MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER • LCD drive control circuit DESCRIPTION The 3825 group is the 8-bit microcomputer based on the 740 family core technology. The 3825 group has the LCD drive control circuit, an 8-channel AD converter, and a Serial I/O as additional functions. The various microcomputers in the 3825 group include variations of internal memory size and packaging. For details, refer to the section on part numbering. For details on availability of microcomputers in the 3825 group, refer the section on group expansion. • • FEATURES • Basic machine-language instructions ....................................... 71 • The minimum instruction execution time ............................ 0.5 µs • • • • • • • (at 8MHz oscillation frequency) Memory size ROM .................................................................. 4 K to 60 K bytes RAM ................................................................. 192 to 2048 bytes Programmable input/output ports ............................................. 43 Software pull-up/pull-down resistors (Ports P0–P8) Interrupts .................................................. 17 sources, 16 vectors (includes key input interrupt) Timers ........................................................... 8-bit ✕ 3, 16-bit ✕ 2 Serial I/O ...................... 8-bit ✕ 1 (UART or Clock-synchronized) A-D converter .................................................. 8-bit ✕ 8 channels • • Bias ................................................................................... 1/2, 1/3 Duty ............................................................................ 1/2, 1/3, 1/4 Common output .......................................................................... 4 Segment output ......................................................................... 40 2 Clock generating circuits Clock (XIN-XOUT) .................................. Internal feedback resistor Sub-clock (XCIN-XCOUT) .......... Without internal feedback resistor (connect to external ceramic resonator or quartz-crystal oscillator) Power source voltage In high-speed mode ................................................... 4.0 to 5.5 V In middle-speed mode ............................................... 2.5 to 5.5 V (Low power source version: 2.2 V to 5.5 V) (Extended operating temperature version: 3.0 V to 5.5 V) In low-speed mode ..................................................... 2.5 to 5.5 V (Low power source version: 2.2 V to 5.5 V) (Extended operating temperature version: 3.0 V to 5.5 V) Power dissipation In high-speed mode ........................................................... 32 mW (at 8 MHz oscillation frequency, at 5 V power source voltage) In low-speed mode .............................................................. 45 µW (at 32 kHz oscillation frequency, at 3 V power source voltage) Operating temperature range ................................... – 20 to 85°C (Extended operating temperature version: –40 to 85°C) APPLICATIONS Camera, household appliances, consumer electronics, etc. 51 53 52 56 54 57 55 59 58 62 60 63 61 65 64 68 66 69 67 71 70 74 72 75 73 77 76 50 81 82 49 83 84 48 47 85 86 46 45 87 88 44 43 42 89 90 41 M38258MCMXXXFP 91 92 40 39 93 38 37 94 95 96 36 35 97 34 98 99 33 32 31 30 29 28 27 24 25 26 23 22 21 20 18 19 17 16 15 13 12 14 10 11 9 6 8 7 5 4 3 C1 VL1 P67/AN7 P66/AN6 P65/AN5 P64/AN4 P63 /AN3 P62/AN2 P61/AN1 P60 /AN0 P57/ADT P56/TOUT P55/CNTR1 P54/CNTR0 P53/RTP1 P52/RTP0 P51/INT3 P50/INT2 P47/SRDY P46/SCLK P45 / TXD P44/RXD P43 /INT1 P42/INT0 P41 / f(XIN)/5 / f(XIN )/10 P40 / f(XIN ) / f(XIN )/2 P77 P76 P75 P74 2 100 1 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 VCC VREF AVSS COM3 COM2 COM1 COM0 VL3 VL2 C2 78 80 79 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 P30 /SEG18 P31/SEG19 P32/SEG20 P33/SEG21 P34/SEG22 P35 /SEG23 P36/SEG24 P37/SEG25 P00 /SEG26 P01/SEG27 P02/SEG28 P03/SEG29 P04/SEG30 P05 /SEG31 P06/SEG32 P07/SEG33 P10 /SEG34 P11/SEG35 P12/SEG36 P13 /SEG37 P14/SEG38 P15/SEG39 PIN CONFIGURATION (TOP VIEW) Package type : 100P6S-A (100-pin plastic-molded QFP) Fig. 1 Pin configuration of M38258MCMXXXFP P16 P17 P20 P21 P22 P23 P24 P25 P26 P27 VSS XOUT XIN P80/XCOUT P81/XCIN RESET P70 P71 P72 P73 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 52 51 53 55 56 54 58 57 59 61 62 60 64 63 65 67 68 66 70 69 71 72 73 50 76 77 78 49 48 79 47 80 46 45 81 1111 82 83 44 43 84 42 85 86 41 40 87 39 M38258MCMXXXGP M38258MCMXXXHP 88 89 38 37 90 36 91 92 35 34 93 33 94 95 96 32 31 30 29 97 28 98 99 27 26 25 24 23 21 20 22 19 18 16 17 15 14 13 12 9 8 10 11 7 6 5 4 3 P14 /SEG38 P15 /SEG39 P16 P17 P20 P21 P22 P23 P24 P25 P26 P27 VSS XOUT XIN P80 /XCOUT P81 /XCIN RESET P70 P71 P72 P73 P74 P75 P76 P67/AN7 P66/AN6 P65 /AN5 P64/AN4 P63/AN3 P62 /AN2 P61/AN1 P60/AN0 P57/ADT P56/ TOUT P55 /CNTR1 P54/CNTR0 P53/RTP1 P52 /RTP0 P51/INT3 P50 /INT2 P47 /SRDY P46 /SCLK P45/ TXD P44/R XD P43/INT1 P42/INT 0 P41 / f(XIN)/5 / f(X IN )/10 P40 / f(XIN) / f(XIN )/2 P77 2 100 1 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 VCC VREF AVSS COM3 COM2 COM1 COM0 VL3 VL2 C2 C1 VL1 74 75 SEG13 SEG14 SEG15 SEG16 SEG17 P30 /SEG18 P31/SEG19 P32/SEG20 P33/SEG21 P34/SEG22 P35 /SEG23 P36/SEG24 P37/SEG25 P00 /SEG26 P01/SEG27 P02/SEG28 P03 /SEG29 P04/SEG30 P05/SEG31 P06/SEG32 P07/SEG33 P10 /SEG34 P11/SEG35 P12/SEG36 P13 /SEG37 PIN CONFIGURATION (TOP VIEW) Package type : GP ........................... 100P6Q-A (100-pin plastic-molded LQFP) Package type : HP ........................... 100PFB-A (100-pin plastic-molded TQFP) Fig. 2 Pin configuration of M38258MCMXXXGP, M38258MCMXXXHP 2 XCIN PCH 3 4 5 6 7 8 9 10 I/O port P6 27 28 29 30 31 32 33 34 I/O port P7 36 37 I/O port P8 92 93 VREF AVSS (0 V) TOUT 40 91 P5 (8) I/O port P5 I/O port P4 P3 (8) Output port P3 65 66 67 68 69 70 71 72 SI/O (8) 19 20 21 22 23 24 25 26 P4 (8) ROM Timer X (16) Timer Y (16) Timer 1 (8) Timer 2 (8) Timer 3 (8) Data bus (0 V) VSS (5 V) VCC CNTR0, CNTR1 RTP0, RTP1 PS PCL S Y X A 35 11 12 13 14 15 16 17 18 CPU A-D converter (8) P6 (8) φ P7 (8) XCOUT Subclock output P8 (2) XCOUT XCIN Subclock input Clock generating circuit 39 38 ADT Reset input RESET INT2 , INT3 Clock output XOUT INT0, INT1 Clock input XIN Real time port function FUNCTIONAL BLOCK DIAGRAM (Package : 100P6S-A) I/O port P2 41 42 43 44 45 46 47 48 P2 (8) LCD display RAM (20 bytes) RAM Key-on wake up Output port P1 49 50 51 52 53 54 55 56 P1 (8) Output port P0 57 58 59 60 61 62 63 64 P0 (8) LCD drive control circuit 2 1 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 90 89 88 87 86 85 74 73 76 75 80 79 78 77 82 81 84 83 95 94 COM0 COM1 COM2 COM3 VL1 C1 C2 VL2 VL3 97 96 99 98 100 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Fig. 3 Functional block diagram. 3 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PIN DESCRIPTION Table 1. Pin description (1) Pin Name Function Function except a port function VCC, VSS Power source • Apply voltage of 2.2 V to 5.5 V to VCC, and 0 V to VSS. VREF Analog reference voltage • Reference voltage input pin for A-D converter. AVSS Analog power source • GND input pin for A-D converter. • Connect to VSS. RESET Reset input • Reset input pin for active “L” XIN Clock input XOUT Clock output • Input and output pins for the main clock generating circuit. • Feedback resistor is built in between XIN pin and XOUT pin. • Connect a ceramic resonator or a quartz-crystal oscillator between the XIN and XOUT pins to set the oscillation frequency. • If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open. • This clock is used as the oscillating source of system clock. VL1 – VL3 LCD power source • Input 0 ≤ VL1 ≤ VL2 ≤ VL3 ≤ VCC voltage • Input 0 – VL3 voltage to LCD C 1 , C2 Charge-pump capacitor pin • External capacitor pins for a voltage multiplier (3 times) of LCD contorl. COM0 – COM3 Common output • LCD common output pins • COM2 and COM3 are not used at 1/2 duty ratio. • COM3 is not used at 1/3 duty ratio. SEG0 – SEG17 Segment output • LCD segment output pins P00/SEG26 – P07/SEG33 Output port P0 • • • • 8-bit output port CMOS 3-state output structure Pull-down control is enabled. Port output control is enabled. P10/SEG34 – P15/SEG39 Output port P1 • • • • 6-bit output port CMOS 3-state output structure Pull-down control is enabled. Port output control is enabled. P16, P17 I/O port P1 • • • • • 2-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled. P20 – P27 I/O port P2 • • • • 8-bit Input port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • Key input (key-on wake up) interrupt input pins P30/SEG18 – P37/SEG25 Output port P3 • • • • • LCD segment pins 4 8-bit output port CMOS 3-state output structure Pull-down control is enabled. Port output control is enabled. • LCD segment pins MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 2. Pin description (2) Pin Function Name Function except a port function P40/f(XIN)/ f(XIN)/2, P41/f(XIN)/5/ f(XIN)/10 I/O port P4 P42/INT0, P43/INT1 • • • • 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • Interrupt input pins • Serial I/O function pins P44/RXD, P45/TXD, P46/SCLK, P47/SRDY P50/INT2, P51/INT3 • Clock output pins I/O port P5 P52/RTP0, P53/RTP1 • • • • 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • Interrupt input pins • Real time port function pins P54/CNTR0, P55/CNTR1 • Timers X, Y functions pins P56/TOUT • Timer 2 output pin P57/ADT • A-D trigger input pin P60/AN0– P67/AN7 I/O port P6 • • • • P70 Input port P7 • 1-bit input port • CMOS compatible input level P71–P77 I/O port P7 • • • • • P80/XCOUT, P81/XCIN I/O port P8 • • • • 8-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. • A-D conversion input pins 7-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. Pull-up control is enabled. 2-bit I/O port CMOS compatible input level CMOS 3-state output structure I/O direction register allows each pin to be individually programmed as either input or output. • Pull-up control is enabled. •Sub-clock generating circuit I/O pins (Connect a resonator. External clock cannot be used.) 5 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PART NUMBERING Product M3825 8 M C M XXX HP Package type FP : 100P6S-A package HP : 100PFB-A package GP : 100P6Q-A package FS : 100D0 package ROM number Omitted in One Time PROM version shipped in blank and EPROM version. Normally, using hyphen When electrical characteristic, or division of quality identification code using alphanumeric character – : Standard D : Extended operating temperature version M : Low power source version ROM/PROM size 1 : 4096 bytes 2 : 8192 bytes 3 : 12288 bytes 4 : 16384 bytes 5 : 20480 bytes 6 : 24576 bytes 7 : 28672 bytes 8 : 32768 bytes 9 : 36864 bytes A : 40960 bytes B : 45056 bytes C : 49152 bytes D : 53248 bytes E : 57344 bytes F : 61440 bytes The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they cannot be used. Memory type M : Mask ROM version E : EPROM or One Time PROM version RAM size 0 : 192 bytes 1 : 256 bytes 2 : 384 bytes 3 : 512 bytes 4 : 640 bytes 5 : 768 bytes 6 : 896 bytes 7 : 1024 bytes 8 : 1536 bytes 9 : 2048 bytes Fig. 4 Part numbering 6 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION Packages Mitsubishi plans to expand the 3825 group as follows. 100PFB-A ................................ 0.4 mm-pitch plastic molded TQFP 100P6Q-A ................................ 0.5 mm-pitch plastic molded LQFP 100P6S-A ................................ 0.65 mm-pitch plastic molded QFP 100D0 .......................................... Ceramic QFN (EPROM version) Memory Type Support for mask ROM, One Time PROM, and EPROM versions. Memory Size ROM/PROM size ................................................ 16 K to 60 Kbytes RAM size ............................................................ 640 to 2048 bytes Memory Expansion Plan Mass product ROM size (bytes) M38259EF 60K 56K 52K 48K 44K 40K 36K Mass product 32K 28K M38257M8/E8 Mass product M38254M6 24K 20K Mass product M38254M4 16K 12K 8K 4K 256 512 640 768 1,024 1,536 2,048 RAM size (bytes) Fig. 5 Memory expansion plan 7 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Currently supported products are listed below. As of June 1999 Table 3. List of supported products Product (P) ROM size (bytes) ROM size for User in ( ) RAM size (bytes) M38254M4-XXXFP M38254M4-XXXGP M38254M6-XXXFP M38254M6-XXXGP M38257M8-XXXFP M38257E8-XXXFP M38257E8FP M38257M8-XXXGP M38257E8-XXXGP M38257E8GP M38257E8FS M38259EF-XXXFP M38259EFFP M38259EF-XXXHP M38259EFHP M38259EF-XXXGP M38259EFGP M38259EFFS 16384 (16254) 640 24576 (24446) 640 8 Package Remarks 100P6S-A Mask ROM version 100P6Q-A Mask ROM version 100P6S-A Mask ROM version 100P6Q-A Mask ROM version One Time PROM version One Time PROM version Mask ROM version 100P6Q-A One Time PROM version One Time PROM version 100D0 EPROM version One Time PROM version 100P6S-A One Time PROM version One Time PROM version 100PFB-A One Time PROM version One Time PROM version 100P6Q-A One Time PROM version EPROM version 100D0 100P6S-A 32768 (32638) 61440 (61310) 1024 2048 (blank) (blank) (blank) (blank) (blank) MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION (EXTENDED OPERATING TEMPERATURE VERSION) Mitsubishi plans to expand the 3825 group (extended operating temperature version) as follows. Memory Size ROM/PROM ........................................................ 16 K to 60 Kbytes RAM size ............................................................ 640 to 2048 bytes Packages Memory Type 100P6S-A ................................ 0.65 mm-pitch plastic molded QFP Support for mask ROM and One Time PROM versions. Memory Expansion Plan Mass product ROM size (bytes) M38259EFD 60K 56K 52K Mass product M38258MCD 48K 44K 40K 36K Mass product 32K 28K M38257M8D Mass product M38254M6D 24K 20K Mass product M38254M4D 16K 12K 8K 4K 256 512 640 768 1,024 1,536 2,048 RAM size (bytes) Fig. 6 Memory expansion plan for extended operating temperature version Currently supported products are listed below. Table 4. List of supported products for extended operating temperature version Product M38254M4DXXXFP M38254M6DXXXFP M38257M8DXXXFP M38258MCDXXXFP M38259EFDXXXFP M38259EFDFP (P) ROM size (bytes) ROM size for User in ( ) 16384 (16254) 24576 (24446) 32768 (32638) 49152 (49022) 61440 (61310) RAM size (bytes) Package Remarks 640 Mask ROM version 640 Mask ROM version 1024 100P6S-A As of June 1999 Mask ROM version 1536 Mask ROM version 2048 One Time PROM version One Time PROM version (blank) 9 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER GROUP EXPANSION (LOW POWER SOURCE VERSION) Memory Size ROM ................................................................................. 48 Kbytes RAM size ....................................................................... 1536 bytes Mitsubishi plans to expand the 3825 group (low power source version) as follows. Packages Memory Type 100PFB-A ................................ 0.4 mm-pitch plastic molded TQFP 100P6Q-A ................................ 