 0.52 9.08 7.17 3.85 3.40 11.28 9.38 ns –1 0.68 7.72 0.05 1.86 2.69 0.44 7.72 6.10 3.28 2.89 9.60 7.98 ns 100 µA 8 mA Std. 0.80 7.37 0.05 2.18 3.16 0.52 7.37 6.10 4.38 4.35 9.58 8.31 ns –1 0.68 6.27 0.05 1.86 2.69 0.44 6.27 5.19 3.73 3.70 8.15 7.07 ns 100 µA 12 mA Std. 0.80 6.17 0.05 2.18 3.16 0.52 6.17 5.30 4.73 4.94 8.37 7.51 ns –1 0.68 5.24 0.05 1.86 2.69 0.44 5.24 4.51 4.03 4.20 7.12 6.38 ns ns 100 µA 100 µA 16 mA 24 mA Std. 0.80 5.82 0.05 2.18 3.16 0.52 5.82 5.12 4.80 5.11 8.03 7.33 –1 0.68 4.95 0.05 1.86 2.69 0.44 4.95 4.36 4.09 4.34 6.83 6.23 ns Std. 0.80 5.64 0.05 2.18 3.16 0.52 5.64 5.14 4.90 5.72 7.85 7.35 ns –1 0.68 4.80 0.05 1.86 2.69 0.44 4.80 4.38 4.17 4.87 6.67 6.25 ns Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges ONLY. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-62 • 3.3 V LVCMOS Wide Range High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only Equiv. Software Default Drive Drive Strength Strength Option1 Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL 5.00 tZH tLZ tHZ tZLS tZHS Units 100 µA 4 mA Std. 0.80 5.00 0.05 2.18 3.16 0.52 3.77 3.85 3.62 7.21 5.97 ns –1 0.68 4.25 0.05 1.86 2.69 0.44 100 µA 8 mA Std. 0.80 4.07 0.05 2.18 3.16 0.52 4.25 3.21 3.28 3.08 6.13 5.08 ns 4.07 2.98 4.38 4.57 6.27 5.19 ns –1 0.68 3.46 0.05 1.86 2.69 0.44 100 µA 12 mA Std. 0.80 3.54 0.05 2.18 3.16 0.52 3.46 2.54 3.73 3.89 5.33 4.41 ns 3.54 2.60 4.73 5.19 5.74 4.81 ns –1 0.68 3.01 0.05 1.86 2.69 0.44 3.01 2.22 4.03 4.42 4.89 4.09 ns 100 µA 16 mA Std. 0.80 3.45 0.05 2.18 3.16 0.52 3.45 2.54 4.82 5.36 5.66 4.74 ns –1 0.68 2.94 0.05 1.86 2.69 0.44 2.94 2.16 4.10 4.56 4.81 4.03 ns 100 µA 24 mA Std. 0.80 3.49 0.05 2.18 3.16 0.52 3.49 2.44 4.91 5.98 5.69 4.64 ns –1 0.68 2.97 0.05 1.86 2.69 0.44 2.97 2.07 4.18 5.08 4.84 3.95 ns Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. For specific junction temperature and voltage supply levels, refer to the Table 2-5 on page 2-8 for derating values. 3. Software default selection highlighted in gray. Revision 3 2- 47 Military ProASIC3/EL DC and Switching Characteristics 1.5 V DC Core Voltage Table 2-63 • 3.3 V LVCMOS Wide Range Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Equiv. Software Default Drive Drive Strength Strength Option1 100 µA 4 mA Speed Grade tDOUT tDP tDIN tPY Std. 0.61 8.94 0.04 1.90 tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2.87 0.40 8.92 7.06 3.69 3.20 10.39 8.53 ns –1 0.52 7.61 0.03 1.61 2.44 0.34 7.59 6.01 3.14 2.72 8.84 7.25 ns 0.40 7.22 5.99 4.23 4.15 8.68 7.45 ns 100 µA 8 mA Std. 0.61 7.24 0.04 1.90 2.87 –1 0.52 6.16 003 1.61 2.44 0.34 6.14 5.10 3.60 3.53 7.39 6.34 ns 100 µA 12 mA Std. 0.61 6.03 0.04 1.90 2.87 0.40 6.01 5.19 4.58 4.74 7.47 6.65 ns –1 0.52 5.13 0.03 1.61 2.44 0.34 5.11 4.41 3.89 4.03 6.36 5.66 ns 100 µA 100 µA 16 mA 24 mA Std. 0.61 5.68 0.04 1.90 2.87 0.40 5.66 5.01 4.65 4.91 7.13 6.47 ns –1 0.52 4.83 0.03 1.61 2.44 0.34 4.82 4.26 3.95 4.18 6.06 5.51 ns Std. 0.61 5.50 0.04 1.90 2.87 0.40 5.48 5.03 4.74 5.53 6.95 6.49 ns –1 0.52 4.68 0.03 1.61 2.44 0.34 4.66 4.28 4.04 4.70 5.91 5.52 ns Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges ONLY. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-64 • 3.3 V LVCMOS Wide Range High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only Equiv. Software Default Drive Drive Strength Strength Option1 100 µA 100 µA 100 µA 100 µA 100 µA 4 mA 8 mA 12 mA 16 mA 24 mA Speed Grade Std. 0.61 tPY tPYS tEOUT tZL 4.86 0.04 1.90 2.87 0.40 4.84 3.65 3.69 3.43 6.31 5.12 ns –1 0.52 4.14 0.03 1.61 2.44 0.34 4.12 3.11 3.14 2.91 5.37 4.35 ns tDOUT tDP tDIN tZH tLZ tHZ tZLS tZHS Units Std. 0.61 3.93 0.04 1.90 2.87 0.40 3.91 2.87 4.23 4.38 5.37 4.33 ns –1 0.52 3.34 0.03 1.61 2.44 0.34 3.33 2.44 3.60 3.72 4.57 3.68 ns Std. 0.61 3.40 0.04 1.90 2.87 0.40 3.38 2.49 4.58 4.99 4.85 3.95 ns –1 0.52 2.89 0.03 1.61 2.44 0.34 2.88 2.12 3.89 4.25 4.12 3.36 ns Std. 0.61 3.31 0.04 1.90 2.87 0.40 3.29 2.42 4.66 5.16 4.76 3.89 ns –1 0.52 2.82 0.03 1.61 2.44 0.34 2.80 2.06 3.96 4.39 4.05 3.31 ns Std. 0.61 3.35 0.04 1.90 2.87 0.40 3.33 2.32 4.76 5.78 4.80 3.79 ns –1 0.52 2.85 0.03 1.61 2.44 0.34 2.83 1.98 4.05 4.92 4.08 3.22 ns Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 48 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-65 • 3.3 V LVCMOS Wide Range Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced I/O Banks Drive Strength 100 µA Equiv. Software Default Drive Strength Option1 Speed Grade 4 mA Std. 0.63 9.67 0.05 1.70 0.45 9.67 8.03 4.50 4.18 13.40 11.77 –1 0.54 8.22 0.04 1.44 0.39 8.22 6.83 3.83 3.55 11.40 10.01 ns tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units ns 100 µA 6mA Std. 0.63 8.13 0.05 1.70 0.45 8.13 6.95 5.07 5.17 11.86 10.69 ns –1 0.54 6.91 0.04 1.44 0.39 6.91 5.92 4.31 4.40 10.09 9.09 ns 100 µA 8 mA Std. 0.63 8.13 0.05 1.70 0.45 8.13 6.95 5.07 5.17 11.86 10.69 ns –1 0.54 6.91 0.04 1.44 0.39 6.91 5.92 4.31 4.40 10.09 9.09 ns ns 100 µA 100 µA 12 mA 16 mA Std. 0.63 6.96 0.05 1.70 0.45 6.96 6.15 5.45 5.81 10.70 9.89 –1 0.54 5.92 0.04 1.44 0.39 5.92 5.24 4.64 4.94 9.10 8.41 ns Std. 0.63 6.61 0.05 1.70 0.45 6.61 5.96 5.54 5.97 10.34 9.70 ns –1 0.54 5.62 0.04 1.44 0.39 5.62 5.07 4.71 5.08 8.25 ns 8.80 Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges ONLY. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-66 • 3.3 V LVCMOS Wide Range High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced I/O Banks Equiv. Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tHZ tZLS tZHS Units 100 µA 4 mA Std. 0.63 5.49 0.05 1.70 0.45 5.49 4.23 4.51 4.44 9.22 7.97 ns –1 0.54 4.67 0.04 1.44 0.39 4.57 3.60 3.83 3.78 7.84 6.78 ns 100 µA 6 mA Std. 0.63 4.56 0.05 1.70 0.45 4.56 3.42 5.08 5.45 8.29 7.15 ns –1 0.54 3.88 0.04 1.44 0.39 3.88 2.91 4.32 4.64 7.05 6.08 ns 100 µA 8 mA Std. 0.63 4.56 0.05 1.70 0.45 4.56 3.42 5.08 5.45 8.29 7.15 ns –1 0.54 3.88 0.04 1.44 0.39 3.88 2.91 4.32 4.64 7.05 6.08 ns 100 µA 12 mA Std. 0.63 4.08 0.05 1.70 0.45 4.08 3.03 5.46 6.09 7.81 6.76 ns –1 0.54 3.47 0.04 1.44 0.39 3.47 2.57 4.65 5.18 6.64 5.75 ns 100 µA 16 mA Std. 0.63 4.00 0.05 1.70 0.45 4.00 2.96 5.55 6.26 7.73 6.69 ns –1 0.54 3.40 0.04 1.44 0.39 3.40 2.51 4.72 5.32 6.58 5.69 ns Drive Strength tLZ Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 49 Military ProASIC3/EL DC and Switching Characteristics Table 2-67 • 3.3 V LVCMOS Wide Range Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Standard Plus I/O Banks Drive Strength 100 µA Equiv. Software Default Drive Strength Option1 Speed Grade tDOUT 4 mA Std. 0.63 –1 0.54 tDP tDIN 8.71 tPY tEOUT tZL 0.05 1.67 0.45 8.71 tZH tLZ tHZ tZLS tZHS Units 7.25 3.87 3.76 12.45 10.99 7.41 0.04 1.42 0.39 7.41 6.17 3.29 3.19 10.59 9.35 ns 6.31 4.39 4.66 10.91 10.04 ns ns 100 µA 6 mA Std. 0.63 7.17 0.05 1.67 0.45 7.17 –1 0.54 6.10 0.04 1.42 0.39 6.10 5.37 3.73 3.96 8.54 ns 100 µA 8 mA Std. 0.63 7.17 0.05 1.67 0.45 7.17 6.31 4.39 4.66 10.91 10.04 ns –1 0.54 6.10 0.04 1.42 0.39 6.10 5.37 3.73 3.96 9.28 8.54 ns ns 100 µA 100 µA 12 mA 16 mA 9.28 Std. 0.63 6.09 0.05 1.67 0.45 6.09 5.57 4.75 5.24 9.83 9.31 –1 0.54 5.18 0.04 1.42 0.39 5.18 4.74 4.04 4.46 8.36 7.92 ns Std. 0.63 6.09 0.05 1.67 0.45 6.09 5.57 4.75 5.24 9.83 9.31 ns –1 0.54 5.18 0.04 1.42 0.39 5.18 4.74 4.04 4.46 8.36 7.92 ns Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges ONLY. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-68 • 3.3 V LVCMOS Wide Range High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Standard Plus I/O Banks Equiv. Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tHZ tZLS tZHS Units 100 µA 4 mA Std. 0.63 4.75 0.05 1.67 0.45 4.75 3.73 3.87 3.97 8.48 7.46 ns –1 0.54 4.04 0.04 1.42 0.39 4.04 3.17 3.29 3.38 7.21 6.35 ns 100 µA 6 mA Std. 0.63 3.87 0.05 1.67 0.45 3.87 2.98 4.38 4.89 7.61 6.72 ns –1 0.54 3.30 0.04 1.42 0.39 3.30 2.54 3.73 4.16 6.47 5.72 ns 100 µA 8 mA Std. 0.63 3.87 0.05 1.67 0.45 3.87 2.98 4.38 4.89 7.61 6.72 ns –1 0.54 3.30 0.04 1.42 0.39 3.30 2.54 3.73 4.16 6.47 5.72 ns 100 µA 12 mA Std. 0.63 3.46 0.05 1.67 0.45 3.46 2.61 4.74 5.48 7.19 6.35 ns –1 0.54 2.94 0.04 1.42 0.3 2.94 2.22 4.03 4.66 6.12 5.40 ns 100 µA 16 mA Std. 0.63 3.46 0.05 1.67 0.45 3.46 2.61 4.74 5.48 7.19 6.35 ns –1 0.54 2.94 0.04 1.42 0.39 2.94 2.22 4.03 4.66 6.12 5.40 ns Drive Strength tLZ Notes: 1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 50 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 2.5 V LVCMOS Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer. Table 2-69 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 16 18 15 15 8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 32 37 15 15 12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 65 74 15 15 16 mA –0.3 0.7 1.7 3.6 0.7 1.7 16 16 83 87 15 15 24 mA –0.3 0.7 1.7 3.6 0.7 1.7 24 24 169 124 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Table 2-70 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 15 15 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 15 15 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 15 15 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 15 15 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 15 15 16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 15 15 24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Revision 3 2- 51 Military ProASIC3/EL DC and Switching Characteristics Table 2-71 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA5 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 15 15 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 15 15 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 15 15 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 15 15 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ Figure 2-10 • AC Loading Table 2-72 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: 2- 52 Input High (V) Measuring Point* (V) VREF (Typ) (V) CLOAD (pF) 2.5 1.2 – 5 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics 1.2 V DC Core Voltage Table 2-73 • 2.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Note: Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 6.87 0.05 2.04 2.56 0.52 6.99 5.83 2.70 2.19 9.20 8.03 ns –1 0.68 5.84 0.05 1.73 2.17 0.44 5.95 4.96 2.29 1.86 7.82 6.83 ns Std. 0.80 5.62 0.05 2.04 2.56 0.52 5.72 4.94 3.08 2.90 7.92 7.14 ns –1 0.68 4.78 0.05 1.73 2.17 044 4.86 4.20 2.62 2.47 6.74 6.08 ns Std. 0.80 4.73 0.05 2.04 2.56 0.52 4.81 4.30 3.34 3.38 7.01 6.50 ns –1 0.68 4.02 0.05 1.73 2.17 0.44 4.09 3.65 2.84 2.87 5.97 5.53 ns Std. 0.80 4.46 0.05 2.04 2.56 0.52 4.53 4.16 3.39 3.50 6.74 6.36 ns –1 0.68 3.79 0.05 1.73 2.17 0.44 3.86 3.54 2.89 2.98 5.73 5.41 ns Std. 0.80 4.34 0.05 2.04 2.56 0.52 4.41 4.17 3.47 3.96 6.62 6.38 ns –1 0.68 3.69 0.05 1.73 2.17 0.44 3.75 3.55 2.95 3.96 5.63 5.43 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-74 • 2.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 3.51 0.05 2.04 2.56 0.52 3.56 3.13 2.70 2.27 5.77 5.33 ns –1 0.68 2.98 0.05 1.73 2.17 0.44 3.03 2.66 2.29 1.93 4.91 4.53 ns Std. 0.80 2.87 0.05 2.04 2.56 0.52 2.92 2.40 3.08 3.01 5.12 4.61 ns –1 0.68 2.44 0.05 1.73 2.17 0.44 2.48 2.05 2.62 2.56 4.36 3.92 ns Std. 0.80 2.50 0.05 2.04 2.56 0.52 2.53 2.05 3.34 3.47 4.74 4.25 ns –1 0.68 2.12 0.05 1.73 2.17 0.44 2.15 1.74 2.84 2.95 4.03 3.62 ns Std. 0.80 2.43 0.05 2.04 2.56 0.52 2.47 1.98 3.39 3.59 4.67 4.19 ns –1 0.68 2.07 0.05 1.73 2.17 0.44 2.10 1.69 2.89 3.06 3.97 3.56 ns Std. 0.80 2.44 0.05 2.04 2.56 0.52 2.48 1.90 3.47 4.08 4.68 4.10 ns –1 0.68 2.08 0.05 1.73 2.17 0.44 2.11 1.61 2.95 3.47 3.98 3.49 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 53 Military ProASIC3/EL DC and Switching Characteristics 1.5 V DC Core Voltage Table 2-75 • 2.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Note: Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 6.73 0.04 1.75 2.26 0.40 6.83 5.71 2.54 1.99 8.30 7.18 ns –1 0.52 5.73 0.03 1.49 1.93 0.34 5.81 4.86 2.16 1.69 7.06 6.10 ns Std. 0.61 5.48 0.04 1.75 2.26 0.40 5.56 4.82 2.92 2.71 7.02 6.29 ns –1 0.52 4.66 0.03 1.49 1.93 0.34 4.73 4.10 2.48 2.30 5.98 5.35 ns Std. 0.61 4.59 0.04 1.75 2.26 0.40 4.65 4.18 3.18 3.18 6.12 5.65 ns –1 0.52 3.91 0.03 1.49 1.93 0.34 3.96 3.56 2.71 2.70 5.20 4.80 ns Std. 0.61 4.32 0.04 1.75 2.26 0.40 4.38 4.04 3.24 3.31 5.84 5.51 ns –1 0.52 3.68 0.03 1.49 1.93 0.34 3.72 3.44 2.75 2.81 4.97 4.69 ns Std. 0.61 4.20 0.04 1.75 2.26 0.40 4.26 4.06 3.31 3.76 5.72 5.52 ns –1 0.52 3.58 0.03 1.49 1.93 0.34 3.62 3.45 2.82 3.20 4.87 4.70 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-76 • 2.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 3.37 0.04 1.75 2.26 0.40 3.41 3.01 2.54 2.08 4.87 4.48 ns –1 0.52 2.87 0.03 1.49 1.93 0.34 2.90 2.56 2.16 1.77 4.14 3.81 ns Std. 0.61 2.74 0.04 1.75 2.26 0.40 2.76 2.29 2.92 2.82 4.23 3.75 ns –1 0.52 2.33 0.03 1.49 1.93 0.34 2.35 1.95 2.48 2.40 3.60 3.19 ns Std. 0.61 2.36 0.04 1.75 2.26 0.40 2.38 1.93 3.18 3.27 3.84 3.40 ns –1 0.52 2.01 0.03 1.49 1.93 0.34 2.02 1.65 2.71 2.78 3.27 2.89 ns Std. 0.61 2.29 0.04 1.75 2.26 0.40 2.31 1.87 3.24 3.40 3.77 3.33 ns –1 0.52 1.95 0.03 1.49 1.93 0.34 1.96 1.59 2.75 2.89 3.21 2.84 ns Std. 0.61 2.31 0.04 1.75 2.26 0.40 2.32 1.78 3.31 3.89 3.79 3.25 ns –1 0.52 1.96 0.03 1.49 1.93 0.34 1.98 1.52 2.82 3.31 3.22 2.76 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 54 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-77 • 2.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 7.07 0.05 1.44 0.45 7.20 6.32 2.95 2.43 9.66 8.78 ns –1 0.54 6.02 0.04 1.23 0.39 6.13 5.38 2.51 2.06 8.22 7.47 ns Std. 0.63 5.91 0.05 1.44 0.45 6.02 5.42 3.35 3.18 8.48 7.88 ns –1 0.54 5.03 0.04 1.23 0.39 5.12 4.61 2.85 2.70 7.21 6.70 ns Std. 0.63 5.91 0.05 1.44 0.45 6.02 5.42 3.35 3.18 8.48 7.88 ns –1 0.54 5.03 0.04 1.23 0.39 5.12 4.61 2.85 2.70 7.21 6.70 ns Std. 0.63 5.05 0.05 1.44 0.45 5.15 4.79 3.63 3.66 7.61 7.25 ns –1 0.54 4.30 0.04 1.23 0.39 4.38 4.07 3.09 3.11 6.47 6.17 ns Std. 0.63 4.78 0.05 1.44 0.45 4.86 4.65 3.70 3.78 7.32 7.10 ns –1 0.54 4.06 0.04 1.23 0.39 4.14 3.95 3.14 3.22 6.23 6.04 ns Std. 0.63 4.71 0.05 1.44 0.45 4.73 4.71 3.78 4.26 7.19 7.17 ns –1 0.54 4.01 0.04 1.23 0.39 4.03 4.01 3.21 3.62 6.12 6.10 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-78 • 2.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 3.63 0.05 1.44 0.45 3.70 3.34 2.94 2.53 6.16 5.80 ns –1 0.54 3.09 0.04 1.23 0.39 3.15 2.84 2.51 2.16 5.24 4.94 ns Std. 0.63 2.99 0.05 1.44 0.45 3.04 2.59 3.35 3.30 5.50 5.05 ns –1 0.54 2.54 0.04 1.23 0.39 2.59 2.20 2.85 2.81 4.68 4.30 ns Std. 0.63 2.99 0.05 1.44 0.45 3.04 2.59 3.35 3.30 5.50 5.05 ns –1 0.54 2.54 0.04 1.23 0.39 2.59 2.20 2.85 2.81 4.68 4.30 ns Std. 0.63 2.65 0.05 1.44 0.45 2.70 2.23 3.63 3.78 5.16 4.69 ns –1 0.54 2.26 0.04 1.23 0.39 2.30 1.89 3.09 3.22 4.39 3.99 ns Std. 0.63 2.59 0.05 1.44 0.45 2.64 2.16 3.70 3.90 5.10 4.62 ns –1 0.54 2.21 0.04 1.23 0.39 2.25 1.83 3.15 3.32 4.34 3.93 ns Std. 0.63 2.61 0.05 1.44 0.45 2.66 2.08 3.78 4.40 5.12 4.54 ns –1 0.54 2.22 0.04 1.23 0.39 2.26 1.77 3.22 3.74 4.35 3.87 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 55 Military ProASIC3/EL DC and Switching Characteristics Table 2-79 • 2.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 6.45 0.05 1.43 0.45 6.56 5.71 2.48 2.19 9.02 8.17 ns –1 0.54 5.48 0.04 1.21 0.39 5.58 4.86 2.11 1.86 7.68 6.95 ns Std. 0.63 5.28 0.05 1.43 0.45 5.38 4.92 2.85 2.88 7.84 7.38 ns –1 0.54 4.50 0.04 1.21 0.39 4.58 4.19 2.42 2.45 6.67 6.28 ns Std. 0.63 5.28 0.05 1.43 0.45 5.38 4.92 2.85 2.88 7.84 7.38 ns –1 0.54 4.50 0.04 1.21 0.39 4.58 4.19 2.42 2.45 6.67 6.28 ns Std. 0.63 4.48 0.05 1.43 0.45 4.56 4.35 3.11 3.31 7.02 6.81 ns –1 0.54 3.81 0.04 1.21 0.39 3.88 3.70 2.65 2.82 5.97 5.79 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-80 • 2.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus I/O Banks Drive Strength 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 3.18 0.05 1.43 0.45 3.23 2.92 2.48 2.28 5.69 5.38 ns –1 0.54 2.70 0.04 1.21 0.39 2.75 2.48 2.11 1.94 4.84 4.58 ns Std. 0.63 2.57 0.05 1.43 0.45 2.62 2.24 2.84 2.98 5.08 4.70 ns –1 0.54 2.19 0.04 1.21 0.39 2.23 1.90 2.42 2.54 4.32 4.00 ns Std. 0.63 2.57 0.05 1.43 0.45 2.62 2.24 2.84 2.98 5.08 4.70 ns –1 0.54 2.19 0.04 1.21 0.39 2.23 1.90 2.42 2.54 4.32 4.00 ns Std. 0.63 2.28 0.05 1.43 0.45 2.32 1.90 3.11 3.42 4.78 4.36 ns –1 0.54 1.94 0.04 1.21 0.39 1.97 1.62 2.64 2.91 4.07 3.71 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. 2- 56 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 1.8 V LVCMOS Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer. Table 2-81 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 1.8 V LVCMOS VIL VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 VIH Drive Strength Min. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 9 11 15 15 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 17 22 15 15 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 35 44 15 15 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 45 51 15 15 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 91 74 15 15 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 16 16 91 74 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Table 2-82 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 15 15 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 15 15 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 15 15 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 45 51 15 15 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 91 74 15 15 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 91 74 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Revision 3 2- 57 Military ProASIC3/EL DC and Switching Characteristics Table 2-83 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks 1.8 V LVCMOS VIL VOL VOH IOL IOH IOSL IOSH IIL1 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 VIH Max. V Min. V IIH2 Drive Strength Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 15 15 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 15 15 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 15 15 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 35 44 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ Figure 2-11 • AC Loading Table 2-84 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: 2- 58 Input High (V) Measuring Point* (V) VREF (Typ) (V) CLOAD (pF) 1.8 0.9 – 5 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics 1.2 V DC Core Voltage Table 2-85 • 1.8 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Note: Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 9.16 0.05 2.00 2.82 0.52 9.32 7.69 2.77 1.20 11.53 9.89 ns –1 0.68 7.79 0.05 1.70 2.40 0.44 7.93 6.54 2.36 1.02 9.81 8.42 ns Std. 0.80 7.55 0.05 2.00 2.82 0.52 7.68 6.48 3.23 2.76 9.88 8.68 ns –1 0.68 6.42 0.05 1.70 2.40 0.44 6.53 5.51 2.75 2.35 8.41 7.38 ns Std. 0.80 6.40 0.05 2.00 2.82 0.52 6.51 5.65 3.54 3.34 8.71 7.85 ns –1 0.68 5.44 0.05 1.70 2.40 0.44 5.54 4.80 3.01 2.84 7.41 6.68 ns Std. 0.80 6.01 0.05 2.00 2.82 0.52 6.12 5.48 3.61 3.50 8.32 7.69 ns –1 0.68 5.11 0.05 1.70 2.40 0.44 5.20 4.66 3.07 2.98 7.08 6.54 ns Std. 0.80 5.90 0.05 2.00 2.82 0.52 6.00 5.49 3.71 4.08 8.21 7.70 ns –1 0.68 5.02 0.05 1.70 2.40 0.44 5.11 4.67 3.16 3.47 6.98 6.55 ns Std. 0.80 5.90 0.05 2.00 2.82 0.52 6.00 5.49 3.71 4.08 8.21 7.70 ns –1 0.68 5.02 0.05 1.70 2.40 0.44 5.11 4.67 3.16 3.47 6.98 6.55 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-86 • 1.8 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 4.14 0.05 2.00 2.82 0.52 4.21 4.05 2.76 1.23 6.42 6.26 ns –1 0.68 3.52 0.05 1.70 2.40 0.44 3.58 3.45 2.35 1.04 5.46 5.32 ns Std. 0.80 3.36 0.05 2.00 2.82 0.52 3.41 3.01 3.22 2.85 5.62 5.21 ns –1 0.68 2.86 0.05 1.70 2.40 0.44 2.90 2.56 2.74 2.42 4.78 4.43 ns Std. 0.80 2.88 0.05 2.00 2.82 0.52 2.93 2.49 3.54 3.43 5.13 4.70 ns –1 0.68 2.45 0.05 1.70 2.40 0.44 2.49 2.12 3.01 2.92 4.36 3.99 ns Std. 0.80 2.79 0.05 2.00 2.82 0.52 2.83 2.40 3.60 3.59 5.04 4.60 ns –1 0.68 2.37 0.05 1.70 2.40 0.44 2.41 2.04 3.06 3.05 4.29 3.91 ns Std. 0.80 2.78 0.05 2.00 2.82 0.52 2.82 2.28 3.71 4.21 5.02 4.48 ns –1 0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27 3.81 ns Std. 0.80 2.78 0.05 2.00 2.82 0.52 2.82 2.28 3.71 4.21 5.02 4.48 ns –1 0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27 3.81 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 59 Military ProASIC3/EL DC and Switching Characteristics 1.5 V DC Core Voltage Table 2-87 • 1.8 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Note: Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 9.02 0.04 1.69 2.52 0.40 9.17 7.57 2.61 1.01 10.63 9.04 ns –1 0.52 7.68 0.03 1.44 2.14 0.34 7.80 6.44 2.22 0.86 9.04 7.69 ns Std. 0.61 7.41 0.04 1.69 2.52 0.40 7.52 6.36 3.07 2.56 8.99 7.83 ns –1 0.52 6.30 0.03 1.44 2.14 0.34 6.40 5.41 2.62 2.18 7.64 6.66 ns Std. 0.61 6.26 0.04 1.69 2.52 0.40 6.35 5.53 3.38 3.14 7.82 7.00 ns –1 0.52 5.33 0.03 1.44 2.14 0.34 5.40 4.71 2.88 2.67 6.65 5.95 ns Std. 0.61 5.88 0.04 1.69 2.52 0.40 5.96 5.37 3.45 3.30 7.42 6.83 ns –1 0.52 5.00 0.03 1.44 2.14 0.34 5.07 4.57 2.94 2.81 6.32 5.81 ns Std. 0.61 5.76 0.04 1.69 2.52 0.40 5.85 5.38 3.55 3.88 7.31 6.84 ns –1 0.52 4.90 0.03 1.44 2.14 0.34 4.97 