AD AD706AR-REEL Dual picoampere input current bipolar op amp Datasheet

Dual Picoampere Input
Current Bipolar Op Amp
AD706
FEATURES
High DC Precision
100 V Max Offset Voltage
1.5 V/C Max Offset Drift
200 pA Max Input Bias Current
0.5 V p-p Voltage Noise, 0.1 Hz to 10 Hz
750 A Supply Current
Available in 8-Lead Plastic Mini-DlP
and Surface-Mount (SOIC) Packages
Available in Tape and Reel in Accordance with
EIA-481A Standard
Quad Version: AD704
CONNECTION DIAGRAM
Plastic Mini-DIP (N) and
Plastic SOIC (R) Packages
AMPLIFIER 1
AMPLIFIER 2
AD706
OUTPUT 1
8
V
–IN 2
7
OUTPUT
IN 3
6
–IN
V–
5 IN
4
TOP VIEW
APPLICATIONS
Low Frequency Active Filters
Precision Instrumentation
Precision Integrators
GENERAL DESCRIPTION
PRODUCT HIGHLIGHTS
The AD706 is a dual, low power, bipolar op amp that has the
low input bias current of a JFET amplifier, but which offers a
significantly lower IB drift over temperature. It utilizes superbeta
bipolar input transistors to achieve picoampere input bias current
levels (similar to FET input amplifiers at room temperature),
while its IB typically only increases by 5⫻ at 125°C (unlike a
JFET amp, for which IB doubles every 10°C for a 1000⫻
increase at 125°C). The AD706 also achieves the microvolt
offset voltage and low noise characteristics of a precision bipolar
input amplifier.
1. The AD706 is a dual low drift op amp that offers JFET
level input bias currents, yet has the low IB drift of a bipolar
amplifier. It may be used in circuits using dual op amps
such as the LT1024.
The AD706 is an excellent choice for use in low frequency
active filters in 12-bit and 14-bit data acquisition systems, in
precision instrumentation, and as a high quality integrator. The
AD706 is internally compensated for unity gain and is available
in five performance grades. The AD706J is rated over the
commercial temperature range of 0°C to +70°C. The AD706A is
rated for the extended industrial temperature range of –40°C
to +85°C.
The AD706 is offered in two varieties of an 8-lead package:
plastic mini-DIP and surface-mount (SOIC).
3. The AD706 can be used in applications where a chopper
amplifier would normally be required but without the
chopper’s inherent noise.
100
10
TYPICAL IB – nA
Since it has < 200 pA of bias current, the AD706 does not
require the commonly used “balancing” resistor. Furthermore,
the current noise is only 50 fA/√Hz, which makes this amplifier
usable with very high source impedances. At 600 ␮A max supply
current (per amplifier), the AD706 is well suited for today’s
high density boards.
2. The AD706 provides both low drift and high dc precision.
TYPICAL JFET AMP
1
0.1
AD706
0.01
–55
+25
+110
TEMPERATURE – C
+125
Figure 1. Input Bias Current vs. Temperature
REV. E
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved.
AD706–SPECIFICATIONS (@ T = +25C, V
A
Parameter
INPUT OFFSET VOLTAGE
Initial Offset
Offset
vs. Temperature, Average TC
vs. Supply (PSRR)
TMIN to TMAX
Long Term Stability
INPUT BIAS CURRENT1
vs. Temperature, Average TC
TMIN to TMAX
TMIN to TMAX
INPUT OFFSET CURRENT
vs. Temperature, Average TC
TMIN to TMAX
TMIN to TMAX
CM
= 0 V and 15 V dc, unless otherwise noted.)
