APT35GP120B2DQ2(G) 1200V TYPICAL PERFORMANCE CURVES APT35GP120B2DQ2 APT35GP120B2DQ2G* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. POWER MOS 7 IGBT ® T-Max® The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss G C • RBSOA Rated E • Low Gate Charge C • Ultrafast Tail Current shutoff G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT35GP120B2DQ2(G) VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 96 I C2 Continuous Collector Current @ TC = 110°C 46 I CM RBSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 140 Reverse Bias Safe Operating Area @ TJ = 150°C 140A @ 960V Total Power Dissipation Watts 543 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA) VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES MAX 4.5 6 3.3 3.9 Units 1200 (VCE = VGE, I C = 1mA, Tj = 25°C) 3 Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C) Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) TYP 3 2 Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) Volts 350 2 Gate-Emitter Leakage Current (VGE = ±20V) 3000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com µA nA 11-2005 V(BR)CES MIN Rev A Characteristic / Test Conditions 050-7630 Symbol DYNAMIC CHARACTERISTICS Symbol APT35GP120B2DQ2(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge RBSOA td(on) tr td(off) tf Eon1 31 Gate Charge 7.5 VGE = 15V 150 750 680 Inductive Switching (125°C) 16 VCC = 600V 20 VGE = 15V 145 RG = 4.3Ω 75 750 I C = 35A Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 44 55 µJ 1305 6 Current Fall Time ns 40 TJ = +25°C Turn-off Delay Time nC 95 I C = 35A Current Rise Time V A 20 RG = 4.3Ω Turn-on Delay Time pF 140 16 5 UNIT 60 VCC = 600V 4 MAX 21 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy tf f = 1 MHz 15V, L = 100µH,VCE = 960V Turn-off Delay Time Eoff td(off) 250 VGE = 15V Turn-on Switching Energy (Diode) tr VGE = 0V, VCE = 25V TJ = 150°C, R G = 4.3Ω, VGE = Current Rise Time Eon2 td(on) 3240 I C = 35A Turn-on Delay Time TYP Capacitance VCE = 600V Reverse Bias Safe Operating Area Turn-on Switching Energy MIN TJ = +125°C ns µJ 2130 6 1745 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .23 RθJC Junction to Case (DIODE) .61 WT Package Weight 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 050-7630 Rev A 11-2005 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained h 80 80 70 70 IC, COLLECTOR CURRENT (A) TJ = 25°C 40 30 TJ = 125°C 20 10 0 TJ = -55°C 60 TJ = 25°C 40 TJ = 125°C 20 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 IC = 70A 4 IC = 35A 3 IC = 17.5A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 0.90 0.85 0.80 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature VCE = 960V 6 4 2 0 20 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge 5.0 4.5 IC = 70A 4.0 3.5 IC = 35A 3.0 2.5 IC = 17.5A 2.0 1.5 1.0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0.5 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 120 0.95 VCE = 600V 8 1.15 1.00 VCE = 240V 10 140 1.05 J 12 1.20 1.10 I = 35A C T = 25°C 14 0 1 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 6 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 10 FIGURE 2, Output Characteristics (TJ = 125°C) VGE, GATE-TO-EMITTER VOLTAGE (V) 80 TJ = 125°C 20 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 100 30 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 250µs PULSE TEST<0.5 % DUTY CYCLE TJ = 25°C 40 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 120 50 0 100 80 Lead Temperature Limited 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 11-2005 50 60 Rev A 60 APT35GP120B2DQ2(G) 050-7630 IC, COLLECTOR CURRENT (A) TYPICAL PERFORMANCE CURVES td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 VGE = 15V 15 10 5 VCE = 600V TJ = 25°C or 125°C RG = 4.3Ω L = 100µH 0 50 160 140 120 VGE =15V,TJ=125°C 100 80 VGE =15V,TJ=25°C 60 40 VCE = 600V 20 RG = 4.3Ω L = 100µH 0 80 70 60 50 40 30 20 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 80 70 60 50 40 30 20 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 100 RG = 4.3Ω, L = 100µH, VCE = 600V RG = 4.3Ω, L = 100µH, VCE = 600V 90 40 80 tf, FALL TIME (ns) tr, RISE TIME (ns) APT35GP120B2DQ2(G) 180 25 30 20 TJ = 25 or 125°C,VGE = 15V 10 TJ = 125°C, VGE = 15V 70 60 50 40 TJ = 25°C, VGE = 15V 30 20 10 0 0 80 70 60 50 40 30 20 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 80 70 60 50 40 30 20 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 4000 V = 600V CE V = +15V GE R = 4.3Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 5000 G 4000 TJ = 125°C 