4.57 3.02 3.30 6.22 5.82 ns Std. 0.61 5.76 0.04 1.69 2.52 0.40 5.85 5.38 3.55 3.88 7.31 6.84 ns –1 0.52 4.90 0.03 1.44 2.14 0.34 4.97 4.57 3.02 3.30 6.22 5.82 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-88 • 1.8 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 4.01 0.04 1.69 2.52 0.40 4.06 3.94 2.60 1.03 5.52 5.40 ns –1 0.52 3.41 0.03 1.44 2.14 0.34 3.45 3.35 2.21 0.88 4.70 4.60 ns Std. 0.61 3.22 0.04 1.69 2.52 0.40 3.26 2.89 3.07 2.65 4.72 4.36 ns –1 0.52 2.74 0.03 1.44 2.14 0.34 2.77 2.46 2.61 2.26 4.02 3.71 ns Std. 0.61 2.74 0.04 1.69 2.52 0.40 2.77 2.38 3.38 3.23 4.23 3.84 ns –1 0.52 2.33 0.03 1.44 2.14 0.34 2.36 2.02 2.88 2.75 3.60 3.27 ns Std. 0.61 2.65 0.04 1.69 2.52 0.40 2.68 2.28 3.45 3.40 4.14 3.75 ns –1 0.52 2.26 0.03 1.44 2.14 0.34 2.28 1.94 2.93 2.89 3.52 3.19 ns Std. 0.61 2.64 0.04 1.69 2.52 0.40 2.66 2.16 3.55 4.01 4.13 3.63 ns –1 0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51 3.08 ns Std. 0.61 2.64 0.04 1.69 2.52 0.40 2.66 2.16 3.55 4.01 4.13 3.63 ns –1 0.52 2.24 0.03 1.44 2.14 034 2.26 1.84 3.02 3.41 3.51 3.08 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 60 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-89 • 1.8 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 9.50 0.05 1.44 0.45 9.68 8.31 3.06 1.76 12.14 10.77 ns –1 0.54 8.08 0.04 1.23 0.39 8.23 7.07 2.60 1.50 10.32 9.16 ns Std. 0.63 7.80 0.05 1.44 0.45 7.95 7.06 3.55 3.01 10.41 9.52 ns –1 0.54 6.64 0.04 1.23 0.39 6.76 6.00 3.02 2.56 8.85 8.10 ns Std. 0.63 6.70 0.05 1.44 0.45 6.82 6.25 3.89 3.60 9.28 8.70 ns –1 0.54 5.70 0.04 1.23 0.39 5.80 5.31 3.31 3.06 7.90 7.40 ns Std. 0.63 6.31 0.05 1.44 0.45 6.43 6.07 3.97 3.75 8.89 8.53 ns –1 0.54 5.37 0.04 1.23 0.39 5.47 5.17 3.37 3.19 7.56 7.26 ns Std. 0.63 6.18 0.05 1.44 0.45 6.30 6.15 4.08 4.34 8.76 8.61 ns –1 0.54 5.26 0.04 1.23 0.39 5.36 5.23 3.47 3.70 7.45 7.32 ns Std. 0.63 6.18 0.05 1.44 0.45 6.30 6.15 4.08 4.34 8.76 8.61 ns –1 0.54 5.26 0.04 1.23 0.39 5.36 5.23 3.47 3.70 7.45 7.32 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-90 • 1.8 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 4.40 0.05 1.34 0.45 4.48 4.30 3.05 1.82 6.94 6.76 ns –1 0.54 3.74 0.04 1.14 0.39 3.81 3.66 2.59 1.55 5.90 5.75 ns Std. 0.63 3.44 0.05 1.34 0.45 3.50 3.23 3.54 3.12 5.96 5.69 ns –1 0.54 2.92 0.04 1.14 0.39 2.98 2.75 3.01 2.66 5.07 4.84 ns Std. 0.63 3.02 0.05 1.34 0.45 3.07 2.70 3.88 3.72 5.53 5.16 ns –1 0.54 2.57 0.04 1.14 0.39 2.61 2.30 3.30 3.16 4.71 4.39 ns Std. 0.63 2.94 0.05 1.34 0.45 2.99 2.60 3.96 3.87 5.45 5.06 ns –1 0.54 2.50 0.04 1.14 0.39 2.54 2.21 3.37 3.30 4.64 4.31 ns Std. 0.63 2.93 0.05 1.34 0.45 2.98 2.49 4.07 4.49 5.44 4.95 ns –1 0.54 2.49 0.04 1.14 0.39 2.54 2.12 3.46 3.82 4.63 4.21 ns Std. 0.63 2.93 0.05 1.34 0.45 2.98 2.49 4.07 4.49 5.44 4.95 ns –1 0.54 2.49 0.04 1.14 0.39 2.54 2.12 3.46 3.82 4.63 4.21 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 61 Military ProASIC3/EL DC and Switching Characteristics Table 2-91 • 1.8 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 8.81 0.05 1.43 0.45 8.98 7.51 2.48 1.61 11.44 9.97 ns –1 0.54 7.50 0.04 1.21 0.39 7.64 6.39 2.11 1.37 9.73 8.48 ns Std. 0.63 7.10 0.05 1.43 0.45 7.23 6.43 2.92 2.75 9.69 8.89 ns –1 0.54 6.04 0.04 1.21 0.39 6.15 5.47 2.48 2.34 8.24 7.56 ns Std. 0.63 6.06 0.05 1.43 0.45 6.17 5.68 3.23 3.29 8.63 8.14 ns –1 0.54 5.16 0.04 1.21 0.39 5.25 4.84 2.75 2.80 7.34 6.93 ns Std. 0.63 6.06 0.05 1.43 0.45 6.17 5.68 3.23 3.29 8.63 8.14 ns –1 0.54 5.16 0.04 1.21 0.39 5.25 4.84 2.75 2.80 7.34 6.93 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-92 • 1.8 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 3.94 0.05 1.32 0.45 4.01 3.72 2.47 1.67 6.47 6.18 ns –1 0.54 3.35 0.04 1.12 0.39 3.41 3.16 2.10 1.42 5.51 5.26 ns Std. 0.63 3.03 0.05 1.32 0.45 3.09 2.75 2.91 2.86 5.55 5.21 ns –1 0.54 2.58 0.04 1.12 0.39 2.63 2.34 2.48 2.44 4.72 4.43 ns Std. 0.63 2.65 0.05 1.32 0.45 2.70 2.27 3.22 3.41 5.16 4.73 ns –1 0.54 2.26 0.04 1.12 0.39 2.30 1.93 2.74 2.90 4.39 4.02 ns Std. 0.63 2.65 0.05 1.32 0.45 2.70 2.27 3.22 3.41 5.16 4.73 ns –1 0.54 2.26 0.04 1.12 0.39 2.30 1.93 2.74 2.90 4.39 4.02 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. 2- 62 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-93 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 1.5 V LVCMOS VIL VIH Max. V Min. V Max. V IIL1 IIH2 VOL VOH IOL IOH IOSL IOSH Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 13 16 15 15 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 25 33 15 15 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 32 39 15 15 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 66 55 15 15 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 66 55 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Table 2-94 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only 1.5 V LVCMOS VIL Max. V VIH Min. V Max. V IIL1 IIH2 VOL VOH IOL IOH IOSL IOSH Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 15 15 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 15 15 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 32 39 15 15 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 66 55 15 15 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 66 55 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Revision 3 2- 63 Military ProASIC3/EL DC and Switching Characteristics Table 2-95 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.5 V LVCMOS VIL VIH Max. V Min. V Max. V IIL1 IIH2 VOL VOH IOL IOH IOSL IOSH Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 15 15 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ Figure 2-12 • AC Loading Table 2-96 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: 2- 64 Input High (V) Measuring Point* (V) VREF (Typ) (V) CLOAD (pF) 1.5 0.75 – 5 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics 1.2 V DC Core Voltage Table 2-97 • 1.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Note: Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 9.53 0.05 2.19 3.06 0.52 9.69 7.88 3.38 2.67 11.90 10.09 ns –1 0.68 8.10 0.05 1.86 2.61 0.44 8.25 6.71 2.87 2.27 10.12 8.58 ns Std. 0.80 8.14 0.05 2.19 3.06 0.52 8.28 6.89 3.74 3.34 10.49 9.09 ns –1 0.68 6.93 0.05 1.86 2.61 0.44 7.05 5.86 3.18 2.84 8.92 7.74 ns Std. 0.80 7.64 0.05 2.19 3.06 0.52 7.78 6.70 3.82 3.52 9.98 8.91 ns –1 0.68 6.50 0.05 1.86 2.61 0.44 6.61 5.70 3.25 2.99 8.49 7.58 ns Std. 0.80 7.55 0.05 2.19 3.06 0.52 7.68 6.71 3.41 4.19 9.88 8.91 ns –1 0.68 6.42 0.05 1.86 2.61 0.44 6.53 5.71 2.90 3.56 8.41 7.58 ns Std. 0.80 7.55 0.05 2.19 3.06 0.52 7.68 6.71 3.41 4.19 9.88 8.91 ns –1 0.68 6.42 0.05 1.86 2.61 0.44 6.53 5.71 2.90 3.56 8.41 7.58 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-98 • 1.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 3.91 0.05 2.19 3.06 0.52 3.98 3.54 3.37 2.78 6.18 5.75 ns –1 0.68 3.33 0.05 1.86 2.61 0.44 3.38 3.01 2.86 2.36 5.26 4.89 ns Std. 0.80 3.34 0.05 2.19 3.06 0.52 3.39 2.90 3.73 3.45 5.60 5.11 ns –1 0.68 2.84 0.05 1.86 2.61 0.44 2.88 2.47 3.17 2.93 4.76 4.35 ns Std. 0.80 3.23 0.05 2.19 3.06 0.52 3.28 2.78 3.81 3.64 5.48 4.99 ns –1 0.68 2.74 0.05 1.86 2.61 0.44 2.79 2.37 3.24 3.09 4.66 4.24 ns Std. 0.80 3.19 0.05 2.19 3.06 0.52 3.24 2.63 3.93 4.33 5.45 4.84 ns –1 0.68 2.71 0.05 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63 4.12 ns Std. 0.80 3.19 0.05 2.19 3.06 0.52 3.24 2.63 3.93 4.33 5.45 4.84 ns –1 0.68 2.71 0.05 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63 4.12 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 65 Military ProASIC3/EL DC and Switching Characteristics 1.5 V DC Core Voltage Table 2-99 • 1.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Note: Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 9.39 0.04 1.88 2.77 0.40 9.54 7.77 3.22 2.47 11.00 9.24 ns –1 0.52 7.99 0.03 1.60 2.35 0.34 8.11 6.61 2.74 2.10 9.36 7.86 ns Std. 0.61 8.01 0.04 1.88 2.77 0.40 8.13 6.77 3.58 3.14 9.59 8.24 ns –1 0.52 6.81 0.03 1.60 2.35 0.34 6.91 5.76 3.05 2.67 8.16 7.01 ns Std. 0.61 7.51 0.04 1.88 2.77 0.40 7.62 6.59 3.66 3.32 9.09 8.05 ns –1 0.52 6.39 0.03 1.60 2.35 0.34 6.48 5.60 3.12 2.83 7.73 6.85 ns Std. 0.61 7.41 0.04 1.88 2.77 0.40 7.52 6.59 3.41 3.99 8.99 8.06 ns –1 0.52 6.30 0.03 1.60 2.35 0.34 6.40 5.61 2.90 3.40 7.64 6.85 ns Std. 0.61 7.41 0.04 1.88 2.77 0.40 7.52 6.59 3.41 3.99 8.99 8.06 ns –1 0.52 6.30 0.03 1.60 2.35 0.34 6.40 5.61 2.90 3.40 7.64 6.85 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-100 • 1.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL Std. 0.61 3.78 0.04 1.88 2.77 0.40 –1 0.52 3.21 0.03 1.60 2.35 Std. 0.61 3.20 0.04 1.88 –1 0.52 2.72 0.03 Std. 0.61 3.09 –1 0.52 Std. tZH tLZ tHZ tZLS tZHS Units 3.82 3.43 3.21‘ 2.58 5.29 4.89 ns 0.34 3.25 2.92 2.73 2.20 4.50 4.16 ns 2.77 0.40 3.23 2.79 3.57 3.25 4.70 4.25 ns 1.60 2.35 0.34 2.75 2.37 3.04 2.77 4.00 3.62 ns 0.04 1.88 2.77 0.40 3.12 2.67 3.65 3.44 4.59 4.13 ns 2.63 0.03 1.60 2.35 0.34 2.65 2.27 3.11 2.93 3.90 3.52 ns 0.61 3.05 0.04 1.88 2.77 0.40 3.09 2.52 3.77 4.14 4.55 3.98 ns –1 0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87 3.39 ns Std. 0.61 3.05 0.04 1.88 2.77 0.40 3.09 2.52 3.77 4.14 4.55 3.98 ns –1 0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87 3.39 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 66 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-101 • 1.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 9.78 0.05 1.44 0.45 9.96 8.57 3.74 2.91 12.42 11.03 ns –1 0.54 8.32 0.04 1.23 0.39 8.47 7.29 3.18 2.47 10.56 9.38 ns Std. 0.63 8.44 0.05 1.44 0.45 8.60 7.59 4.12 3.60 11.06 10.05 ns –1 0.54 7.18 0.04 1.23 0.39 7.32 6.46 3.51 3.06 9.41 8.55 ns Std. 0.63 7.95 0.05 1.44 0.45 8.10 7.39 4.21 3.78 10.56 9.85 ns –1 0.54 6.77 0.04 1.23 0.39 6.89 6.29 3.58 3.21 8.98 8.38 ns Std. 0.63 7.84 0.05 1.44 0.45 7.98 7.47 4.35 4.45 10.44 9.92 ns –1 0.54 6.67 0.04 1.23 0.39 6.79 6.35 3.70 3.79 8.88 8.44 ns Std. 0.63 7.84 0.05 1.44 0.45 7.98 7.47 4.35 4.45 10.44 9.92 ns –1 0.54 6.67 0.04 1.23 0.39 6.79 6.35 3.70 3.79 8.88 8.44 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-102 • 1.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 3.98 0.05 1.58 0.45 4.06 3.80 3.73 3.04 6.52 6.26 ns –1 0.54 3.39 0.04 1.35 0.39 3.45 3.23 3.17 2.59 5.54 5.32 ns Std. 0.63 3.47 0.05 1.58 0.45 3.53 3.15 4.11 3.74 5.99 5.61 ns –1 0.54 2.95 0.04 1.35 0.39 3.01 2.68 3.50 3.18 5.10 4.77 ns Std. 0.63 3.37 0.05 1.58 0.45 3.43 3.02 4.20 3.92 5.89 5.48 ns –1 0.54 2.87 0.04 1.35 0.39 2.92 2.57 3.57 3.33 5.01 4.66 ns Std. 0.63 3.35 0.05 1.58 0.45 3.41 2.88 4.34 4.62 5.87 5.34 ns –1 0.54 2.85 0.04 1.35 0.39 2.90 2.45 3.69 3.93 4.99 4.55 ns Std. 0.63 3.35 0.05 1.58 0.45 3.41 2.88 4.34 4.62 5.87 5.34 ns –1 0.54 2.85 0.04 1.35 0.39 2.90 2.45 3.69 3.93 4.99 4.55 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 67 Military ProASIC3/EL DC and Switching Characteristics Table 2-103 • 1.5 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA Note: Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 8.94 0.05 1.43 0.45 9.11 7.80 2.99 2.67 11.57 10.26 ns –1 0.54 7.61 0.04 1.21 0.39 7.75 6.64 2.54 2.27 9.84 8.73 ns Std. 0.63 7.68 0.05 1.43 0.45 7.83 6.91 3.34 3.30 10.29 9.37 ns –1 0.54 6.54 0.04 1.21 0.39 6.66 5.88 2.84 2.80 8.75 7.97 ns For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-104 • 1.5 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus I/O Banks Drive Strength 2 mA 4 mA Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 3.55 0.05 1.56 0.45 3.61 3.22 2.98 2.80 6.07 5.68 ns –1 0.54 3.02 0.04 1.33 0.39 3.07 2.74 2.54 2.39 5.16 4.83 ns Std. 0.63 3.09 0.05 1.56 0.45 3.14 2.62 3.34 3.44 5.60 5.08 ns –1 0.54 2.62 0.04 1.33 0.39 2.67 2.23 2.84 2.93 4.77 4.32 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. 2- 68 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 1.2 V LVCMOS (JESD8-12A) Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer. Table 2-105 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only 1.2 V LVCMOS1 VIL Drive Strength Min. V 2 mA –0.3 VIH Max. V Min. V 0.35 * VCCI 0.65 * VCCI Max. V 3.6 VOL VOH IOL IOH IOSH Max. V Min. V mA mA Max.4 mA 0.25 * VCCI 0.75 * VCCI 2 2 TBD IIL2 IIH3 IOSL Max.4 mA µA5 µA5 TBD 15 15 Notes: 1. Applicable to A3PE600L and A3PE3000L devices only. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 125°C junction temperature. 6. Software default selection highlighted in gray. Test Point Datapath 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ Figure 2-13 • AC Loading Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: Input High (V) Measuring Point* (V) VREF (Typ) (V) CLOAD (pF) 1.2 0.6 – 5 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Revision 3 2- 69 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics 1.2 V DC Core Voltage Table 2-107 • 1.2 V LVCMOS Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only Drive Strength 2 mA Note: Speed Grade tDOUT tDIN tPY tPYS tEOUT tZL tZH tLZ tZLS tZHS Units Std. 0.80 12.61 0.05 2.65 3.75 0.52 12.10 9.50 5.11 4.66 14.31 11.71 ns –1 0.68 10.72 0.05 2.25 3.19 0.44 10.30 8.08 4.35 3.97 12.17 9.96 ns tDP tHZ For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-108 • 1.2 V LVCMOS High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only Drive Strength 2 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tHZ tZLS tZHS Unit s Std. 0.80 5.16 0.05 2.65 3.75 0.52 4.98 4.39 5.10 4.81 7.19 6.60 ns –1 0.68 4.39 0.05 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61 ns tLZ Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 70 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 1.2 V LVCMOS Wide Range Table 2-109 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Operating at 1.2 V Core Voltage 1.2 V Equiv. LVCMOS Software Wide Range1 Default Drive Drive Strength Min. Strength Option2 V 100 µA 2 mA VIL VIH Max. V Min. V –0.3 0.3 * VCCI 0.7 * VCCI Max. V VOL VOH IOL IOH IOSH IOSL IIL3 IIH4 Max. V Min. V Max. Max. µA µA mA5 mA5 µA6 µA6 3.6 0.25 * VCCI 0.75 * VCCI 100 100 TBD TBD 15 15 Notes: 1. Applicable to A3PE600L and A3PE3000L devices only. 2. Note that 1.2 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only. 3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 5. Currents are measured at 100°C junction temperature and maximum voltage. 6. Currents are measured at 125°C junction temperature. 7. Software default selection highlighted in gray. Test Point Datapath 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ Figure 2-14 • AC Loading Table 2-110 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: Input High (V) Measuring Point* (V) VREF (Typ) (V) CLOAD (pF) 1.2 0.6 – 5 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Revision 3 2- 71 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics Table 2-111 • 1.2 V LVCMOS Wide Range Low Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only Drive Strength 100 µA Note: Speed Grade tDOUT Std. –1 tDP tDIN tPY tPYS tEOUT tZL tZH tLZ 0.80 12.61 0.05 2.65 3.75 0.52 12.10 9.50 0.68 10.72 0.05 2.25 3.19 0.44 10.30 8.08 tHZ tZLS tZHS Units 5.11 4.66 14.31 11.71 ns 4.35 3.97 12.17 9.96 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-112 • 1.2 V LVCMOS Wide Range High Slew Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only Drive Strength 100 µA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tHZ tZLS tZHS Unit s Std. 0.80 5.16 0.05 2.65 3.75 0.52 4.98 4.39 5.10 4.81 7.19 6.60 ns –1 0.68 4.39 0.05 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61 ns tLZ Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 72 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 3.3 V PCI, 3.3 V PCI-X Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications. Table 2-113 • Minimum and Maximum DC Input and Output Levels 3.3 V PCI/PCI-X Drive Strength VIL Min. V Max. V VIH Min. V Max. V Per PCI specification VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 Per PCI curves 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. AC loadings are defined per the PCI/PCI-X specifications for the database; Microsemi loadings for enable path characterization are described in Figure 2-15. R to VCCI for tDP (F) R to GND for tDP (R) R = 25 Test Point Datapath 10 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 10 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ Figure 2-15 • AC Loading AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-114. Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Note: Input High (V) Measuring Point* (V) 3.3 0.285 * VCCI for tDP(R) 0.615 * VCCI for tDP(F) VREF (Typ) (V) CLOAD (pF) 10 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Revision 3 2- 73 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics 1.2 V DC Core Voltage Table 2-115 • 3.3 V PCI/PCI-X Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.80 2.78 0.05 2.71 3.68 0.52 2.83 1.97 3.26 3.59 5.03 4.18 ns –1 0.68 2.37 0.05 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 1.5 V DC Core Voltage Table 2-116 • 3.3 V PCI/PCI-X Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 2.65 0.04 2.39 3.38 0.40 2.67 1.86 3.10 3.40 4.14 3.33 ns –1 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-117 • 3.3 V PCI/PCI-X Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 2.95 0.05 0.95 0.45 3.00 2.15 3.53 3.94 5.46 4.61 ns –1 0.54 2.51 0.04 0.81 0.39 2.55 1.83 3.00 3.35 4.65 3.92 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-118 • 3.3 V PCI/PCI-X Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.63 2.54 0.05 0.94 0.45 2.59 1.87 3.07 3.54 5.04 4.33 ns –1 0.54 2.16 0.04 0.80 0.39 2.20 1.60 2.61 3.01 4.29 3.69 ns Note: 2- 74 For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Voltage-Referenced I/O Characteristics 3.3 V GTL Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V. Table 2-119 • Minimum and Maximum DC Input and Output Levels 3.3 V GTL VIL Drive Strength Min. V 5 20 mA –0.3 VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 3.6 0.4 – 20 268 181 VIH Max. V Min. V VREF – 0.05 VREF + 0.05 20 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Output drive strength is below JEDEC specification. VTT GTL 25 Test Point 10 pF Figure 2-16 • AC Loading Table 2-120 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.05 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.05 0.8 0.8 1.2 10 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-121 • 3.3 V GTL Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.05 0.05 2.34 0.52 2.01 2.05 – – 4.22 4.26 ns 0.68 1.75 0.05 1.99 0.44 1.71 1.75 – – 3.59 3.62 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 75 Military ProASIC3/EL DC and Switching Characteristics Table 2-122 • 3.3 V GTL Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: 2- 76 tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 1.97 0.04 2.11 0.40 1.86 1.97 – – 3.32 3.43 ns 0.52 1.68 0.03 1.79 0.34 1.58 1.68 – – 2.83 2.92 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 2.5 V GTL Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V. Table 2-123 • Minimum and Maximum DC Input and Output Levels 2.5 V GTL VIL Drive Strength Min. V 20 mA5 –0.3 VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 3.6 0.4 – 20 20 169 124 VIH Max. V Min. V VREF – 0.05 VREF + 0.05 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Output drive strength is below JEDEC specification. VTT GTL 25 Test Point 10 pF Figure 2-17 • AC Loading Table 2-124 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.05 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.05 0.8 0.8 1.2 10 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-125 • 2.5 V GTL Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.11 0.05 2.26 0.52 2.14 2.11 – – 4.34 4.31 ns 0.68 1.79 0.05 1.93 0.44 1.82 1.79 – – 3.70 3.68 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-126 • 2.5 V GTL Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 2.02 0.04 2.04 0.40 1.98 2.02 – – 3.45 3.49 ns 0.52 1.72 0.03 1.73 0.34 1.69 1.72 – – 2.93 2.97 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 77 Military ProASIC3/EL DC and Switching Characteristics 3.3 V GTL+ Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V. Table 2-127 • Minimum and Maximum DC Input and Output Levels 3.3 V GTL+ VIL VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 3.6 0.6 – 35 268 181 VIH Drive Strength Min. V Max. V Min. V 35 mA –0.3 VREF – 0.1 VREF + 0.1 35 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. VTT GTL+ 25 Test Point 10 pF Figure 2-18 • AC Loading Table 2-128 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 1.0 1.0 1.5 10 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-129 • 3.3 V GTL+ Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.04 0.05 2.34 0.52 2.07 2.03 – – 4.28 4.24 ns 0.68 1.74 0.05 1.99 0.44 1.76 1.73 – – 3.64 3.61 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-130 • 3.3 V GTL+ Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: 2- 78 tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 1.95 0.04 2.11 0.40 1.92 1.95 – – 3.38 3.41 ns 0.52 1.66 0.03 1.79 0.34 1.63 1.66 – – 2.88 2.90 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 2.5 V GTL+ Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V. Table 2-131 • Minimum and Maximum DC Input and Output Levels 2.5 V GTL+ VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 33 mA –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 – 33 33 169 124 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. VTT GTL+ 25 Test Point 10 pF Figure 2-19 • AC Loading Table 2-132 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 1.0 1.0 1.5 10 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-133 • 2.5 V GTL+ Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.19 0.05 2.27 0.52 2.22 2.08 – – 4.43 4.28 ns 0.68 1.86 0.05 1.93 0.44 1.89 1.77 – – 3.77 3.64 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-134 • 2.5 V GTL+ Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 2.05 0.04 2.04 0.40 2.07 1.99 – – 3.53 3.46 ns –1 0.52 1.75 0.03 1.73 0.34 1.76 1.69 – – 3.00 2.94 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 79 Military ProASIC3/EL DC and Switching Characteristics HSTL Class I High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a pushpull output buffer. Table 2-135 • Minimum and Maximum DC Input and Output Levels HSTL Class I VIL VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V Max. mA mA mA3 Max. mA3 µA4 µA4 3.6 0.4 VCCI – 0.4 VIH Drive Strength Min. V Max. V Min. V 8 mA –0.3 VREF – 0.1 VREF + 0.1 8 8 32 39 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. HSTL Class I VTT 50 Test Point 20 pF Figure 2-20 • AC Loading Table 2-136 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 0.75 0.75 0.75 20 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-137 • HSTL Class I Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade tDOUT tDP tDIN tPY tEOUT Std. 0.80 3.15 0.05 2.76 0.52 –1 0.68 2.68 0.05 2.34 0.44 Note: tZL tZH tLZ tHZ tZLS tZHS Units 3.20 3.11 – – 5.41 5.32 ns 2.73 2.65 – – 4.60 4.52 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-138 • HSTL Class I Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: 2- 80 tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 3.02 0.04 2.52 0.40 3.05 3.00 – – 4.51 4.46 ns 0.52 2.57 0.03 2.14 0.34 2.59 2.55 – – 3.84 3.79 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs HSTL Class II High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-139 • Minimum and Maximum DC Input and Output Levels HSTL Class II VIL Drive Strength Min. V 5 15 mA –0.3 VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V Max. mA mA mA3 Max. mA3 µA4 µA4 3.6 0.4 VIH Max. V Min. V VREF – 0.1 VREF + 0.1 VCCI – 0.4 15 15 66 55 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. 