ADPOW APT35GP120B2DQ2 Power mos 7 igbt Datasheet

APT35GP120B2DQ2(G)
1200V
TYPICAL PERFORMANCE CURVES
APT35GP120B2DQ2
APT35GP120B2DQ2G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
POWER MOS 7 IGBT
®
T-Max®
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
G
C
• RBSOA Rated
E
• Low Gate Charge
C
• Ultrafast Tail Current shutoff
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT35GP120B2DQ2(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
96
I C2
Continuous Collector Current @ TC = 110°C
46
I CM
RBSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
140
Reverse Bias Safe Operating Area @ TJ = 150°C
140A @ 960V
Total Power Dissipation
Watts
543
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
MAX
4.5
6
3.3
3.9
Units
1200
(VCE = VGE, I C = 1mA, Tj = 25°C)
3
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
3
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Volts
350
2
Gate-Emitter Leakage Current (VGE = ±20V)
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
nA
11-2005
V(BR)CES
MIN
Rev A
Characteristic / Test Conditions
050-7630
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT35GP120B2DQ2(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
RBSOA
td(on)
tr
td(off)
tf
Eon1
31
Gate Charge
7.5
VGE = 15V
150
750
680
Inductive Switching (125°C)
16
VCC = 600V
20
VGE = 15V
145
RG = 4.3Ω
75
750
I C = 35A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
1305
6
Current Fall Time
ns
40
TJ = +25°C
Turn-off Delay Time
nC
95
I C = 35A
Current Rise Time
V
A
20
RG = 4.3Ω
Turn-on Delay Time
pF
140
16
5
UNIT
60
VCC = 600V
4
MAX
21
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
tf
f = 1 MHz
15V, L = 100µH,VCE = 960V
Turn-off Delay Time
Eoff
td(off)
250
VGE = 15V
Turn-on Switching Energy (Diode)
tr
VGE = 0V, VCE = 25V
TJ = 150°C, R G = 4.3Ω, VGE =
Current Rise Time
Eon2
td(on)
3240
I C = 35A
Turn-on Delay Time
TYP
Capacitance
VCE = 600V
Reverse Bias Safe Operating Area
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
2130
6
1745
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.23
RθJC
Junction to Case (DIODE)
.61
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7630
Rev A
11-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained h
80
80
70
70
IC, COLLECTOR CURRENT (A)
TJ = 25°C
40
30
TJ = 125°C
20
10
0
TJ = -55°C
60
TJ = 25°C
40
TJ = 125°C
20
2 3 4
5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC = 70A
4
IC = 35A
3
IC = 17.5A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
0.90
0.85
0.80
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
VCE = 960V
6
4
2
0
20
40 60 80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
5.0
4.5
IC = 70A
4.0
3.5
IC = 35A
3.0
2.5
IC = 17.5A
2.0
1.5
1.0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0.5
0
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
0.95
VCE = 600V
8
1.15
1.00
VCE = 240V
10
140
1.05
J
12
1.20
1.10
I = 35A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
6
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
10
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
80
TJ = 125°C
20
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
100
30
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
TJ = 25°C
40
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
120
50
0
100
80
Lead Temperature
Limited
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
11-2005
50
60
Rev A
60
APT35GP120B2DQ2(G)
050-7630
IC, COLLECTOR CURRENT (A)
TYPICAL PERFORMANCE CURVES
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
20
VGE = 15V
15
10
5 VCE = 600V
TJ = 25°C or 125°C
RG = 4.3Ω
L = 100µH
0
50
160
140
120
VGE =15V,TJ=125°C
100
80
VGE =15V,TJ=25°C
60
40
VCE = 600V
20 RG = 4.3Ω
L = 100µH
0
80
70
60
50
40
30
20
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
80
70
60
50
40
30
20
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
100
RG = 4.3Ω, L = 100µH, VCE = 600V
RG = 4.3Ω, L = 100µH, VCE = 600V
90
40
80
tf, FALL TIME (ns)
tr, RISE TIME (ns)
APT35GP120B2DQ2(G)
180
25
30
20
TJ = 25 or 125°C,VGE = 15V
10
TJ = 125°C, VGE = 15V
70
60
50
40
TJ = 25°C, VGE = 15V
30
20
10
0
0
80
70
60
50
40
30
20
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
80
70
60
50
40
30
20
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
4000
V
= 600V
CE
V
= +15V
GE
R = 4.3Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
5000
G
4000
TJ = 125°C
3000
2000
1000
TJ = 25°C
050-7630