0.5 mm-pitch plastic molded LQFP 100P6S-A ................................ 0.65 mm-pitch plastic molded QFP Support for mask ROM version. Memory Expansion Plan ROM size (bytes) 60K 56K Mass product 52K M38258MCM 48K 44K 40K 36K 32K 28K 24K 20K 16K 12K 8K 4K 256 512 768 1,024 1,536 2,048 RAM size (bytes) Fig. 7 Memory expansion plan for low power source version Currently supported products are listed below. As of June 1999 Table 5. List of supported products for low power source version Product (P) ROM size (bytes) ROM size for User in ( ) RAM size (bytes) M38258MCMXXXFP M38258MCMXXXHP M38258MCMXXXGP 10 Package Remarks 100P6S-A 49152 (49022) 1536 100PFB-A 100P6Q-A Mask ROM version MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER FUNCTIONAL DESCRIPTION CENTRAL PPROCESSING UNIT (CPU) [CPU Mode Register (CPUM)] 003B16 The 3825 group uses the standard 740 family instruction set. Refer to the 740 Family Software Manual for details on the instruction set. Machine-resident 740 family instructions are as follows: The FST and SLW instructions cannot be used. The STP, WIT, MUL, and DIV instructions can be used. b7 The CPU mode register is allocated at address 003B16. The CPU mode register contains the stack page selection bit and the internal system clock selection bit. b0 CPU mode register (CPUM (CM) : address 003B 16) Processor mode bits b1 b0 0 0 : Single-chip mode 0 1 : 1 0 : Not available 1 1 : Stack page selection bit 0 : 0 page 1 : 1 page Not used (returns “1” when read) (Do not write “0” to this bit) Port XC switch bit 0 : I/O port function (stop oscillating) 1 : XCIN –XCOUT oscillating function Main clock (X IN – XOUT ) stop bit 0 : Oscillating 1 : Stopped Main clock division ratio selection bit 0 : f(XIN )/2 (high-speed mode) 1 : f(XIN )/8 (middle-speed mode) Internal system clock selection bit 0 : XIN –XOUT selected (middle-/high-speed mode) 1 : XCIN –XCOUT selected (low-speed mode) Fig. 8 Structure of CPU mode register 11 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER MEMORY Special Function Register (SFR) Area The Special Function Register area in the zero page contains control registers such as I/O ports and timers. RAM RAM is used for data storage and for stack area of subroutine calls and interrupts. Zero Page The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area. The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode. Special Page ROM The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs. Interrupt Vector Area The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode. The interrupt vector area contains reset and interrupt vectors. RAM area 000016 RAM size (bytes) Address XXXX16 192 00FF 16 004016 256 013F 16 005416 384 01BF16 512 023F 16 640 02BF16 768 033F 16 896 03BF16 1024 043F 16 1536 063F 16 2048 083F 16 SFR area Zero page 010016 RAM XXXX16 Reserved area 084016 Not used ROM area ROM size (bytes) Address YYYY16 Address ZZZZ 16 4096 F000 16 F080 16 8192 E00016 E080 16 12288 D00016 D08016 16384 C00016 C08016 20480 B00016 B080 16 24576 A00016 A080 16 28672 900016 908016 32768 800016 808016 36864 700016 708016 40960 600016 608016 45056 500016 508016 49152 400016 408016 53248 300016 308016 57344 200016 208016 61440 100016 108016 Fig. 9 Memory map diagram 12 LCD display RAM area YYYY16 Reserved ROM area (128 bytes) ZZZZ 16 ROM FF0016 FFDC16 Interrupt vector area FFFE16 Reserved ROM area FFFF 16 Special page MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 000016 Port P0 (P0) 000116 002016 Timer X (low) (TXL) 002116 Timer X (high) (TXH) 000216 Port P1 (P1) 000316 Port P1 output control register (P1C) 002216 Timer Y (low) (TYL) 002316 Timer Y (high) (TYH) 000416 Port P2 (P2) 000516 Port P2 direction register (P2D) 002416 Timer 1 (T1) 000616 Port P3 (P3) 000716 000816 Port P4 (P4) 000916 Port P4 direction register (P4D) 002516 Timer 2 (T2) 002616 Timer 3 (T3) 002716 Timer X mode register (TXM) 002816 Timer Y mode register (TYM) 002916 Timer 123 mode register (T123M) 000A16 Port P5 (P5) 000B16 Port P5 direction register (P5D) 002A16 Clock output control register (TCON) 000C16 Port P6 (P6) 000D16 Port P6 direction register (P6D) 002C16 000E16 Port P7 (P7) 000F16 Port P7 direction register (P7D) 002E16 001016 Port P8 (P8) 003016 001116 Port P8 direction register (P8D) 003116 001216 003216 001316 003316 001416 003416 A-D control register (ADCON) 001516 003516 A-D conversion register (AD) 003616 001616 PULL register A (PULLA) 001716 PULL register B (PULLB) 001816 Transmit/Receive buffer register(TB/RB) 001916 Serial I/O status register (SIOSTS) 001A16 Serial I/O control register (SIO1CON) 001B16 UART control register (UARTCON) 001C16 Baud rate generator (BRG) 001D16 001E16 001F16 002B16 002D16 002F 16 003716 003816 Segment output enable register (SEG) 003916 LCD mode register (LM) 003A16 Interrupt edge selection register (INTEDGE) 003B16 CPU mode register (CPUM) 003C16 Interrupt request register 1(IREQ1) 003D16 Interrupt request register 2(IREQ2) 003E16 Interrupt control register 1(ICON1) 003F 16 Interrupt control register 2(ICON2) Fig. 10 Memory map of special function register (SFR) 13 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER I/O PORTS Direction Registers The 3825 group has 43 programmable I/O pins arranged in seven I/O ports (ports P16, P17 P2, P4–P6, P71–P77, P80 and P81). The I/O ports have direction registers which determine the input/output direction of each individual pin. (Ports P1 6 and P1 7 are shared with bits 6 and 7 of the port P1 output control register). Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port. When “0” is written to the bit corresponding to a pin, that pin becomes an input pin. When “1” is written to that bit, that pin becomes an output pin. If data is read from a pin set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating. Port P1 Output Control Register Bit 0 of the port P1 output control register (address 000316) enables control of the output of ports P10 to P15. When the bit is set to “1”, the port output function is valid. In this case, setting of the PULL register A to ports P10 to P15 is invalid. When resetting, bit 0 of the port P1 output control register is set to “0” (the port output function is invalid.) Pull-up/Pull-down Control By setting the PULL register A (address 001616) or the PULL register B (address 001716), ports P0 to P8 except P70 can control either pull-down or pull-up (pins that are shared with the segment output pins for LCD are pull-down; all other pins are pull-up) with a program. However, the contents of PULL register A and PULL register B do not affect ports programmed as the output ports. (except for ports P0 and P3). Ports P0 and P3 share the port output control function with bit 0 of the PULL register A. When set to “1”, the port output function is invalid (Pull-down is valid). When set to “0”, the port output function is valid (Pull-down is invalid). The PULL register A setting is invalid for pins set to segment output with the segment output enable register. 14 b7 b0 PULL register A (PULLA : address 0016 16) P0, P10–P15 , P3 pull-down (shared with P0 and P3 output control : refer to the text) P16 –P17 pull-up P20 –P27 pull-up P80 , P81 pull-up P40 –P43 pull-up P44 –P47 pull-up Not used (return “0” when read) b7 b0 PULL register B (PULLB : address 0017 16) P50 –P53 pull-up P54 –P57 pull-up P60 –P63 pull-up P64 –P67 pull-up P71 –P73 pull-up P74 –P77 pull-up Not used (return “0” when read) 0 : Disable 1 : Enable Note : The contents of PULL register A and PULL register B do not affect ports programmed as the output port. Fig. 11 Structure of PULL register A and PULL register B MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 6. I/O ports functions Pin P00/SEG26– P07/SEG33 Name Port P0 P10/SEG34– P15/SEG39 Input/Output I/O Format Non-Port Function Output CMOS 3-state output LCD segment output Output CMOS 3-state output LCD segment output Port P1 Input/output, individual bits CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output Related SFRs PULL register A Segment output enable register PULL register A Segment output enable register Port P1 output control register Diagram No. (1) (1) PULL register A (2) Key-on wake up interrupt input PULL register A Interrupt control register 2 (2) LCD segment output PULL register A Segment output enable register (1) Clock output Clock output control register PULL register A External interrupt input PULL register A Interrupt edge selection register P44/RXD P54/TXD P46/SCLK P47/SRDY Serial I/O function I/O PULL register A Serial I/O control register Serial I/O status register UART control register (3) (4) (5) (6) P50/INT2, P51/INT3 External interrupt input PULL register B Interrupt edge selection register (2) P52/RTP0, P53/RTP1 Real time port function output PULL register B Timer X mode register (7) Timer X function I/O PULL register B Timer X mode register (8) P55/CNTR1 Timer Y function input PULL register B Timer Y mode register (9) P56/TOUT Timer 2 output PULL register B Timer 123 mode register (8) P57/ADT A-D trigger input PULL register B A-D control register (9) A-D conversion input PULL register B A-D control register (10) P16 , P17 P20–P27 Port P2 Input/output, individual bits P30/SEG18– P37/SEG25 Port P3 Output CMOS 3-state output P40/f(XIN)/ f(XIN)/2, P41/f(XIN)/5/ f(XIN)/10 P42/INT0, P43/INT1 P54/CNTR0 P60/AN0– P67/AN7 Port P4 Port P5 Port P6 P70 Input/output, individual bits Input/output, individual bits Input/output, individual bits Input Port P7 P71–P77 P80/XCOUT Port P8 P81/XCIN Input/output, individual bits Input/output, individual bits CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS compatible input level CMOS 3-state output CMOS compatible input level CMOS 3-state output COM0–COM3 Common Output LCD common output SEG0–SEG17 Segment Output LCD segment output (2) (11) Sub-clock generating circuit PULL register B (12) PULL register A CPU mode register (13) LCD mode register (15) (14) (16) Note 1: When using double-function ports as functional I/O pins, refer the method to the relevant sections. 2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate. 15 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (1) Ports P0, P1 0–P15 , P3 LCD drive timing Segment data Data bus VL2/VL3/VCC Segment/Port Interface logic level shift circuit Port latch Segment VL1/VSS Port Port/Segment Port ON/OFF Pull-down (2) Ports P1 6, P17 , P2, P40 –P43 , P50 , P51 (3) Port P44 Pull-up control Pull-up control Serial I/O enable bit Reception enable bit Direction register Data bus Direction register Port latch Data bus Port latch Key-on wake up interrupt input INT0 –INT3 interrupt input Serial I/O input Except P16 , P17 , P40 , P41 (4) Port P45 (5) Port P46 Pull-up control P45 /TXD P-channel output disable bit Serial I/O enable bit Transmission enable bit Direction register Data bus Serial I/O synchronization clock selection bit Serial I/O enable bit Pull-up control Serial I/O mode selection bit Serial I/O enable bit Direction register Port latch Data bus Serial I/O output Port latch Serial I/O clock output Serial I/O clock input (6) Port P47 (7) Ports P52 , P53 Serial I/O mode selection bit Serial I/O enable bit SRDY output enable bit Direction register Data bus Port latch Serial I/O ready output Fig. 12 Port block diagram (1) 16 Pull-up control Pull-up control Direction register Data bus Port latch Real time control bit Real time port data MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER (8) Ports P54 , P56 (9) Ports P55 , P57 Pull-up control Pull-up control Direction register Direction register Data bus Port latch Data bus Port latch Pulse output mode Timer output CNTR1 interrupt input A-D trigger interrupt input CNTR0 interrupt input P54 only (10) Port P6 Pull-up control (11) Port P70 Direction register Data bus Port latch A-D conversion input Analog input pin selection bit Data bus (12) Ports P71 –P77 Port selection/Pull-up control (13) Port P80 Direction register Data bus Port selection/Pull-up control Port XC switch bit Direction register Port latch Data bus Port latch (14) Port P81 Port selection/Pull-up control Oscillation circuit Port P81 Port XC switch bit Direction register Port XC switch bit Port latch Data bus (15) COM0–COM3 VL3 Sub-clock generating circuit input VL2 VL1 The gate input signal of each transistor is controlled by the LCD duty ratio and the bias value. (16) SEG0 –SEG17 VL2/VL3 VL1/VSS The voltage applied to the sources of P-channel and N-channel transistors is the controlled voltage by the bias value. VSS Fig. 13 Port block diagram (2) 17 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER INTERRUPTS Interrupt Operation Interrupts occur by seventeen sources: eight external, eight internal, and one software. By acceptance of an interrupt, the following operations are automatically performed: 1. The contents of the program counter and the processor status register are automatically pushed onto the stack. 2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared. 3. The interrupt jump destination address is read from the vector table into the program counter. Interrupt Control Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are “1” and the interrupt disable flag is “0”. Interrupt enable bits can be set or cleared by software. Interrupt request bits can be cleared by software, but cannot be set by software. The BRK instruction cannot be disabled with any flag or bit. The I flag disables all interrupts except the BRK instruction interrupt. When several interrupts occur at the same time, the interrupts are received according to priority. ■Notes When the active edge of an external interrupt (INT0–INT3, CNTR0, or CNTR 1) is changed, the corresponding interrupt request bit may also be set. Therefore, please take following sequence: (1) Disable the external interrupt which is selected (2) Change the active edge selection (use the timer X mode register for CNTR0, the timer Y mode register for CNTR1) (3) Clear the interrupt request bit which is selected to “0” (4) Enable the external interrupt which is selected. Table 7. Interrupt vector addresses and priority Interrupt Source Priority Vector Addresses (Note 1) High Low FFFD16 FFFC16 Reset (Note 2) 1 INT0 2 FFFB16 FFFA16 INT1 3 FFF916 FFF816 Serial I/O reception 4 FFF716 FFF616 Serial I/O transmission 5 FFF516 FFF416 Timer X Timer Y Timer 2 Timer 3 6 7 8 9 FFF316 FFF116 FFEF16 FFED16 FFF216 FFF016 FFEE16 FFEC16 CNTR0 10 FFEB16 FFEA16 CNTR1 11 FFE916 FFE816 Timer 1 12 FFE716 FFE616 INT2 13 FFE516 FFE416 INT3 14 FFE316 FFE216 Key input (Key-on wake up) 15 FFE116 FFE016 At detection of either rising or falling edge of INT1 input At completion of serial I/O data reception At completion of serial I/O transmit shift or when transmission buffer is empty At timer X underflow At timer Y underflow At timer 2 underflow At timer 3 underflow At detection of either rising or falling edge of CNTR0 input At detection of either rising or falling edge of CNTR1 input At timer 1 underflow At detection of either rising or falling edge of INT2 input At detection of either rising or falling edge of INT3 input At falling of conjunction of input level for port P2 (at input mode) At falling of ADT input ADT 16 FFDF16 FFDE16 A-D conversion BRK instruction Interrupt Request Generating Conditions At reset At detection of either rising or falling edge of INT0 input At completion of A-D conversion 17 FFDD16 FFDC16 At BRK instruction execution Notes 1: Vector addresses contain interrupt jump destination addresses. 