5. Output drive strength is below JEDEC specification. HSTL Class II VTT 25 Test Point 20 pF Figure 2-21 • AC Loading Table 2-140 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 0.75 0.75 0.75 20 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-141 • HSTL Class II Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 3.00 0.05 2.76 0.52 3.05 2.69 – – 5.25 4.89 ns 0.68 2.55 0.05 2.34 0.44 2.59 2.28 – – 4.47 4.16 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 81 Military ProASIC3/EL DC and Switching Characteristics Table 2-142 • HSTL Class II Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: 2- 82 tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 2.86 0.04 2.52 0.40 2.89 2.57 – – 4.36 4.04 ns 0.52 2.44 0.03 2.14 0.34 2.46 2.19 – – 3.71 3.43 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs SSTL2 Class I Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-143 • Minimum and Maximum DC Input and Output Levels SSTL2 Class I VIL Drive Strength Min. V 15 mA –0.3 VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 3.6 0.54 83 87 15 15 VIH Max. V Min. V VREF – 0.2 VREF + 0.2 VCCI – 0.62 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. VTT SSTL2 Class I 50 Test Point 25 30 pF Figure 2-22 • AC Loading Table 2-144 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.25 1.25 1.25 30 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-145 • SSTL2 Class I Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.11 0.05 2.09 0.52 2.14 1.83 – – 2.14 1.83 ns 0.68 1.80 0.05 1.78 0.44 1.82 1.55 – – 1.82 1.55 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-146 • SSTL2 Class I Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.61 1.98 0.04 1.85 0.40 1.99 1.71 – – 1.99 1.71 ns –1 0.52 1.68 0.03 1.58 0.34 1.69 1.46 – – 1.69 1.46 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 83 Military ProASIC3/EL DC and Switching Characteristics SSTL2 Class II Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-147 • Minimum and Maximum DC Input and Output Levels SSTL2 Class II VIL Drive Strength Min. V 18 mA –0.3 VOL VOH IOL IOH Max. V Max. V Min. V Max. mA mA mA3 3.6 0.35 VIH Max. V Min. V VREF – 0.2 VREF + 0.2 VCCI – 0.43 18 18 IOSL 169 IOSH IIL1 IIH2 Max. mA3 µA4 µA4 124 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. VTT SSTL2 Class II 25 Test Point 25 30 pF Figure 2-23 • AC Loading Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.25 1.25 1.25 30 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-149 • SSTL2 Class II Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.15 0.05 2.09 0.52 2.18 1.75 – – 2.18 1.75 ns 0.68 1.83 0.05 1.78 0.44 1.86 1.49 – – 1.86 1.49 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-150 • SSTL2 Class II Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: 2- 84 tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 2.02 0.04 1.85 0.40 2.03 1.64 – – 2.03 1.64 ns 0.52 1.72 0.03 1.58 0.34 1.73 1.39 – – 1.73 1.39 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs SSTL3 Class I Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-151 • Minimum and Maximum DC Input and Output Levels SSTL3 Class I VIL Drive Strength Min. V 14 mA –0.3 VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 3.6 0.7 51 54 VIH Max. V Min. V VREF – 0.2 VREF + 0.2 VCCI – 1.1 14 14 15 15 Notes: 1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 125°C junction temperature. VTT SSTL3 Class I 50 Test Point 25 30 pF Figure 2-24 • AC Loading Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.5 1.5 1.485 30 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-153 • SSTL3 Class I Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.29 0.05 2.00 0.52 2.32 1.82 – – 2.32 1.82 ns 0.68 1.95 0.05 1.71 0.44 1.98 1.55 – – 1.98 1.55 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-154 • SSTL3 Class I Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 2.15 0.04 1.77 0.40 2.17 1.70 – – 2.17 1.70 ns 0.52 1.83 0.03 1.51 0.34 1.84 1.45 – – 1.84 1.45 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 85 Military ProASIC3/EL DC and Switching Characteristics SSTL3 Class II Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-155 • Minimum and Maximum DC Input and Output Levels VOL VOH IOL IOH IOSL IOSH Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V Max. mA mA mA1 Max. mA1 µA2 µA2 21 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.5 VCCI – 0.9 21 21 109 SSTL3 Class II VIL VIH 103 IIL IIH 15 15 Notes: 1. Currents are measured at 100°C junction temperature and maximum voltage. 2. Currents are measured at 125°C junction temperature. VTT SSTL3 Class II 25 Test Point 25 30 pF Figure 2-25 • AC Loading Table 2-156 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Note: Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.5 1.5 1.485 30 *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Timing Characteristics Table 2-157 • SSTL3 Class II Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.80 2.05 0.05 2.00 0.52 2.08 1.65 – – 2.08 1.65 ns 0.68 1.75 0.05 1.71 0.44 1.77 1.41 – – 1.77 1.41 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-158 • SSTL3 Class II Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: 2- 86 tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 0.61 1.91 0.04 1.77 0.40 1.92 1.54 – – 1.92 1.54 ns 0.52 1.63 0.03 1.51 0.34 1.64 1.31 – – 1.64 1.31 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Differential I/O Characteristics Physical Implementation Configuration of the I/O modules as a differential pair is handled by Designer software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards. LVDS Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-26. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different. Along with LVDS I/O, military ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (MLVDS) configuration (up to 40 nodes). Bourns Part Number: CAT16-LV4F12 OUTBUF_LVDS FPGA P 165 140 N 165 P Z0 = 50 Z0 = 50 FPGA + – 100 INBUF_LVDS N Figure 2-26 • LVDS Circuit Diagram and Board-Level Implementation Revision 3 2- 87 Military ProASIC3/EL DC and Switching Characteristics Table 2-159 • Minimum and Maximum DC Input and Output Levels DC Parameter VCCI Description Supply Voltage 1 Min. Typ. Max. Units 2.375 2.5 2.625 V VOL Output Low Voltage 0.9 1.075 1.25 V VOH Output High Voltage 1.25 1.425 1.6 V IOL Output Lower Current 0.65 0.91 1.16 mA IOH2 Output High Current 0.65 0.91 1.16 mA VI Input Voltage 0 – 2.925 V IIH 3,4 Input High Leakage Current – – 10 µA IIL 3,5 Input Low Leakage Current – – 10 µA VODIFF Differential Output Voltage 250 350 450 mV VOCM Output Common Mode Voltage 1.125 1.25 1.375 V VICM Input Common Mode Voltage 0.05 1.25 2.35 V Input Differential Voltage 100 350 – mV 2 6 VIDIFF Notes: 1. 2. 3. 4. ±5% IOL/IOH is defined by VODIFF/(Resistor Network). Currents are measured at 125°C junction temperature. IIH is the input leakage current per IO pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 5. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 6. Differential input voltage = ±350 mV. Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 1.075 Note: 2- 88 Input High (V) Measuring Point* (V) 1.325 Cross point *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics 1.2 V DC Core Voltage Table 2-161 • LVDS Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY Units 0.80 1.87 0.05 2.48 ns 0.68 1.59 0.05 2.11 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 1.5 V DC Core Voltage Table 2-162 • LVDS Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade tDOUT tDP tDIN tPY Units Std. 0.61 1.75 0.04 2.18 ns –1 0.52 1.48 0.03 1.86 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-163 • LVDS Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only Speed Grade tDOUT tDP tDIN tPY Units Std. 0.63 2.07 0.05 1.82 ns –1 0.54 1.76 0.04 1.55 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 89 Military ProASIC3/EL DC and Switching Characteristics B-LVDS/M-LVDS Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-27. The input and output buffer delays are available in the LVDS section in Table 2-159 on page 2-88. Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60 and RT = 70 , given Z0 = 50 (2") and Zstub = 50 (~1.5"). Receiver Transceiver EN R + - + Z0 RT Z 0 Zstub D EN T RS RS Zstub Driver - + RS RS Zstub Zstub Receiver EN EN R - + RS RS Zstub Zstub Transceiver EN T - + RS RS Zstub Zstub R S RS ... Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 Figure 2-27 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers 2- 90 BIBUF_LVDS - R e visio n 3 RT Military ProASIC3/EL Low Power Flash FPGAs LVPECL Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-28. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different. Bourns Part Number: CAT16-PC4F12 OUTBUF_LVPECL FPGA P 100 Z0 = 50 100 INBUF_LVPECL + – 100 187 W N FPGA P Z0 = 50 N Figure 2-28 • LVPECL Circuit Diagram and Board-Level Implementation Table 2-164 • Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Max. Min. 3.0 Max. Min. 3.3 Max. 3.6 Units VCCI Supply Voltage VOL Output Low Voltage 0.96 1.27 1.06 1.43 1.30 1.57 V VOH Output High Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V VIL, VIH Input Low, Input High Voltages 0 3.3 0 3.6 0 3.9 V VODIFF Differential Output Voltage 0.625 0.97 0.625 0.97 0.625 0.97 V VOCM Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V VICM Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V VIDIFF Input Differential Voltage 300 300 V 300 mV Table 2-165 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 1.64 Note: Input High (V) Measuring Point* (V) 1.94 Cross point *Measuring point = Vtrip. See Table 2-28 on page 2-27 for a complete table of trip points. Revision 3 2- 91 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics 1.2 V DC Core Voltage Table 2-166 • LVPECL Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade Std. –1 Note: tDOUT tDP tDIN tPY Units 0.80 1.78 0.05 2.16 ns 0.68 1.51 0.05 1.84 ns For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 1.5 V DC Core Voltage Table 2-167 • LVPECL Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os for A3PE600L and A3PE3000L Only Speed Grade tDOUT tDP tDIN tPY Units Std. 0.61 1.65 0.04 1.89 ns –1 0.52 1.40 0.03 1.61 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-168 • LVPECL Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only Speed Grade tDOUT tDP tDIN tPY Units Std. 0.63 1.98 0.05 1.54 ns –1 0.54 1.68 0.04 1.31 ns Note: 2- 92 For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset INBUF Preset L DOUT Data_out E Y F Core Array G PRE D Q DFN1E1P1 TRIBUF CLKBUF CLK INBUF Enable PRE D Q C DFN1E1P1 INBUF Data Pad Out D E E EOUT B H I A J K INBUF INBUF D_Enable CLK CLKBUF Enable Data Input I/O Register with: Active High Enable Active High Preset Positive-Edge Triggered PRE D Q DFN1E1P1 E Data Output Register and Enable Output Register with: Active High Enable Active High Preset Postive-Edge Triggered Figure 2-29 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset Revision 3 2- 93 Military ProASIC3/EL DC and Switching Characteristics Table 2-169 • Parameter Definition and Measuring Nodes Parameter Name Parameter Definition Measuring Nodes (from, to)* tOCLKQ Clock-to-Q of the Output Data Register tOSUD Data Setup Time for the Output Data Register F, H tOHD Data Hold Time for the Output Data Register F, H tOSUE Enable Setup Time for the Output Data Register G, H tOHE Enable Hold Time for the Output Data Register G, H tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register tOREMPRE Asynchronous Preset Removal Time for the Output Data Register L, H tORECPRE Asynchronous Preset Recovery Time for the Output Data Register L, H tOECLKQ Clock-to-Q of the Output Enable Register tOESUD Data Setup Time for the Output Enable Register J, H tOEHD Data Hold Time for the Output Enable Register J, H tOESUE Enable Setup Time for the Output Enable Register K, H tOEHE Enable Hold Time for the Output Enable Register K, H tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register I, H tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register I, H tICLKQ Clock-to-Q of the Input Data Register A, E tISUD Data Setup Time for the Input Data Register C, A tIHD Data Hold Time for the Input Data Register C, A tISUE Enable Setup Time for the Input Data Register B, A tIHE Enable Hold Time for the Input Data Register B, A tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register D, E tIREMPRE Asynchronous Preset Removal Time for the Input Data Register D, A tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register D, A * See Figure 2-29 on page 2-93 for more information. 2- 94 R e visio n 3 H, DOUT L, DOUT H, EOUT I, EOUT Military ProASIC3/EL Low Power Flash FPGAs Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear D CC Q DFN1E1C1 EE Core Array D Q DFN1E1C1 TRIBUF INBUF Data Data_out FF Pad Out DOUT Y GG INBUF Enable BB EOUT E E CLR CLR LL INBUF CLR CLKBUF CLK HH AA JJ DD KK Data Input I/O Register with Active High Enable Active High Clear Positive-Edge Triggered D Q DFN1E1C1 E INBUF CLKBUF CLK Enable INBUF D_Enable CLR Data Output Register and Enable Output Register with Active High Enable Active High Clear Positive-Edge Triggered Figure 2-30 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear Revision 3 2- 95 Military ProASIC3/EL DC and Switching Characteristics Table 2-170 • Parameter Definition and Measuring Nodes Parameter Name Parameter Definition Measuring Nodes (from, to)* tOCLKQ Clock-to-Q of the Output Data Register tOSUD Data Setup Time for the Output Data Register FF, HH tOHD Data Hold Time for the Output Data Register FF, HH tOSUE Enable Setup Time for the Output Data Register GG, HH tOHE Enable Hold Time for the Output Data Register GG, HH tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH tOECLKQ Clock-to-Q of the Output Enable Register tOESUD Data Setup Time for the Output Enable Register JJ, HH tOEHD Data Hold Time for the Output Enable Register JJ, HH tOESUE Enable Setup Time for the Output Enable Register KK, HH tOEHE Enable Hold Time for the Output Enable Register KK, HH tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH tICLKQ Clock-to-Q of the Input Data Register AA, EE tISUD Data Setup Time for the Input Data Register CC, AA tIHD Data Hold Time for the Input Data Register CC, AA tISUE Enable Setup Time for the Input Data Register BB, AA tIHE Enable Hold Time for the Input Data Register BB, AA tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE tIREMCLR Asynchronous Clear Removal Time for the Input Data Register DD, AA tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA * See Figure 2-30 on page 2-95 for more information. 2- 96 R e visio n 3 HH, DOUT LL, DOUT HH, EOUT Military ProASIC3/EL Low Power Flash FPGAs Input Register tICKMPWH tICKMPWL CLK 50% 50% Enable 50% 1 50% 50% 50% tIHD tISUD Data 50% 50% 50% 0 tIWPRE 50% tIRECPRE tIREMPRE 50% 50% tIHE Preset tISUE 50% tIWCLR 50% Clear tIRECCLR 50% tIREMCLR 50% tIPRE2Q Out_1 50% 50% tICLR2Q 50% tICLKQ Figure 2-31 • Input Register Timing Diagram Revision 3 2- 97 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics Table 2-171 • Input Data Register Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tICLKQ Clock-to-Q of the Input Data Register 0.33 0.39 ns tISUD Data Setup Time for the Input Data Register 0.36 0.43 ns tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns tISUE Enable Setup Time for the Input Data Register 0.51 0.60 ns tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.63 0.74 ns tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.63 0.74 ns tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.31 0.36 ns tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.31 0.36 ns tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 0.22 ns tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.19 0.22 ns tICKMPWH Clock Minimum Pulse Width HIGH for the Input Data Register 0.31 0.36 ns tICKMPWL Clock Minimum Pulse Width LOW for the Input Data Register 0.28 0.32 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-172 • Input Data Register Propagation Delays Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tICLKQ Clock-to-Q of the Input Data Register 0.25 0.30 ns tISUD Data Setup Time for the Input Data Register 0.28 0.33 ns tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns tISUE Enable Setup Time for the Input Data Register 0.39 0.46 ns tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.48 0.56 ns tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.48 0.56 ns tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.24 0.28 ns tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.24 0.28 ns tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 0.22 ns tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.19 0.22 ns tICKMPWH Clock Minimum Pulse Width HIGH for the Input Data Register 0.31 0.36 ns tICKMPWL Clock Minimum Pulse Width LOW for the Input Data Register 0.28 0.32 ns Note: 2- 98 For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-173 • Input Data Register Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter Description –1 Std. Units tICLKQ Clock-to-Q of the Input Data Register 0.29 0.34 ns tISUD Data Setup Time for the Input Data Register 0.32 0.37 ns tIHD Data Hold Time for the Input Data Register 0.00 0.00 ns tISUE Enable Setup Time for the Input Data Register 0.45 0.53 ns tIHE Enable Hold Time for the Input Data Register 0.00 0.00 ns tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.55 0.64 ns tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.55 0.64 ns tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 ns tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.27 0.31 ns tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 ns tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.27 0.31 ns tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.25 0.30 ns tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.25 0.30 ns tICKMPWH Clock Minimum Pulse Width HIGH for the Input Data Register 0.41 0.48 ns tICKMPWL Clock Minimum Pulse Width LOW for the Input Data Register 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 99 Military ProASIC3/EL DC and Switching Characteristics Output Register tOCKMPWH tOCKMPWL CLK 50% 50% 50% 50% 50% 50% 50% tOSUD tOHD 1 Data_out Enable 50% 50% 0 50% tOWPRE tOHE Preset tOSUE tOREMPRE tORECPRE 50% 50% 50% tOWCLR 50% Clear 50% tOPRE2Q DOUT 50% 50% tOCLR2Q tOCLKQ Figure 2-32 • Output Register Timing Diagram 2- 