SWITCHING ENERGY LOSSES (µJ)
3500
G
TJ = 125°C
3000
2500
2000
1500
1000
TJ = 25°C
500
0
80
70
60
50
40
30
20
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
80
70
60
50
40
30
20
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
8000
5000
= 600V
V
CE
= +15V
V
GE
T = 125°C
7000
J
Eon2,70A
6000
5000
Eoff,70A
4000
Eon2,35A
3000
2000
Eoff,35A
Eon2,17.5A
1000
0
Eoff,17.5A
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
Rev A
11-2005
0
= 600V
V
CE
= +15V
V
GE
R = 4.3Ω
= 600V
V
CE
= +15V
V
GE
R = 4.3Ω
G
4000
Eon2,70A
3000
Eoff,70A
Eon2,35A
2000
1000
0
Eoff,35A
Eon2,17.5A
Eoff,17.5A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
APT35GP120B2DQ2(G)
160
10,000
1,000
500
Coes
100
50
140
120
100
80
60
40
Cres
20
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0 100 200 300 400 500 600 700 800 900 1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.20
0.7
0.15
0.5
Note:
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
0.3
t2
0.05
0.1
0
t1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.140
0.228
Case temperature
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10
7
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 5Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
10
20
30
40
50
60
70
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
11-2005
0.0108
50
Rev A
0.0896
Power
(Watts)
100
050-7630
RC MODEL
Junction
temp. ( ºC)
FMAX, OPERATING FREQUENCY (kHz)
180
APT35GP120B2DQ2(G)
Gate Voltage
10%
APT40DQ120
TJ = 125 °C
t d(on)
tr
IC
V CC
90%
V CE
Collector Current
5%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
t d(off)
Gate Voltage
90%
T J = 125 °C
tf
Collector Voltage
10%
Switching
Energy
0
Collector Current
050-7630
Rev A
11-2005
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT35GP120B2DQ2(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
All Ratings: TC = 25°C unless otherwise specified.
APT35GP120B2DQ2(G)
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 112°C, Duty Cycle = 0.5)
40
RMS Forward Current (Square wave, 50% duty)
63
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
UNIT
Amps
210
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
Forward Voltage
VF
MIN
TYP
IF = 35A
2.7
IF = 70A
3.28
IF = 35A, TJ = 125°C
2.07
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
26
trr
Reverse Recovery Time
-
350
Qrr
Reverse Recovery Charge
-
570
-
4
-
430
ns
-
2200
nC
-
9
-
210
ns
-
3400
nC
-
29
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 40A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 800V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 40A, diF/dt = -200A/µs
IF = 40A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
0.60
D = 0.9
0.50
0.7
0.40
0.20
0.3
0.10
0.1
0.05
t1
t2
t
SINGLE PULSE
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
Power
(watts)
11-2005
Junction
temp (°C)
0.0442
0.00222
0.242
0.00586
Rev A
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.324
0.0596
050-7630
0
Note:
0.5
0.30
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
Case temperature (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
600
100
80
TJ = 175°C
60
40
TJ = 25°C
TJ = 125°C
20
trr, REVERSE RECOVERY TIME
(ns)
IF, FORWARD CURRENT
(A)
120
APT35GP120B2DQ2(G)
T = 125°C
J
V = 800V
R
500
80A
400
40A
20A
300
200
100
TJ = -55°C
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
5000
T = 125°C
J
V = 800V
4500
R
4000
80A
3500
3000
40A
2500
2000
20A
1500
1000
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
IRRM
Qrr
CJ, JUNCTION CAPACITANCE
(pF)
40A
15
10
20A
5
Duty cycle = 0.5
T = 175°C
J
70
50
40
20
10
0
200
11-2005
20
30
0.4
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
Rev A
25
60
0.2
050-7630
80A
R
30
80
trr
0.6
150
100
50
0
T = 125°C
J
V = 800V
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
trr
0.8
35
0
Qrr
1.0
0.0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
0
IRRM, REVERSE RECOVERY CURRENT
(A)
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT35GP120B2DQ2(G)
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
T-MAX® (B2) Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
20.80 (.819)
21.46 (.845)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitte
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
11-2005
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
Rev A
0.40 (.016)
0.79 (.031)
4.50
(.177) Max.
050-7630
Collector
5.38 (.212)
6.20 (.244)
Similar pages