2: Reset function in the same way as an interrupt with the highest priority. 18 Remarks Non-maskable External interrupt (active edge selectable) External interrupt (active edge selectable) Valid when serial I/O is selected Valid when serial I/O is selected External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (active edge selectable) External interrupt (valid when an “L” level is applied) Valid when ADT interrupt is selected External interrupt (Valid at falling) Valid when A-D interrupt is selected Non-maskable software interrupt MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Interrupt request bit Interrupt enable bit Interrupt disable flag (I) Interrupt request BRK instruction Reset Fig. 14 Interrupt control b7 b0 Interrupt edge selection register (INTEDGE : address 003A 16) INT0 interrupt edge selection bit INT1 interrupt edge selection bit INT2 interrupt edge selection bit INT3 interrupt edge selection bit Not used (return “0” when read) b7 b0 0 : Falling edge active 1 : Rising edge active Interrupt request register 1 (IREQ1 : address 003C 16 ) b7 b0 INT0 interrupt request bit INT1 interrupt request bit Serial I/O receive interrupt request bit Serial I/O transmit interrupt request bit Timer X interrupt request bit Timer Y interrupt request bit Timer 2 interrupt request bit Timer 3 interrupt request bit Interrupt request register 2 (IREQ2 : address 003D 16 ) CNTR0 interrupt request bit CNTR1 interrupt request bit Timer 1 interrupt request bit INT2 interrupt request bit INT3 interrupt request bit Key input interrupt request bit ADT/AD conversion interrupt request bit Not used (returns “0” when read) 0 : No interrupt request issued 1 : Interrupt request issued b7 b0 Interrupt control register 1 (ICON1 : address 003E 16) INT0 interrupt enable bit INT1 interrupt enable bit Serial I/O receive interrupt enable bit Serial I/O transmit interrupt enable bit Timer X interrupt enable bit Timer Y interrupt enable bit Timer 2 interrupt enable bit Timer 3 interrupt enable bit b7 b0 Interrupt control register 2 (ICON2 : address 003F 16) CNTR0 interrupt enable bit CNTR1 interrupt enable bit Timer 1 interrupt enable bit INT2 interrupt enable bit INT3 interrupt enable bit Key input interrupt enable bit ADT/AD conversion interrupt enable bit Not used (returns “0” when read) (Do not write “1” to this bit) 0 : Interrupts disabled 1 : Interrupts enabled Fig. 15 Structure of interrupt-related registers 19 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Key Input Interrupt (Key-on Wake Up) A Key-on wake up interrupt request is generated by applying a falling edge to any pin of port P2 that have been set to input mode. In other words, it is generated when AND of input level goes from “1” to “0”. An example of using a key input interrupt is shown in Figure 16, where an interrupt request is generated by pressing one of the keys consisted as an active-low key matrix which inputs to ports P20–P23. Port PXx "L" level output PULL register A Bit 2 = "1" ✽ Port P2 7 direction register = "1" ✽✽ Key input interrupt request Port P27 latch P27 output ✽ Port P26 direction register = "1" ✽✽ Port P26 latch P26 output Port P25 direction register = "1" ✽ ✽✽ Port P25 latch ✽ ✽✽ Port P24 latch P25 output Port P24 direction register = "1" P24 output ✽ Port P23 direction register = "0" ✽✽ P23 input ✽ Port P22 direction register = "0" ✽✽ P22 input Port P22 latch Port P21 direction register = "0" ✽ ✽✽ ✽ ✽✽ P21 input P20 input Port P2 Input reading circuit Port P23 latch Port P21 latch Port P20 direction register = "0" Port P20 latch ✽ P-channel transistor for pull-up ✽ ✽ CMOS output buffer Fig. 16 Connection example when using key input interrupt and port P2 block diagram 20 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMERS Read and write operation on 16-bit timer must be performed for both high- and low-order bytes. When reading a 16-bit timer, read the high-order byte first. When writing to a 16-bit timer, write the low-order byte first. The 16-bit timer cannot perform the correct operation when reading during the write operation, or when writing during the read operation. The 3825 group has five timers: timer X, timer Y, timer 1, timer 2, and timer 3. Timer X and timer Y are 16-bit timers, and timer 1, timer 2, and timer 3 are 8-bit timers. All timers are down count timers. When the timer reaches “00 16”, an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to “1”. Real time port control bit “1” Data bus Q D P52 P52 data for real time port Latch P52 direction register “0” P52 latch Real time port control bit “1” Q D P53 P53 data for real time port Real time port control bit “0” Latch P53 direction register “0” P53 latch Timer X mode register write signal “1” f(XIN )/16 (f(XIN )/16 in low-speed mode ✽) P54 /CNTR0 Timer X stop control bit Timer X operating mode bit “00”,“01”,“11” CNTR0 active edge switch bit “0” “10” “1” Pulse width measurement mode CNTR0 active edge switch bit “0” Timer X write control bit Timer X (low) latch (8) Timer X (high) latch (8) Timer X (low) (8) Timer X (high) (8) CNTR0 interrupt request Pulse output mode QS Timer Y operating mode bit “00”,“01”,“10” T “1” Q P54 direction register Pulse width HL continuously measurement mode P54 latch Period measurement mode Falling edge detection P55 /CNTR1 f(XIN )/16 (f(XCIN )✕16 in low-speed mode ✽) Timer Y stop control bit Timer Y (low) latch (8) “00”,“01”,“11” Timer Y (high) latch (8) Timer Y (low) (8) Timer Y (high) (8) “10” Timer Y operating mode bit “1” f(X IN )/16 (f(XCIN )✕16 in low-speed mode ✽) Timer 1 count source selection bit “0” Timer 1 latch (8) XCIN CNTR1 interrupt request “11” Rising edge detection Pulse output mode CNTR1 active edge switch bit “0” Timer X interrupt request Timer 2 count source selection bit Timer 2 latch (8) “0” Timer 1 (8) “1” Timer 2 (8) “1” Timer 2 write control bit Timer Y interrupt request Timer 1 interrupt request Timer 2 interrupt request f(XIN)/16 (f(XCIN )✕16 in low-speed mode✽) TOUT output active edge switch bit “0” P56/TOUT TOUT output control bit QS T “1” Q P56 latch P56 direction register TOUT output control bit f(XIN )/16(f(XCIN )/16 in low-speed mode ✽) ✽Internal clock φ = XCIN /2. “0” Timer 3 latch (8) Timer 3 (8) “1” Timer 3 count source selection bit Timer 3 interrupt request Fig. 17 Timer block diagram 21 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Timer X Timer X is a 16-bit timer that can be selected in one of four modes and can be controlled the timer X write and the real time port by setting the timer X mode register. (1) Timer mode The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode). (2) Pulse output mode Each time the timer underflows, a signal output from the CNTR0 pin is inverted. Except for this, the operation in pulse output mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to output mode. (3) Event counter mode The timer counts signals input through the CNTR0 pin. Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P54 direction register to input mode. (4) Pulse width measurement mode The count source is f(XIN)/16 (or f(XCIN)/16 in low-speed mode. If CNTR0 active edge switch bit is “0”, the timer counts while the input signal of CNTR0 pin is at “H”. If it is “1”, the timer counts while the input signal of CNTR0 pin is at “L”. When using a timer in this mode, set the corresponding port P54 direction register to input mode. ●Timer X Write Control If the timer X write control bit is “0”, when the value is written in the address of timer X, the value is loaded in the timer X and the latch at the same time. If the timer X write control bit is “1”, when the value is written in the address of timer X, the value is loaded only in the latch. The value in the latch is loaded in timer X after timer X underflows. If the value is written in latch only, when writing in the timer latch at the timer underflow, the value is set in the timer and the latch at one time. Additionally, unexpected value may be set in the high-order counter when the writing in high-order latch and the underflow of timer X are performed at the same timing. ●Real Time Port Control While the real time port function is valid, data for the real time port are output from ports P5 2 and P5 3 each time the timer X underflows. (However, if the real time port control bit is changed from “0” to “1” after set of the real time port data, data are output independent of the timer X operation.) If the data for the real time port is changed while the real time port function is valid, the changed data are output at the next underflow of timer X. Before using this function, set the corresponding port direction registers to output mode. ■Note on CNTR0 interrupt active edge selection CNTR0 interrupt active edge depends on the CNTR 0 active edge switch bit. 22 b7 b0 Timer X mode register (TXM : address 0027 16) Timer X write control bit 0 : Write value in latch and counter 1 : Write value in latch only Real time port control bit 0 : Real time port function invalid 1 : Real time port function valid P52 data for real time port P53 data for real time port Timer X operating mode bits b5 b4 0 0 : Timer mode 0 1 : Pulse output mode 1 0 : Event counter mode 1 1 : Pulse width measurement mode CNTR0 active edge switch bit 0 : Count at rising edge in event counter mode Start from “H” output in pulse output mode Measure “H” pulse width in pulse width measurement mode Falling edge active for CNTR 0 interrupt 1 : Count at falling edge in event counter mode Start from “L” output in pulse output mode Measure “L” pulse width in pulse width measurement mode Rising edge active for CNTR 0 interrupt Timer X stop control bit 0 : Count start 1 : Count stop Fig. 18 Structure of timer X mode register MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Timer Y Timer Y is a 16-bit timer that can be selected in one of four modes. (1) Timer mode The timer counts f(XIN)/16 (or f(XCIN)/16 in low-speed mode). (2) Period measurement mode CNTR 1 interrupt request is generated at rising/falling edge of CNTR1 pin input signal. Simultaneously, the value in timer Y latch is reloaded in timer Y and timer Y continues counting down/Except for the above-mentioned, the operation in period measurement mode is the same as in timer mode. The timer value just before the reloading at rising/falling of CNTR1 pin input signal is retained until the timer Y is read once after the reload. The rising/falling timing of CNTR 1 pin input signal is found by CNTR1 interrupt. When using a timer in this mode, set the corresponding port P55 direction register to input mode. (3) Event counter mode The timer counts signals input through the CNTR1 pin. Except for this, the operation in event counter mode is the same as in timer mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode. b7 b0 Timer Y mode register (TYM : address 0028 16) Not used (return “0” when read) Timer Y operating mode bits b5 b4 0 0 : Timer mode 0 1 : Period measurement mode 1 0 : Event counter mode 1 1 : Pulse width HL continuously measurement mode CNTR1 active edge switch bit 0 : Count at rising edge in event counter mode Measure the falling edge to falling edge period in period measurement mode Falling edge active for CNTR 1 interrupt 1 : Count at falling edge in event counter mode Measure the rising edge period in period measurement mode Rising edge active for CNTR 1 interrupt Timer Y stop control bit 0 : Count start 1 : Count stop Fig. 19 Structure of timer Y mode register (4) Pulse width HL continuously measurement mode CNTR 1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode. When using a timer in this mode, set the corresponding port P55 direction register to input mode. ■Note on CNTR1 interrupt active edge selection CNTR1 interrupt active edge depends on the CNTR 1 active edge switch bit. However, in pulse width HL continuously measurement mode, CNTR 1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit. 23 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Timer 1, Timer 2, Timer 3 Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for each timer can be selected by timer 123 mode register. The timer latch value is not affected by a change of the count source. However, because changing the count source may cause an inadvertent count down of the timer, rewrite the value of timer whenever the count source is changed. ●Timer 2 Write Control If the timer 2 write control bit is “0”, when the value is written in the address of timer 2, the value is loaded in the timer 2 and the latch at the same time. If the timer 2 write control bit is “1”, when the value is written in the address of timer 2, the value is loaded only in the latch. The value in the latch is loaded in timer 2 after timer 2 underflows. ●Timer 2 Output Control When the timer 2 (T OUT) is output enabled, an inversion signal from pin TOUT is output each time timer 2 underflows. In this case, set the port P56 shared with the TOUT pin to the output mode. ■Note on Timer 1 to Timer 3 When the count source of timers 1 to 3 is changed, the timer counting value may be changed large because a thin pulse is generated in count input of timer . If timer 1 output is selected as the count source of timer 2 or timer 3, when timer 1 is written, the counting value of timer 2 or timer 3 may be changed large because a thin pulse is generated in timer 1 output. Therefore, set the value of timer in the order of timer 1, timer 2 and timer 3 after the count source selection of timer 1 to 3. 