10 0 R e visio n 3 tORECCLR 50% tOREMCLR 50% Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics Table 2-174 • Output Data Register Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tOCLKQ Clock-to-Q of the Output Data Register 0.81 0.96 ns tOSUD Data Setup Time for the Output Data Register 0.43 0.51 ns tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns tOSUE Enable Setup Time for the Output Data Register 0.61 0.71 ns tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 1.11 1.31 ns tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 1.11 1.31 ns tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.31 0.36 ns tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.31 0.36 ns tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 0.22 ns tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 0.22 ns tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register 0.31 0.36 ns tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register 0.28 0.32 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-175 • Output Data Register Propagation Delays Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tOCLKQ Clock-to-Q of the Output Data Register 0.62 0.73 ns tOSUD Data Setup Time for the Output Data Register 0.33 0.39 ns tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns tOSUE Enable Setup Time for the Output Data Register 0.46 0.55 ns tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.85 1.00 ns tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.85 1.00 ns tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.24 0.28 ns tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.24 0.28 ns tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 0.22 ns tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 0.22 ns tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register 0.31 0.36 ns tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register 0.28 0.32 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 101 Military ProASIC3/EL DC and Switching Characteristics Table 2-176 • Output Data Register Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter Description –1 Std. Units tOCLKQ Clock-to-Q of the Output Data Register 0.71 0.83 ns tOSUD Data Setup Time for the Output Data Register 0.38 0.44 ns tOHD Data Hold Time for the Output Data Register 0.00 0.00 ns tOSUE Enable Setup Time for the Output Data Register 0.53 0.62 ns tOHE Enable Hold Time for the Output Data Register 0.00 0.00 ns tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.97 1.14 ns tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.97 1.14 ns tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 ns tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.27 0.31 ns tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 ns tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.27 0.31 ns tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.25 0.30 ns tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.25 0.30 ns tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register 0.41 0.48 ns tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register 0.37 0.43 ns Note: 2- 10 2 For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Output Enable Register tOECKMPWH tOECKMPWL CLK 50% 50% 50% 50% 50% 50% 50% tOESUD tOEHD 1 D_Enable Enable Preset 50% 0 50% 50% tOESUEtOEHE tOEWPRE tOEREMPRE tOERECPRE 50% 50% 50% tOEWCLR 50% Clear tOEPRE2Q EOUT 50% tOERECCLR 50% tOEREMCLR 50% tOECLR2Q 50% 50% tOECLKQ Figure 2-33 • Output Enable Register Timing Diagram Revision 3 2- 103 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics Table 2-177 • Output Enable Register Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tOECLKQ Clock-to-Q of the Output Enable Register 0.62 0.72 ns tOESUD Data Setup Time for the Output Enable Register 0.43 0.51 ns tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns tOESUE Enable Setup Time for the Output Enable Register 0.60 0.71 ns tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.92 1.08 ns tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.92 1.08 ns tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.31 0.36 ns tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.31 0.36 ns tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register 0.31 0.36 ns Clock Minimum Pulse Width LOW for the Output Enable Register 0.28 0.32 ns tOECKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-178 • Output Enable Register Propagation Delays Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tOECLKQ Clock-to-Q of the Output Enable Register 0.47 0.55 ns tOESUD Data Setup Time for the Output Enable Register 0.33 0.39 ns tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns tOESUE Enable Setup Time for the Output Enable Register 0.46 0.54 ns tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.70 0.83 ns tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.70 0.83 ns tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.24 0.28 ns tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.24 0.28 ns tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.19 0.22 ns tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register 0.31 0.36 ns Clock Minimum Pulse Width LOW for the Output Enable Register 0.28 0.32 ns tOECKMPWL Note: 2- 10 4 For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-179 • Output Enable Register Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter Description –1 Std. Units tOECLKQ Clock-to-Q of the Output Enable Register 0.54 0.63 ns tOESUD Data Setup Time for the Output Enable Register 0.38 0.44 ns tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 ns tOESUE Enable Setup Time for the Output Enable Register 0.52 0.62 ns tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 ns tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.80 0.94 ns tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.80 0.94 ns tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 ns tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.27 0.31 ns tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 ns tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.27 0.31 ns tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.25 0.30 ns tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register 0.41 0.48 ns Clock Minimum Pulse Width LOW for the Output Enable Register 0.37 0.43 ns tOECKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 105 Military ProASIC3/EL DC and Switching Characteristics DDR Module Specifications Input DDR Module Input DDR INBUF Data A D Out_QF (to core) E Out_QR (to core) FF1 B CLK CLKBUF FF2 C CLR INBUF DDR_IN Figure 2-34 • Input DDR Timing Model Table 2-180 • Parameter Definitions Parameter Name 2- 10 6 Parameter Definition Measuring Nodes (from, to) tDDRICLKQ1 Clock-to-Out Out_QR B, D tDDRICLKQ2 Clock-to-Out Out_QF B, E tDDRISUD Data Setup Time of DDR input A, B tDDRIHD Data Hold Time of DDR input A, B tDDRICLR2Q1 Clear-to-Out Out_QR C, D tDDRICLR2Q2 Clear-to-Out Out_QF C, E tDDRIREMCLR Clear Removal C, B tDDRIRECCLR Clear Recovery C, B R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs CLK tDDRISUD Data 1 2 3 4 5 6 tDDRIHD 7 8 9 tDDRIRECCLR CLR tDDRIREMCLR tDDRICLKQ1 tDDRICLR2Q1 Out_QF 2 6 4 tDDRICLKQ2 tDDRICLR2Q2 Out_QR 3 5 7 Figure 2-35 • Input DDR Timing Diagram Timing Characteristics Table 2-181 • Input DDR Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.38 0.45 ns tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.54 0.63 ns tDDRISUD1 Data Setup for Input DDR (fall) 0.39 0.46 ns tDDRISUD2 Data Setup for Input DDR (rise) 0.34 0.40 ns tDDRIHD1 Data Hold for Input DDR (fall) 0.00 0.00 ns tDDRIHD2 Data Hold for Input DDR (rise) 0.00 0.00 ns tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.64 0.75 ns tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.79 0.93 ns tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.31 0.36 ns tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.19 0.22 ns tDDRICKMPWH Clock Minimum Pulse Width HIGH for Input DDR 0.31 0.36 ns tDDRICKMPWL Clock Minimum Pulse Width LOW for Input DDR 0.28 0.32 ns FDDRIMAX Maximum Frequency for Input DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 107 Military ProASIC3/EL DC and Switching Characteristics Table 2-182 • Input DDR Propagation Delays Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for any A3PE600L/A3PE3000L Parameter –1 Std. Units tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR Description 0.29 0.34 ns tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.41 0.48 ns tDDRISUD1 Data Setup for Input DDR (fall) 0.30 0.35 ns tDDRISUD2 Data Setup for Input DDR (rise) 0.26 0.31 ns tDDRIHD1 Data Hold for Input DDR (fall) 0.00 0.00 ns tDDRIHD2 Data Hold for Input DDR (rise) 0.00 0.00 ns tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.49 0.58 ns tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.60 0.71 ns tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.24 0.28 ns tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.19 0.22 ns tDDRICKMPWH Clock Minimum Pulse Width HIGH for Input DDR 0.31 0.36 ns tDDRICKMPWL Clock Minimum Pulse Width LOW for Input DDR 0.28 0.32 ns FDDRIMAX Maximum Frequency for Input DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-183 • Input DDR Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter –1 Std. Units tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR Description 0.33 0.39 ns tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.47 0.55 ns tDDRISUD1 Data Setup for Input DDR (fall) 0.30 0.35 ns tDDRISUD2 Data Setup for Input DDR (rise) 0.30 0.35 ns tDDRIHD1 Data Hold for Input DDR (fall) 0.00 0.00 ns tDDRIHD2 Data Hold for Input DDR (rise) 0.00 0.00 ns tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.56 0.65 ns tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.69 0.81 ns tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 ns tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.27 0.31 ns tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.25 0.30 ns tDDRICKMPWH Clock Minimum Pulse Width HIGH for Input DDR 0.41 0.48 ns tDDRICKMPWL Clock Minimum Pulse Width LOW for Input DDR 0.37 0.43 ns FDDRIMAX Maximum Frequency for Input DDR TBD TBD MHz Note: 2- 10 8 For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Output DDR Module Output DDR A Data_F (from core) X FF1 B CLK CLKBUF E X C X D Data_R (from core) Out 0 X 1 X OUTBUF FF2 B X CLR INBUF C X DDR_OUT Figure 2-36 • Output DDR Timing Model Table 2-184 • Parameter Definitions Parameter Name Parameter Definition Measuring Nodes (from, to) tDDROCLKQ Clock-to-Out B, E tDDROCLR2Q Asynchronous Clear-to-Out C, E tDDROREMCLR Clear Removal C, B tDDRORECCLR Clear Recovery C, B tDDROSUD1 Data Setup Data_F A, B tDDROSUD2 Data Setup Data_R D, B tDDROHD1 Data Hold Data_F A, B tDDROHD2 Data Hold Data_R D, B Revision 3 2- 109 Military ProASIC3/EL DC and Switching Characteristics CLK tDDROSUD2 tDDROHD2 1 Data_F 2 5 tDDROHD1 tDDROREMCLR Data_R 6 4 3 7 8 9 10 11 tDDRORECCLR tDDROREMCLR CLR tDDROCLR2Q tDDROCLKQ Out 2 7 8 3 9 4 10 Figure 2-37 • Output DDR Timing Diagram Timing Characteristics Table 2-185 • Output DDR Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.97 1.14 ns tDDRISUD1 Data_F Data Setup for Output DDR 0.52 0.62 ns tDDROSUD2 Data_R Data Setup for Output DDR 0.52 0.62 ns tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 1.11 1.30 ns tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.31 0.36 ns tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.19 0.22 ns tDDROCKMPWH Clock Minimum Pulse Width HIGH for the Output DDR 0.31 0.36 ns tDDROCKMPWL Clock Minimum Pulse Width LOW for the Output DDR 0.28 0.32 ns FDDOMAX Maximum Frequency for the Output DDR TBD TBD MHz Note: 2- 11 0 For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-186 • Output DDR Propagation Delays Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.74 0.87 ns tDDRISUD1 Data_F Data Setup for Output DDR 0.40 0.47 ns tDDROSUD2 Data_R Data Setup for Output DDR 0.40 0.47 ns tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.85 1.00 ns tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.24 0.28 ns tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.19 0.22 ns tDDROCKMPWH Clock Minimum Pulse Width HIGH for the Output DDR 0.31 0.36 ns tDDROCKMPWL Clock Minimum Pulse Width LOW for the Output DDR 0.28 0.32 ns FDDOMAX Maximum Frequency for the Output DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-187 • Output DDR Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter Description –1 Std. Units tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.84 0.99 ns tDDRISUD1 Data_F Data Setup for Output DDR 0.46 0.54 ns tDDROSUD2 Data_R Data Setup for Output DDR 0.46 0.54 ns tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 ns tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 ns tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.96 1.13 ns tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 ns tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.27 0.31 ns tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.25 0.30 ns tDDROCKMPWH Clock Minimum Pulse Width HIGH for the Output DDR 0.41 0.48 ns tDDROCKMPWL Clock Minimum Pulse Width LOW for the Output DDR 0.37 0.43 ns FDDOMAX Maximum Frequency for the Output DDR TBD TBD MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 111 Military ProASIC3/EL DC and Switching Characteristics VersaTile Characteristics VersaTile Specifications as a Combinatorial Module The military ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide. A A B A OR2 Y AND2 A Y B B B XOR2 A B C Y A A B C NAND3 A MAJ3 B Y C Figure 2-38 • Sample of Combinatorial Cells R e visio n 3 NAND2 XOR3 Y Y Y 0 MUX2 B S 2- 11 2 NOR2 B A A Y INV 1 Y Military ProASIC3/EL Low Power Flash FPGAs tPD A NAND2 or Any Combinatorial Logic B Y tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR)) where edges are applicable for the particular combinatorial cell VCC 50% 50% A, B, C GND VCC 50% 50% OUT GND VCC tPD tPD (FF) (RR) OUT tPD (FR) 50% tPD 50% GND (RF) Figure 2-39 • Timing Model and Waveforms Revision 3 2- 113 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics Table 2-188 • Combinatorial Cell Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Combinatorial Cell Equation Parameter –1 Std. Units Y = !A tPD 0.56 0.65 ns Y=A·B tPD 0.65 0.77 ns Y = !(A · B) tPD 0.65 0.77 ns Y=A+B tPD 0.67 0.79 ns NOR2 Y = !(A + B) tPD 0.67 0.79 ns XOR2 Y = A B tPD 1.02 1.20 ns MAJ3 Y = MAJ(A , B, C) tPD 0.97 1.14 ns XOR3 Y = A B C tPD 1.21 1.42 ns MUX2 Y = A !S + B S tPD 0.70 0.82 ns AND3 Y=A·B·C tPD 0.78 0.91 ns INV AND2 NAND2 OR2 Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-189 • Combinatorial Cell Propagation Delays Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for any A3PE600L/A3PE3000L Combinatorial Cell Equation Parameter –1 Std. Units Y = !A tPD 0.43 0.50 ns Y=A·B tPD 0.50 0.59 ns Y = !(A · B) tPD 0.50 0.59 ns Y=A+B tPD 0.51 0.61 ns NOR2 Y = !(A + B) tPD 0.51 0.61 ns XOR2 Y = A B tPD 0.78 0.92 ns MAJ3 Y = MAJ(A , B, C) tPD 0.74 0.87 ns XOR3 Y = A B C tPD 0.93 1.09 ns MUX2 Y = A !S + B S tPD 0.54 0.63 ns AND3 Y=A·B·C tPD 0.59 0.70 ns INV AND2 NAND2 OR2 Note: 2- 11 4 For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-190 • Combinatorial Cell Propagation Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Combinatorial Cell INV Equation Parameter –1 Std. Units Y = !A tPD 0.48 0.57 ns Y=A·B tPD 0.57 0.67 ns Y = !(A · B) tPD 0.57 0.67 ns Y=A+B tPD 0.59 0.69 ns NOR2 Y = !(A + B) tPD 0.59 0.69 ns XOR2 Y = A B tPD 0.89 1.04 ns MAJ3 Y = MAJ(A , B, C) tPD 0.84 0.99 ns XOR3 Y = A B C tPD 1.05 1.24 ns MUX2 Y = A !S + B S tPD 0.61 0.72 ns Y=A·B·C tPD 0.68 0.79 ns AND2 NAND2 OR2 AND3 Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 115 Military ProASIC3/EL DC and Switching Characteristics VersaTile Specifications as a Sequential Module The military ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide. Data D Q Out Data En DFN1 CLK D Out Q DFN1E1 CLK PRE Data D Q Out En DFN1C1 CLK CLK CLR Figure 2-40 • Sample of Sequential Cells 2- 11 6 Data R e visio n 3 D Q DFI1E1P1 Out Military ProASIC3/EL Low Power Flash FPGAs tCKMPWH tCKMPWL CLK 50% 50% tSUD 50% Data EN PRE 50% tRECPRE tREMPRE 50% 50% tRECCLR tWCLR 50% CLR tPRE2Q 50% Out 50% 50% 0 tWPRE tHE 50% 50% tHD 50% tSUE 50% 50% 50% tREMCLR 50% tCLR2Q 50% 50% tCLKQ Figure 2-41 • Timing Model and Waveforms Revision 3 2- 117 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics Table 2-191 • Register Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tCLKQ Clock-to-Q of the Core Register 0.76 0.90 ns tSUD Data Setup Time for the Core Register 0.59 0.70 ns tHD Data Hold Time for the Core Register 0.00 0.00 ns tSUE Enable Setup Time for the Core Register 0.63 0.74 ns tHE Enable Hold Time for the Core Register 0.00 0.00 ns tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.55 0.65 ns tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.55 0.65 ns tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.31 0.36 ns tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.31 0.36 ns tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.30 0.34 ns tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.30 0.34 ns tCKMPWH Clock Minimum Pulse Width HIGH for the Core Register 0.56 0.64 ns tCKMPWL Clock Minimum Pulse Width LOW for the Core Register 0.56 0.64 ns Note: 2- 11 8 For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-192 • Register Delays Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tCLKQ Clock-to-Q of the Core Register 0.58 0.69 ns tSUD Data Setup Time for the Core Register 0.45 0.53 ns tHD Data Hold Time for the Core Register 0.00 0.00 ns tSUE Enable Setup Time for the Core Register 0.48 0.57 ns tHE Enable Hold Time for the Core Register 0.00 0.00 ns tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.42 0.50 ns tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.42 0.50 ns tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.24 0.28 ns tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.24 0.28 ns tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.30 0.34 ns tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.30 0.34 ns tCKMPWH Clock Minimum Pulse Width HIGH for the Core Register 0.56 0.64 ns tCKMPWL Clock Minimum Pulse Width LOW for the Core Register 0.56 0.64 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 119 Military ProASIC3/EL DC and Switching Characteristics Table 2-193 • Register Delays Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter Description –1 Std. Units tCLKQ Clock-to-Q of the Core Register 0.66 0.78 ns tSUD Data Setup Time for the Core Register 0.52 0.61 ns tHD Data Hold Time for the Core Register 0.00 0.00 ns tSUE Enable Setup Time for the Core Register 0.55 0.64 ns tHE Enable Hold Time for the Core Register 0.00 0.00 ns tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.48 0.56 ns tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.48 0.56 ns tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 ns tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.27 0.31 ns tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 ns tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.27 0.31 ns tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.25 0.30 ns tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.25 0.30 ns tCKMPWH Clock Minimum Pulse Width HIGH for the Core Register 0.41 0.48 ns tCKMPWL Clock Minimum Pulse Width LOW for the Core Register 0.37 0.43 ns Note: 2- 12 0 For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Global Resource Characteristics A3P1000 Clock Tree Topology Clock delays are device-specific. Figure 2-42 is an example of a global tree used for clock routing. The global tree presented in Figure 2-42 is driven by a CCC located on the west side of the A3P1000 device. It is used to drive all D-flip-flops in the device. Central Global Rib VersaTile Rows CCC Global Spine Figure 2-42 • Example of Global Tree Use in an A3P1000 Device for Clock Routing Revision 3 2- 121 Military ProASIC3/EL DC and Switching Characteristics Global Tree Timing Characteristics Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-125. Table 2-194 to Table 2-197 on page 2-123 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading. Timing Characteristics 1.2 V DC Core Voltage Table 2-194 • A3PE600L Global Resource Military-Case Conditions: TJ = 125°C, VCC = 1.14 V –1 Parameter Description 1 Std. 2 1 Min. Max. Min. Max.2 Units tRCKL Input LOW Delay for Global Clock 0.95 1.23 1.12 1.44 ns tRCKH Input HIGH Delay for Global Clock 0.94 1.26 1.10 1.48 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock tRCKMPWL Minimum Pulse Width LOW for Global Clock tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock ns ns 0.32 0.38 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-195 • A3PE3000L Global Resource Military-Case Conditions: TJ = 125°C, VCC = 1.14 V –1 Parameter Description 1 Std. Min. Max.2 Min.1 Max.2 Units tRCKL Input LOW Delay for Global Clock 1.81 2.09 2.13 2.42 ns tRCKH Input HIGH Delay for Global Clock 1.80 2.13 2.12 2.45 ns tRCKMPWH Minimum Pulse Width HIGH for Global Clock ns tRCKMPWL Minimum Pulse Width LOW for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock 0.32 0.38 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 2- 12 2 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs 1.5 V DC Core Voltage Table 2-196 • A3PE600L Global Resource Military-Case Conditions: TJ = 125°C, VCC = 1.425 V –1 Std. Description Min.1 Max. Min. tRCKL Input Low Delay for Global Clock 0.82 1.07 0.97 1.26 ns tRCKH Input High Delay for Global Clock 0.81 1.10 0.95 1.30 ns tRCKMPWH Minimum Pulse Width High for Global Clock ns tRCKMPWL Minimum Pulse Width Low for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock Parameter 2 1 0.30 Max.2 Units 0.35 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-197 • A3PE3000L Global Resource Military-Case Conditions: TJ = 125°C, VCC = 1.425 V –1 Std. Description Min. Max.2 tRCKL Input Low Delay for Global Clock 1.62 1.87 1.90 2.20 ns tRCKH Input High Delay for Global Clock 1.61 1.90 1.89 2.24 ns tRCKMPWH Minimum Pulse Width High for Global Clock ns tRCKMPWL Minimum Pulse Width Low for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock Parameter 1 0.30 Min.1 Max.2 Units 0.35 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 123 Military ProASIC3/EL DC and Switching Characteristics Table 2-198 • A3P250 Global Resource Military-Case Conditions: TJ = 125°C, VCC = 1.425 V –1 Std. Description Min.1 Max. Min. tRCKL Input Low Delay for Global Clock 0.97 1.24 1.14 1.46 ns tRCKH Input High Delay for Global Clock 0.94 1.27 1.11 1.49 ns tRCKMPWH Minimum Pulse Width High for Global Clock ns tRCKMPWL Minimum Pulse Width Low for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock Parameter 2 1 0.32 Max.2 Units 0.38 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Table 2-199 • A3P1000 Global Resource Military-Case Conditions: TJ = 125°C, VCC = 1.425 V –1 Std. Description Min.1 Max.2 Min.1 tRCKL Input Low Delay for Global Clock 1.18 1.44 1.39 1.70 ns tRCKH Input High Delay for Global Clock 1.17 1.48 1.37 1.74 ns tRCKMPWH Minimum Pulse Width High for Global Clock ns tRCKMPWL Minimum Pulse Width Low for Global Clock ns tRCKSW Maximum Skew for Global Clock FRMAX Maximum Frequency for Global Clock Parameter 0.32 Max.2 Units 0.37 ns MHz Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. 