3000 2000 1000 TJ = 25°C 050-7630 SWITCHING ENERGY LOSSES (µJ) 3500 G TJ = 125°C 3000 2500 2000 1500 1000 TJ = 25°C 500 0 80 70 60 50 40 30 20 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 80 70 60 50 40 30 20 10 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 8000 5000 = 600V V CE = +15V V GE T = 125°C 7000 J Eon2,70A 6000 5000 Eoff,70A 4000 Eon2,35A 3000 2000 Eoff,35A Eon2,17.5A 1000 0 Eoff,17.5A 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) Rev A 11-2005 0 = 600V V CE = +15V V GE R = 4.3Ω = 600V V CE = +15V V GE R = 4.3Ω G 4000 Eon2,70A 3000 Eoff,70A Eon2,35A 2000 1000 0 Eoff,35A Eon2,17.5A Eoff,17.5A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) APT35GP120B2DQ2(G) 160 10,000 1,000 500 Coes 100 50 140 120 100 80 60 40 Cres 20 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 100 200 300 400 500 600 700 800 900 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.20 0.7 0.15 0.5 Note: 0.10 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 0.3 t2 0.05 0.1 0 t1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.140 0.228 Case temperature FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 10 7 F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 5Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 10 20 30 40 50 60 70 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 11-2005 0.0108 50 Rev A 0.0896 Power (Watts) 100 050-7630 RC MODEL Junction temp. ( ºC) FMAX, OPERATING FREQUENCY (kHz) 180 APT35GP120B2DQ2(G) Gate Voltage 10% APT40DQ120 TJ = 125 °C t d(on) tr IC V CC 90% V CE Collector Current 5% 10% 5% Collector Voltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% t d(off) Gate Voltage 90% T J = 125 °C tf Collector Voltage 10% Switching Energy 0 Collector Current 050-7630 Rev A 11-2005 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT35GP120B2DQ2(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) All Ratings: TC = 25°C unless otherwise specified. APT35GP120B2DQ2(G) Characteristic / Test Conditions Maximum Average Forward Current (TC = 112°C, Duty Cycle = 0.5) 40 RMS Forward Current (Square wave, 50% duty) 63 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) IFSM UNIT Amps 210 STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Forward Voltage VF MIN TYP IF = 35A 2.7 IF = 70A 3.28 IF = 35A, TJ = 125°C 2.07 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 26 trr Reverse Recovery Time - 350 Qrr Reverse Recovery Charge - 570 - 4 - 430 ns - 2200 nC - 9 - 210 ns - 3400 nC - 29 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 40A, diF/dt = -200A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 800V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 40A, diF/dt = -200A/µs IF = 40A, diF/dt = -1000A/µs VR = 800V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps 0.60 D = 0.9 0.50 0.7 0.40 0.20 0.3 0.10 0.1 0.05 t1 t2 t SINGLE PULSE 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION RC MODEL Power (watts) 11-2005 Junction temp (°C) 0.0442 0.00222 0.242 0.00586 Rev A 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.324 0.0596 050-7630 0 Note: 0.5 0.30 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 Case temperature (°C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 600 100 80 TJ = 175°C 60 40 TJ = 25°C TJ = 125°C 20 trr, REVERSE RECOVERY TIME (ns) IF, FORWARD CURRENT (A) 120 APT35GP120B2DQ2(G) T = 125°C J V = 800V R 500 80A 400 40A 20A 300 200 100 TJ = -55°C 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 5000 T = 125°C J V = 800V 4500 R 4000 80A 3500 3000 40A 2500 2000 20A 1500 1000 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change IRRM Qrr CJ, JUNCTION CAPACITANCE (pF) 40A 15 10 20A 5 Duty cycle = 0.5 T = 175°C J 70 50 40 20 10 0 200 11-2005 20 30 0.4 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature Rev A 25 60 0.2 050-7630 80A R 30 80 trr 0.6 150 100 50 0 T = 125°C J V = 800V 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change trr 0.8 35 0 Qrr 1.0 0.0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 0 IRRM, REVERSE RECOVERY CURRENT (A) 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT35GP120B2DQ2(G) Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions T-MAX® (B2) Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 20.80 (.819) 21.46 (.845) 1.01 (.040) 1.40 (.055) Gate Collector Emitte 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 11-2005 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) Rev A 0.40 (.016) 0.79 (.031) 4.50 (.177) Max. 050-7630 Collector 5.38 (.212) 6.20 (.244)