24 b7 b0 Timer 123 mode register (T123M :address 0029 16) TOUT output active edge switch bit 0 : Start at “H” output 1 : Start at “L” output TOUT output control bit 0 : TOUT output disabled 1 : TOUT output enabled Timer 2 write control bit 0 : Write data in latch and counter 1 : Write data in latch only Timer 2 count source selection bit 0 : Timer 1 output 1 : f(XIN )/16 (or f(X CIN )/16 in low-speed mode) Timer 3 count source selection bit 0 : Timer 1 output 1 : f(XIN )/16 (or f(X CIN )/16 in low-speed mode) Timer 1 count source selection bit 0 : f(XIN )/16 (or f(X CIN )/16 in low-speed mode) 1 : f(XCIN ) Not used (return “0” when read) Note : Internal clock φ is f(XCIN)/2 in the low-speed mode. Fig. 20 Structure of timer 123 mode register MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER SERIAL I/O (1) Clock Synchronous Serial I/O Mode Serial I/O can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer (baud rate generator) is also provided for baud rate generation. Clock synchronous serial I/O mode can be selected by setting the mode selection bit of the serial I/O control register to “1”. For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB (address 001816). Data bus Serial I/O control register Address 0018 16 Receive buffer Receive buffer full flag (RBF) Receive shift register P44/RXD Address 001A16 Receive interrupt request (RI) Shift clock Clock control circuit P46/SCLK f(XIN ) BRG count source selection bit Baud rate generator (f(XCIN ) in low-speed mode) P47 /SRDY Serial I/O synchronization clock selection bit Frequency division ratio 1/(n+1) F/F 1/4 Address 001C 16 1/4 Clock control circuit Falling-edge detector Transmit shift register shift completion flag (TSC) Transmit interrupt source selection bit Transmit interrupt request (TI) Shift clock P45 /TXD Transmit shift register Transmit buffer register (TB) Address 0018 16 Transmit buffer empty flag (TBE) Address 0019 16 Serial I/O status register Data bus Fig. 21 Block diagram of clock synchronous serial I/O Transfer shift clock (1/2 to 1/2048 of the internal clock, or an external clock) Serial output T XD D0 D1 D2 D3 D4 D5 D6 D7 Serial input R XD D0 D1 D2 D3 D4 D5 D6 D7 Receive enable signal S RDY Write signal to receive/transmit buffer register (address 0018 16) TBE = 0 TBE = 1 TSC = 0 RBF = 1 TSC = 1 Overrun error (OE) detection Notes 1 : The transmit interrupt (TI) can be generated either when the transmit buffer register has emptied (TBE = 1 or after the transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O control register. 2 : If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data is output continuously from the T XD pin. 3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” . Fig. 22 Operation of clock synchronous serial I/O function 25 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ter, but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer, and receive data is read from the receive buffer. The transmit buffer can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received. (2) Asynchronous Serial I/O (UART) Mode Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit of the serial I/O control register to “0”. Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical. The transmit and receive shift registers each have a buffer regis- Data bus Address 0018 16 P44 /RXD Serial I/O control register Address 001A 16 Receive buffer OE Character length selection bit 7 bits STdetector Receive shift register Receive buffer full flag (RBF) Receive interrupt request (RI) 1/16 8 bits PE FE UART control register Address 001B 16 SP detector Clock control circuit Serial I/O synchronization clock selection bit P46/SCLK f(XIN ) BRG count source selection bit ( f(XCIN ) in lowspeed mode) 1/4 Frequency division ratio 1/(n+1) Baud rate generator Address 001C 16 ST/SP/PA generator Transmit shift register shift completion flag (TSC) 1/16 P45 /TXD Transmit shift register Transmit interrupt source selection bit Transmit interrupt request (TI) Character length selection bit Transmit buffer register Address 0018 16 Transmit buffer empty flag (TBE) Serial I/O status register Address 0019 16 Data bus Fig. 23 Block diagram of UART serial I/O Transmit or receive clock Transmit buffer write signal TBE=0 TSC=0 TBE=1 Serial output T XD TBE=0 TSC=1✽ TBE=1 ST D0 D1 SP ST D0 1 start bit 7 or 8 data bits 1 or 0 parity bit 1 or 2 stop bit (s) Receive buffer read signal ✽Generated RBF=0 RBF=1 Serial input R XD ST D0 D1 D1 SP ST D0 D1 SP at 2nd bit in 2-stop-bit mode RBF=1 SP Notes 1 : Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception). 2 : The transmit interrupt (TI) can be generated to occur when either the TBE or TSC flag becomes “1”, depending on the setting of the transmit interrupt source selection bit (TIC) of the serial I/O control register. 3 : The receive interrupt (RI) is set when the RBF flag becomes “1”. 4 : After data is written to the transmit buffer register when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0. Fig. 24 Operation of UART serial I/O function 26 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER [Transmit Buffer/Receive Buffer Register (TB/ RB)] 001816 The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer register is writeonly and the receive buffer register is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer register is “0”. [Serial I/O Status Register (SIOSTS)] 001916 The read-only serial I/O status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors. Three of the flags (bits 4 to 6) are valid only in UART mode. The receive buffer full flag (bit 1) is cleared to “0” when the receive buffer is read. If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of the Serial I/O Control Register) also clears all the status flags, including the error flags. All bits of the serial I/O status register are initialized to “0” at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to “1”, the transmit shift register shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become “1”. [Serial I/O Control Register (SIOCON)] 001A16 The serial I/O control register contains eight control bits for the serial I/O function. [UART Control Register (UARTCON)] 001B16 The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P45/TXD pin. [Baud Rate Generator (BRG)] 001C16 The baud rate generator determines the baud rate for serial transfer. The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate generator. 27 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER b7 b0 Serial I/O status register (SIOSTS : address 0019 16) Transmit buffer empty flag (TBE) 0: Buffer full 1: Buffer empty b0 Serial I/O control register (SIOCON : address 001A 16) BRG count source selection bit (CSS) 0: f(XIN ) (f(XCIN in low-speed mode) 1: f(XIN )/4 (f(XCIN )/4 in low-speed mode) Transmit shift register shift completion flag (TSC) 0: Transmit shift in progress 1: Transmit shift completed Overrun error flag (OE) 0: No error 1: Overrun error SRDY output enable bit (SRDY) 0: P47 pin operates as ordinary I/O pin 1: P47 pin operates as S RDY output pin Parity error flag (PE) 0: No error 1: Parity error Transmit interrupt source selection bit (TIC) 0: Interrupt when transmit buffer has emptied 1: Interrupt when transmit shift operation is completed Framing error flag (FE) 0: No error 1: Framing error Transmit enable bit (TE) 0: Transmit disabled 1: Transmit enabled Summing error flag (SE) 0: (OE) U (PE) U (FE) =0 1: (OE) U (PE) U (FE) =1 Receive enable bit (RE) 0: Receive disabled 1: Receive enabled Not used (returns “1” when read) Serial I/O mode selection bit (SIOM) 0: Asynchronous serial I/O (UART) 1: Clock synchronous serial I/O UART control register (UARTCON : address 001B 16) Character length selection bit (CHAS) 0: 8 bits 1: 7 bits Parity enable bit (PARE) 0: Parity checking disabled 1: Parity checking enabled Parity selection bit (PARS) 0: Even parity 1: Odd parity Stop bit length selection bit (STPS) 0: 1 stop bit 1: 2 stop bits P45 /TXD P-channel output disable bit (POFF) 0: CMOS output (in output mode) 1: N-channel open-drain output (in output mode) Not used (return “1” when read) Fig. 25 Structure of serial I/O control registers 28 b0 Serial I/O synchronization clock selection bit (SCS) 0: BRG output divided by 4 when clock synchronized serial I/O is selected. BRG output divided by 16 when UART is selected. 1: External clock input when clock synchronized serial I/O is selected. External clock input divided by 16 when UART is selected. Receive buffer full flag (RBF) 0: Buffer empty 1: Buffer full b7 b7 Serial I/O enable bit (SIOE) 0: Serial I/O disabled (pins P44 –P47 operate as ordinary I/O pins) 1: Serial I/O enabled (pins P44 –P47 operate as serial I/O pins) MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER A-D CONVERTER Comparator and Control Circuit The functional blocks of the A-D converter are described below. The comparator and control circuit compare an analog input voltage with the comparison voltage and store the result in the A-D conversion register. When an A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to “1”. Note that the comparator is constructed linked to a capacitor, so set f(XIN) to at least 500kHz during A-D conversion. Use the clock divided from the main clock XIN as the internal clock φ. [A-D Conversion Register (AD)] 003516 The A-D conversion register is a read-only register that contains the result of an A-D conversion. When reading this register during an A-D conversion, the previous conversion result is read. [A-D Control Register (ADCON)] 003416 The A-D control register controls the A-D conversion process. Bits 0 to 2 of this register select specific analog input pins. Bit 3 signals the completion of an A-D conversion. The value of this bit remains at “0” during an A-D conversion, then changes to “1” when the AD conversion is completed. Writing “0” to this bit starts the A-D conversion. Bit 4 controls the transistor which breaks the through current of the resistor ladder. When bit 5, which is the AD external trigger valid bit, is set to “1”, this bit enables A-D conversion even by a falling edge of an ADT input. Set ports which share with ADT pins to input when using an A-D external trigger. b7 b0 A-D control register (ADCON : address 0034 16) Analog input pin selection bits 0 0 0 : P60 /AN0 0 0 1 : P61 /AN1 0 1 0 : P62 /AN2 0 1 1 : P63 /AN3 1 0 0 : P64 /AN4 1 0 1 : P65 /AN5 1 1 0 : P66 /AN6 1 1 1 : P67 /AN7 AD conversion completion bit 0 : Conversion in progress 1 : Conversion completed VREF input switch bit 0 : OFF 1 : ON AD external trigger valid bit 0 : A-D external trigger invalid 1 : A-D external trigger valid Interrupt source selection bit 0 : Interrupt request at A-D conversion completed 1 : Interrupt request at ADT input falling Not used (returns “0” when read) Comparison Voltage Generator The comparison voltage generator divides the voltage between AVSS and VREF by 256, and outputs the divided voltages. Channel Selector The channel selector selects one of the input ports P6 7/AN7–P60/ AN0. Fig. 26 Structure of A-D control register Data bus b0 b7 A-D control register P57/ADT 3 ADT/A-D interrupt request A-D control circuit P61/AN1 P62/AN2 P63/AN3 P64/AN4 P65/AN5 Channel selector P60/AN0 Comparator A-D conversion register 8 Resistor ladder P66/AN6 P67/AN7 AVSS VREF Fig. 27 A-D converter block diagram 29 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER LCD DRIVE CONTROL CIRCUIT The 3825 group has the built-in Liquid Crystal Display (LCD) drive control circuit consisting of the following. LCD display RAM Segment output enable register LCD mode register Voltage multiplier Selector Timing controller Common driver Segment driver Bias control circuit A maximum of 40 segment output pins and 4 common output pins can be used. Up to 160 pixels can be controlled for LCD display. When the LCD • • • • • • • • • b7 enable bit is set to “1” after data is set in the LCD mode register, the segment output enable register and the LCD display RAM, the LCD drive control circuit starts reading the display data automatically, performs the bias control and the duty ratio control, and displays the data on the LCD panel. Table 8. Maximum number of display pixels at each duty ratio Duty ratio 2 3 4 Maximum number of display pixel 80 dots or 8 segment LCD 10 digits 120 dots or 8 segment LCD 15 digits 160 dots or 8 segment LCD 20 digits b0 Segment output enable register (SEG : address 0038 16) Segment output enable bit 0 0 : Output ports P3 0 –P35 1 : Segment output SEG 18–SEG23 Segment output enable bit 1 0 : Output ports P3 6 , P37 1 : Segment output SEG 24,SEG25 Segment output enable bit 2 0 : Output ports P0 0 –P05 1 : Segment output SEG 26–SEG31 Segment output enable bit 3 0 : Output ports P0 6 ,P07 1 : Segment output SEG 32,SEG33 Segment output enable bit 4 0 : Output port P1 0 1 : Segment output SEG 34 Segment output enable bit 5 0 : Output ports P1 1 –P15 1 : Segment output SEG 35–SEG39 Not used (return “0” when read) (Do not write “1” to this bit) b7 b0 LCD mode register (LM : address 0039 16) Duty ratio selection bits 0 0 : Not used 0 1 : 2 duty (use COM 0 , COM1 ) 1 0 : 3 duty (use COM 0 –COM2 ) 1 1 : 4 duty (use COM 0 –COM3 ) Bias control bit 0 : 1/3 bias 1 : 1/2 bias LCD enable bit 0 : LCD OFF 1 : LCD ON Voltage multiplier control bit 0 : Voltage multiplier disable 1 : Voltage multiplier enable LCD circuit divider division ratio selection bits 0 0 : Clock input 0 1 : 2 division of Clock input 1 0 : 4 division of Clock input 1 1 : 8 division of Clock input LCDCK count source selection bit (Note) 0 : f(XCIN )/32 1 : f(XIN )/8192 (f(X CIN )/8192 in low-speed mode) Note : LCDCK is a clock for a LCD timing controller. Fig. 28 Structure of segment output enable register and LCD mode register 30 Level shift Level shift SEG0 SEG1 SEG2 SEG3 Segment Segment Segment Segment driver driver driver driver Level shift P30/SEG18 Level shift Bias control Bias control bit VSS VL1 VL2 VL3 C1 C2 Voltage multiplier control bit LCD display RAM P14/SEG38 P15/SEG39 Segment Segment driver driver Level shift Selector Selector Selector Selector Selector Selector Level shift Address 0053 16 Address 0041 16 Address 0040 16 Data bus Common driver Level Shift Common driver Level Shift Common driver Level Shift COM0 COM1 COM2 COM3 Common driver Level Shift 2 Timing controller 2 LCD circuit divider division ratio selection bits Duty ratio selection bits LCD enable bit LCDCK LCD divider “0” f(XIN )/8192 (f(XCIN )/8192 in lowspeed mode) LCDCK count source selection bit “1” f(XCIN )/ 32 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Fig. 29 Block diagram of LCD controller/driver 31 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Voltage Multiplier (3 Times) Table 9. Bias control and applied voltage to VL1–VL3 The voltage multiplier performs threefold boosting. This circuit inputs a reference voltage for boosting from LCD power input pin V L1. (However, when using a 1/2 bias, connect VL1 and VL2 and apply voltage by external resistor division.) The voltage multiplier control bit (bit 4 of the LCD mode register) controls the voltage multiplier. When voltage is input to the VL1 pin during operating the voltage multiplier, voltage that is twice as large as VL1 occurs at the VL2 pin, and voltage that is three times as large as VL1 occurs at the VL3 pin. When using the voltage multiplier; after applying 1.3 V ≤ Voltage ≤ 2.3 V to the V L1 pin, set the voltage multiplier control bit to “1” to select the voltage multiplier enable. When not using the voltage multiplier, apply proper voltage to the LCD power input pins (VL1–VL3). Bias value Voltage value VL3=VLCD VL2=2/3 VLCD VL1=1/3 VLCD VL3=VLCD VL2=VL1=1/2 VLCD 1/3 bias 1/2 bias Note : V LCD is the maximum value of supplied voltage for the LCD panel. Table 10. Duty ratio control and common pins used Duty ratio Bias Control and Applied Voltage to LCD Power Input Pins Duty ratio selection bit 2 Bit 1 0 Bit 0 1 3 4 1 1 0 1 Common pins used COM0, COM1 (Note 1) COM0–COM2 (Note 2) COM0–COM3 Notes 1: COM2 