2- 12 4 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Clock Conditioning Circuits CCC Electrical Specifications Timing Characteristics Table 2-200 • Military ProASIC3/EL CCC/PLL Specification For Devices Operating at 1.2 V DC Core Voltage: Applicable to A3PE600L and A3PE3000L Only Parameter Clock Conditioning fIN_CCC Min. Circuitry Input Frequency Clock Conditioning Circuitry Output Frequency fOUT_CCC Delay Increments in Programmable Delay Blocks Max. Units 1.5 250 MHz 0.75 250 MHz 1, 2 Typ. 360 Number of Programmable Values in Each Programmable Delay Block Serial Clock (SCLK) for Dynamic ps 32 PLL3 100 MHz 1 ns LockControl = 0 300 µs LockControl = 1 6.0 ms LockControl = 0 25 ns LockControl = 1 1.5 ns 48.5 51.5 % 1.2 15.65 ns 0.025 15.65 ns Input cycle-to-cycle jitter (peak magnitude) Acquisition Time Tracking Jitter4 Output Duty Cycle Delay Range in Block: Programmable Delay 1 1,2 Delay Range in Block: Programmable Delay 2 Delay Range in Block: Fixed Delay 1,2 1,2 3.5 CCC Output Peak-to-Peak Period Jitter FCCC_OUT ns Max. Peak-to-Peak Period Jitter5,6 SSO 2 SSO 4 SSO 8 SSO 16 0.75 MHz to 50 MHz 0.50% 0.60% 0.80% 1.60% 50 MHz to 160 MHz 2.50% 4.00% 6.00% 12.00% Notes: 1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-8 for deratings. 2. TJ = 25°C, VCC = 1.2 V. 3. Maximum value obtained for a –1 speed grade device in worst-case military conditions. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter. 5. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14V, VQ/PQ/TQ type of packages, 20 pF load. 6. Switching I/Os are placed outside of the PLL bank. Revision 3 2- 125 Military ProASIC3/EL DC and Switching Characteristics Table 2-201 • Military ProASIC3/EL CCC/PLL Specification For Devices Operating at 1.5 V DC Core Voltage Parameter Max. Units Clock Conditioning Circuitry Input Frequency fIN_CCC Min. 1.5 350 MHz Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 350 MHz Delay Increments in Programmable Delay Blocks 1, 2 Typ. 160 Number of Programmable Values in Each Programmable Delay Block ps 32 Serial Clock (SCLK) for Dynamic PLL3 110 MHz Input cycle-to-cycle jitter (peak magnitude) 1.5 ns Acquisition Time LockControl = 0 300 µs LockControl = 1 6.0 ms LockControl = 0 1.6 ns Tracking Jitter4 LockControl = 1 0.8 ns 48.5 51.5 % Delay Range in Block: Programmable Delay 1 1,2 0.6 5.56 ns Delay Range in Block: Programmable Delay 2 1,2 0.025 5.56 ns Output Duty Cycle Delay Range in Block: Fixed Delay 1,2 2.2 ns Max. Peak-to-Peak Period Jitter 5,6 CCC Output Peak-to-Peak Period Jitter FCCC_OUT SSO 2 SSO 4 SSO 8 SSO 16 0.75 MHz to 50 MHz 0.50% 0.50% 0.70% 1.00% 50 MHz to 250 MHz 1.00% 3.00% 5.00% 9.00% 250 MHz to 350 MHz 2.50% 4.00% 6.00% 12.00% Notes: 1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-8 for deratings. 2. TJ = 25°C, VCC = 1.5 V. 3. Maximum value obtained for a -1 speed grade device in worst-case military conditions. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. 4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter. 5. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.425 V, VQ/PQ/TQ type of packages, 20 pF load. 6. Switching I/Os are placed outside of the PLL bank. Output Signal Tperiod_max Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min. Figure 2-43 • Peak-to-Peak Jitter Definition 2- 12 6 Tperiod_min R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Embedded SRAM and FIFO Characteristics SRAM RAM512X18 RAM4K9 ADDRA11 ADDRA10 DOUTA8 DOUTA7 RADDR8 RADDR7 RD17 RD16 ADDRA0 DINA8 DINA7 DOUTA0 RADDR0 RD0 RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPEA WMODEA BLKA WENA CLKA PIPE REN RCLK ADDRB11 ADDRB10 DOUTB8 DOUTB7 ADDRB0 DOUTB0 DINB8 DINB7 WADDR8 WADDR7 WADDR0 WD17 WD16 WD0 DINB0 WW1 WW0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB WENB CLKB WEN WCLK RESET RESET Figure 2-44 • RAM Models Revision 3 2- 127 Military ProASIC3/EL DC and Switching Characteristics Timing Waveforms tCYC tCKH tCKL CLK tAS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENS tENH WEN_B tCKQ1 DO Dn D0 D1 D2 tDOH1 Figure 2-45 • RAM Read for Pass-Through Output tCYC tCKH tCKL CLK t AS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENH tENS WEN_B tCKQ2 DO Dn D0 D1 tDOH2 Figure 2-46 • RAM Read for Pipelined Output 2- 12 8 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs tCYC tCKH tCKL CLK tAS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENS tENH WEN_B tDS DI0 DI tDH DI1 Dn DO D2 Figure 2-47 • RAM Write, Output Retained (WMODE = 0) tCYC tCKH tCKL CLK tAS tAH A0 ADD A1 A2 tBKS tBKH BLK_B tENS WEN_B tDS DI0 DI DO (pass-through) DO (pipelined) tDH DI1 Dn DI2 DI0 DI1 DI0 Dn DI1 Figure 2-48 • RAM Write, Output as Write Data (WMODE = 1) Revision 3 2- 129 Military ProASIC3/EL DC and Switching Characteristics tCYC tCKH tCKL CLK RESET_B tRSTBQ DO Dm Dn Figure 2-49 • RAM Reset 2- 13 0 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Timing Characteristics Table 2-202 • RAM4K9 Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tAS Address setup time 0.35 0.41 ns tAH Address hold time 0.00 0.00 ns tENS REN_B, WEN_B setup time 0.20 0.23 ns tENH REN_B, WEN_B hold time 0.13 0.16 ns tBKS BLK_B setup time 0.32 0.38 ns tBKH BLK_B hold time 0.03 0.03 ns tDS Input data (DI) setup time 0.25 0.30 ns tDH Input data (DI) hold time 0.00 0.00 ns tCKQ1 Clock High to new data valid on DO (output retained, WMODE = 0) 3.26 3.84 ns Clock High to new data valid on DO (flow-through, WMODE = 1) 2.47 2.91 ns tCKQ2 Clock High to new data valid on DO (pipelined) 1.24 1.46 ns tC2CWWL Address collision clk-to-clk delay for reliable write after write on same address – 0.25 0.30 applicable to closing edge ns tC2CRWH Address collision clk-to-clk delay for reliable read access after write on same 0.27 0.32 address – applicable to opening edge ns tC2CRWH Address collision clk-to-clk delay for reliable write access after read on same 0.37 0.44 address – applicable to opening edge ns tRSTBQ RESET_B Low to data out Low on DO (flow-through) 1.28 1.50 ns RESET_B Low to data out Low on DO (pipelined) 1.28 1.50 ns tREMRSTB RESET_B removal 0.40 0.47 ns tRECRSTB RESET_B recovery 2.08 2.44 ns tMPWRSTB RESET_B minimum pulse width 0.66 0.76 ns tCYC Clock cycle time 6.08 6.99 ns FMAX Maximum frequency 164 Note: 143 MHz For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 131 Military ProASIC3/EL DC and Switching Characteristics Table 2-203 • RAM4K9 Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tAS Address setup time 0.26 0.31 ns tAH Address hold time 0.00 0.00 ns tENS REN_B, WEN_B setup time 0.15 0.18 ns tENH REN_B, WEN_B hold time 0.10 0.12 ns tBKS BLK_B setup time 0.25 0.29 ns tBKH BLK_B hold time 0.02 0.02 ns tDS Input data (DI) setup time 0.19 0.23 ns tDH Input data (DI) hold time 0.00 0.00 ns tCKQ1 Clock HIGH to new data valid on DO (output retained, WMODE = 0) 2.50 2.93 ns Clock HIGH to new data valid on DO (flow-through, WMODE = 1) 1.89 2.22 ns tCKQ2 Clock HIGH to new data valid on DO (pipelined) 0.95 1.11 ns tC2CWWL Address collision clk-to-clk delay for reliable write after write on same address – 0.24 0.29 applicable to closing edge ns tC2CRWH Address collision clk-to-clk delay for reliable read access after write on same 0.20 0.24 address – applicable to opening edge ns tC2CRWH Address collision clk-to-clk delay for reliable write access after read on same 0.25 0.30 address – applicable to opening edge ns tRSTBQ RESET_B Low to data out Low on DO (flow-through) 0.98 1.15 ns RESET_B Low to data out Low on DO (pipelined) 0.98 1.15 ns tREMRSTB RESET_B removal 0.30 0.36 ns tRECRSTB RESET_B recovery 1.59 1.87 ns tMPWRSTB RESET_B minimum pulse width 0.59 0.67 ns tCYC Clock cycle time 5.39 6.20 ns FMAX Maximum frequency 185 Note: 2- 13 2 161 For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 MHz Military ProASIC3/EL Low Power Flash FPGAs Table 2-204 • RAM4K9 Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter Description –1 Std. Units tAS Address setup time 0.30 0.35 ns tAH Address hold time 0.00 0.00 ns tENS REN_B, WEN_B setup time 0.17 0.20 ns tENH REN_B, WEN_B hold time 0.12 0.14 ns tBKS BLK_B setup time 0.28 0.33 ns tBKH BLK_B hold time 0.02 0.03 ns tDS Input data (DI) setup time 0.22 0.26 ns tDH Input data (DI) hold time 0.00 0.00 ns tCKQ1 Clock High to new data valid on DO (output retained, WMODE = 0) 2.84 2.53 ns Clock High to new data valid on DO (flow-through, WMODE = 1) 2.15 3.33 ns tCKQ2 Clock High to new data valid on DO (pipelined) 1.08 1.27 ns tC2CWWL Address collision clk-to-clk delay for reliable write after write on same address – 0.28 0.33 applicable to closing edge ns tC2CWWH Address collision clk-to-clk delay for reliable write after write on same address – 0.26 0.30 applicable to rising edge ns tC2CRWH Address collision clk-to-clk delay for reliable read access after write on same 0.38 0.45 address – applicable to opening edge ns tC2CWRH Address collision clk-to-clk delay for reliable write access after read on same 0.42 0.49 address – applicable to opening edge ns tRSTBQ RESET_B Low to data out Low on DO (flow-through) 1.11 1.31 ns RESET_B Low to data out Low on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B removal 0.34 0.40 ns tRECRSTB RESET_B recovery 1.81 2.12 ns tMPWRSTB RESET_B minimum pulse width 0.26 0.30 ns tCYC Clock cycle time 3.89 4.57 ns FMAX Maximum frequency 257 Note: 219 MHz For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 133 Military ProASIC3/EL DC and Switching Characteristics Table 2-205 • RAM512X18 Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tAS Address setup time 0.35 0.41 ns tAH Address hold time 0.00 0.00 ns tENS REN_B, WEN_B setup time 0.13 0.15 ns tENH REN_B, WEN_B hold time 0.08 0.09 ns tDS Input data (DI) setup time 0.25 0.30 ns tDH Input data (DI) hold time 0.00 0.00 ns tCKQ1 Clock High to new data valid on DO (output retained, WMODE = 0) 2.99 3.52 ns tCKQ2 Clock High to new data valid on DO (pipelined) 1.24 1.46 ns tC2CRWH Address collision clk-to-clk delay for reliable read access after write on same 0.25 0.29 address – applicable to opening edge ns tC2CWRH Address collision clk-to-clk delay for reliable write access after read on same 0.31 0.36 address – applicable to opening edge ns tRSTBQ RESET_B Low to data out Low on DO (flow through) 1.28 1.50 ns RESET_B Low to data out Low on DO (pipelined) 1.28 1.50 ns tREMRSTB RESET_B removal 0.40 0.47 ns tRECRSTB RESET_B recovery 2.08 2.44 ns tMPWRSTB RESET_B minimum pulse width 0.66 0.76 ns tCYC Clock cycle time 6.08 6.99 ns FMAX Maximum frequency 164 Note: 2- 13 4 143 For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 MHz Military ProASIC3/EL Low Power Flash FPGAs Table 2-206 • RAM512X18 Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tAS Address setup time 0.26 0.31 ns tAH Address hold time 0.00 0.00 ns tENS REN_B, WEN_B setup time 0.10 0.11 ns tENH REN_B, WEN_B hold time 0.06 0.07 ns tDS Input data (DI) setup time 0.19 0.23 ns tDH Input data (DI) hold time 0.00 0.00 ns tCKQ1 Clock High to new data valid on DO (output retained, WMODE = 0) 2.29 2.69 ns tCKQ2 Clock High to new data valid on DO (pipelined) 0.95 1.12 ns tC2CRWH Address collision clk-to-clk delay for reliable read access after write on same 0.18 0.21 address – applicable to opening edge ns tC2CWRH Address collision clk-to-clk delay for reliable write access after read on same 0.21 0.25 address – applicable to opening edge ns tRSTBQ RESET_B Low to data out Low on DO (flow through) 0.98 1.15 ns RESET_B Low to data out Low on DO (pipelined) 0.98 1.15 ns tREMRSTB RESET_B removal 0.30 0.36 ns tRECRSTB RESET_B recovery 1.59 1.87 ns tMPWRSTB RESET_B minimum pulse width 0.59 0.67 ns tCYC Clock cycle time 5.39 6.20 ns FMAX Maximum frequency 185 Note: 161 MHz For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 135 Military ProASIC3/EL DC and Switching Characteristics Table 2-207 • RAM512X18 Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter Description –1 Std. Units tAS Address setup time 0.30 0.35 ns tAH Address hold time 0.00 0.00 ns tENS REN_B, WEN_B setup time 0.11 0.13 ns tENH REN_B, WEN_B hold time 0.07 0.08 ns tDS Input data (DI) setup time 0.22 0.26 ns tDH Input data (DI) hold time 0.00 0.00 ns tCKQ1 Clock High to new data valid on DO (output retained, WMODE = 0) 2.60 3.06 ns tCKQ2 Clock High to new data valid on DO (pipelined) 1.08 1.27 ns tC2CRWH Address collision clk-to-clk delay for reliable read access after write on same 0.43 0.50 address – applicable to opening edge ns tC2CWRH Address collision clk-to-clk delay for reliable write access after read on same 0.50 0.59 address – applicable to opening edge ns tRSTBQ RESET_B Low to data out Low on DO (flow through) 1.11 1.31 ns RESET_B Low to data out Low on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B removal 0.34 0.40 ns tRECRSTB RESET_B recovery 1.81 2.12 ns tMPWRSTB RESET_B minimum pulse width 0.26 0.30 ns tCYC Clock cycle time 3.89 4.57 ns FMAX Maximum frequency 257 Note: 2- 13 6 219 For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 MHz Military ProASIC3/EL Low Power Flash FPGAs FIFO FIFO4K18 RW2 RW1 RW0 WW2 WW1 WW0 ESTOP FSTOP RD17 RD16 RD0 FULL AFULL EMPTY AEMPTY AEVAL11 AEVAL10 AEVAL0 AFVAL11 AFVAL10 AFVAL0 REN RBLK RCLK WD17 WD16 WD0 WEN WBLK WCLK RPIPE RESET Figure 2-50 • FIFO Model Revision 3 2- 137 Military ProASIC3/EL DC and Switching Characteristics Timing Waveforms RCLK/ WCLK tMPWRSTB tRSTCK RESET_B tRSTFG EMPTY tRSTAF AEMPTY tRSTFG FULL tRSTAF AFULL WA/RA (Address Counter) MATCH (A0) Figure 2-51 • FIFO Reset tCYC RCLK tRCKEF EMPTY tCKAF AEMPTY WA/RA (Address Counter) NO MATCH NO MATCH Figure 2-52 • FIFO EMPTY Flag and AEMPTY Flag Assertion 2- 13 8 R e visio n 3 Dist = AEF_TH MATCH (EMPTY) Military ProASIC3/EL Low Power Flash FPGAs tCYC WCLK tWCKFF FULL tCKAF AFULL WA/RA NO MATCH (Address Counter) NO MATCH Dist = AFF_TH MATCH (FULL) Figure 2-53 • FIFO FULL Flag and AFULL Flag Assertion WCLK WA/RA MATCH (Address Counter) (EMPTY) RCLK NO MATCH 1st Rising Edge After 1st Write NO MATCH NO MATCH NO MATCH Dist = AEF_TH + 1 2nd Rising Edge After 1st Write tRCKEF EMPTY tCKAF AEMPTY Figure 2-54 • FIFO EMPTY Flag and AEMPTY Flag Deassertion RCLK WA/RA (Address Counter) WCLK MATCH (FULL) NO MATCH 1st Rising Edge After 1st Read NO MATCH NO MATCH NO MATCH Dist = AFF_TH – 1 1st Rising Edge After 2nd Read tWCKF FULL tCKAF AFULL Figure 2-55 • FIFO FULL Flag and AFULL Flag Deassertion Revision 3 2- 139 Military ProASIC3/EL DC and Switching Characteristics Timing Characteristics Table 2-208 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.14 V for A3PE600L and A3PE3000L Parameter –1 Std. Units tENS REN_B, WEN_B Setup Time 1.91 2.24 ns tENH REN_B, WEN_B Hold Time 0.03 0.03 ns tBKS BLK_B Setup Time 0.40 0.47 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.25 0.30 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 3.26 3.84 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.24 1.46 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.38 2.80 ns tWCKFF WCLK HIGH to Full Flag Valid 2.26 2.66 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 8.57 10.08 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.34 2.76 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 8.48 9.97 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.28 1.50 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.28 1.50 ns tREMRSTB RESET_B Removal 0.40 0.47 ns tRECRSTB RESET_B Recovery 2.08 2.44 ns tMPWRSTB RESET_B Minimum Pulse Width 0.66 0.76 ns tCYC Clock Cycle Time 6.08 6.99 ns FMAX Maximum Frequency for FIFO 164 143 MHz Note: 2- 14 0 Description For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-209 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tENS REN_B, WEN_B Setup Time 1.46 1.71 ns tENH REN_B, WEN_B Hold Time 0.02 0.02 ns tBKS BLK_B Setup Time 0.40 0.47 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.19 0.23 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.50 2.93 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 0.95 1.11 ns tRCKEF RCLK HIGH to Empty Flag Valid 1.82 2.14 ns tWCKFF WCLK HIGH to Full Flag Valid 1.73 2.03 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 6.56 7.71 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 1.79 2.11 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 6.49 7.63 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 0.98 1.15 ns RESET_B LOW to Data Out LOW on DO (pipelined) 0.98 1.15 ns tREMRSTB RESET_B Removal 0.30 0.36 ns tRECRSTB RESET_B Recovery 1.59 1.87 ns tMPWRSTB RESET_B Minimum Pulse Width 0.59 0.67 ns tCYC Clock Cycle Time 5.39 6.20 ns FMAX Maximum Frequency for FIFO 185 161 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 141 Military ProASIC3/EL DC and Switching Characteristics Table 2-210 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P1000 Parameter –1 Std. Units tENS REN_B, WEN_B Setup Time 1.66 1.95 ns tENH REN_B, WEN_B Hold Time 0.00 0.00 ns tBKS BLK_B Setup Time 1.66 1.95 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.22 0.26 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.84 3.33 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.08 1.27 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.07 2.43 ns tWCKFF WCLK HIGH to Full Flag Valid 1.96 2.31 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 7.45 8.76 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.04 2.40 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 7.38 8.67 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.11 1.31 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.81 2.12 ns tMPWRSTB RESET_B Minimum Pulse Width 0.26 0.30 ns tCYC Clock Cycle Time 3.89 4.57 ns FMAX Maximum Frequency for FIFO 257 219 MHz Note: 2- 14 2 Description For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-211 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (256×16) Parameter Description –1 Std. Units tENS REN_B, WEN_B Setup Time 3.92 4.61 ns tENH REN_B, WEN_B Hold Time 0.00 0.00 ns tBKS BLK_B Setup Time 1.66 1.95 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.22 0.26 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.61 3.06 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.14 1.34 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.07 2.43 ns tWCKFF WCLK HIGH to Full Flag Valid 1.96 2.31 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 7.45 8.76 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.04 2.40 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 7.38 8.67 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.11 1.31 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.81 