and COM3 are open 2: COM3 is open To the LCD power input pins (VL1–VL3), apply the voltage shown in Table 9 according to the bias value. Select a bias value by the bias control bit (bit 2 of the LCD mode register). Common Pin and Duty Ratio Control The common pins (COM0–COM3) to be used are determined by duty ratio. Select duty ratio by the duty ratio selection bits (bits 0 and 1 of the LCD mode register). Contrast control VL3 VL3 Contrast control VL3 R1 VL2 VL2 C2 C2 R4 VL2 Open C2 Open C1 Open R2 C1 C1 VL1 VL1 Open VL1 R3 R5 R1=R2=R3 1/3 bias when using the voltage multiplier Fig. 30 Example of circuit at each bias 32 1/3 bias when not using the voltage multiplier R4=R5 1/2 bias MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER LCD Display RAM LCD Drive Timing Address 004016 to 005316 is the designated RAM for the LCD display. When “1” are written to these addresses, the corresponding segments of the LCD display panel are turned on. The LCDCK timing frequency (LCD drive timing) is generated internally and the frame frequency can be determined with the following equation; f(LCDCK)= (frequency of count source for LCDCK) (divider division ratio for LCD) Frame frequency= f(LCDCK) duty ratio Bit 7 6 5 4 3 2 1 0 Address 004016 004116 COM3 COM2 COM1 COM0 COM3 COM2 COM1 COM0 SEG1 SEG0 SEG3 SEG2 004216 004316 004416 SEG5 SEG7 SEG9 SEG4 SEG6 SEG8 004516 004616 004716 004816 SEG11 SEG13 SEG10 SEG12 SEG15 SEG17 SEG19 SEG14 SEG16 SEG18 SEG21 SEG23 SEG25 SEG20 SEG22 SEG24 004F16 005016 005116 005216 SEG27 SEG29 SEG31 SEG33 SEG35 SEG37 SEG26 SEG28 SEG30 SEG32 SEG34 SEG36 005316 SEG39 SEG38 004916 004A16 004B16 004C16 004D16 004E16 Fig. 31 LCD display RAM map 33 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Internal logic LCDCK timing 1/4 duty Voltage level VL3 VL2=VL1 VSS COM0 COM1 COM2 COM3 VL3 VSS SEG0 OFF COM3 ON COM2 COM1 OFF COM0 COM3 ON COM2 COM1 COM0 1/3 duty VL3 VL2=VL1 VSS COM0 COM1 COM2 VL3 VSS SEG0 ON OFF COM0 COM2 ON COM1 OFF COM0 COM2 ON COM1 OFF COM0 COM2 1/2 duty VL3 VL2=VL1 VSS COM0 COM1 VL3 VSS SEG0 ON OFF ON OFF ON OFF ON OFF COM1 COM0 COM1 COM0 COM1 COM0 COM1 COM0 Fig. 32 LCD drive waveform (1/2 bias) 34 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Internal logic LCDCK timing 1/4 duty Voltage level VL3 VL2 VL1 VSS COM0 COM1 COM2 COM3 VL3 SEG0 VSS OFF COM3 ON COM2 COM1 OFF COM0 COM3 ON COM2 COM1 COM0 1/3 duty VL3 VL2 VL1 VSS COM0 COM1 COM2 VL3 SEG0 VSS ON OFF COM0 COM2 ON COM1 OFF COM0 COM2 ON COM1 OFF COM0 COM2 1/2 duty VL3 VL2 VL1 VSS COM0 COM1 VL3 SEG0 VSS ON OFF ON OFF ON OFF ON OFF COM1 COM0 COM1 COM0 COM1 COM0 COM1 COM0 Fig. 33 LCD drive waveform (1/3 bias) 35 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER CLOCK OUTPUT FUNCTION Input/output ports P40 and P41 can output clock. The input/output ports and clock output function are put under double function controlled by the clock output control register (address 002A16). b7 b0 Clock output control register (TCON : address 002A 16) P40 clock output control bit 0 : I/O port 1 : Clock output P41 clock output control bit 0 : I/O port 1 : Clock output Output clock frequency selection bit 0 : P4 0←f(XIN ), P41←f(XIN )/5 1 : P4 0←f(XIN )/2, P41 ←f(X IN )/10 Not used (return “0” when read) Selection of Input/Output Ports and Clock Output Function Bits 0 and 1 of the clock output control register can select between the input/output ports and the clock output function. When selecting the clock output function, clocks are output while the direction register of ports P40 and P41 are set to output. At the next cycle of rewriting the clock output control bit, P40 is switched between the port output and the clock output. In synchronization with the fall of the clock (resulting from dividing XIN by 5) on rewriting the clock output control bit, P41 is switched between the port output and the clock output. Fig. 34 Structure of clock output control register Selection of Output Clock Frequency Bit 2 (output clock frequency selection bit) of the clock output control register selects an output clock frequency. When setting the output clock frequency selection bit to “0”, port P40 becomes the frequency of f(XIN) and port P4 1 becomes the frequency of f(XIN)/5. At this time, the output pulse of port P40 depends on the XIN input pulse, while the output pulse of port P4 1 has duty ratio of about 40%. When setting the output clock frequency selection bit to “1”, port P40 becomes the frequency of f(XIN)/2 and port P41 becomes the frequency of f(XIN)/10. At this time, the output pulses of both ports P40 and P41 have duty ratio of 50%. P40 port latch “0” “0” XIN 1/2 P40 clock output control bit P40 “1” Output clock frequency selection bit “1” P40 direction register P41 port latch “0” “0” 1/5 1/2 Fig. 35 Clock output function block diagram 36 “1” Output clock frequency selection bit P41 clock output control bit P41 “1” P41 direction register MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER RESET CIRCUIT To reset the microcomputer, RESET pin should be held at an “L” level for 2 µs or more. Then the RESET pin is returned to an “H” level (the power source voltage should be between VCC (Min.) and 5.5 V, and the oscillation should be stable), and reset is released. After the reset is completed, the program starts from the address contained in address FFFD 16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.2 V for VCC (Min.). Power on RESET VCC Power source voltage (Note) 0V Reset input voltage 0V 0.2VCC Note: Reset release voltage : VCC = VCC(Min.) RESET VCC Power source voltage detection circuit Fig. 36 Example of reset circuit Address Register contents ( 1 ) Port P0 0 0 0 0 16 0016 ( 2 ) Port P1 0 0 0 2 16 0016 ( 3 ) Port P1 output control register 0 0 0 3 16 0016 ( 4 ) Port P2 0 0 0 4 16 0016 ( 5 ) Port P2 direction register 0 0 0 5 16 0016 ( 6 ) Port P3 0 0 0 6 16 0016 ( 7 ) Port P4 0 0 0 8 16 0016 ( 8 ) Port P4 direction register 0 0 0 9 16 0016 ( 9 ) Port P5 0 0 0 A 16 0016 (10) Port P5 direction register 0 0 0 B 16 0016 (11) Port P6 0 0 0 C 16 0016 (12) Port P6 direction register 0 0 0 D 16 0016 (13) Port P7 0 0 0 E 16 0016 (14) Port P7 direction register 0 0 0 F 16 0016 (15) Port P8 0 0 1 0 16 0016 (16) Port P8 direction register 0 0 1 1 16 0016 (17) PULL register A 0 0 1 6 16 0116 (18) PULL register B 0 0 1 7 16 0016 (19) Serial I/O status register 0 0 1 9 16 1 0 0 0 0 0 0 0 (20) Serial I/O control register 0 0 1 A 16 (21) UART control register 0 0 1 B 16 1 1 1 0 0 0 0 0 (22) Timer X (low) 0 0 2 0 16 FF16 (23) Timer X (high) 0 0 2 1 16 FF16 (24) Timer Y (low) 0 0 2 2 16 FF16 (25) Timer Y (high) 0 0 2 3 16 FF16 (26) Timer 1 0 0 2 4 16 FF16 (27) Timer 2 0 0 2 5 16 0116 (28) Timer 3 0 0 2 6 16 FF16 (29) Timer X mode register 0 0 2 7 16 001616 00 (30) Timer Y mode register 0 0 2 8 16 0016 (31) Timer 123 mode register 0 0 2 9 16 0016 (32) Clock output control register 0 0 2 A 16 0016 (33) A-D control register 0 0 3 4 16 0 0 0 0 1 0 0 0 (34) 0016 0 0 3 8 16 0016 (35) LCD mode register 0 0 3 9 16 0016 (36) 0 0 3 A 16 0016 Segment output enable register Interrupt edge selection register (37) CPU mode register 0 0 3 B 16 0 1 0 0 1 0 0 0 (38) Interrupt request register 1 0 0 3 C 16 0016 (39) Interrupt request register 2 0 0 3 D 16 0016 (40) Interrupt control register 1 0 0 3 E 16 0016 (41) Interrupt control register 2 0 0 3 F 16 0016 (42) Processor status register (43) Program counter (PS) ✕ ✕ ✕ ✕ ✕ 1 ✕ ✕ (PCH) Contents of address FFFD 16 (PCL) Contents of address FFFC 16 Note : The contents of all other registers and RAM are undefined after reset, so they must be initialized by software. ✕ : Undefined Fig. 37 Internal state of microcomputer immediately after reset 37 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER XIN φ RESET Internal reset Reset address from vector table Address ? Data ? ? ? FFFC FFFD ADL ADH, ADL ADH SYNC XIN : about 8000 clock cycles Fig. 38 Reset sequence 38 Notes 1 : XIN and φ are in the relationship : f(XIN ) = 8• f(φ) 2 : A question mark (?) indicates an undefined status that depends on the previous status. MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER CLOCK GENERATING CIRCUIT The 3825 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT. To supply a clock signal externally, input it to the XIN pin and make the X OUT pin open. The sub-clock XCIN-XCOUT oscillation circuit cannot directly input clocks that are externally generated. Accordingly, be sure to cause an external resonator to oscillate. Immediately after poweron, only the XIN oscillation circuit starts oscillating, and X CIN and X COUT pins function as I/O ports. The pull-up resistor of XCIN and X COUT pins must be made invalid to use the sub-clock. Frequency Control (1) Middle-speed mode The internal clock φ is the frequency of XIN divided by 8. After reset, this mode is selected. Oscillation Control (1) Stop mode If the STP instruction is executed, the internal clock φ stops at an “H” level, and XIN and XCIN oscillators stop. Timer 1 is set to “FF16” and timer 2 is set to “0116”. Either X IN or X CIN divided by 16 is input to timer 1 as count source, and the output of timer 1 is connected to timer 2. The bits of the timer 123 mode register except bit 4 are cleared to “0”. Set the timer 1 and timer 2 interrupt enable bits to disabled (“0”) before executing the STP instruction. Oscillator restarts at reset or when an external interrupt is received, but the internal clock φ is not supplied to the CPU until timer 2 underflows. This allows time for the clock circuit oscillation to stabilize. (2) Wait mode If the WIT instruction is executed, the internal clock φ stops at an “H” level. The states of XIN and XCIN are the same as the state before the executing the WIT instruction. The internal clock restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted. (2)High-speed mode The internal clock φ is half the frequency of XIN. (3) Low-speed mode • The internal clock φ is half the frequency of XCIN. • A low-power consumption operation can be realized by stopping the main clock XIN in this mode. To stop the main clock, set bit 5 of the CPU mode register to “1”. When the main clock XIN is restarted, set enough time for oscillation to stabilize by programming. Note: If you switch the mode between middle/high-speed and lowspeed, stabilize both X IN and X CIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after power-on and at returning from stop mode. When switching the mode between middle/highspeed and low-speed, set the frequency in the condition that f(XIN) > 3•f(XCIN). XCIN Rf XCOUT XIN Rd CCOUT CCIN XOUT CIN COUT Fig. 39 Ceramic resonator circuit XCIN Rf CCIN XCOUT XIN Open Rd CCOUT XOUT External oscillation circuit VCC VSS Fig. 40 External clock input circuit 39 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER XCOUT XCIN “1” “0” Port XC switch bit XIN XOUT Timer 1 count source selection bit Internal system clock selection bit (Note) Low-speed mode “1” 1/2 “0” Middle-/High-speed mode Timer 2 count source selection bit “1” Timer 1 1/2 1/4 “0” “0” Timer 2 “1” Main clock division ratio selection bit Middle-speed mode Timing φ (Internal clock) High-speed mode or Low-speed mode Main clock stop bit Q S S R STP instruction WIT instruction Q R Reset Interrupt disable flag I Interrupt request Note : When using the low-speed mode, set the port X C switch bit to “1” . Fig. 41 Clock generating circuit block diagram 40 Q S R STP instruction MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Reset ” “0 CM ” “1 M6 C ” “1 ” “0 CM7=0(8 MHz selected) CM6=0(High-speed) CM5=0(8 MHz oscillating) CM4=0(32 kHz stopped) C “0 M4 ” CM “1 ” 6 “1 ” “0 ” Middle-speed mode (f(φ) =1 MHz) CM6 “1” “0” CM6 “1” “0” High-speed mode (f(φ) =4 MHz) CM7=0(8 MHz selected) CM6=0(High-speed) CM5=0(8 MHz oscillating) CM4=1(32 kHz oscillating) CM7 “1” CM 7 “1” “0” “0” CM7=0(8 MHz selected) CM6=1(Middle-speed) CM5=0(8 MHz oscillating) CM4=1(32 kHz oscillating) “0” CM7=1(32 kHz selected) CM6=1(Middle-speed) CM5=0(8 MHz oscillating) CM4=1(32 kHz oscillating) ” CM5 “1” 5 CM ” “1 M6 C ” “1 Low-speed mode (f(φ) =16 kHz) CM7=1(32 kHz selected) CM6=1(Middle-speed) CM5=1(8 MHz stopped) CM4=1(32 kHz oscillating) Low-speed mode (f(φ) =16 kHz) “0 0” “ “1 ” CM7=1(32 kHz selected) CM6=0(High-speed) CM5=0(8 MHz oscillating) CM4=1(32 kHz oscillating) C “0 M5 ” CM 6 “1 ” “0 ” CM6 “1” “0” Low-speed mode (f(φ) =16 kHz) CM 5 “1” CM4 “1” 4 High-speed mode (f(φ) =4 MHz) “0” “0” “0” CM7=0(8 MHz selected) CM6=1(Middle-speed) CM5=0(8 MHz oscillating) CM4=0(32 kHz stopped) CM 4 “1” CM6 “1” Middle-speed mode (f(φ) =1 MHz) Low-speed mode (f(φ) =16 kHz) “0” CM7=1(32 kHz selected) CM6=0(High-speed) CM5=1(8 MHz stopped) CM4=1(32 kHz oscillating) b7 b4 CPU mode register (CPUM : address 003B 16) CM4 : Port Xc switch bit 0: I/O port 1: XCIN , XCOUT CM5 : Main clock (XIN –XOUT ) stop bit 0: Oscillating 1: Stopped CM6 : Main clock division ratio selection bit 0: f(XIN )/2 (high-speed mode) 1: f(XIN )/8 (middle-speed mode) CM7 : Internal system clock selection bit 0: XIN –XOUT selected (middle-/high-speed mode) 1: XCIN –XCOUT selected (low-speed mode) Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.) 2 : The all modes can be switched to the stop mode or the wait mode and returned to the source mode when the stop mode or the wait mode is ended. 3 : Timer and LCD operate in the wait mode. 4 : When the stop mode is ended, a delay of approximately 1 ms occurs automatically by timer 1 and timer 2 in middle-/high-speed mode. 5 : When the stop mode is ended, a delay of approximately 0.25 s occurs automatically by timer 1 and timer 2 in low-speed mode. 6 : Wait until oscillation stabilizes after oscillating the main clock X IN before the switching from the low-speed mode to middle-/highspeed mode. 7 : The example assumes that 8 MHz is being applied to the X IN pin and 32 kHz to the X CIN pin. φ indicates the internal clock. Fig. 42 State transitions of internal clock φ 41 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER NOTES ON PROGRAMMING Processor Status Register Serial I/O The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is “1”. After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations. In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the SRDY signal, set the transmit enable bit, the receive enable bit, and the SRDY output enable bit to “1”. Serial I/O continues to output the final bit from the TXD pin after transmission is completed. Interrupt A-D Converter The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction. The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low. Make sure that f(XIN) is at least 500kHz during an A-D conversion. Do not execute the STP or WIT instruction during an A-D conversion. Decimal Calculations To calculate in decimal notation, set the decimal mode flag (D) to “1”, then execute an ADC or SBC instruction. Only the ADC and SBC instructions yield proper decimal results. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction. In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid. The carry flag can be used to indicate whether a carry or borrow has occurred. Initialize the carry flag before each calculation. Clear the carry flag before an ADC and set the flag before an SBC. Timers If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n + 1). Multiplication and Division Instructions The index mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction. The execution of these instructions does not change the contents of the processor status register. Ports The contents of the port direction registers cannot be read. The following cannot be used: • The data transfer instruction (LDA, etc.) • The operation instruction when the index X mode flag (T) is “1” • The addressing mode which uses the value of a direction register as an index • The bit-test instruction (BBC or BBS, etc.) to a direction register • The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a direction register Use instructions such as LDM and STA, etc., to set the port direction registers. 42 Instruction Execution Time The instruction execution time is obtained by multiplying the frequency of the internal clock φ by the number of cycles needed to execute an instruction. The number of cycles required to execute an instruction is shown in the list of machine instructions. The frequency of the internal clock φ is half of the XIN frequency. MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER DATA REQUIRED FOR MASK ORDERS ROM PROGRAMMING METHOD The following are necessary when ordering a mask ROM production: 1.Mask ROM Order Confirmation Form 2.Mark Specification Form 3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area. Table 11. Programming adapter DATA R E QU I R E D F O R RO M W R I T I N G ORDERS The following are necessary when ordering a ROM writing: 1.ROM Writing Confirmation Form 2.Mark Specification Form 3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk Package Name of Programming Adapter 100PFB-A PCA4738H-100A 100P6Q-A PCA4738G-100A 100P6S-A PCA4738F-100A 100D0 PCA4738L-100A The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 43 is recommended to verify programming. Programming with PROM programmer Screening (Caution) (150°C for 40 hours) Verification with PROM programmer Functional check in target device Caution : The screening temperature is far higher than the storage temperature. Never expose to 150 °C exceeding 100 hours. Fig. 43 Programming and testing of One Time PROM version 43 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS Table 12. Absolute maximum ratings Symbol VCC VI VI VI VI VI VI VI VO VO VO VO VO VO Pd Topr Tstg Parameter Power source voltage Input voltage P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P80, P81 Input voltage P70–P77 Input voltage VL1 Input voltage VL2 Input voltage VL3 Input voltage C1, C2 Input voltage RESET, XIN Conditions All voltages are based on VSS. Output transistors are cut off. Output voltage C1, C2 Output voltage P00–P07, P10–P15, P30–P37 Output voltage P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 Output voltage VL3 Output voltage VL2, SEG0–SEG17 Output voltage XOUT Power dissipation Operating temperature Ratings –0.3 to 7.0 Unit V –0.3 to VCC +0.3 V –0.3 to VCC +0.3 –0.3 to VL2 VL1 to VL3 VL2 to 7.0 –0.3 to 7.0 –0.3 to VCC +0.3 –0.3 to 7.0 V V V V V V V V At output port At segment output –0.3 to VCC –0.3 to VL3 Ta = 25°C V –0.3 to VCC +0.3 V –0.3 to 7.0 –0.3 to VL3 –0.3 to VCC +0.3 300 V V V mW °C °C –20 to 85 Storage temperature –40 to 125 Table 13. Recommended operating conditions (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol Parameter High-speed mode f(XIN) = 8 MHz Middle-speed mode f(XIN) = 8 MHz Low-speed mode VCC Power source voltage VSS VREF AVSS Power source voltage A-D conversion reference voltage Analog power source voltage Analog input voltage AN0–AN7 “H” input voltage P16, P17, P40, P41, P45, P47, P52, P53, P56, P60–P67, P70–P77, P80, P81 (CM4=0) “H” input voltage P20–P27, P42–P44, P46, P50, P51, P54, P55, P57, “H” input voltage RESET “H” input voltage XIN “L” input voltage P16, P17, P40, P41, P45, P47, P52, P53, P56, P60–P67, P70–P77, P80, P81 (CM4=0) “L” input voltage P20–P27, P42–P44, P46, P50, P51, P54, P55, P57 “L” input voltage RESET “L” input voltage XIN VIA VIH VIH VIH VIH VIL VIL VIL VIL 44 Min. 4.0 2.5 2.5 Limits Typ. 5.0 5.0 5.0 0 Max. 5.5 5.5 5.5 Unit V AVSS VCC V V V V 0.7VCC VCC V 0.8VCC 0.8VCC 0.8VCC VCC VCC VCC V V V 0 0.3VCC V 0 0 0 0.2VCC 0.2VCC 0.2VCC V V V 2.0 VCC 0 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 14. Recommended operating conditions (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted) Symbol Parameter ΣIOH(peak) ΣIOH(peak) “H” total peak output current “H” total peak output current ΣIOL(peak) “L” total peak output current ΣIOL(peak) ΣIOL(peak) ΣIOH(avg) “L” total peak output current “L” total peak output current “H” total average output current “H” total average output current ΣIOH(avg) Min. Limits Typ. P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P40–P47,P50–P57, P60–P67, P71–P77, P80, P81 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P40–P47,P50–P57, P60–P67, P80, P81 (Note 1) P71–P77 (Note 1) P00–P07,P10–P17, P20–P27, P30–P37 (Note 1) P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 1) Max. –20 Unit mA –20 mA 20 20 40 mA mA –10 mA mA –10 mA ΣIOL(avg) “L” total average output current P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) 10 ΣIOL(avg) “L” total average output current P40–P47, P50–P57, P60–P67, P80, P81 (Note 1) “L” total average output current P71–P77 (Note 1) 10 20 mA mA mA P00–P07, P10–P15, P30–P37 (Note 2) P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 2) P00–P07, P10–P15, P30–P37 (Note 2) –0.5 mA –5.0 mA 5.0 mA P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P70–P77, P80, P81 (Note 2) P00–P07, P10–P15, P30–P37 (Note 2) 10 mA –0.1 mA –2.5 mA 2.5 mA 5.0 mA 4.0 MHz ΣIOL(avg) IOH(peak) IOH(peak) “H” peak output current “H” peak output current IOL(peak) IOL(peak) “L” peak output current IOH(avg) “H” average output current IOH(avg) “H” average output current IOL(avg) IOL(avg) “L” average output current “L” average output current f(CNTR0) f(CNTR1) Input frequency for timers X and Y (duty cycle 50%) f(XIN) Main clock input oscillation frequency (Note 4) “L” peak output current P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 3) P00–P07, P10–P15, P30–P37 (Note 3) P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 3) (4.0 V ≤ VCC ≤ 5.5 V) (2✕VCC) MHz –4 (VCC ≤ 4.0 V) High-speed mode (4.0 V ≤ VCC ≤ 5.5 V) High-speed mode (VCC ≤ 4.0 V) Middle-speed mode f(XCIN) Sub-clock input oscillation frequency (Note 4, 5) 32.768 8.0 MHz (4✕VCC) –8 MHz 8.0 MHz 50 kHz Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents. 2: The peak output current is the peak current flowing in each port. 3: The average output current is an average value measured over 100 ms. 4: When the oscillation frequency has a duty cycle of 50%. 5: When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3. 45 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 15. Electrical characteristics (VCC =4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted) Symbol Parameter VOH “H” output voltage P00–P07, P10–P15, P30–P37 VOH “H” output voltage P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note) VOL VOL “L” output voltage P00–P07, P10–P15, P30–P37 “L” output voltage P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note) VT+ – VT– Hysteresis INT0–INT3, ADT, CNTR0, CNTR1, P20–P27 VT+ – VT– VT+ – VT– Hysteresis Hysteresis SCLK, RXD RESET “H” input current P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P70–P77, P80, P81 IIH IIH IIH “H” input current RESET “H” input current XIN “L” input current P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 IIL IIL IIL IIL “L” input current P70 “L” input current “L” input current RESET XIN ILOAD Output load current P00–P07, P10–P15, P30–P37 ILEAK Output leak current P00–P07, P10–P15, P30–P37 Test conditions IOH = –0.1 mA IOH = –25 µA VCC = 2.5 V IOH = –5 mA IOH = –1.25 mA IOH = –1.25 mA VCC = 2.5 V IOL = 5 mA IOL = 1.25 mA IOL = 1.25 mA VCC = 2.5 V IOL = 10 mA IOL = 2.5 mA IOL = 2.5 mA VCC = 2.5 V Min. VCC–2.0 Limits Typ. V V VCC–2.0 VCC–0.5 V VCC–1.0 V V 2.0 0.5 V 1.0 V 2.0 0.5 V 1.0 V V V 0.5 V 0.5 0.5 V V VI = VCC VI = VSS VI = VSS VCC = 5.0 V, VO = VCC, Pull-downs “on” Output transistors “off” VCC = 3.0 V, VO = VCC, Pull-downs “on” Output transistors “off” VO = VCC, Pull-downs “off” Output transistors “off” VO = VSS, Pull-downs “off” Output transistors “off” Unit VCC–1.0 RESET: VCC=2.5 V to 5.5 V VI = VCC VI = VCC VI = VSS Pull-ups “off” VCC = 5 V, VI = VSS Pull-ups “on” VCC = 3 V, VI = VSS Pull-ups “on” Max. 5.0 µA 5.0 µA µA 4.0 –5.0 µA –30 –70 –140 µA –6.0 –25 –45 µA –5.0 µA –5.0 µA µA –4.0 30 70 140 µA 6.0 25 45 µA 5.0 µA –5.0 µA Note: When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P80 is different from the value above mentioned. 46 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 16. Electrical characteristics (VCC =2.5 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted) Symbol VRAM ICC Parameter RAM retention voltage Power source current Test conditions At clock stop mode • High-speed mode, VCC = 5 V f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors “off” A-D converter in operating • High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors “off” A-D converter in operating • Low-speed mode, VCC = 5 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” All oscillation stopped (in STP state) Output transistors “off” VL1 Power source voltage IL1 Power source current (VL1) (Note) Min. 2.0 Ta = 25 °C Limits Typ. V 13 mA 1.6 3.2 mA 25 36 µA 7.0 14 µA 15 22 µA 4.5 9.0 µA 0.1 1.0 10 1.3 Unit 6.4 Ta = 85 °C When using voltage multiplier VL1 = 1.8 V VL1 < 1.3 V Max. 5.5 1.8 3.0 10 2.3 6.0 50 µA V µA Note : When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is “1”. 47 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 17. A-D converter characteristics (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, 4 MHz ≤ f(XIN) ≤ 8 MHz, in middle-/high-speed mode, unless otherwise noted.) Symbol Parameter Test conditions – – Resolution Absolute accuracy (excluding quantization error) VCC = VREF = 5 V tCONV Conversion time f(XIN) = 8 MHz RLADDER IVREF IIA Ladder resistor Reference input current Analog port input current VREF = 5 V Note : When an internal trigger is used in middle-speed mode, it is 14 µs. 48 Min. Limits Typ. Max. 8 ±2 12.5 (Note) Unit Bits LSB µs 12 35 100 kΩ 50 150 200 µA 5.0 µA MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 18. Timing requirements 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twL(CNTR) twH(INT) twL(INT) tc(SCLK) twH(SCLK) twL(SCLK) tsu(RXD–SCLK) th(SCLK–RXD) Parameter Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O clock input cycle time (Note) Serial I/O clock input “H” pulse width (Note) Serial I/O clock input “L” pulse width (Note) Serial I/O input set up time Serial I/O input hold time Min. 2 125 45 40 250 105 105 80 80 800 370 370 220 100 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (Clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART). Table 19. Timing requirements 2 (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol Parameter Min. 2 125 45 40 Limits Typ. Max. Unit µs ns ns ns tw(RESET) tc(XIN) twH(XIN) twL(XIN) Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width tc(CNTR) CNTR0, CNTR1 input cycle time 500/ (VCC–2) ns twH(CNTR) CNTR0, CNTR1 input “H” pulse width 250/ (VCC–2)–20 ns twL(CNTR) CNTR0, CNTR1 input “L” pulse width 250/ (VCC–2)–20 ns twH(INT) twL(INT) tc(SCLK) twH(SCLK) twL(SCLK) tsu(RXD–SCLK) th(SCLK–RXD) INT0 to INT3 input “H” pulse width 230 230 2000 950 950 400 200 ns ns ns ns ns ns ns INT0 to INT3 input “L” pulse width Serial I/O clock input cycle time (Note) Serial I/O clock input “H” pulse width (Note) Serial I/O clock input “L” pulse width (Note) Serial I/O input set up time Serial I/O input hold time Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (Clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART). 49 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 20. Switching characteristics 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol twH(SCLK) twL(SCLK) td(SCLK–TXD) tv(SCLK–TXD) tr(SCLK) tf(SCLK) tr(CMOS) tf(CMOS) Parameter Serial I/O clock output “H” pulse width Serial I/O clock output “L” pulse width Serial I/O output delay time (Note 1) Serial I/O output valid time (Note 1) Serial I/O clock output rising time Serial I/O clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Limits Min. Typ. Max. tc(SCLK)/2–30 tc(SCLK)/2–30 140 –30 10 10 30 30 30 30 Unit ns ns ns ns ns ns ns ns Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2 : XOUT and XCOUT pins are excluded. Table 21. Switching characteristics 2 (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol Parameter twH(SCLK) Serial I/O clock output “H” pulse width twL(SCLK) td(SCLK–TXD) tv(SCLK–TXD) tr(SCLK) tf(SCLK) tr(CMOS) tf(CMOS) Serial I/O clock output “L” pulse width Serial I/O output delay time (Note 1) Serial I/O output valid time (Note 1) Serial I/O clock output rising time Serial I/O clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Min. tc(SCLK)/2–50 tc(SCLK)/2–50 Limits Typ. 350 –30 20 20 Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2 : XOUT and XCOUT pins are excluded. 50 Max. 50 50 50 50 Unit ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Extended Operating Temperature Version) Table 22. Absolute maximum ratings (Extended operating temperature version) Symbol VCC VI VI VI VI VI VI VI VO VO VO VO VO VO Pd Topr Tstg Parameter Power source voltage Input voltage P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P80, P81 Input voltage P70–P77 Input voltage VL1 Input voltage VL2 Input voltage VL3 Input voltage C1, C2 Conditions All voltages are based on VSS. Output transistors are cut off. Input voltage RESET, XIN Output voltage C1, C2 Output voltage P00–P07, P10–P15, P30–P37 Output voltage P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77 P80, P81 Output voltage VL3 Output voltage VL2, SEG0–SEG17 Output voltage XOUT Power dissipation Operating temperature Storage temperature At output port At segment output Ratings –0.3 to 7.0 Unit –0.3 to VCC +0.3 V –0.3 to VCC +0.3 –0.3 to VL2 VL1 to VL3 VL2 to 7.0 –0.3 to 7.0 –0.3 to VCC +0.3 –0.3 to 7.0 –0.3 to VCC –0.3 to VL3 V V V V V V V V V –0.3 to VCC +0.3 V –0.3 to 7.0 –0.3 to VL3 V V V mW °C °C V –0.3 to VCC +0.3 300 –40 to 85 –65 to 150 Ta = 25°C Table 23. Recommended operating conditions (Extended operating temperature version) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, and VCC = 3.0 to 5.5 V, Ta = –40 to –20°C, unless otherwise noted.) Symbol VCC Power source voltage High-speed mode f(XIN)=8 MHz Middle-speed mode Ta = –20 to 85°C f(XIN) = 8 MHz Ta = –40 to –20°C Low-speed mode VSS VREF AVSS VIA Limits Parameter Ta = –20 to 85°C Ta = –40 to –20°C Power source voltage A-D conversion reference voltage Analog power source voltage Analog input voltage AN0–AN7 VIL “L” input voltage P16, P17, P40, P41, P45, P47, P52, P53, P56, P60–P67, P70–P77, P80, P81 (CM4=0) P20–P27, P42–P44, P46, P50, P51, P54, P55, P57 RESET XIN P16, P17, P40, P41, P45, P47, P52, P53, P56, P60–P67, P70–P77, P80, P81 (CM4=0) P20–P27, P42–P44, P46, P50, P51, P54, P55, P57 VIL VIL “L” input voltage RESET “L” input voltage XIN VIH VIH VIH VIH VIL “H” input voltage “H” input voltage “H” input voltage “H” input voltage “L” input voltage Min. 4.0 2.5 3.0 2.5 3.0 Typ. 5.0 5.0 5.0 5.0 5.0 0 Max. 5.5 5.5 5.5 5.5 5.5 Unit AVSS VCC V V V V 0.7VCC VCC V 0.8VCC 0.8VCC 0.8VCC VCC VCC VCC V V V 0 0.3VCC V 0 0 0 0.2VCC V 0.2VCC 0.2VCC V 2.0 VCC 0 V 51 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 24. Recommended operating conditions (Extended operating temperature version) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, and VCC = 3.0 to 5.5 V, Ta = –40 to –20°C, unless otherwise noted.) Symbol ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOL(peak) Parameter “H” total peak output current “H” total peak output current “L” total peak output current Min. Limits Typ. P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P40–P47,P50–P57, P60–P67, P71–P77, P80, P81 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) Unit –20 mA –20 mA 20 20 40 –10 mA mA mA mA –10 mA ΣIOL(avg) ΣIOL(avg) ΣIOL(avg) IOH(peak) P40–P47,P50–P57, P60–P67, P80, P81 (Note 1) P71–P77 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P40–P47, P50–P57, P60–P67, P70–P71, P80, P81 (Note 1) “L” total average output current P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) “L” total average output current P40–P47, P50–P57, P60–P67, P80, P81 (Note 1) “L” total average output current P71–P77 (Note 1) “H” peak output current P00–P07, P10–P15, P30–P37 (Note 2) 10 10 20 –0.5 mA mA mA IOH(peak) “H” peak output current P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 2) –5.0 mA IOL(peak) mA 10 mA IOH(avg) “H” average output current P00–P07, P10–P15, P30–P37 (Note 2) P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 2) P00–P07, P10–P15, P30–P37 (Note 3) 5.0 IOL(peak) “L” peak output current “L” peak output current –0.1 mA IOH(avg) “H” average output current P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 3) –2.5 mA IOL(avg) “H” average output current P00–P07, P10–P15, P30–P37 (Note 3) 2.5 mA IOL(avg) P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 3) (4.0 V ≤ VCC ≤ 5.5 V) Input frequency for timers X and Y (duty cycle 50%) (VCC ≤ 4.0 V) 5.0 mA 4.0 MHz ΣIOH(avg) ΣIOH(avg) f(CNTR0) f(CNTR1) “L” total peak output current “L” total peak output current “H” total average output current “H” total average output current Max. “H” average output current f(XIN) Main clock input oscillation frequency (Note 4) f(XCIN) Sub-clock input oscillation frequency (Note 4, 5) mA (2✕VCC)–4 MHz High-speed mode (4.0 V ≤ VCC ≤ 5.5 V) 8.0 High-speed mode (VCC ≤ 4.0 V) MHz (4✕VCC)–8 MHz Middle-speed mode 32.768 8.0 MHz 50 kHz Notes 1 : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents. 2 : The peak output current is the peak current flowing in each port. 3 : The average output current is an average value measured over 100 ms. 4 : When the oscillation frequency has a duty cycle of 50%. 5 : When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3. 52 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 25. Electrical characteristics (Extended operating temperature version) (1) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, and VCC = 3.0 to 5.5V, Ta = –40 to –20°C, unless otherwise noted) Symbol Parameter VOH “H” output voltage P00–P07, P10–P15, P30–P37 VOH “H” output voltage P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note) VOL VOL VT+ – VT– VT+ – VT– VT+ – VT– “L” output voltage P00–P07, P10–P15, P30–P37 “L” output voltage P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note) Hysteresis Hysteresis INT0–INT3, ADT, CNTR0, CNTR1, P20–P27 SCLK, RXD Hysteresis RESET “H” input current P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P70–P77, P80, P81 RESET XIN IIH IIH IIH “H” input current “H” input current “L” input current IIL P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 IIL IIL IIL “L” input current P70 “L” input current RESET “L” input current XIN ILOAD Output load current P00–P07, P10–P15, P30–P37 ILEAK Output leak current P00–P07, P10–P15, P30–P37 Test conditions IOH = –2.5 mA IOH = –0.6 mA VCC = 3.0 V IOH = –5 mA IOH = –1.25 mA IOH = –1.25 mA VCC = 3.0 V IOL = 5 mA IOL = 1.25 mA IOL = 1.25 mA VCC = 3.0 V IOL = 10 mA IOL = 2.5 mA IOL = 2.5 mA VCC = 3.0 V Min. VCC–2.0 Limits Typ. V V VCC–2.0 VCC–0.5 V VCC–0.9 V V VO = VSS, Pull-downs “off” Output transistors “off” 2.0 0.5 V 1.1 V 2.0 0.5 V 1.1 V V V 0.5 V 0.5 0.5 V V VI = VCC VI = VSS VI = VSS VCC = 5.0 V, VO = VCC, Pull-downs “on” Output transistors “off” VCC = 3.0 V, VO = VCC, Pull-downs “on” Output transistors “off” VO = VCC, Pull-downs “off” Output transistors “off” Unit VCC–0.9 RESET: VCC=2.5 V to 5.5 V VI = VCC VI = VCC VI = VSS Pull-ups “off” VCC = 5 V, VI = VSS Pull-ups “on” VCC = 3 V, VI = VSS Pull-ups “on” Max. 5.0 µA 5.0 µA µA –5.0 µA 4.0 –30 –70 –140 µA –6.0 –25 –45 µA –5.0 µA –5.0 µA µA –4.0 30 70 170 µA 6.0 25 55 µA 5.0 µA –5.0 µA Note : When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P8 0 is different from the value above mentioned. 53 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 26. Electrical characteristics (Extended operating temperature version) (VCC = 2.5 to 5.5 V, Ta = –20 to 85°C, and VCC = 3.0 to 5.5 V, Ta = –40 to –20°C, unless otherwise noted.) Symbol VRAM Parameter RAM retention voltage Power source current ICC Test conditions At clock stop mode • High-speed mode, VCC = 5 V f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors “off” A-D converter in operating • High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors “off” A-D converter in operating • Low-speed mode, VCC = 5 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5 V, Ta = 25°C Min. 2.0 f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” All oscillation stopped (in STP state) Output transistors “off” VL1 Power source voltage IL1 Power source current (VL1) (Note) Ta = 25°C Limits Typ. Unit V 6.4 13 mA 1.6 3.2 mA 25 36 µA 7.0 14 µA 15 22 µA 4.5 9.0 µA 0.1 1.0 Ta = 85°C When using voltage multiplier VL1 = 1.8 V VL1 < 1.3 V Max. 5.5 µA 10 1.3 1.8 3.0 10 2.3 6.0 50 V µA Note : When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is “1”. Table 27. A-D converter characteristics (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85°C, 4 MHz ≤ f(XIN) ≤ 8 MHz, in middle-/high-speed mode, unless otherwise noted.) Symbol Parameter Test conditions – – Resolution Absolute accuracy (excluding quantization error) VCC = VREF = 5 V tCONV Conversion time f(XIN) = 8 MHz RLADDER IVREF IIA Ladder resistor Reference input current Analog iinput current VREF = 5 V Note : When an internal trigger is used in middle-speed mode, it is 14 µs. 54 Min. Limits Typ. Max. 8 ±2 12.5 (Note) Unit Bits LSB µs 12 35 100 kΩ 50 150 200 µA 5.0 µA MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 28. Timing reguirements 1 (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85°C, unless otherwise noted.) Symbol tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twL(CNTR) twH(INT) twL(INT) tc(SCLK) twH(SCLK) twL(SCLK) tsu(RXD–SCLK) th(SCLK–RXD) Parameter Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O clock input cycle time (Note) Serial I/O clock input “H” pulse width (Note) Serial I/O clock input “L” pulse width (Note) Serial I/O input set up time Serial I/O input hold time Min. 2 125 45 40 250 105 105 80 Limits Typ. Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns 80 800 370 370 220 100 Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (Clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART). Table 29. Timing reguirements 2 (Extended operating temperature version) (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, and VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –40 to –20°C, unless otherwise noted.) Symbol Parameter Min. 2 125 45 40 Limits Typ. Max. Unit µs ns ns ns tw(RESET) tc(XIN) twH(XIN) twL(XIN) Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width tc(CNTR) CNTR0, CNTR1 input cycle time 500/ (VCC–2) ns twH(CNTR) CNTR0, CNTR1 input “H” pulse width 250/ (VCC–2)–20 ns twL(CNTR) CNTR0, CNTR1 input “L” pulse width 250/ (VCC–2)–20 ns twH(INT) twL(INT) tc(SCLK) twH(SCLK) twL(SCLK) tsu(RXD–SCLK) th(SCLK–RXD) INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O clock input cycle time (Note) Serial I/O clock input “H” pulse width (Note) Serial I/O clock input “L” pulse width (Note) Serial I/O input set up time Serial I/O input hold time 230 230 2000 950 950 400 200 ns ns ns ns ns ns ns Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (Clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART). 55 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 30. Switching characteristics 1 (Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85°C, unless otherwise noted.) Symbol twH(SCLK) twL(SCLK) td(SCLK–TXD) tv(SCLK–TXD) tr(SCLK) tf(SCLK) tr(CMOS) tf(CMOS) Parameter Serial I/O clock output “H” pulse width Serial I/O clock output “L” pulse width Serial I/O output delay time (Note 1) Serial I/O output valid time (Note 1) Serial I/O clock output rising time Serial I/O clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Limits Min. Typ. Max. tc(SCLK)/2–30 tc(SCLK)/2–30 140 –30 10 10 30 30 30 30 Unit ns ns ns ns ns ns ns ns Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2 : XOUT and XCOUT pins are excluded. Table 31. Switching characteristics 2 (Extended operating temperature version) (VCC = 2.5 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, and VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –40 to –20°C, unless otherwise noted.) Limits Symbol Parameter Typ. Min. Max. twH(SCLK) Serial I/O clock output “H” pulse width tc(SCLK)/2–50 twL(SCLK) Serial I/O clock output “L” pulse width tc(SCLK)/2–50 td(SCLK–TXD) Serial I/O output delay time (Note 1) 350 tv(SCLK–TXD) Serial I/O output valid time (Note 1) –30 tr(SCLK) Serial I/O clock output rising time 50 tf(SCLK) Serial I/O clock output falling time 50 tr(CMOS) CMOS output rising time (Note 2) 20 50 tf(CMOS) CMOS output falling time (Note 2) 20 50 Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2 : XOUT and XCOUT pins are excluded. 56 Unit ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Low Power Source Version) Table 32. Absolute maximum ratings (Low power source version) Symbol VCC VI Parameter Power source voltage Input voltage P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P80, P81 Input voltage P70–P77 Input voltage VL1 Input voltage VL2 Input voltage VL3 Input voltage C1, C2 VI VI VI VI VI VI VO Input voltage RESET, XIN Output voltage C1, C2 VO Output voltage P00–P07, P10–P15, P30–P37 VO VO VO VO Pd Topr Tstg Output voltage P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77 P80, P81 Output voltage VL3 Output voltage VL2, SEG0–SEG17 Output voltage XOUT Power dissipation Operating temperature Storage temperature Conditions All voltages are based on VSS. Output transistors are cut off. At output port At segment output Ta = 25°C Ratings –0.3 to 7.0 Unit –0.3 to VCC +0.3 V –0.3 to VCC +0.3 –0.3 to VL2 VL1 to VL3 VL2 to 7.0 –0.3 to 7.0 –0.3 to VCC +0.3 –0.3 to 7.0 –0.3 to VCC –0.3 to VL3 V V V V V V V V V –0.3 to VCC +0.3 V –0.3 to 7.0 –0.3 to VL3 –0.3 to VCC +0.3 300 –20 to 85 –40 to 125 V V V mW °C °C V Table 33. Recommended operating conditions (Low power source version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol Parameter High-speed mode, f(XIN)=8 MHz Middle-speed mode, f(XIN) = 8 MHz Low-speed mode VCC Power source voltage VSS VREF AVSS VIA Power source voltage A-D conversion reference voltage Analog power source voltage Analog input voltage AN0–AN7 “H” input voltage P16, P17, P40, P41, P45, P47, P52, P53, P56, P60–P67, P70–P77, P80, P81 (CM4=0) “H” input voltage P20–P27, P42–P44, P46, P50, P51, P54, P55, P57 “H” input voltage RESET “H” input voltage XIN “L” input voltage P16, P17, P40, P41, P45, P47, P52, P53, P56, P60–P67, P70–P77, P80, P81 (CM4=0) “L” input voltage P20–P27, P42–P44, P46, P50, P51, P54, P55, P57 VIH VIH VIH VIH VIL VIL VIL VIL “L” input voltage RESET “L” input voltage XIN Limits Typ. 5.0 5.0 5.0 0 Max. 5.5 5.5 5.5 0 AVSS VCC VCC VCC V V V V 0.7VCC VCC V 0.8VCC 0.8VCC 0.8VCC VCC VCC VCC V V V 0 0.3VCC V 0 0 0 0.2VCC V V V Min. 4.0 2.2 2.2 2.0 0.2VCC 0.2VCC Unit V 57 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 34. Recommended operating conditions (Low power source version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol ΣIOH(peak) ΣIOH(peak) ΣIOL(peak) ΣIOL(peak) ΣIOL(peak) Limits Parameter “H” total peak output current “H” total peak output current “L” total peak output current Min. Typ. P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P40–P47,P50–P57, P60–P67, P71–P77, P80, P81 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) Unit –20 mA –20 mA 20 20 40 –10 mA mA mA mA –10 mA ΣIOL(avg) ΣIOL(avg) ΣIOL(avg) IOH(peak) P40–P47,P50–P57, P60–P67, P80, P81 (Note 1) P71–P77 (Note 1) P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) P40–P47, P50–P57, P60–P67, P70–P71, P80, P81 (Note 1) “L” total average output current P00–P07, P10–P17, P20–P27, P30–P37 (Note 1) “L” total average output current P40–P47, P50–P57, P60–P67, P80, P81 (Note 1) “L” total average output current P71–P77 (Note 1) “H” peak output current P00–P07, P10–P15, P30–P37 (Note 2) 10 10 20 –0.5 mA mA mA IOH(peak) “H” peak output current P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 2) –5.0 mA IOL(peak) mA 10 mA IOH(avg) “H” average output current P00–P07, P10–P15, P30–P37 (Note 2) P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 2) P00–P07, P10–P15, P30–P37 (Note 3) 5.0 IOL(peak) “L” peak output current “L” peak output current –0.1 mA IOH(avg) “H” average output current P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 3) –2.5 mA IOL(avg) “H” average output current P00–P07, P10–P15, P30–P37 (Note 3) 2.5 mA IOL(avg) “H” average output current 5.0 mA ΣIOH(avg) ΣIOH(avg) f(CNTR0) f(CNTR1) “L” total peak output current “L” total peak output current “H” total average output current “H” total average output current Max. P16, P17, P20–P27, P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note 3) (4.0 V ≤ VCC ≤ 5.5 V) Input frequency for timers X and Y (duty cycle 50%) (2.2 V ≤ VCC ≤ 4.0 V) 4.0 (10 ✕ VCC – 4) / 9 High-speed mode (4.0 V ≤ VCC ≤ 5.5 V) f(XIN) Main clock input oscillation frequency (Note 4) f(XCIN) Sub-clock input oscillation frequency (Note 4, 5) 8.0 High-speed mode (2.2 V ≤ VCC ≤ 4.0 V) (20 ✕ VCC – 8) / 9 Middle-speed mode 32.768 mA MHz MHz MHz MHz 8.0 MHz 50 kHz Notes 1 : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents. 2 : The peak output current is the peak current flowing in each port. 3 : The average output current is an average value measured over 100 ms. 4 : When the oscillation frequency has a duty cycle of 50%. 