2.12 ns tMPWRSTB RESET_B Minimum Pulse Width 0.26 0.30 ns tCYC Clock Cycle Time 3.89 4.57 ns FMAX Maximum Frequency for FIFO 257 219 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 143 Military ProASIC3/EL DC and Switching Characteristics Table 2-212 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (512×8) Parameter –1 Std. Units tENS REN_B, WEN_B Setup Time 4.52 5.31 ns tENH REN_B, WEN_B Hold Time 0.00 0.00 ns tBKS BLK_B Setup Time 1.66 1.95 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.22 0.26 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.61 3.06 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.14 1.34 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.07 2.43 ns tWCKFF WCLK HIGH to Full Flag Valid 1.96 2.31 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 7.45 8.76 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.04 2.40 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 7.38 8.67 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.11 1.31 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.81 2.12 ns tMPWRSTB RESET_B Minimum Pulse Width 0.26 0.30 ns tCYC Clock Cycle Time 3.89 4.57 ns FMAX Maximum Frequency for FIFO 257 219 MHz Note: 2- 14 4 Description For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-213 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (1k×4) Parameter Description –1 Std. Units tENS REN_B, WEN_B Setup Time 4.88 5.73 ns tENH REN_B, WEN_B Hold Time 0.00 0.00 ns tBKS BLK_B Setup Time 1.66 1.95 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.22 0.26 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.84 3.33 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.08 1.27 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.07 2.43 ns tWCKFF WCLK HIGH to Full Flag Valid 1.96 2.31 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 7.45 8.76 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.04 2.40 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 7.38 8.67 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.11 1.31 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.81 2.12 ns tMPWRSTB RESET_B Minimum Pulse Width 0.26 0.30 ns tCYC Clock Cycle Time 3.89 4.57 ns FMAX Maximum Frequency for FIFO 257 219 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 145 Military ProASIC3/EL DC and Switching Characteristics Table 2-214 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (2k×2) Parameter –1 Std. Units tENS REN_B, WEN_B Setup Time 5.28 6.21 ns tENH REN_B, WEN_B Hold Time 0.00 0.00 ns tBKS BLK_B Setup Time 1.66 1.95 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.22 0.26 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.84 3.33 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.08 1.27 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.07 2.43 ns tWCKFF WCLK HIGH to Full Flag Valid 1.96 2.31 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 7.45 8.76 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.04 2.40 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 7.38 8.67 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.11 1.31 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.81 2.12 ns tMPWRSTB RESET_B Minimum Pulse Width 0.26 0.30 ns tCYC Clock Cycle Time 3.89 4.57 ns FMAX Maximum Frequency for FIFO 257 219 MHz Note: 2- 14 6 Description For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs Table 2-215 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (4k×1) Parameter Description –1 Std. Units tENS REN_B, WEN_B Setup Time 5.85 6.87 ns tENH REN_B, WEN_B Hold Time 0.00 0.00 ns tBKS BLK_B Setup Time 1.66 1.95 ns tBKH BLK_B Hold Time 0.00 0.00 ns tDS Input Data (DI) Setup Time 0.22 0.26 ns tDH Input Data (DI) Hold Time 0.00 0.00 ns tCKQ1 Clock HIGH to New Data Valid on DO (flow-through) 2.84 3.33 ns tCKQ2 Clock HIGH to New Data Valid on DO (pipelined) 1.08 1.27 ns tRCKEF RCLK HIGH to Empty Flag Valid 2.07 2.43 ns tWCKFF WCLK HIGH to Full Flag Valid 1.96 2.31 ns tCKAF Clock HIGH to Almost Empty/Full Flag Valid 7.45 8.76 ns tRSTFG RESET_B LOW to Empty/Full Flag Valid 2.04 2.40 ns tRSTAF RESET_B LOW to Almost Empty/Full Flag Valid 7.38 8.67 ns tRSTBQ RESET_B LOW to Data Out LOW on DO (flow-through) 1.11 1.31 ns RESET_B LOW to Data Out LOW on DO (pipelined) 1.11 1.31 ns tREMRSTB RESET_B Removal 0.34 0.40 ns tRECRSTB RESET_B Recovery 1.81 2.12 ns tMPWRSTB RESET_B Minimum Pulse Width 0.26 0.30 ns tCYC Clock Cycle Time 3.89 4.57 ns FMAX Maximum Frequency for FIFO 257 219 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. Revision 3 2- 147 Military ProASIC3/EL DC and Switching Characteristics Embedded FlashROM Characteristics tSU CLK tSU tHOLD Address tSU tHOLD A0 tHOLD A1 tCKQ2 tCKQ2 D0 Data tCKQ2 D0 D1 Figure 2-56 • Timing Diagram Timing Characteristics Table 2-216 • Embedded FlashROM Access Time Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tSU Address Setup Time 0.74 0.87 ns tHOLD Address Hold Time 0.00 0.00 ns tCK2Q Clock to Out 16.18 19.02 ns FMAX Maximum Clock Frequency 15 15 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-217 • Embedded FlashROM Access Time Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tSU Address Setup Time 0.58 0.68 ns tHOLD Address Hold Time 0.00 0.00 ns tCK2Q Clock to Out 12.77 15.01 ns FMAX Maximum Clock Frequency 15 15 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-218 • Embedded FlashROM Access Time Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000 Parameter –1 Std. Units tSU Address Setup Time 0.64 0.75 ns tHOLD Address Hold Time 0.00 0.00 ns tCK2Q Clock to Out 19.54 22.97 ns FMAX Maximum Clock Frequency 15 15 MHz Note: 2- 14 8 Description For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-8 for derating values. R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs JTAG 1532 Characteristics JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-20 for more details. Timing Characteristics Table 2-219 • JTAG 1532 Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L Parameter Description –1 Std. Units tDISU Test Data Input Setup Time 0.80 0.94 ns tDIHD Test Data Input Hold Time 1.60 1.88 ns tTMSSU Test Mode Select Setup Time 0.80 0.94 ns tTMDHD Test Mode Select Hold Time 1.60 1.88 ns tTCK2Q Clock to Q (data out) 6.39 7.52 ns tRSTB2Q Reset to Q (data out) 26.63 31.33 ns FTCKMAX TCK Maximum Frequency 18.70 15.90 MHz tTRSTREM ResetB Removal Time 0.48 0.56 ns tTRSTREC ResetB Recovery Time 0.00 0.00 ns tTRSTMPW ResetB Minimum Pulse TBD TBD ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Table 2-220 • JTAG 1532 Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for All Dies Parameter Description –1 Std. Units tDISU Test Data Input Setup Time 0.60 0.71 ns tDIHD Test Data Input Hold Time 1.21 1.42 ns tTMSSU Test Mode Select Setup Time 0.60 0.71 ns tTMDHD Test Mode Select Hold Time 1.21 1.42 ns tTCK2Q Clock to Q (data out) 6.04 7.10 ns tRSTB2Q Reset to Q (data out) 24.15 28.41 ns FTCKMAX TCK Maximum Frequency 22.00 19.00 MHz tTRSTREM ResetB Removal Time 0.00 0.00 ns tTRSTREC ResetB Recovery Time 0.24 0.28 ns tTRSTMPW ResetB Minimum Pulse TBD TBD ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-8 for derating values. Revision 3 2- 149 3 – Pin Descriptions and Packaging Supply Pins GND Ground Ground supply voltage to the core, I/O outputs, and I/O logic. GNDQ Ground (quiet) Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board. VCC Core Supply Voltage Supply voltage to the FPGA core, nominally 1.5 V for A3P250 and A3P100 devices and 1.2 V or 1.5 V for A3PE600L and A3PE3000L devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device. For A3PE600L and A3PE3000L devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V. VCCIBx I/O Supply Voltage Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND. VMVx I/O Supply Voltage (quiet) Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V (A3PE600L and A3PE3000L only), 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.). VCCPLA/B/C/D/E/F PLL Supply Voltage Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device. • 1.5 V for A3P250 and A3P1000 devices • 1.2 V or 1.5 V for A3PE600L or A3PE3000L devices When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the Miliary ProASIC3/EL Device Family User’s Guide for a complete board solution for the PLL analog power supply and ground. • There is one VCCPLF pin on A3P250 and A3P1000 devices. • There are six VCCPLX pins on A3PE600L and A3PE3000L devices. Revision 3 3 -1 Pin Descriptions and Packaging VCOMPLA/B/C/D/E/F PLL Ground Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. • There is one VCOMPLF pin on A3P250 and A3P1000 devices. • There are six VCOMPL pins (PLL ground) on A3PE600L and A3PE3000L devices. VJTAG JTAG Supply Voltage Military ProASIC3/EL devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. VPUMP Programming Supply Voltage A3P250 and A3P1000 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2. When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. User-Defined Supply Pins VREF I/O Voltage Reference Reference voltage for I/O minibanks in A3PE600L and A3PE3000L devices. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank. User Pins I/O User Input/Output The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration. Unused I/Os are configured as follows: 3-2 • Output buffer is disabled (with tristate value of high impedance) • Input buffer is disabled (with tristate value of high impedance) • Weak pull-up is programmed R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs GL Globals GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs " chapter of the Military ProASIC3/EL FPGA Fabric User’s Guide. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input. Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter (for A3P250 and A3P1000) or "I/O Structures in IGLOOe and ProASIC3E Devices" (for A3PE600L and A3PE3000L) of the Military ProASIC3/EL FPGA Fabric User’s Guide for an explanation of the naming of global pins. FF Flash*Freeze Mode Activation Pin Flash*Freeze is available on A3PE600L and A3PE3000L devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O. The FF pin can be configured as a Schmitt trigger input. When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted. The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered. Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required. Table 3-1 shows the Flash*Freeze pin location on the available packages for Military ProASIC3/EL devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the Military ProASIC3/EL FPGA Fabric User’s Guide for more information on I/O states during Flash*Freeze mode. Table 3-1 • Flash*Freeze Pin Location in Military ProASIC3/EL Packages (device-independent) Military ProASIC3/EL Packages Flash*Freeze Pin FG484 W6 FG896 AH4 Revision 3 3 -3 Pin Descriptions and Packaging JTAG Pins Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. TCK Test Clock Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state. Note that to operate at all VJTAG voltages, 500 to 1 k will satisfy the requirements. Refer to Table 3-2 for more information. Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins VJTAG Tie-Off Resistance VJTAG at 3.3 V 200 to 1 k VJTAG at 2.5 V 200 to 1 k VJTAG at 1.8 V 500 to 1 k VJTAG at 1.5 V 500 to 1 k Notes: 1. Equivalent parallel resistance if more than one device is on the JTAG chain 2. The TCK pin can be pulled up/down. 3. The TRST pin is pulled down. TDI Test Data Input Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin. TDO Test Data Output Serial output for JTAG boundary scan, ISP, and UJTAG usage. TMS Test Mode Select The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin. TRST Boundary Scan Reset Pin The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pulldown resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain. In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Note that to operate at all VJTAG voltages, 500 to 1 k will satisfy the requirements. 3-4 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs Special Function Pins NC No Connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. DC Do Not Connect This pin should not be connected to any signals on the PCB. These pins should be left unconnected. Packaging Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility. Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems. Related Documents User’s Guides Military ProASIC3/EL Device Family User’s Guide http://www.actel.com/documents/Mil_PA3_EL_UG.pdf Packaging The following documents provide packaging information and device selection for low power flash devices. Product Catalog http://www.actel.com/documents/ProdCat_PIB.pdf Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use. Package Mechanical Drawings http://www.actel.com/documents/PckgMechDrwngs.pdf This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings. Additional packaging materials are at http://www.actel.com/products/solutions/package/docs.aspx. Revision 3 3 -5 4 – Package Pin Assignments VQ100 100 1 Note: This is the top view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. Revision 3 4 -1 Package Pin Assignments VQ100* VQ100* VQ100* Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function 1 GND 37 VCC 73 GBA2/IO41PDB1 2 GAA2/IO118UDB3 38 GND 74 VMV1 3 IO118VDB3 39 VCCIB2 75 GNDQ 4 GAB2/IO117UDB3 40 IO77RSB2 76 GBA1/IO40RSB0 5 IO117VDB3 41 IO74RSB2 77 GBA0/IO39RSB0 6 GAC2/IO116UDB3 42 IO71RSB2 78 GBB1/IO38RSB0 7 IO116VDB3 43 GDC2/IO63RSB2 79 GBB0/IO37RSB0 8 IO112PSB3 44 GDB2/IO62RSB2 80 GBC1/IO36RSB0 9 GND 45 GDA2/IO61RSB2 81 GBC0/IO35RSB0 10 GFB1/IO109PDB3 46 GNDQ 82 IO29RSB0 11 GFB0/IO109NDB3 47 TCK 83 IO27RSB0 12 VCOMPLF 48 TDI 84 IO25RSB0 13 GFA0/IO108NPB3 49 TMS 85 IO23RSB0 14 VCCPLF 50 VMV2 86 IO21RSB0 15 GFA1/IO108PPB3 51 GND 87 VCCIB0 16 GFA2/IO107PSB3 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB3 54 TDO 90 IO15RSB0 19 GFC2/IO105PSB3 55 TRST 91 IO13RSB0 20 GEC1/IO100PDB3 56 VJTAG 92 IO11RSB0 21 GEC0/IO100NDB3 57 GDA1/IO60USB1 93 GAC1/IO05RSB0 22 GEA1/IO98PDB3 58 GDC0/IO58VDB1 94 GAC0/IO04RSB0 23 GEA0/IO98NDB3 59 GDC1/IO58UDB1 95 GAB1/IO03RSB0 24 VMV3 60 IO52NDB1 96 GAB0/IO02RSB0 25 GNDQ 61 GCB2/IO52PDB1 97 GAA1/IO01RSB0 26 GEA2/IO97RSB2 62 GCA1/IO50PDB1 98 GAA0/IO00RSB0 27 GEB2/IO96RSB2 63 GCA0/IO50NDB1 99 GNDQ 28 GEC2/IO95RSB2 64 GCC0/IO48NDB1 100 VMV0 29 IO93RSB2 65 GCC1/IO48PDB1 30 IO92RSB2 66 VCCIB1 31 IO91RSB2 67 GND 32 IO90RSB2 68 VCC 33 IO88RSB2 69 IO43NDB1 34 IO86RSB2 70 GBC2/IO43PDB1 35 IO85RSB2 71 GBB2/IO42PSB1 36 IO84RSB2 72 IO41NDB1 4-2 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs PQ208 1 208 208-Pin PQFP Note: This is the top view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. Revision 3 4 -3 Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function 1 GND 37 IO199PDB3 73 IO162RSB2 2 GAA2/IO225PDB3 38 IO199NDB3 74 IO160RSB2 3 IO225NDB3 39 IO197PSB3 75 IO158RSB2 4 GAB2/IO224PDB3 40 VCCIB3 76 IO156RSB2 5 IO224NDB3 41 GND 77 IO154RSB2 6 GAC2/IO223PDB3 42 IO191PDB3 78 IO152RSB2 7 IO223NDB3 43 IO191NDB3 79 IO150RSB2 8 IO222PDB3 44 GEC1/IO190PDB3 80 IO148RSB2 9 IO222NDB3 45 GEC0/IO190NDB3 81 GND 10 IO220PDB3 46 GEB1/IO189PDB3 82 IO143RSB2 11 IO220NDB3 47 GEB0/IO189NDB3 83 IO141RSB2 12 IO218PDB3 48 GEA1/IO188PDB3 84 IO139RSB2 13 IO218NDB3 49 GEA0/IO188NDB3 85 IO137RSB2 14 IO216PDB3 50 VMV3 86 IO135RSB2 15 IO216NDB3 51 GNDQ 87 IO133RSB2 16 VCC 52 GND 88 VCC 17 GND 53 VMV2 89 VCCIB2 18 VCCIB3 54 GEA2/IO187RSB2 90 IO128RSB2 19 IO212PDB3 55 GEB2/IO186RSB2 91 IO126RSB2 20 IO212NDB3 56 GEC2/IO185RSB2 92 IO124RSB2 21 GFC1/IO209PDB3 57 IO184RSB2 93 IO122RSB2 22 GFC0/IO209NDB3 58 IO183RSB2 94 IO120RSB2 23 GFB1/IO208PDB3 59 IO182RSB2 95 IO118RSB2 24 GFB0/IO208NDB3 60 IO181RSB2 96 GDC2/IO116RSB2 25 VCOMPLF 61 IO180RSB2 97 GND 26 GFA0/IO207NPB3 62 VCCIB2 98 GDB2/IO115RSB2 27 VCCPLF 63 IO178RSB2 99 GDA2/IO114RSB2 28 GFA1/IO207PPB3 64 IO176RSB2 100 GNDQ 29 GND 65 GND 101 TCK 30 GFA2/IO206PDB3 66 IO174RSB2 102 TDI 31 IO206NDB3 67 IO172RSB2 103 TMS 32 GFB2/IO205PDB3 68 IO170RSB2 104 VMV2 33 IO205NDB3 69 IO168RSB2 105 GND 34 GFC2/IO204PDB3 70 IO166RSB2 106 VPUMP 35 IO204NDB3 71 VCC 107 GNDQ 36 VCC 72 VCCIB2 108 TDO 4-4 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs PQ208 PQ208 PQ208 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function 109 TRST 145 IO84PDB1 181 IO33RSB0 110 VJTAG 146 IO82NDB1 182 IO31RSB0 111 GDA0/IO113NDB1 147 IO82PDB1 183 IO29RSB0 112 GDA1/IO113PDB1 148 IO80NDB1 184 IO27RSB0 113 GDB0/IO112NDB1 149 GBC2/IO80PDB1 185 IO25RSB0 114 GDB1/IO112PDB1 150 IO79NDB1 186 VCCIB0 115 GDC0/IO111NDB1 151 GBB2/IO79PDB1 187 VCC 116 GDC1/IO111PDB1 152 IO78NDB1 188 IO22RSB0 117 IO109NDB1 153 GBA2/IO78PDB1 189 IO20RSB0 118 IO109PDB1 154 VMV1 190 IO18RSB0 119 IO106NDB1 155 GNDQ 191 IO16RSB0 120 IO106PDB1 156 GND 192 IO15RSB0 121 IO104PSB1 157 VMV0 193 IO14RSB0 122 GND 158 GBA1/IO77RSB0 194 IO13RSB0 123 VCCIB1 159 GBA0/IO76RSB0 195 GND 124 IO99NDB1 160 GBB1/IO75RSB0 196 IO12RSB0 125 IO99PDB1 161 GBB0/IO74RSB0 197 IO11RSB0 126 NC 162 GND 198 IO10RSB0 127 IO96NDB1 163 GBC1/IO73RSB0 199 IO09RSB0 128 GCC2/IO96PDB1 164 GBC0/IO72RSB0 200 VCCIB0 129 GCB2/IO95PSB1 165 IO70RSB0 201 GAC1/IO05RSB0 130 GND 166 IO67RSB0 202 GAC0/IO04RSB0 131 GCA2/IO94PSB1 167 IO63RSB0 203 GAB1/IO03RSB0 132 GCA1/IO93PDB1 168 IO60RSB0 204 GAB0/IO02RSB0 133 GCA0/IO93NDB1 169 IO57RSB0 205 GAA1/IO01RSB0 134 GCB0/IO92NDB1 170 VCCIB0 206 GAA0/IO00RSB0 135 GCB1/IO92PDB1 171 VCC 207 GNDQ 136 GCC0/IO91NDB1 172 IO54RSB0 208 VMV0 137 GCC1/IO91PDB1 173 IO51RSB0 138 IO88NDB1 174 IO48RSB0 139 IO88PDB1 175 IO45RSB0 140 VCCIB1 176 IO42RSB0 141 GND 177 IO40RSB0 142 VCC 178 GND 143 IO86PSB1 179 IO38RSB0 144 IO84NDB1 180 IO35RSB0 Revision 3 4 -5 Package Pin Assignments FG144 A1 Ball Pad Corner 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. 4-6 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs FG144 FG144 FG144 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GNDQ D1 IO213PDB3 G1 GFA1/IO207PPB3 A2 VMV0 D2 IO213NDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO223NDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO225PPB3 G4 GFA0/IO207NPB3 A5 IO10RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO44RSB0 D7 GBC0/IO72RSB0 G7 GND A8 VCC D8 GBC1/IO73RSB0 G8 GDC1/IO111PPB1 A9 IO69RSB0 D9 GBB2/IO79PDB1 G9 IO96NDB1 A10 GBA0/IO76RSB0 D10 IO79NDB1 G10 GCC2/IO96PDB1 A11 GBA1/IO77RSB0 D11 IO80NPB1 G11 IO95NDB1 A12 GNDQ D12 GCB1/IO92PPB1 G12 GCB2/IO95PDB1 B1 GAB2/IO224PDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO209NDB3 H2 GFB2/IO205PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO209PDB3 H3 GFC2/IO204PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO190PDB3 B5 IO13RSB0 E5 IO225NPB3 H5 VCC B6 IO26RSB0 E6 VCCIB0 H6 IO105PDB1 B7 IO35RSB0 E7 VCCIB0 H7 IO105NDB1 B8 IO60RSB0 E8 GCC1/IO91PDB1 H8 GDB2/IO115RSB2 B9 GBB0/IO74RSB0 E9 VCCIB1 H9 GDC0/IO111NPB1 B10 GBB1/IO75RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO93NDB1 H11 IO101PSB1 B12 VMV1 E12 IO94NDB1 H12 VCC C1 IO224NDB3 F1 GFB0/IO208NPB3 J1 GEB1/IO189PDB3 C2 GFA2/IO206PPB3 F2 VCOMPLF J2 IO205NDB3 C3 GAC2/IO223PDB3 F3 GFB1/IO208PPB3 J3 VCCIB3 C4 VCC F4 IO206NPB3 J4 GEC0/IO190NDB3 C5 IO16RSB0 F5 GND J5 IO160RSB2 C6 IO29RSB0 F6 GND J6 IO157RSB2 C7 IO32RSB0 F7 GND J7 VCC C8 IO63RSB0 F8 GCC0/IO91NDB1 J8 TCK C9 IO66RSB0 F9 GCB0/IO92NPB1 J9 GDA2/IO114RSB2 C10 GBA2/IO78PDB1 F10 GND J10 TDO C11 IO78NDB1 F11 GCA1/IO93PDB1 J11 GDA1/IO113PDB1 C12 GBC2/IO80PPB1 F12 GCA2/IO94PDB1 J12 GDB1/IO112PDB1 Revision 3 4 -7 Package Pin Assignments FG144 Pin Number A3P1000 Function K1 GEB0/IO189NDB3 K2 GEA1/IO188PDB3 K3 GEA0/IO188NDB3 K4 GEA2/IO187RSB2 K5 IO169RSB2 K6 IO152RSB2 K7 GND K8 IO117RSB2 K9 GDC2/IO116RSB2 K10 GND K11 GDA0/IO113NDB1 K12 GDB0/IO112NDB1 L1 GND L2 VMV3 L3 GEB2/IO186RSB2 L4 IO172RSB2 L5 VCCIB2 L6 IO153RSB2 L7 IO144RSB2 L8 IO140RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO185RSB2 M3 IO173RSB2 M4 IO168RSB2 M5 IO161RSB2 M6 IO156RSB2 M7 IO145RSB2 M8 IO141RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ 4-8 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 A1 Ball Pad Corner 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. Revision 3 4 -9 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE600L Function Pin Number A3PE600L Function Pin Number A3PE600L Function A1 GND B14 NC D5 GAA0/IO00NDB0V0 A2 GND B15 NC D6 GAA1/IO00PDB0V0 A3 VCCIB0 B16 IO30NDB1V1 D7 GAB0/IO01NDB0V0 A4 IO06NDB0V1 B17 IO30PDB1V1 D8 IO05PDB0V0 A5 IO06PDB0V1 B18 IO32PDB1V1 D9 IO10PDB0V1 A6 IO08NDB0V1 B19 NC D10 IO12PDB0V2 A7 IO08PDB0V1 B20 NC D11 IO16NDB0V2 A8 IO11PDB0V1 B21 VCCIB2 D12 IO23NDB1V0 A9 IO17PDB0V2 B22 GND D13 IO23PDB1V0 A10 IO18NDB0V2 C1 VCCIB7 D14 IO28NDB1V1 A11 IO18PDB0V2 C2 NC D15 IO28PDB1V1 A12 IO22PDB1V0 C3 NC D16 GBB1/IO34PDB1V1 A13 IO26PDB1V0 C4 NC D17 GBA0/IO35NDB1V1 A14 IO29NDB1V1 C5 GND D18 GBA1/IO35PDB1V1 A15 IO29PDB1V1 C6 IO04NDB0V0 D19 GND A16 IO31NDB1V1 C7 IO04PDB0V0 D20 NC A17 IO31PDB1V1 C8 VCC D21 NC A18 IO32NDB1V1 C9 VCC D22 NC A19 NC C10 IO14NDB0V2 E1 NC A20 VCCIB1 C11 IO19NDB0V2 E2 NC A21 GND C12 NC E3 GND A22 GND C13 NC E4 GAB2/IO133PDB7V1 B1 GND C14 VCC E5 GAA2/IO134PDB7V1 B2 VCCIB7 C15 VCC E6 GNDQ B3 NC C16 NC E7 GAB1/IO01PDB0V0 B4 IO03NDB0V0 C17 NC E8 IO05NDB0V0 B5 IO03PDB0V0 C18 GND E9 IO10NDB0V1 B6 IO07NDB0V1 C19 NC E10 IO12NDB0V2 B7 IO07PDB0V1 C20 NC E11 IO16PDB0V2 B8 IO11NDB0V1 C21 NC E12 IO20NDB1V0 B9 IO17NDB0V2 C22 VCCIB2 E13 IO24NDB1V0 B10 IO14PDB0V2 D1 NC E14 IO24PDB1V0 B11 IO19PDB0V2 D2 NC E15 GBC1/IO33PDB1V1 B12 IO22NDB1V0 D3 NC E16 GBB0/IO34NDB1V1 B13 IO26NDB1V0 D4 GND E17 GNDQ 4- 10 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 FG484 FG484 Pin Number A3PE600L Function Pin Number A3PE600L Function Pin Number A3PE600L Function E18 GBA2/IO36PDB2V0 G9 IO09NDB0V1 H22 NC E19 IO42NDB2V0 G10 IO09PDB0V1 J1 IO123NDB7V0 E20 GND G11 IO13PDB0V2 J2 IO123PDB7V0 E21 NC G12 IO21PDB1V0 J3 NC E22 NC G13 IO25PDB1V0 J4 IO124PDB7V0 F1 NC G14 IO27NDB1V0 J5 IO125PDB7V0 F2 IO131NDB7V1 G15 GNDQ J6 IO126PDB7V0 F3 IO131PDB7V1 G16 VCOMPLB J7 IO130NDB7V1 F4 IO133NDB7V1 G17 GBB2/IO37PDB2V0 J8 VCCIB7 F5 IO134NDB7V1 G18 IO39PDB2V0 J9 GND F6 VMV7 G19 IO39NDB2V0 J10 VCC F7 VCCPLA G20 IO43PDB2V0 J11 VCC F8 GAC0/IO02NDB0V0 G21 IO43NDB2V0 J12 VCC F9 GAC1/IO02PDB0V0 G22 NC J13 VCC F10 IO15NDB0V2 H1 NC J14 GND F11 IO15PDB0V2 H2 NC J15 VCCIB2 F12 IO20PDB1V0 H3 VCC J16 IO38NDB2V0 F13 IO25NDB1V0 H4 IO128NDB7V1 J17 IO40NDB2V0 F14 IO27PDB1V0 H5 IO129NDB7V1 J18 IO40PDB2V0 F15 GBC0/IO33NDB1V1 H6 IO132NDB7V1 J19 IO45PDB2V1 F16 VCCPLB H7 IO130PDB7V1 J20 NC F17 VMV2 H8 VMV0 J21 IO48PDB2V1 F18 IO36NDB2V0 H9 VCCIB0 J22 IO46PDB2V1 F19 IO42PDB2V0 H10 VCCIB0 K1 IO121NDB7V0 F20 NC H11 IO13NDB0V2 K2 IO121PDB7V0 F21 NC H12 IO21NDB1V0 K3 NC F22 NC H13 VCCIB1 K4 IO124NDB7V0 G1 IO127NDB7V1 H14 VCCIB1 K5 IO125NDB7V0 G2 IO127PDB7V1 H15 VMV1 K6 IO126NDB7V0 G3 NC H16 GBC2/IO38PDB2V0 K7 GFC1/IO120PPB7V0 G4 IO128PDB7V1 H17 IO37NDB2V0 K8 VCCIB7 G5 IO129PDB7V1 H18 IO41NDB2V0 K9 VCC G6 GAC2/IO132PDB7V1 H19 IO41PDB2V0 K10 GND G7 VCOMPLA H20 VCC K11 GND G8 GNDQ H21 NC K12 GND Revision 3 4- 11 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE600L Function Pin Number A3PE600L Function Pin Number A3PE600L Function K13 GND M4 GFA2/IO117PDB6V1 N17 IO57NPB3V0 K14 VCC M5 GFA1/IO118PDB6V1 N18 IO55NPB3V0 K15 VCCIB2 M6 VCCPLF N19 IO57PPB3V0 K16 GCC1/IO50PPB2V1 M7 IO116NDB6V1 N20 NC K17 IO44NDB2V1 M8 GFB2/IO116PDB6V1 N21 IO56NDB3V0 K18 IO44PDB2V1 M9 VCC N22 IO58PDB3V0 K19 IO49NPB2V1 M10 GND P1 NC K20 IO45NDB2V1 M11 GND P2 IO111PDB6V1 K21 IO48NDB2V1 M12 GND P3 IO115NDB6V1 K22 IO46NDB2V1 M13 GND P4 IO113NPB6V1 L1 NC M14 VCC P5 IO109PPB6V0 L2 IO122PDB7V0 M15 GCB2/IO54PPB3V0 P6 IO108PDB6V0 L3 IO122NDB7V0 M16 GCA1/IO52PPB3V0 P7 IO108NDB6V0 L4 GFB0/IO119NPB7V0 M17 GCC2/IO55PPB3V0 P8 VCCIB6 L5 GFA0/IO118NDB6V1 M18 VCCPLC P9 GND L6 GFB1/IO119PPB7V0 M19 GCA2/IO53PDB3V0 P10 VCC L7 VCOMPLF M20 IO53NDB3V0 P11 VCC L8 GFC0/IO120NPB7V0 M21 IO56PDB3V0 P12 VCC L9 VCC M22 NC P13 VCC L10 GND N1 IO114PDB6V1 P14 GND L11 GND N2 IO111NDB6V1 P15 VCCIB3 L12 GND N3 NC P16 GDB0/IO66NPB3V1 L13 GND N4 GFC2/IO115PDB6V1 P17 IO60NDB3V1 L14 VCC N5 IO113PPB6V1 P18 IO60PDB3V1 L15 GCC0/IO50NPB2V1 N6 IO112PDB6V1 P19 IO61PDB3V1 L16 GCB1/IO51PPB2V1 N7 IO112NDB6V1 P20 NC L17 GCA0/IO52NPB3V0 N8 VCCIB6 P21 IO59PDB3V0 L18 VCOMPLC N9 VCC P22 IO58NDB3V0 L19 GCB0/IO51NPB2V1 N10 GND R1 NC L20 IO49PPB2V1 N11 GND R2 IO110PDB6V0 L21 IO47NDB2V1 N12 GND R3 VCC L22 IO47PDB2V1 N13 GND R4 IO109NPB6V0 M1 NC N14 VCC R5 IO106NDB6V0 M2 IO114NDB6V1 N15 VCCIB3 R6 IO106PDB6V0 M3 IO117NDB6V1 N16 IO54NPB3V0 R7 GEC0/IO104NPB6V0 4- 12 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 FG484 FG484 Pin Number A3PE600L Function Pin Number A3PE600L Function Pin Number A3PE600L Function R8 VMV5 T21 IO64PDB3V1 V12 IO83PDB5V0 R9 VCCIB5 T22 IO62NDB3V1 V13 IO77NDB4V1 R10 VCCIB5 U1 NC V14 IO77PDB4V1 R11 IO84NDB5V0 U2 IO107PDB6V0 V15 IO69NDB4V0 R12 IO84PDB5V0 U3 IO107NDB6V0 V16 GDB2/IO69PDB4V0 R13 VCCIB4 U4 GEB1/IO103PDB6V0 V17 TDI R14 VCCIB4 U5 GEB0/IO103NDB6V0 V18 GNDQ R15 VMV3 U6 VMV6 V19 TDO R16 VCCPLD U7 VCCPLE V20 GND R17 GDB1/IO66PPB3V1 U8 IO101NPB5V2 V21 NC R18 GDC1/IO65PDB3V1 U9 IO95PPB5V1 V22 IO63NDB3V1 R19 IO61NDB3V1 U10 IO92PDB5V1 W1 NC R20 VCC U11 IO90PDB5V1 W2 NC R21 IO59NDB3V0 U12 IO82PDB5V0 W3 NC R22 IO62PDB3V1 U13 IO76NDB4V1 W4 GND T1 NC U14 IO76PDB4V1 W5 IO100NDB5V2 T2 IO110NDB6V0 U15 VMV4 W6 FF/GEB2/IO100PDB5V2 T3 NC U16 TCK W7 IO99NDB5V2 T4 IO105PDB6V0 U17 VPUMP W8 IO88NDB5V0 T5 IO105NDB6V0 U18 TRST W9 IO88PDB5V0 T6 GEC1/IO104PPB6V0 U19 GDA0/IO67NDB3V1 W10 IO89NDB5V0 T7 VCOMPLE U20 NC W11 IO80NDB4V1 T8 GNDQ U21 IO64NDB3V1 W12 IO81NDB4V1 T9 GEA2/IO101PPB5V2 U22 IO63PDB3V1 W13 IO81PDB4V1 T10 IO92NDB5V1 V1 NC W14 IO70NDB4V0 T11 IO90NDB5V1 V2 NC W15 GDC2/IO70PDB4V0 T12 IO82NDB5V0 V3 GND W16 IO68NDB4V0 T13 IO74NDB4V1 V4 GEA1/IO102PDB6V0 W17 GDA2/IO68PDB4V0 T14 IO74PDB4V1 V5 GEA0/IO102NDB6V0 W18 TMS T15 GNDQ V6 GNDQ W19 GND T16 VCOMPLD V7 GEC2/IO99PDB5V2 W20 NC T17 VJTAG V8 IO95NPB5V1 W21 NC T18 GDC0/IO65NDB3V1 V9 IO91NDB5V1 W22 NC T19 GDA1/IO67PDB3V1 V10 IO91PDB5V1 Y1 VCCIB6 T20 NC V11 IO83NDB5V0 Y2 NC Revision 3 4- 13 Package Pin Assignments FG484 FG484 Pin Number A3PE600L Function Pin Number A3PE600L Function Y3 NC AA16 IO71NDB4V0 Y4 IO98NDB5V2 AA17 IO71PDB4V0 Y5 GND AA18 NC Y6 IO94NDB5V1 AA19 NC Y7 IO94PDB5V1 AA20 NC Y8 VCC AA21 VCCIB3 Y9 VCC AA22 GND Y10 IO89PDB5V0 AB1 GND Y11 IO80PDB4V1 AB2 GND Y12 IO78NPB4V1 AB3 VCCIB5 Y13 NC AB4 IO97NDB5V2 Y14 VCC AB5 IO97PDB5V2 Y15 VCC AB6 IO93NDB5V1 Y16 NC AB7 IO93PDB5V1 Y17 NC AB8 IO87NDB5V0 Y18 GND AB9 IO87PDB5V0 Y19 NC AB10 NC Y20 NC AB11 NC Y21 NC AB12 IO75NDB4V1 Y22 VCCIB3 AB13 IO75PDB4V1 AA1 GND AB14 IO72NDB4V0 AA2 VCCIB6 AB15 IO72PDB4V0 AA3 NC AB16 IO73NDB4V0 AA4 IO98PDB5V2 AB17 IO73PDB4V0 AA5 IO96NDB5V2 AB18 NC AA6 IO96PDB5V2 AB19 NC AA7 IO86NDB5V0 AB20 VCCIB4 AA8 IO86PDB5V0 AB21 GND AA9 IO85PDB5V0 AB22 GND AA10 IO85NDB5V0 AA11 IO78PPB4V1 AA12 IO79NDB4V1 AA13 IO79PDB4V1 AA14 NC AA15 NC 4- 14 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GND B14 IO58RSB0 D5 GAA0/IO00RSB0 A2 GND B15 IO63RSB0 D6 GAA1/IO01RSB0 A3 VCCIB0 B16 IO66RSB0 D7 GAB0/IO02RSB0 A4 IO07RSB0 B17 IO68RSB0 D8 IO16RSB0 A5 IO09RSB0 B18 IO70RSB0 D9 IO22RSB0 A6 IO13RSB0 B19 NC D10 IO28RSB0 A7 IO18RSB0 B20 NC D11 IO35RSB0 A8 IO20RSB0 B21 VCCIB1 D12 IO45RSB0 A9 IO26RSB0 B22 GND D13 IO50RSB0 A10 IO32RSB0 C1 VCCIB3 D14 IO55RSB0 A11 IO40RSB0 C2 IO220PDB3 D15 IO61RSB0 A12 IO41RSB0 C3 NC D16 GBB1/IO75RSB0 A13 IO53RSB0 C4 NC D17 GBA0/IO76RSB0 A14 IO59RSB0 C5 GND D18 GBA1/IO77RSB0 A15 IO64RSB0 C6 IO10RSB0 D19 GND A16 IO65RSB0 C7 IO14RSB0 D20 NC A17 IO67RSB0 C8 VCC D21 NC A18 IO69RSB0 C9 VCC D22 NC A19 NC C10 IO30RSB0 E1 IO219NDB3 A20 VCCIB0 C11 IO37RSB0 E2 NC A21 GND C12 IO43RSB0 E3 GND A22 GND C13 NC E4 GAB2/IO224PDB3 B1 GND C14 VCC E5 GAA2/IO225PDB3 B2 VCCIB3 C15 VCC E6 GNDQ B3 NC C16 NC E7 GAB1/IO03RSB0 B4 IO06RSB0 C17 NC E8 IO17RSB0 B5 IO08RSB0 C18 GND E9 IO21RSB0 B6 IO12RSB0 C19 NC E10 IO27RSB0 B7 IO15RSB0 C20 NC E11 IO34RSB0 B8 IO19RSB0 C21 NC E12 IO44RSB0 B9 IO24RSB0 C22 VCCIB1 E13 IO51RSB0 B10 IO31RSB0 D1 IO219PDB3 E14 IO57RSB0 B11 IO39RSB0 D2 IO220NDB3 E15 GBC1/IO73RSB0 B12 IO48RSB0 D3 NC E16 GBB0/IO74RSB0 B13 IO54RSB0 D4 GND E17 IO71RSB0 Revision 3 4- 15 Package Pin Assignments FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function E18 GBA2/IO78PDB1 G9 IO23RSB0 H22 NC E19 IO81PDB1 G10 IO29RSB0 J1 IO212NDB3 E20 GND G11 IO33RSB0 J2 IO212PDB3 E21 NC G12 IO46RSB0 J3 NC E22 IO84PDB1 G13 IO52RSB0 J4 IO217NDB3 F1 NC G14 IO60RSB0 J5 IO218NDB3 F2 IO215PDB3 G15 GNDQ J6 IO216PDB3 F3 IO215NDB3 G16 IO80NDB1 J7 IO216NDB3 F4 IO224NDB3 G17 GBB2/IO79PDB1 J8 VCCIB3 F5 IO225NDB3 G18 IO79NDB1 J9 GND F6 VMV3 G19 IO82NPB1 J10 VCC F7 IO11RSB0 G20 IO85PDB1 J11 VCC F8 GAC0/IO04RSB0 G21 IO85NDB1 J12 VCC F9 GAC1/IO05RSB0 G22 NC J13 VCC F10 IO25RSB0 H1 NC J14 GND F11 IO36RSB0 H2 NC J15 VCCIB1 F12 IO42RSB0 H3 VCC J16 IO83NPB1 F13 IO49RSB0 H4 IO217PDB3 J17 IO86NPB1 F14 IO56RSB0 H5 IO218PDB3 J18 IO90PPB1 F15 GBC0/IO72RSB0 H6 IO221NDB3 J19 IO87NDB1 F16 IO62RSB0 H7 IO221PDB3 J20 NC F17 VMV0 H8 VMV0 J21 IO89PDB1 F18 IO78NDB1 H9 VCCIB0 J22 IO89NDB1 F19 IO81NDB1 H10 VCCIB0 K1 IO211PDB3 F20 IO82PPB1 H11 IO38RSB0 K2 IO211NDB3 F21 NC H12 IO47RSB0 K3 NC F22 IO84NDB1 H13 VCCIB0 K4 IO210PPB3 G1 IO214NDB3 H14 VCCIB0 K5 IO213NDB3 G2 IO214PDB3 H15 VMV1 K6 IO213PDB3 G3 NC H16 GBC2/IO80PDB1 K7 GFC1/IO209PPB3 G4 IO222NDB3 H17 IO83PPB1 K8 VCCIB3 G5 IO222PDB3 H18 IO86PPB1 K9 VCC G6 GAC2/IO223PDB3 H19 IO87PDB1 K10 GND G7 IO223NDB3 H20 VCC K11 GND G8 GNDQ H21 NC K12 GND 4- 16 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function K13 GND M4 GFA2/IO206PDB3 N17 IO100NPB1 K14 VCC M5 GFA1/IO207PDB3 N18 IO102NDB1 K15 VCCIB1 M6 VCCPLF N19 IO102PDB1 K16 GCC1/IO91PPB1 M7 IO205NDB3 N20 NC K17 IO90NPB1 M8 GFB2/IO205PDB3 N21 IO101NPB1 K18 IO88PDB1 M9 VCC N22 IO103PDB1 K19 IO88NDB1 M10 GND P1 NC K20 IO94NPB1 M11 GND P2 IO199PDB3 K21 IO98NDB1 M12 GND P3 IO199NDB3 K22 IO98PDB1 M13 GND P4 IO202NDB3 L1 NC M14 VCC P5 IO202PDB3 L2 IO200PDB3 M15 GCB2/IO95PPB1 P6 IO196PPB3 L3 IO210NPB3 M16 GCA1/IO93PPB1 P7 IO193PPB3 L4 GFB0/IO208NPB3 M17 GCC2/IO96PPB1 P8 VCCIB3 L5 GFA0/IO207NDB3 M18 IO100PPB1 P9 GND L6 GFB1/IO208PPB3 M19 GCA2/IO94PPB1 P10 VCC L7 VCOMPLF M20 IO101PPB1 P11 VCC L8 GFC0/IO209NPB3 M21 IO99PPB1 P12 VCC L9 VCC M22 NC P13 VCC L10 GND N1 IO201NDB3 P14 GND L11 GND N2 IO201PDB3 P15 VCCIB1 L12 GND N3 NC P16 GDB0/IO112NPB1 L13 GND N4 GFC2/IO204PDB3 P17 IO106NDB1 L14 VCC N5 IO204NDB3 P18 IO106PDB1 L15 GCC0/IO91NPB1 N6 IO203NDB3 P19 IO107PDB1 L16 GCB1/IO92PPB1 N7 IO203PDB3 P20 NC L17 GCA0/IO93NPB1 N8 VCCIB3 P21 IO104PDB1 L18 IO96NPB1 N9 VCC P22 IO103NDB1 L19 GCB0/IO92NPB1 N10 GND R1 NC L20 IO97PDB1 N11 GND R2 IO197PPB3 L21 IO97NDB1 N12 GND R3 VCC L22 IO99NPB1 N13 GND R4 IO197NPB3 M1 NC N14 VCC R5 IO196NPB3 M2 IO200NDB3 N15 VCCIB1 R6 IO193NPB3 M3 IO206NDB3 N16 IO95NPB1 R7 GEC0/IO190NPB3 Revision 3 4- 17 Package Pin Assignments FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function R8 VMV3 T21 IO108PDB1 V12 IO143RSB2 R9 VCCIB2 T22 IO105NDB1 V13 IO138RSB2 R10 VCCIB2 U1 IO195PDB3 V14 IO131RSB2 R11 IO147RSB2 U2 IO195NDB3 V15 IO125RSB2 R12 IO136RSB2 U3 IO194NPB3 V16 GDB2/IO115RSB2 R13 VCCIB2 U4 GEB1/IO189PDB3 V17 TDI R14 VCCIB2 U5 GEB0/IO189NDB3 V18 GNDQ R15 VMV2 U6 VMV2 V19 TDO R16 IO110NDB1 U7 IO179RSB2 V20 GND R17 GDB1/IO112PPB1 U8 IO171RSB2 V21 NC R18 GDC1/IO111PDB1 U9 IO165RSB2 V22 IO109NDB1 R19 IO107NDB1 U10 IO159RSB2 W1 NC R20 VCC U11 IO151RSB2 W2 IO191PDB3 R21 IO104NDB1 U12 IO137RSB2 W3 NC R22 IO105PDB1 U13 IO134RSB2 W4 GND T1 IO198PDB3 U14 IO128RSB2 W5 IO183RSB2 T2 IO198NDB3 U15 VMV1 W6 GEB2/IO186RSB2 T3 NC U16 TCK W7 IO172RSB2 T4 IO194PPB3 U17 VPUMP W8 IO170RSB2 T5 IO192PPB3 U18 TRST W9 IO164RSB2 T6 GEC1/IO190PPB3 U19 GDA0/IO113NDB1 W10 IO158RSB2 T7 IO192NPB3 U20 NC W11 IO153RSB2 T8 GNDQ U21 IO108NDB1 W12 IO142RSB2 T9 GEA2/IO187RSB2 U22 IO109PDB1 W13 IO135RSB2 T10 IO161RSB2 V1 NC W14 IO130RSB2 T11 IO155RSB2 V2 NC W15 GDC2/IO116RSB2 T12 IO141RSB2 V3 GND W16 IO120RSB2 T13 IO129RSB2 V4 GEA1/IO188PDB3 W17 GDA2/IO114RSB2 T14 IO124RSB2 V5 GEA0/IO188NDB3 W18 TMS T15 GNDQ V6 IO184RSB2 W19 GND T16 IO110PDB1 V7 GEC2/IO185RSB2 W20 NC T17 VJTAG V8 IO168RSB2 W21 NC T18 GDC0/IO111NDB1 V9 IO163RSB2 W22 NC T19 GDA1/IO113PDB1 V10 IO157RSB2 Y1 VCCIB3 T20 NC V11 IO149RSB2 Y2 IO191NDB3 4- 18 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Y3 NC AA16 IO122RSB2 Y4 IO182RSB2 AA17 IO119RSB2 Y5 GND AA18 IO117RSB2 Y6 IO177RSB2 AA19 NC Y7 IO174RSB2 AA20 NC Y8 VCC AA21 VCCIB1 Y9 VCC AA22 GND Y10 IO154RSB2 AB1 GND Y11 IO148RSB2 AB2 GND Y12 IO140RSB2 AB3 VCCIB2 Y13 NC AB4 IO180RSB2 Y14 VCC AB5 IO176RSB2 Y15 VCC AB6 IO173RSB2 Y16 NC AB7 IO167RSB2 Y17 NC AB8 IO162RSB2 Y18 GND AB9 IO156RSB2 Y19 NC AB10 IO150RSB2 Y20 NC AB11 IO145RSB2 Y21 NC AB12 IO144RSB2 Y22 VCCIB1 AB13 IO132RSB2 AA1 GND AB14 IO127RSB2 AA2 VCCIB3 AB15 IO126RSB2 AA3 NC AB16 IO123RSB2 AA4 IO181RSB2 AB17 IO121RSB2 AA5 IO178RSB2 AB18 IO118RSB2 AA6 IO175RSB2 AB19 NC AA7 IO169RSB2 AB20 VCCIB2 AA8 IO166RSB2 AB21 GND AA9 IO160RSB2 AB22 GND AA10 IO152RSB2 AA11 IO146RSB2 AA12 IO139RSB2 AA13 IO133RSB2 AA14 NC AA15 NC Revision 3 4- 19 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function A1 GND AA14 IO170NDB4V2 B5 IO08PDB0V0 A2 GND AA15 IO170PDB4V2 B6 IO14NDB0V1 A3 VCCIB0 AA16 IO166NDB4V1 B7 IO14PDB0V1 A4 IO10NDB0V1 AA17 IO166PDB4V1 B8 IO18NDB0V2 A5 IO10PDB0V1 AA18 IO160NDB4V0 B9 IO24NDB0V2 A6 IO16NDB0V1 AA19 IO160PDB4V0 B10 IO34PDB0V4 A7 IO16PDB0V1 AA20 IO158NPB4V0 B11 IO40PDB0V4 A8 IO18PDB0V2 AA21 VCCIB3 B12 IO46NDB1V0 A9 IO24PDB0V2 AA22 GND B13 IO54NDB1V1 A10 IO28NDB0V3 AB1 GND B14 IO62NDB1V2 A11 IO28PDB0V3 AB2 GND B15 IO62PDB1V2 A12 IO46PDB1V0 AB3 VCCIB5 B16 IO68NDB1V3 A13 IO54PDB1V1 AB4 IO216NDB5V2 B17 IO68PDB1V3 A14 IO56NDB1V1 AB5 IO216PDB5V2 B18 IO72PDB1V3 A15 IO56PDB1V1 AB6 IO210NDB5V2 B19 IO74PDB1V4 A16 IO64NDB1V2 AB7 IO210PDB5V2 B20 IO76NPB1V4 A17 IO64PDB1V2 AB8 IO208NDB5V1 B21 VCCIB2 A18 IO72NDB1V3 AB9 IO208PDB5V1 B22 GND A19 IO74NDB1V4 AB10 IO197NDB5V0 C1 VCCIB7 A20 VCCIB1 AB11 IO197PDB5V0 C2 IO303PDB7V3 A21 GND AB12 IO174NDB4V2 C3 IO305PDB7V3 A22 GND AB13 IO174PDB4V2 C4 IO06NPB0V0 AA1 GND AB14 IO172NDB4V2 C5 GND AA2 VCCIB6 AB15 IO172PDB4V2 C6 IO12NDB0V1 AA3 IO228PDB5V4 AB16 IO168NDB4V1 C7 IO12PDB0V1 AA4 IO224PDB5V3 AB17 IO168PDB4V1 C8 VCC AA5 IO218NDB5V3 AB18 IO162NDB4V1 C9 VCC AA6 IO218PDB5V3 AB19 IO162PDB4V1 C10 IO34NDB0V4 AA7 IO212NDB5V2 AB20 VCCIB4 C11 IO40NDB0V4 AA8 IO212PDB5V2 AB21 GND C12 IO48NDB1V0 AA9 IO198PDB5V0 AB22 GND C13 IO48PDB1V0 AA10 IO198NDB5V0 B1 GND C14 VCC AA11 IO188PPB4V4 B2 VCCIB7 C15 VCC AA12 IO180NDB4V3 B3 IO06PPB0V0 C16 IO70NDB1V3 AA13 IO180PDB4V3 B4 IO08NDB0V0 C17 IO70PDB1V3 4- 20 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 FG484 FG484 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function C18 GND E9 IO22NDB0V2 F22 IO98NDB2V2 C19 IO76PPB1V4 E10 IO30NDB0V3 G1 IO289NDB7V1 C20 IO88NDB2V0 E11 IO38PDB0V4 G2 IO289PDB7V1 C21 IO94PPB2V1 E12 IO44NDB1V0 G3 IO291PPB7V2 C22 VCCIB2 E13 IO58NDB1V2 G4 IO295PDB7V2 D1 IO293PDB7V2 E14 IO58PDB1V2 G5 IO297PDB7V2 D2 IO303NDB7V3 E15 GBC1/IO79PDB1V4 G6 GAC2/IO307PDB7V4 D3 IO305NDB7V3 E16 GBB0/IO80NDB1V4 G7 VCOMPLA D4 GND E17 GNDQ G8 GNDQ D5 GAA0/IO00NDB0V0 E18 GBA2/IO82PDB2V0 G9 IO26NDB0V3 D6 GAA1/IO00PDB0V0 E19 IO86NDB2V0 G10 IO26PDB0V3 D7 GAB0/IO01NDB0V0 E20 GND G11 IO36PDB0V4 D8 IO20PDB0V2 E21 IO90NDB2V1 G12 IO42PDB1V0 D9 IO22PDB0V2 E22 IO98PDB2V2 G13 IO50PDB1V1 D10 IO30PDB0V3 F1 IO299NPB7V3 G14 IO60NDB1V2 D11 IO38NDB0V4 F2 IO301NDB7V3 G15 GNDQ D12 IO52NDB1V1 F3 IO301PDB7V3 G16 VCOMPLB D13 IO52PDB1V1 F4 IO308NDB7V4 G17 GBB2/IO83PDB2V0 D14 IO66NDB1V3 F5 IO309NDB7V4 G18 IO92PDB2V1 D15 IO66PDB1V3 F6 VMV7 G19 IO92NDB2V1 D16 GBB1/IO80PDB1V4 F7 VCCPLA G20 IO102PDB2V2 D17 GBA0/IO81NDB1V4 F8 GAC0/IO02NDB0V0 G21 IO102NDB2V2 D18 GBA1/IO81PDB1V4 F9 GAC1/IO02PDB0V0 G22 IO105NDB2V2 D19 GND F10 IO32NDB0V3 H1 IO286PSB7V1 D20 IO88PDB2V0 F11 IO32PDB0V3 H2 IO291NPB7V2 D21 IO90PDB2V1 F12 IO44PDB1V0 H3 VCC D22 IO94NPB2V1 F13 IO50NDB1V1 H4 IO295NDB7V2 E1 IO293NDB7V2 F14 IO60PDB1V2 H5 IO297NDB7V2 E2 IO299PPB7V3 F15 GBC0/IO79NDB1V4 H6 IO307NDB7V4 E3 GND F16 VCCPLB H7 IO287PDB7V1 E4 GAB2/IO308PDB7V4 F17 VMV2 H8 VMV0 E5 GAA2/IO309PDB7V4 F18 IO82NDB2V0 H9 VCCIB0 E6 GNDQ F19 IO86PDB2V0 H10 VCCIB0 E7 GAB1/IO01PDB0V0 F20 IO96PDB2V1 H11 IO36NDB0V4 E8 IO20NDB0V2 F21 IO96NDB2V1 H12 IO42NDB1V0 Revision 3 4- 21 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function H13 VCCIB1 K4 IO279NDB7V0 L17 GCA0/IO114NPB3V0 H14 VCCIB1 K5 IO283NDB7V1 L18 VCOMPLC H15 VMV1 K6 IO281NDB7V0 L19 GCB0/IO113NPB2V3 H16 GBC2/IO84PDB2V0 K7 GFC1/IO275PPB7V0 L20 IO110PPB2V3 H17 IO83NDB2V0 K8 VCCIB7 L21 IO111NDB2V3 H18 IO100NDB2V2 K9 VCC L22 IO111PDB2V3 H19 IO100PDB2V2 K10 GND M1 GNDQ H20 VCC K11 GND M2 IO255NPB6V2 H21 VMV2 K12 GND M3 IO272NDB6V4 H22 IO105PDB2V2 K13 GND M4 GFA2/IO272PDB6V4 J1 IO285NDB7V1 K14 VCC M5 GFA1/IO273PDB6V4 J2 IO285PDB7V1 K15 VCCIB2 M6 VCCPLF J3 VMV7 K16 GCC1/IO112PPB2V3 M7 IO271NDB6V4 J4 IO279PDB7V0 K17 IO108NDB2V3 M8 GFB2/IO271PDB6V4 J5 IO283PDB7V1 K18 IO108PDB2V3 M9 VCC J6 IO281PDB7V0 K19 IO110NPB2V3 M10 GND J7 IO287NDB7V1 K20 IO106NPB2V3 M11 GND J8 VCCIB7 K21 IO109NDB2V3 M12 GND J9 GND K22 IO107NDB2V3 M13 GND J10 VCC L1 IO257PSB6V2 M14 VCC J11 VCC L2 IO276PDB7V0 M15 GCB2/IO116PPB3V0 J12 VCC L3 IO276NDB7V0 M16 GCA1/IO114PPB3V0 J13 VCC L4 GFB0/IO274NPB7V0 M17 GCC2/IO117PPB3V0 J14 GND L5 GFA0/IO273NDB6V4 M18 VCCPLC J15 VCCIB2 L6 GFB1/IO274PPB7V0 M19 GCA2/IO115PDB3V0 J16 IO84NDB2V0 L7 VCOMPLF M20 IO115NDB3V0 J17 IO104NDB2V2 L8 GFC0/IO275NPB7V0 M21 IO126PDB3V1 J18 IO104PDB2V2 L9 VCC M22 IO124PSB3V1 J19 IO106PPB2V3 L10 GND N1 IO255PPB6V2 J20 GNDQ L11 GND N2 IO253NDB6V2 J21 IO109PDB2V3 L12 GND N3 VMV6 J22 IO107PDB2V3 L13 GND N4 GFC2/IO270PPB6V4 K1 IO277NDB7V0 L14 VCC N5 IO261PPB6V3 K2 IO277PDB7V0 L15 GCC0/IO112NPB2V3 N6 IO263PDB6V3 K3 GNDQ L16 GCB1/IO113PPB2V3 N7 IO263NDB6V3 4- 22 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG484 FG484 FG484 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function N8 VCCIB6 P21 IO130PDB3V2 T12 IO194NDB5V0 N9 VCC P22 IO128NDB3V1 T13 IO186NDB4V4 N10 GND R1 IO247NDB6V1 T14 IO186PDB4V4 N11 GND R2 IO245PDB6V1 T15 GNDQ N12 GND R3 VCC T16 VCOMPLD N13 GND R4 IO249NPB6V1 T17 VJTAG N14 VCC R5 IO251NDB6V2 T18 GDC0/IO151NDB3V4 N15 VCCIB3 R6 IO251PDB6V2 T19 GDA1/IO153PDB3V4 N16 IO116NPB3V0 R7 GEC0/IO236NPB6V0 T20 IO144PDB3V3 N17 IO132NPB3V2 R8 VMV5 T21 IO140PDB3V3 N18 IO117NPB3V0 R9 VCCIB5 T22 IO134NDB3V2 N19 IO132PPB3V2 R10 VCCIB5 U1 IO240PPB6V0 N20 GNDQ R11 IO196NDB5V0 U2 IO238PDB6V0 N21 IO126NDB3V1 R12 IO196PDB5V0 U3 IO238NDB6V0 N22 IO128PDB3V1 R13 VCCIB4 U4 GEB1/IO235PDB6V0 P1 IO247PDB6V1 R14 VCCIB4 U5 GEB0/IO235NDB6V0 P2 IO253PDB6V2 R15 VMV3 U6 VMV6 P3 IO270NPB6V4 R16 VCCPLD U7 VCCPLE P4 IO261NPB6V3 R17 GDB1/IO152PPB3V4 U8 IO233NPB5V4 P5 IO249PPB6V1 R18 GDC1/IO151PDB3V4 U9 IO222PPB5V3 P6 IO259PDB6V3 R19 IO138NDB3V3 U10 IO206PDB5V1 P7 IO259NDB6V3 R20 VCC U11 IO202PDB5V1 P8 VCCIB6 R21 IO130NDB3V2 U12 IO194PDB5V0 P9 GND R22 IO134PDB3V2 U13 IO176NDB4V2 P10 VCC T1 IO243PPB6V1 U14 IO176PDB4V2 P11 VCC T2 IO245NDB6V1 U15 VMV4 P12 VCC T3 IO243NPB6V1 U16 TCK P13 VCC T4 IO241PDB6V0 U17 VPUMP P14 GND T5 IO241NDB6V0 U18 TRST P15 VCCIB3 T6 GEC1/IO236PPB6V0 U19 GDA0/IO153NDB3V4 P16 GDB0/IO152NPB3V4 T7 VCOMPLE U20 IO144NDB3V3 P17 IO136NDB3V2 T8 GNDQ U21 IO140NDB3V3 P18 IO136PDB3V2 T9 GEA2/IO233PPB5V4 U22 IO142PDB3V3 P19 IO138PDB3V3 T10 IO206NDB5V1 V1 IO239PDB6V0 P20 VMV3 T11 IO202NDB5V1 V2 IO240NPB6V0 Revision 3 4- 23 Package Pin Assignments FG484 FG484 Pin Number A3PE3000L Function Pin Number A3PE3000L Function V3 GND W16 IO154NDB4V0 V4 GEA1/IO234PDB6V0 W17 GDA2/IO154PDB4V0 V5 GEA0/IO234NDB6V0 W18 TMS V6 GNDQ W19 GND V7 GEC2/IO231PDB5V4 W20 IO150NDB3V4 V8 IO222NPB5V3 W21 IO146NDB3V4 V9 IO204NDB5V1 W22 IO148PPB3V4 V10 IO204PDB5V1 Y1 VCCIB6 V11 IO195NDB5V0 Y2 IO237NDB6V0 V12 IO195PDB5V0 Y3 IO228NDB5V4 V13 IO178NDB4V3 Y4 IO224NDB5V3 V14 IO178PDB4V3 Y5 GND V15 IO155NDB4V0 Y6 IO220NDB5V3 V16 GDB2/IO155PDB4V0 Y7 IO220PDB5V3 V17 TDI Y8 VCC V18 GNDQ Y9 VCC V19 TDO Y10 IO200PDB5V0 V20 GND Y11 IO192PDB4V4 V21 IO146PDB3V4 Y12 IO188NPB4V4 V22 IO142NDB3V3 Y13 IO187PSB4V4 W1 IO239NDB6V0 Y14 VCC W2 IO237PDB6V0 Y15 VCC W3 IO230PSB5V4 Y16 IO164NDB4V1 W4 GND Y17 IO164PDB4V1 W5 IO232NDB5V4 Y18 GND W6 FF/GEB2/IO232PDB5V4 Y19 IO158PPB4V0 W7 IO231NDB5V4 Y20 IO150PDB3V4 W8 IO214NDB5V2 Y21 IO148NPB3V4 W9 IO214PDB5V2 Y22 VCCIB3 W10 IO200NDB5V0 W11 IO192NDB4V4 W12 IO184NDB4V3 W13 IO184PDB4V3 W14 IO156NDB4V0 W15 GDC2/IO156PDB4V0 4- 24 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG896 A1 Ball Pad Corner 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ AK Note: This is the bottom view. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/docs.aspx. Revision 3 4- 25 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function 4- 26 A2 GND AA9 GEB1/IO235PPB6V0 AB15 IO198PDB5V0 A3 GND AA10 VCC AB16 IO192NDB4V4 A4 IO14NPB0V1 AA11 IO226PPB5V4 AB17 IO192PDB4V4 A5 GND AA12 VCCIB5 AB18 IO178NDB4V3 A6 IO07NPB0V0 AA13 VCCIB5 AB19 IO178PDB4V3 A7 GND AA14 VCCIB5 AB20 IO174NDB4V2 A8 IO09NDB0V1 AA15 VCCIB5 AB21 IO162NPB4V1 A9 IO17NDB0V2 AA16 VCCIB4 AB22 VCC A10 IO17PDB0V2 AA17 VCCIB4 AB23 VCCPLD A11 IO21NDB0V2 AA18 VCCIB4 AB24 VCCIB3 A12 IO21PDB0V2 AA19 VCCIB4 AB25 IO150PDB3V4 A13 IO33NDB0V4 AA20 IO174PDB4V2 AB26 IO148PDB3V4 A14 IO33PDB0V4 AA21 VCC AB27 IO147NDB3V4 A15 IO35NDB0V4 AA22 IO142NPB3V3 AB28 IO145PDB3V3 A16 IO35PDB0V4 AA23 IO144NDB3V3 AB29 IO143PDB3V3 A17 IO41NDB1V0 AA24 IO144PDB3V3 AB30 IO137PDB3V2 A18 IO43NDB1V0 AA25 IO146NDB3V4 AC1 IO254PDB6V2 A19 IO43PDB1V0 AA26 IO146PDB3V4 AC2 IO254NDB6V2 A20 IO45NDB1V0 AA27 IO147PDB3V4 AC3 IO240PDB6V0 A21 IO45PDB1V0 AA28 IO139NDB3V3 AC4 GEC1/IO236PDB6V0 A22 IO57NDB1V2 AA29 IO139PDB3V3 AC5 IO237PDB6V0 A23 IO57PDB1V2 AA30 IO133NDB3V2 AC6 IO237NDB6V0 A24 GND AB1 IO256NDB6V2 AC7 VCOMPLE A25 IO69PPB1V3 AB2 IO244PDB6V1 AC8 GND A26 GND AB3 IO244NDB6V1 AC9 IO226NPB5V4 A27 GBC1/IO79PPB1V4 AB4 IO241PDB6V0 AC10 IO222NDB5V3 A28 GND AB5 IO241NDB6V0 AC11 IO216NPB5V2 A29 GND AB6 IO243NPB6V1 AC12 IO210NPB5V2 AA1 IO256PDB6V2 AB7 VCCIB6 AC13 IO204NDB5V1 AA2 IO248PDB6V1 AB8 VCCPLE AC14 IO204PDB5V1 AA3 IO248NDB6V1 AB9 VCC AC15 IO194NDB5V0 AA4 IO246NDB6V1 AB10 IO222PDB5V3 AC16 IO188NDB4V4 AA5 GEA1/IO234PDB6V0 AB11 IO218PPB5V3 AC17 IO188PDB4V4 AA6 GEA0/IO234NDB6V0 AB12 IO206NDB5V1 AC18 IO182PPB4V3 AA7 IO243PPB6V1 AB13 IO206PDB5V1 AC19 IO170NPB4V2 AA8 IO245NDB6V1 AB14 IO198NDB5V0 AC20 IO164NDB4V1 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function AC21 IO164PDB4V1 AD26 VCCIB3 AE30 IO149PDB3V4 AC22 IO162PPB4V1 AD27 GDA0/IO153NDB3V4 AF1 GND AC23 GND AD28 GDC0/IO151NDB3V4 AF2 IO238PPB6V0 AC24 VCOMPLD AD29 GDC1/IO151PDB3V4 AF3 VCCIB6 AC25 IO150NDB3V4 AD30 GND AF4 IO220NPB5V3 AC26 IO148NDB3V4 AE1 IO242PPB6V1 AF5 VCC AC27 GDA1/IO153PDB3V4 AE2 VCC AF6 IO228NDB5V4 AC28 IO145NDB3V3 AE3 IO239PDB6V0 AF7 VCCIB5 AC29 IO143NDB3V3 AE4 IO239NDB6V0 AF8 IO230PDB5V4 AC30 IO137NDB3V2 AE5 VMV6 AF9 IO229NDB5V4 AD1 GND AE5 VMV6 AF10 IO229PDB5V4 AD2 IO242NPB6V1 AE6 GND AF11 IO214PPB5V2 AD3 IO240NDB6V0 AE7 GNDQ AF12 IO208NDB5V1 AD4 GEC0/IO236NDB6V0 AE8 IO230NDB5V4 AF13 IO208PDB5V1 AD5 VCCIB6 AE9 IO224NPB5V3 AF14 IO200PDB5V0 AD6 GNDQ AE10 IO214NPB5V2 AF15 IO196NDB5V0 AD6 GNDQ AE11 IO212NDB5V2 AF16 IO186NDB4V4 AD7 VCC AE12 IO212PDB5V2 AF17 IO186PDB4V4 AD8 VMV5 AE13 IO202NPB5V1 AF18 IO180NDB4V3 AD9 VCCIB5 AE14 IO200NDB5V0 AF19 IO180PDB4V3 AD10 IO224PPB5V3 AE15 IO196PDB5V0 AF20 IO168NDB4V1 AD11 IO218NPB5V3 AE16 IO190NDB4V4 AF21 IO168PDB4V1 AD12 IO216PPB5V2 AE17 IO184PDB4V3 AF22 IO160NDB4V0 AD13 IO210PPB5V2 AE18 IO184NDB4V3 AF23 IO158NPB4V0 AD14 IO202PPB5V1 AE19 IO172PDB4V2 AF24 VCCIB4 AD15 IO194PDB5V0 AE20 IO172NDB4V2 AF25 IO154NPB4V0 AD16 IO190PDB4V4 AE21 IO166NDB4V1 AF26 VCC AD17 IO182NPB4V3 AE22 IO160PDB4V0 AF27 TDO AD18 IO176NDB4V2 AE23 GNDQ AF28 VCCIB3 AD19 IO176PDB4V2 AE24 VMV4 AF29 GNDQ AD20 IO170PPB4V2 AE25 GND AF29 GNDQ AD21 IO166PDB4V1 AE26 GDB0/IO152NDB3V4 AF30 GND AD22 VCCIB4 AE27 GDB1/IO152PDB3V4 AG1 IO238NPB6V0 AD23 TCK AE28 VMV3 AG2 VCC AD24 VCC AE28 VMV3 AG3 IO232NPB5V4 AD25 TRST AE29 VCC AG4 GND Revision 3 4- 27 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function 4- 28 AG5 IO220PPB5V3 AH10 IO225PPB5V3 AJ16 IO183NDB4V3 AG6 IO228PDB5V4 AH11 IO223PPB5V3 AJ17 IO183PDB4V3 AG7 IO231NDB5V4 AH12 IO211NDB5V2 AJ18 IO179NPB4V3 AG8 GEC2/IO231PDB5V4 AH13 IO211PDB5V2 AJ19 IO177PDB4V2 AG9 IO225NPB5V3 AH14 IO205PPB5V1 AJ20 IO173NDB4V2 AG10 IO223NPB5V3 AH15 IO195NDB5V0 AJ21 IO173PDB4V2 AG11 IO221PDB5V3 AH16 IO185NDB4V3 AJ22 IO163NDB4V1 AG12 IO221NDB5V3 AH17 IO185PDB4V3 AJ23 IO163PDB4V1 AG13 IO205NPB5V1 AH18 IO181PDB4V3 AJ24 IO167NPB4V1 AG14 IO199NDB5V0 AH19 IO177NDB4V2 AJ25 VCC AG15 IO199PDB5V0 AH20 IO171NPB4V2 AJ26 IO156NPB4V0 AG16 IO187NDB4V4 AH21 IO165PPB4V1 AJ27 VCC AG17 IO187PDB4V4 AH22 IO161PPB4V0 AJ28 TMS AG18 IO181NDB4V3 AH23 IO157NDB4V0 AJ29 GND AG19 IO171PPB4V2 AH24 IO157PDB4V0 AJ30 GND AG20 IO165NPB4V1 AH25 IO155NDB4V0 AK2 GND AG21 IO161NPB4V0 AH26 VCCIB4 AK3 GND AG22 IO159NDB4V0 AH27 TDI AK4 IO217PPB5V2 AG23 IO159PDB4V0 AH28 VCC AK5 GND AG24 IO158PPB4V0 AH29 VPUMP AK6 IO215PPB5V2 AG25 GDB2/IO155PDB4V0 AH30 GND AK7 GND AG26 GDA2/IO154PPB4V0 AJ1 GND AK8 IO207NDB5V1 AG27 GND AJ2 GND AK9 IO207PDB5V1 AG28 VJTAG AJ3 GEA2/IO233PPB5V4 AK10 IO201NDB5V0 AG29 VCC AJ4 VCC AK11 IO201PDB5V0 AG30 IO149NDB3V4 AJ5 IO217NPB5V2 AK12 IO193NDB4V4 AH1 GND AJ6 VCC AK13 IO193PDB4V4 AH2 IO233NPB5V4 AJ7 IO215NPB5V2 AK14 IO197PDB5V0 AH3 VCC AJ8 IO213NDB5V2 AK15 IO191NDB4V4 AH4 FF/GEB2/IO232PPB5 V4 AJ9 IO213PDB5V2 AK16 IO191PDB4V4 AJ10 IO209NDB5V1 AK17 IO189NDB4V4 AH5 VCCIB5 AJ11 IO209PDB5V1 AK18 IO189PDB4V4 AH6 IO219NDB5V3 AJ12 IO203NDB5V1 AK19 IO179PPB4V3 AH7 IO219PDB5V3 AJ13 IO203PDB5V1 AK20 IO175NDB4V2 AH8 IO227NDB5V4 AJ14 IO197NDB5V0 AK21 IO175PDB4V2 AH9 IO227PDB5V4 AJ15 IO195PDB5V0 AK22 IO169NDB4V1 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function AK23 IO169PDB4V1 B30 GND D6 GAC1/IO02PDB0V0 AK24 GND C1 GND D7 IO06NPB0V0 AK25 IO167PPB4V1 C2 IO309NPB7V4 D8 GAB0/IO01NDB0V0 AK26 GND C3 VCC D9 IO05NDB0V0 AK27 GDC2/IO156PPB4V0 C4 GAA0/IO00NPB0V0 D10 IO11NDB0V1 AK28 GND C5 VCCIB0 D11 IO11PDB0V1 AK29 GND C6 IO03PDB0V0 D12 IO23NDB0V2 B1 GND C7 IO03NDB0V0 D13 IO23PDB0V2 B2 GND C8 GAB1/IO01PDB0V0 D14 IO27PDB0V3 B3 GAA2/IO309PPB7V4 C9 IO05PDB0V0 D15 IO40PDB0V4 B4 VCC C10 IO15NPB0V1 D16 IO47NDB1V0 B5 IO14PPB0V1 C11 IO25NDB0V3 D17 IO47PDB1V0 B6 VCC C12 IO25PDB0V3 D18 IO55NPB1V1 B7 IO07PPB0V0 C13 IO31NPB0V3 D19 IO65NDB1V3 B8 IO09PDB0V1 C14 IO27NDB0V3 D20 IO65PDB1V3 B9 IO15PPB0V1 C15 IO39NDB0V4 D21 IO71NDB1V3 B10 IO19NDB0V2 C16 IO39PDB0V4 D22 IO71PDB1V3 B11 IO19PDB0V2 C17 IO55PPB1V1 D23 IO73NDB1V4 B12 IO29NDB0V3 C18 IO51PDB1V1 D24 IO73PDB1V4 B13 IO29PDB0V3 C19 IO59NDB1V2 D25 IO74NDB1V4 B14 IO31PPB0V3 C20 IO63NDB1V2 D26 GBB0/IO80NPB1V4 B15 IO37NDB0V4 C21 IO63PDB1V2 D27 GND B16 IO37PDB0V4 C22 IO67NDB1V3 D28 GBA0/IO81NPB1V4 B17 IO41PDB1V0 C23 IO67PDB1V3 D29 VCC B18 IO51NDB1V1 C24 IO75NDB1V4 D30 GBA2/IO82PPB2V0 B19 IO59PDB1V2 C25 IO75PDB1V4 E1 GND B20 IO53PDB1V1 C26 VCCIB1 E2 IO303NPB7V3 B21 IO53NDB1V1 C27 IO64PPB1V2 E3 VCCIB7 B22 IO61NDB1V2 C28 VCC E4 IO305PPB7V3 B23 IO61PDB1V2 C29 GBA1/IO81PPB1V4 E5 VCC B24 IO69NPB1V3 C30 GND E6 GAC0/IO02NDB0V0 B25 VCC D1 IO303PPB7V3 E7 VCCIB0 B26 GBC0/IO79NPB1V4 D2 VCC E8 IO06PPB0V0 B27 VCC D3 IO305NPB7V3 E9 IO24NDB0V2 B28 IO64NPB1V2 D4 GND E10 IO24PDB0V2 B29 GND D5 GAA1/IO00PPB0V0 E11 IO13NDB0V1 Revision 3 4- 29 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function 4- 30 E12 IO13PDB0V1 F17 IO48PDB1V0 G21 IO66PDB1V3 E13 IO34NDB0V4 F18 IO50NDB1V1 G22 VCCIB1 E14 IO34PDB0V4 F19 IO58NDB1V2 G23 VMV1 E15 IO40NDB0V4 F20 IO60PDB1V2 G24 VCC E16 IO49NDB1V1 F21 IO77NDB1V4 G25 GNDQ E17 IO49PDB1V1 F22 IO72NDB1V3 G25 GNDQ E18 IO50PDB1V1 F23 IO72PDB1V3 G26 VCCIB2 E19 IO58PDB1V2 F24 GNDQ G27 IO86NDB2V0 E20 IO60NDB1V2 F25 GND G28 IO92NDB2V1 E21 IO77PDB1V4 F26 VMV2 G29 IO100PPB2V2 E22 IO68NDB1V3 F26 VMV2 G30 GND E23 IO68PDB1V3 F27 IO86PDB2V0 H1 IO294PDB7V2 E24 VCCIB1 F28 IO92PDB2V1 H2 IO294NDB7V2 E25 IO74PDB1V4 F29 VCC H3 IO300NDB7V3 E26 VCC F30 IO100NPB2V2 H4 IO300PDB7V3 E27 GBB1/IO80PPB1V4 G1 GND H5 IO295PDB7V2 E28 VCCIB2 G2 IO296NPB7V2 H6 IO299PDB7V3 E29 IO82NPB2V0 G3 IO306NDB7V4 H7 VCOMPLA E30 GND G4 IO297NDB7V2 H8 GND F1 IO296PPB7V2 G5 VCCIB7 H9 IO08NDB0V0 F2 VCC G6 GNDQ H10 IO08PDB0V0 F3 IO306PDB7V4 G6 GNDQ H11 IO18PDB0V2 F4 IO297PDB7V2 G7 VCC H12 IO26NPB0V3 F5 VMV7 G8 VMV0 H13 IO28NDB0V3 F5 VMV7 G9 VCCIB0 H14 IO28PDB0V3 F6 GND G10 IO10NDB0V1 H15 IO38PPB0V4 F7 GNDQ G11 IO16NDB0V1 H16 IO42NDB1V0 F8 IO12NDB0V1 G12 IO22PDB0V2 H17 IO52NDB1V1 F9 IO12PDB0V1 G13 IO26PPB0V3 H18 IO52PDB1V1 F10 IO10PDB0V1 G14 IO38NPB0V4 H19 IO62NDB1V2 F11 IO16PDB0V1 G15 IO36NDB0V4 H20 IO62PDB1V2 F12 IO22NDB0V2 G16 IO46NDB1V0 H21 IO70NDB1V3 F13 IO30NDB0V3 G17 IO46PDB1V0 H22 IO70PDB1V3 F14 IO30PDB0V3 G18 IO56NDB1V1 H23 GND F15 IO36PDB0V4 G19 IO56PDB1V1 H24 VCOMPLB F16 IO48NDB1V0 G20 IO66NDB1V3 H25 GBC2/IO84PDB2V0 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function H26 IO84NDB2V0 K2 IO288PDB7V1 L8 IO293PDB7V2 H27 IO96PDB2V1 K3 IO304NDB7V3 L9 IO293NDB7V2 H28 IO96NDB2V1 K4 IO304PDB7V3 L10 IO307NPB7V4 H29 IO89PDB2V0 K5 GAB2/IO308PDB7V4 L11 VCC H30 IO89NDB2V0 K6 IO308NDB7V4 L12 VCC J1 IO290NDB7V2 K7 IO301PDB7V3 L13 VCC J2 IO290PDB7V2 K8 IO301NDB7V3 L14 VCC J3 IO302NDB7V3 K9 GAC2/IO307PPB7V4 L15 VCC J4 IO302PDB7V3 K10 VCC L16 VCC J5 IO295NDB7V2 K11 IO04PPB0V0 L17 VCC J6 IO299NDB7V3 K12 VCCIB0 L18 VCC J7 VCCIB7 K13 VCCIB0 L19 VCC J8 VCCPLA K14 VCCIB0 L20 VCC J9 VCC K15 VCCIB0 L21 IO78NPB1V4 J10 IO04NPB0V0 K16 VCCIB1 L22 IO104NPB2V2 J11 IO18NDB0V2 K17 VCCIB1 L23 IO98NDB2V2 J12 IO20NDB0V2 K18 VCCIB1 L24 IO98PDB2V2 J13 IO20PDB0V2 K19 VCCIB1 L25 IO87PDB2V0 J14 IO32NDB0V3 K20 IO76PPB1V4 L26 IO87NDB2V0 J15 IO32PDB0V3 K21 VCC L27 IO97PDB2V1 J16 IO42PDB1V0 K22 IO78PPB1V4 L28 IO101PDB2V2 J17 IO44NDB1V0 K23 IO88NDB2V0 L29 IO103PDB2V2 J18 IO44PDB1V0 K24 IO88PDB2V0 L30 IO119NDB3V0 J19 IO54NDB1V1 K25 IO94PDB2V1 M1 IO282NDB7V1 J20 IO54PDB1V1 K26 IO94NDB2V1 M2 IO282PDB7V1 J21 IO76NPB1V4 K27 IO85PDB2V0 M3 IO292NDB7V2 J22 VCC K28 IO85NDB2V0 M4 IO292PDB7V2 J23 VCCPLB K29 IO93PDB2V1 M5 IO283NDB7V1 J24 VCCIB2 K30 IO93NDB2V1 M6 IO285PDB7V1 J25 IO90PDB2V1 L1 IO286NDB7V1 M7 IO287PDB7V1 J26 IO90NDB2V1 L2 IO286PDB7V1 M8 IO289PDB7V1 J27 GBB2/IO83PDB2V0 L3 IO298NDB7V3 M9 IO289NDB7V1 J28 IO83NDB2V0 L4 IO298PDB7V3 M10 VCCIB7 J29 IO91PDB2V1 L5 IO283PDB7V1 M11 VCC J30 IO91NDB2V1 L6 IO291NDB7V2 M12 GND K1 IO288NDB7V1 L7 IO291PDB7V2 M13 GND Revision 3 4- 31 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function 4- 32 M14 GND N20 VCC P26 IO111NPB2V3 M15 GND N21 VCCIB2 P27 IO105PDB2V2 M16 GND N22 IO106NDB2V3 P28 IO105NDB2V2 M17 GND N23 IO106PDB2V3 P29 GCC2/IO117PDB3V0 M18 GND N24 IO108PDB2V3 P30 IO117NDB3V0 M19 GND N25 IO108NDB2V3 R1 GFC2/IO270PDB6V4 M20 VCC N26 IO95NDB2V1 R2 GFB1/IO274PPB7V0 M21 VCCIB2 N27 IO99NDB2V2 R3 VCOMPLF M22 NC N28 IO99PDB2V2 R4 GFA0/IO273NDB6V4 M23 IO104PPB2V2 N29 IO107PDB2V3 R5 GFB0/IO274NPB7V0 M24 IO102PDB2V2 N30 IO107NDB2V3 R6 IO271NDB6V4 M25 IO102NDB2V2 P1 IO276NDB7V0 R7 GFB2/IO271PDB6V4 M26 IO95PDB2V1 P2 IO278NDB7V0 R8 IO269PDB6V4 M27 IO97NDB2V1 P3 IO280NDB7V0 R9 IO269NDB6V4 M28 IO101NDB2V2 P4 IO284NDB7V1 R10 VCCIB7 M29 IO103NDB2V2 P5 IO279NDB7V0 R11 VCC M30 IO119PDB3V0 P6 GFC1/IO275PDB7V0 R12 GND N1 IO276PDB7V0 P7 GFC0/IO275NDB7V0 R13 GND N2 IO278PDB7V0 P8 IO277PDB7V0 R14 GND N3 IO280PDB7V0 P9 IO277NDB7V0 R15 GND N4 IO284PDB7V1 P10 VCCIB7 R16 GND N5 IO279PDB7V0 P11 VCC R17 GND N6 IO285NDB7V1 P12 GND R18 GND N7 IO287NDB7V1 P13 GND R19 GND N8 IO281NDB7V0 P14 GND R20 VCC N9 IO281PDB7V0 P15 GND R21 VCCIB2 N10 VCCIB7 P16 GND R22 GCC0/IO112NDB2V3 N11 VCC P17 GND R23 GCB2/IO116PDB3V0 N12 GND P18 GND R24 IO118PDB3V0 N13 GND P19 GND R25 IO111PPB2V3 N14 GND P20 VCC R26 IO122PPB3V1 N15 GND P21 VCCIB2 R27 GCA0/IO114NPB3V0 N16 GND P22 GCC1/IO112PDB2V3 R28 VCOMPLC N17 GND P23 IO110PDB2V3 R29 GCB1/IO113PPB2V3 N18 GND P24 IO110NDB2V3 R30 IO115NPB3V0 N19 GND P25 IO109PPB2V3 T1 IO270NDB6V4 R e visio n 3 Military ProASIC3/EL Low Power Flash FPGAs FG896 FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function Pin Number A3PE3000L Function T2 VCCPLF U8 IO265NDB6V3 V14 GND T3 GFA2/IO272PPB6V4 U9 IO263NDB6V3 V15 GND T4 GFA1/IO273PDB6V4 U10 VCCIB6 V16 GND T5 IO272NPB6V4 U11 VCC V17 GND T6 IO267NDB6V4 U12 GND V18 GND T7 IO267PDB6V4 U13 GND V19 GND T8 IO265PDB6V3 U14 GND V20 VCC T9 IO263PDB6V3 U15 GND V21 VCCIB3 T10 VCCIB6 U16 GND V22 IO120NDB3V0 T11 VCC U17 GND V23 IO128NDB3V1 T12 GND U18 GND V24 IO132PDB3V2 T13 GND U19 GND V25 IO130PPB3V2 T14 GND U20 VCC V26 IO126NDB3V1 T15 GND U21 VCCIB3 V27 IO129NDB3V1 T16 GND U22 IO120PDB3V0 V28 IO127NDB3V1 T17 GND U23 IO128PDB3V1 V29 IO125NDB3V1 T18 GND U24 IO124PDB3V1 V30 IO123PDB3V1 T19 GND U25 IO124NDB3V1 W1 IO266NDB6V4 T20 VCC U26 IO126PDB3V1 W2 IO262NDB6V3 T21 VCCIB3 U27 IO129PDB3V1 W3 IO260NDB6V3 T22 IO109NPB2V3 U28 IO127PDB3V1 W4 IO252NDB6V2 T23 IO116NDB3V0 U29 IO125PDB3V1 W5 IO251NDB6V2 T24 IO118NDB3V0 U30 IO121NDB3V0 W6 IO251PDB6V2 T25 IO122NPB3V1 V1 IO268NDB6V4 W7 IO255NDB6V2 T26 GCA1/IO114PPB3V0 V2 IO262PDB6V3 W8 IO249PPB6V1 T27 GCB0/IO113NPB2V3 V3 IO260PDB6V3 W9 IO253PDB6V2 T28 GCA2/IO115PPB3V0 V4 IO252PDB6V2 W10 VCCIB6 T29 VCCPLC V5 IO257NPB6V2 W11 VCC T30 IO121PDB3V0 V6 IO261NPB6V3 W12 GND U1 IO268PDB6V4 V7 IO255PDB6V2 W13 GND U2 IO264NDB6V3 V8 IO259PDB6V3 W14 GND U3 IO264PDB6V3 V9 IO259NDB6V3 W15 GND U4 IO258PDB6V3 V10 VCCIB6 W16 GND U5 IO258NDB6V3 V11 VCC W17 GND U6 IO257PPB6V2 V12 GND W18 GND U7 IO261PPB6V3 V13 GND W19 GND Revision 3 4- 33 Package Pin Assignments FG896 FG896 Pin Number A3PE3000L Function Pin Number A3PE3000L Function 4- 34 W20 VCC Y26 IO136PPB3V2 W21 VCCIB3 Y27 IO141NDB3V3 W22 IO134PDB3V2 Y28 IO135NDB3V2 W23 IO138PDB3V3 Y29 IO131NDB3V2 W24 IO132NDB3V2 Y30 IO133PDB3V2 W25 IO136NPB3V2 W26 IO130NPB3V2 W27 IO141PDB3V3 W28 IO135PDB3V2 W29 IO131PDB3V2 W30 IO123NDB3V1 Y1 IO266PDB6V4 Y2 IO250PDB6V2 Y3 IO250NDB6V2 Y4 IO246PDB6V1 Y5 IO247NDB6V1 Y6 IO247PDB6V1 Y7 IO249NPB6V1 Y8 IO245PDB6V1 Y9 IO253NDB6V2 Y10 GEB0/IO235NPB6V0 Y11 VCC Y12 VCC Y13 VCC Y14 VCC Y15 VCC Y16 VCC Y17 VCC Y18 VCC Y19 VCC Y20 VCC Y21 IO142PPB3V3 Y22 IO134NDB3V2 Y23 IO138NDB3V3 Y24 IO140NDB3V3 Y25 IO140PDB3V3 R e visio n 3 5 – Datasheet Information List of Changes The following table lists critical changes that were made in each revision of the datasheet. Revision Changes Page Revision 3 The "Security" section was modified to clarify that Microsemi does not support read-back (September 2012) of programmed data. 1-2 Revision 2 (June 2012) The FG484 package was added for A3P1000 in Table 1 • Military ProASIC3/EL LowPower Devices, the I/Os Per Package 1 table , and the "Temperature Grade Offerings" table (SAR 39010). I, II, IV The "FG484" pin table for A3P1000 has been added (SAR 39010). 4-15 Revision 1 (June 2011) In the "High Performance" section, 66-Bit PCI was corrected to 64-Bit PCI (SAR 31977). I The A3P250 device and VQ100 package were added to product tables in the "Military ProASIC3/EL Low Power Flash FPGAs" chapter (SAR 30526). I The Y security option and Licensed DPA Logo were added to the "Military ProASIC3/EL Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151). III The A3P250 device was added to applicable tables in the "Military ProASIC3/EL DC and Switching Characteristics" chapter (SAR 30526). 2-1 The VPUMP voltage for operation mode was changed from "0 to 3.45 V" to "0 to 3.6 V" in Table 2-2 • Recommended Operating Conditions 1(SAR 25220). 2-2 3.3 V LVCMOS wide range and 1.2 V LVCMOS wide range were added to applicable tables in the following sections (SAR 28061): Table 2-2 • Recommended Operating Conditions 1 "Power per I/O Pin" "Overview of I/O Performance" "Summary of I/O Timing Characteristics – Default I/O Software Settings" "User I/O Characteristics" "Detailed I/O DC Characteristics" "Single-Ended I/O Characteristics" (SAR 31925) The "Quiescent Supply Current " section was updated. 2-2 2-11 2-24 2-27 2-20 2-31 2-39 2-9 Table 2-7 • Power Supply State Per Mode is new (SAR 24882, 24112, 32549). New values were added to the following tables (SAR 30619): Table 2-8 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode* Table 2-10 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode* Table 2-11 • Quiescent Supply Current (IDD), Static Mode and Active Mode 1 (the name of this table changed from "No Flash*Freeze Mode" to "Static Mode and Active Mode" per SAR 32549) Table 2-12 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000 The military maximum current for A3P1000 was revised in the following table (SAR 30620): Table 2-12 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000 Revision 3 5 -1 Datasheet Information Revision Changes Page All timing and power tables were updated to reflect changes in the software resulting from 2-11 characterization and bug fixes (SAR 32394). to 2-14 8 Revision 1 (continued) In the following tables for A3P250 and A3P1000, the note regarding dynamic power was 2-14, revised to, "Dynamic Power consumption is given for software default drive strength and 2-14 output slew. Output load is lower than the software default" (SAR 32449). Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1 Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings Values for A3PE600L and A3P250 were added to Table 2-20 • Different Components 2-15, Contributing to Dynamic Power Consumption in Military ProASIC3 and ProASIC3/EL 2-16 Devices at 1.5 V VCC. Values in the table, and in Table 2-19 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3/EL Devices Operating at 1.2 V VCC, were updated were updated to reflect changes in the software resulting from characterization and bug fixes (SAR 30528). Table 2-21 • Different Components Contributing to the Static Power Consumption in 2-16, Military ProASIC3/EL Devices and the "Total Static Power Consumption—PSTAT" 2-17 calculation were updated to add PDC0 (SAR 32549). The "Timing Model" was updated (SAR 29793). 2-20 The title of Table 2-28 • Summary of AC Measuring Points was changed from "Summary 2-27 of AC Memory Points" (SAR 32446). The following note was added to Table 2-30, Table 2-31, and Table 2-31, Summary of I/O 2-28 Timing Characteristics (SAR 32449): "Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a specific output load, refer to Designer software." 2-32 Table 2-35 • I/O Output Buffer Maximum Resistances 1 Applicable to Pro I/Os for throu gh A3PE600L and A3PE3000L Only 2-35 Table 2-39 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and A3PE3000L Only (SAR 31717) Resistances and short circuit currents were updated (SARs 29793, 31717): Tables for Pro I/Os in the "Single-Ended I/O Characteristics" section (SAR 31717). The drive strength was changed from 25 mA to 20 mA for 3.3 V and 2.5 V GTL (SAR 31978). This affects the following tables: 2-24 Table 2-30 • Summary of I/O Timing Characteristics—Software Default Settings (SAR 2-28 32394) 2-29 2-32 Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings Table 2-24 • Summary of Maximum and Minimum DC Input and Output Levels Table 2-35 • I/O Output Buffer Maximum Resistances 1 Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 2-35 Table 2-39 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and A3PE3000L Only 2-75 Table 2-119 • Minimum and Maximum DC Input and Output Levels 2-77 Table 2-123 • Minimum and Maximum DC Input and Output Levels The values in Table 2-38 • I/O Weak Pull-Up/Pull-Down Resistances were revised (SAR 2-34 29793, 28061). 5-2 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs Revision Changes Page The AC Loading diagrams in the "Single-Ended I/O Characteristics" section were 2-39 updated to match summary of I/O timing tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 32449). Revision 1 (continued) The tables in the "Voltage-Referenced I/O Characteristics" section and "Differential I/O 2-75 Characteristics" section were updated with current values (SARs 29793, 32391, 32394). 2-87 Two note references were added to Table 2-159 • Minimum and Maximum DC Input and 2-88 Output Levels to clarify the following notes: ±5% [VCCI] and differential input voltage = ±350 mV [VDIFF] (SAR 29428). The "Global Tree Timing Characteristics" section was updated. Table 2-198 • A3P250 Global Resource is new (SAR 30526). 2-12 2 Available values were added or revised in the following tables (SAR 30698): Table 2-194 • A3PE600L Global Resource Table 2-199 • A3P1000 Global Resource Table 2-196 • A3PE600L Global Resource Table 2-200 • Military ProASIC3/EL CCC/PLL Specification and Table 2-201 • Military 2-12 ProASIC3/EL CCC/PLL Specification were updated with current values (SAR 32521). 5 The following figures were removed (SAR 29991): N/A Figure 2-49 • Write Access after Write onto Same Address Figure 2-50 • Read Access after Write onto Same Address Figure 2-51 • Write Access after Read onto Same Address The naming of the address collision parameters in the SRAM "Timing Characteristics" 2-13 section was changed, and values were updated accordingly (SAR 29991). 1 The values for tCKQ1 in Table 2-202 • RAM4K9, Table 2-203 • RAM4K9, and Table 2-204 2-13 • RAM4K9 were reversed with respect to WMODE and have been corrected (SAR 1, 32343). 2-13 2, 2-13 3 Table 2-211 • FIFO through Table 2-215 • FIFO are new (SAR 32394). 2-14 3, 2-14 7 Tables in the "Embedded FlashROM Characteristics" section were updated (SAR 32392). 2-14 8 The "Pin Descriptions and Packaging" chapter was added (SAR 21642). 3-1 Package names used in the "Package Pin Assignments" section were revised to match standards given in Package Mechanical Drawings (SAR 27395). 4-1 The "VQ100*" pin table for A3P250 is new (SAR 31975). 4-2 The "FG144" pin table for A3P1000 was updated to remove the Flash*Freeze (FF) 4-7, designation from pin L3. This package does not support Flash*Freeze functionality. Pin 4-10 W6 of the "FG484" for A3PE600L was designated as the Flash*Freeze control pin for that package (SAR 24084). Revision 3 5 -3 Datasheet Information Datasheet Categories Categories In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "Military ProASIC3/EL Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Unmarked (production) This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Safety Critical, Life Support, and High-Reliability Applications Policy The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group’s products is available at http://www.actel.com/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information. 5-4 R e vi s i o n 3 Military ProASIC3/EL Low Power Flash FPGAs Revision 3 5 -5 Microsemi Corporation (NASDAQ: MSCC) offers the industry’s most comprehensive portfolio of semiconductor technology. Committed to solving the most critical system challenges, Microsemi’s products include high-performance, high-reliability analog and RF devices, mixed signal integrated circuits, FPGAs and customizable SoCs, and complete subsystems. Microsemi serves leading system manufacturers around the world in the defense, security, aerospace, enterprise, commercial, and industrial markets. Learn more at www.microsemi.com. Microsemmi Corporate Headquarters 2381 Morse Avenue, Irvine, CA 92614 Phone: 949-221-7100·Fax: 949-756-0308 www.microsemi.com © 2011 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. 51700106-3/9.12 Datasheet Information 5-8 R e vi s i o n 3