5 : When using the microcomputer in low-speed mode, make sure that the sub-clock input oscillation frequency on condition that f(XCIN) < f(XIN)/3. 58 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 35. Electrical characteristics (Low power source version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted) Symbol Parameter VOH “H” output voltage P00–P07, P10–P15, P30–P37 VOH “H” output voltage P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note) VOL VOL VT+ – VT– VT+ – VT– VT+ – VT– “L” output voltage P00–P07, P10–P15, P30–P37 “L” output voltage P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 (Note) Hysteresis Hysteresis INT0–INT3, ADT, CNTR0, CNTR1, P20–P27 SCLK, RXD Hysteresis RESET “H” input current P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P70–P77, P80, P81 RESET XIN IIH IIH IIH “H” input current “H” input current “L” input current IIL P16, P17, P20–P27,P40–P47, P50–P57, P60–P67, P71–P77, P80, P81 IIL IIL IIL “L” input current P70 “L” input current RESET “L” input current XIN ILOAD Output load current P00–P07, P10–P15, P30–P37 ILEAK Output leak current P00–P07, P10–P15, P30–P37 Test conditions IOH = –2.5 mA IOH = –0.25 mA VCC = 2.2 V IOH = –5 mA IOH = –1.25 mA IOH = –1.25 mA VCC = 2.2 V IOL = 5 mA IOL = 1.25 mA IOL = 1.25 mA VCC = 2.2 V IOL = 10 mA IOL = 2.5 mA IOL = 2.5 mA VCC = 2.2 V Limits Min. VCC–2.0 Typ. V V VCC–2.0 VCC–0.5 V VCC–0.8 V V VO = VSS, Pull-downs “off” Output transistors “off” 2.0 0.5 V 0.8 V 2.0 0.5 V 0.8 V V V 0.5 V 0.5 0.5 V V VI = VCC VI = VSS VI = VSS VCC = 5.0 V, VO = VCC, Pull-downs “on” Output transistors “off” VCC = 2.2 V, VO = VCC, Pull-downs “on” Output transistors “off” VO = VCC, Pull-downs “off” Output transistors “off” Unit VCC–0.8 RESET: VCC=2.2 V to 5.5 V VI = VCC VI = VCC VI = VSS Pull-ups “off” VCC = 5 V, VI = VSS Pull-ups “on” VCC = 2.2 V, VI = VSS Pull-ups “on” Max. 5.0 µA 5.0 µA µA –5.0 µA 4.0 –30 –70 –140 µA –6.0 –25 –45 µA –5.0 µA –5.0 µA µA –4.0 30 70 140 µA 6.0 25 45 µA 5.0 µA –5.0 µA Note : When “1” is set to port XC switch bit (bit 4 of address 003B16) of CPU mode register, the drive ability of port P8 0 is different from the value above mentioned. 59 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 36. Electrical characteristics (Low power source version) (VCC = 2.2 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol VRAM ICC Parameter RAM retention voltage Power source current Test conditions At clock stop mode • High-speed mode, VCC = 5 V f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors “off” A-D converter in operating • High-speed mode, VCC = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors “off” A-D converter in operating • Low-speed mode, VCC = 5 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors “off” • Low-speed mode, VCC = 3 V, Ta ≤ 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors “off” All oscillation stopped (in STP state) Output transistors “off” VL1 Power source voltage IL1 Power source current (VL1) (Note) Min. 2.0 Ta = 25°C Limits Typ. Unit V 6.4 13 mA 1.6 3.2 mA 25 36 µA 7.0 14 µA 15 22 µA 4.5 9.0 µA 0.1 1.0 Ta = 85°C When using voltage multiplier VL1 = 1.8 V VL1 < 1.3 V Max. 5.5 µA 10 1.3 1.8 3.0 10 2.3 6.0 50 V µA Note : When the voltage multiplier control bit of the LCD mode register (bit 4 at address 003916) is “1”. Table 37. A-D converter characteristics (Low power source version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, 4 MHz ≤ f(XIN) ≤ 8 MHz, in middle-/high-speed mode, unless otherwise noted.) Symbol Parameter Test conditions – – Resolution Absolute accuracy (excluding quantization error) VCC = VREF = 5 V tCONV Conversion time f(XIN) = 8 MHz RLADDER IVREF IIA Ladder resistor Reference input current Analog iinput current VREF = 5 V Note : When an internal trigger is used in middle-speed mode, it is 14 µs. 60 Min. Limits Typ. Max. 8 ±2 12.5 (Note) Unit Bits LSB µs 12 35 100 kΩ 50 150 200 µA 5.0 µA MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 38. Timing reguirements 1 (Low power source Version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol tw(RESET) tc(XIN) twH(XIN) twL(XIN) tc(CNTR) twH(CNTR) twL(CNTR) twH(INT) twL(INT) tc(SCLK) twH(SCLK) twL(SCLK) tsu(RXD–SCLK) th(SCLK–RXD) Parameter Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width CNTR0, CNTR1 input cycle time CNTR0, CNTR1 input “H” pulse width CNTR0, CNTR1 input “L” pulse width INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O clock input cycle time (Note) Serial I/O clock input “H” pulse width (Note) Serial I/O clock input “L” pulse width (Note) Serial I/O input set up time Serial I/O input hold time Limits Typ. Min. 2 125 45 40 250 105 105 80 80 800 370 370 220 100 Max. Unit µs ns ns ns ns ns ns ns ns ns ns ns ns ns Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (Clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART). Table 39. Timing reguirements 2 (Low power source Version) (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol Parameter Limits Min. Typ. Max. Unit µs ns ns ns tw(RESET) tc(XIN) twH(XIN) twL(XIN) Reset input “L” pulse width Main clock input cycle time (XIN input) Main clock input “H” pulse width Main clock input “L” pulse width tc(CNTR) CNTR0, CNTR1 input cycle time 900 / (VCC – 0.4) ns twH(CNTR) CNTR0, CNTR1 input “H” pulse width 450 / (VCC – 0.4) – 20 ns twL(CNTR) CNTR0, CNTR1 input “L” pulse width 450 / (VCC – 0.4) – 20 ns twH(INT) twL(INT) tc(SCLK) twH(SCLK) twL(SCLK) tsu(RXD–SCLK) th(SCLK–RXD) INT0 to INT3 input “H” pulse width INT0 to INT3 input “L” pulse width Serial I/O clock input cycle time (Note) Serial I/O clock input “H” pulse width (Note) Serial I/O clock input “L” pulse width (Note) Serial I/O input set up time Serial I/O input hold time 2 125 45 40 230 230 2000 950 950 400 200 ns ns ns ns ns ns ns Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (Clock synchronous). Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART). 61 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Table 40. Switching characteristics 1 (Low power source version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol twH(SCLK) twL(SCLK) td(SCLK–TXD) tv(SCLK–TXD) tr(SCLK) tf(SCLK) tr(CMOS) tf(CMOS) Limits Parameter Serial I/O clock output “H” pulse width Serial I/O clock output “L” pulse width Serial I/O output delay time (Note 1) Serial I/O output valid time (Note 1) Serial I/O clock output rising time Serial I/O clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Min. Typ. Max. tc(SCLK)/2–30 tc(SCLK)/2–30 140 –30 10 10 30 30 30 30 Unit ns ns ns ns ns ns ns ns Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2 : XOUT and XCOUT pins are excluded. Table 41. Switching characteristics 2 (Low power source version) (VCC = 2.2 to 4.0 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted.) Symbol twH(SCLK) twL(SCLK) td(SCLK–TXD) tv(SCLK–TXD) tr(SCLK) tf(SCLK) tr(CMOS) tf(CMOS) Parameter Serial I/O clock output “H” pulse width Serial I/O clock output “L” pulse width Serial I/O output delay time (Note 1) Serial I/O output valid time (Note 1) Serial I/O clock output rising time Serial I/O clock output falling time CMOS output rising time (Note 2) CMOS output falling time (Note 2) Min. tc(SCLK)/2–50 tc(SCLK)/2–50 Limits Typ. 350 –30 20 20 Notes 1 : When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”. 2 : XOUT and XCOUT pins are excluded. Measurement output pin 1 kΩ 100 pF Measurement output pin CMOS output 100 pF N-channel open-drain output (Note) Note : When bit 4 of the UART control register (address 001B 16) is “1”. (N-channel open-drain output mode) Fig. 44 Circuit for measuring output switching characteristics 62 Max. 50 50 50 50 Unit ns ns ns ns ns ns ns ns MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER TIMING DIAGRAM tC(CNTR) tWH(CNTR) CNTR 0, CNTR 1 tWL(CNTR) 0.8VCC 0.2VCC tWH(INT) INT0–INT3 tWL(INT) 0.8VCC 0.2VCC tW(RESET) RESET 0.8VCC 0.2VCC tC(XIN ) tWL(XIN) tWH(XIN) XIN 0.8VCC 0.2VCC tC(SCLK) tf tr tWL(SCLK) SCLK 0.8VCC 0.2VCC tsu(RXD-SCLK ) RX D tWH(SCLK) th(SCLK -RXD) 0.8VCC 0.2VCC td(SCLK -TXD) tv(SCLK-TXD) TXD Fig. 45 Timing diagram 63 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER MARK SPECIFICATION FORM 100P6S (100-PIN QFP) MARK SPECIFICATION FORM Mitsubishi IC catalog name Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed). A. Standard Mitsubishi Mark 80 51 81 50 Mitsubishi IC catalog name Mitsubishi lot number (6-digit or 7-digit) 31 100 1 30 B. Customer’s Parts Number + Mitsubishi catalog name 80 51 81 50 31 100 1 30 Customer’s Parts Number Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name Note1 : The mark field should be written right aligned. 2 : The fonts and size of characters are standard Mitsubishi type. 3 : Customer’s Parts Number can be up to 14 characters : Only 0 ~ 9, A ~ Z, +, –, /, (, ), &, , (periods), (commas) are usable. 4 : If the Mitsubishi logo is not required, check the box below. Mitsubishi logo is not required . , C. Special Mark Required 80 51 81 50 100 31 1 Note1 : If the Special Mark is to be Printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked. 2 : If the customer’s trade mark logo must be used in the Special Mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted. 30 Special logo required 64 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 100P6Q (100-PIN LQFP) MARK SPECIFICATION FORM Mitsubishi IC catalog name Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed). A. Standard Mitsubishi Mark 75 51 76 50 Mitsubishi IC catalog name Mitsubishi IC catalog name Mitsubishi lot number (6-digit or 7-digit) 100 26 1 25 B. Customer’s Parts Number + Mitsubishi catalog name 75 51 76 50 Mitsubishi lot number (6-digit or 7-digit) 100 26 1 25 Customer’s Parts Number Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name Note1 : The mark field should be written right aligned. 2 : The fonts and size of characters are standard Mitsubishi type. 3 : Customer’s Parts Number can be up to 12 characters : Only 0 ~ 9, A ~ Z, +, –, /, (, ), &, , (periods), (commas) are usable. 4 : If the Mitsubishi logo is not required, check the box below. Mitsubishi logo is not required . , C. Special Mark Required 75 51 76 50 100 26 Note1 : If the Special Mark is to be Printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked. 2 : If the customer’s trade mark logo must be used in the Special Mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted. Special logo required 1 25 65 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 100PFB (100-PIN TQFP) MARK SPECIFICATION FORM Mitsubishi IC catalog name Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed). A. Standard Mitsubishi Mark 75 51 50 76 Mitsubishi IC catalog name Mitsubishi IC catalog name Mitsubishi lot number (6-digit or 7-digit) 100 26 1 25 B. Customer’s Parts Number + Mitsubishi catalog name 75 51 50 76 Mitsubishi lot number (6-digit or 7-digit) 100 26 1 Customer’s Parts Number Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name Note1 : The mark field should be written right aligned. 2 : The fonts and size of characters are standard Mitsubishi type. 3 : Customer’s Parts Number can be up to 10 characters : Only 0 ~ 9, A ~ Z, +, –, /, (, ), &, , (periods), (commas) are usable. 4 : If the Mitsubishi logo is not required, check the box below. Mitsubishi logo is not required . , 25 5 : The allocation of Mitsubishi IC catalog name and Mitsubishi Product number depend on the Mitsubishi IC catalog name’s characters, and requiring Mitsubishi logo or not. C. Special Mark Required 75 51 76 50 100 26 Note1 : If the Special Mark is to be Printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked. 2 : If the customer’s trade mark logo must be used in the Special Mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted. Special logo required 1 66 25 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER PACKAGE OUTLINES 100P6S-A Plastic 100pin 14✕20mm body QFP EIAJ Package Code QFP100-P-1420-0.65 Weight(g) 1.58 Lead Material Alloy 42 MD e JEDEC Code – 81 1 b2 100 ME HD D 80 I2 Recommended Mount Pad E 30 HE Symbol 51 50 A L1 c A2 31 A A1 A2 b c D E e HD HE L L1 x y b x A1 F e M L Detail F y 100P6Q-A b2 I2 MD ME Dimension in Millimeters Min Nom Max 3.05 – – 0.1 0.2 0 2.8 – – 0.25 0.3 0.4 0.13 0.15 0.2 13.8 14.0 14.2 19.8 20.0 20.2 0.65 – – 16.5 16.8 17.1 22.5 22.8 23.1 0.4 0.6 0.8 1.4 – – – – 0.13 0.1 – – 0° 10° – 0.35 – – – – 1.3 14.6 – – – – 20.6 Plastic 100pin 14✕14mm body LQFP Lead Material Cu Alloy MD b2 HD ME Weight(g) 0.63 JEDEC Code – e EIAJ Package Code LQFP100-P-1414-0.50 D 100 76 l2 Recommended Mount Pad 75 1 A A1 A2 b c D E e HD HE L L1 Lp HE E Symbol 51 25 26 50 A L1 F A3 M y L Detail F Lp c x A1 b A3 A2 e x y b2 I2 MD ME Dimension in Millimeters Min Nom Max – – 1.7 0.1 0.2 0 – – 1.4 0.13 0.18 0.28 0.105 0.125 0.175 13.9 14.0 14.1 13.9 14.0 14.1 – 0.5 – 15.8 16.0 16.2 15.8 16.0 16.2 0.3 0.5 0.7 1.0 – – 0.45 0.6 0.75 – 0.25 – – – 0.08 – – 0.1 – 0° 10° – – 0.225 – – 0.9 – – 14.4 – – 14.4 67 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER 100PFB-A Plastic 100pin 12✕12mm body TQFP EIAJ Package Code TQFP100-P-1212-0.40 Weight(g) 0.37 Lead Material Cu Alloy MD e JEDEC Code – ME HD 100 b2 D 76 1 I2 Recommended Mount Pad 75 25 A A1 A2 b c D E e HD HE L L1 Lp HE E Symbol 51 26 50 A L1 e F y b x M L Detail F x y b2 I2 MD ME c A1 A3 A2 A3 Lp 100D0 Dimension in Millimeters Min Nom Max 1.2 – – 0.05 0.1 0.15 1.0 – – 0.13 0.18 0.23 0.105 0.125 0.175 11.9 12.0 12.1 11.9 12.0 12.1 0.4 – – 13.8 14.0 14.2 13.8 14.0 14.2 0.4 0.5 0.6 1.0 – – 0.45 0.6 0.75 – 0.25 – 0.07 – – 0.08 – – 0° 10° – – – 0.225 1.0 – – 12.4 – – – – 12.4 Glass seal 100pin QFN EIAJ Package Code – JEDEC Code – Weight(g) 18.85±0.15 5.0MAX 21.0±0.13 3.5TYP 0.65TYP 0.45TYP 51 80 81 INDEX 68 0.35TYP 0.65TYP 12.35±0.15 1.075TYP 15.6±0.13 0.65TYP 50 31 100 30 1.075TYP 1 MITSUBISHI MICROCOMPUTERS 3825 Group SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER Keep safety first in your circuit designs! ● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials ● These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ● Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ● All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ● Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ● The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ● If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 1999 MITSUBISHI ELECTRIC CORP. New publication, effective July 1999 Specifications subject to change without notice. REVISION DESCRIPTION LIST Rev. No. 3825 GROUP DATA SHEET Revision Description Rev. date 1.0 First Edition 980123 2.0 Low power source version is added. 980515 2.1 The followings are mainly revised: On pages 7 to 10; the group expansion On page 17; (11) Port P70 of port block diagram On page 43; the name in Table 11 On pages 53 and 59; the “L” input current parameter of IIL in Tables 25 and 35 is not P70–P77 but P71–P77. 990713