Conditions
Min
TMIN to TMAX
VS = ± 2 V to ± 18 V
VS = ± 2.5 V to ± 18 V
110
106
VCM = 0 V
VCM = ± 13.5 V
AD706J/A
Typ
Max
Unit
30
40
0.2
132
126
0.3
100
150
1.5
µV
µV
µV/°C
dB
dB
µV/Month
50
200
250
pA
pA
pA/°C
pA
pA
0.3
VCM = 0 V
VCM = ± 13.5 V
300
400
VCM = 0 V
VCM = ± 13.5 V
30
0.6
80
80
VCM = 0 V
VCM = ± 13.5 V
MATCHING CHARACTERISTICS
Offset Voltage
Input Bias Current2
TMIN to TMAX
106
106
106
104
TMIN to TMAX
Power Supply Rejection
FREQUENCY RESPONSE
Unity Gain Crossover Frequency
Slew Rate
TMIN to TMAX
@ f = 10 Hz
RL = 2 kΩ
G = –1
TMIN to TMAX
INPUT IMPEDANCE
Differential
Common Mode
INPUT VOLTAGE RANGE
Common-Mode Voltage
Common-Mode Rejection Ratio
250
350
150
250
300
500
TMIN to TMAX
Common-Mode Rejection
Crosstalk (Figure 2a)
150
250
VCM = ± 13.5 V
TMIN to TMAX
± 13.5
110
108
pA
pA
pA/°C
pA
pA
µV
µV
pA
pA
dB
dB
dB
dB
150
dB
0.8
0.15
0.15
MHz
V/µs
V/µs
40||2
300||2
MΩ||pF
GΩ||pF
± 14
132
128
V
dB
dB
INPUT CURRENT NOISE
0.1 Hz to 10 Hz
f = 10 Hz
3
50
pA p-p
fA/√Hz
INPUT VOLTAGE NOISE
0.1 Hz to 10 Hz
f = 10 Hz
f = 1 kHz
0.5
17
15
µV p-p
nV/√Hz
nV/√Hz
OPEN-LOOP GAIN
OUTPUT CHARACTERISTICS
Voltage Swing
Current
Capacitive Load Drive Capability
VO = ± 12 V
RLOAD = 10 kΩ
TMIN to TMAX
VO = ± 10 V
RLOAD = 2 kΩ
TMIN to TMAX
RLOAD = 10 kΩ
TMIN to TMAX
Short Circuit
Gain = +1
–2–
22
200
150
2000
1500
V/mV
V/mV
200
150
1000
1000
V/mV
V/mV
± 13
± 13
± 14
± 14
± 15
10,000
V
V
mA
pF
REV. E
AD706
SPECIFICATIONS (continued)
Parameter
Conditions
AD706J/A
Typ
Min
POWER SUPPLY
Rated Performance
Operating Range
Quiescent Current, Total
± 15
± 2.0
TRANSISTOR COUNT
TMIN to TMAX
0.75
0.8
Number of Transistors
90
Max
Unit
± 18
1.2
1.4
V
V
mA
mA
NOTES
1
Bias current specifications are guaranteed maximum at either input.
2
Input bias current match is the difference between corresponding inputs (I B of –IN of Amplifier 1 minus I B of –IN of Amplifier 2).
PSRR match is the difference between
∆VOS1
∆VCM
for Amplifier 1 and
∆VOS1
∆VSUPPLY
∆VOS2
∆VCM
for Amplifier 1 and
for Amplifier 2, expressed in dB.
∆VOS2
∆VSUPPLY
for Amplifier 2, expressed in dB.
All min and max specifications are guaranteed.
Specifications subject to change without notice.
ORDERING GUIDE
ABSOLUTE MAXIMUM RATINGS 1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Internal Power Dissipation
(Total: Both Amplifiers)2 . . . . . . . . . . . . . . . . . . . . 650 mW
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VS
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . +0.7 V
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C
Operating Temperature Range
AD706J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C
AD706A . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Lead Temperature (Soldering 10 secs) . . . . . . . . . . . . . 300°C
Model
Temperature
Range
Description
Package
Option
AD706JN
AD706JR
AD706JR-REEL
AD706JR-REEL7
AD706AR
AD706AR-REEL
AD706AR-REEL7
AD706ARZ-REEL*
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
Plastic DIP
SOIC
Tape and Reel
Tape and Reel
SOIC
Tape and Reel
Tape and Reel
Tape and Reel
N-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
*Lead-free part.
METALIZATION PHOTOGRAPH
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Specification is for device in free air:
8-Lead Plastic Package: θJA = 100°C/W
8-Lead Small Outline Package: θJA = 155°C/W
3
The input pins of this amplifier are protected by back-to-back diodes. If the
differential voltage exceeds ± 0.7 V, external series protection resistors should be
added to limit the input current to less than 25 mA.
Dimensions shown in inches and (mm).
Contact factory for latest dimensions.
OUTPUT A
1
–INPUT A
2
7
+INPUT A
3
–VS
4
6
5
0.074 (1.88)
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although the
AD706 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended
to avoid performance degradation or loss of functionality.
REV. E
+VS
8
0.118 (3.00)
CMRR match is the difference between
–3–
OUTPUT B
–INPUT B
+INPUT B
AD706–Typical Performance Characteristics
(Default Conditions: 5 V, CL = 5 pF, G = 2, Rg = Rf = 1 kΩ, RL = 2 kΩ, VO = 2 V p-p, Frequency = 1 MHz, TA = 25C)
1000
1000
SAMPLE
SIZE: 3000
400
800
NUMBER OF UNITS
600
600
400
200
200
–80
TPC 1. Typical Distribution
of Input Offset Voltage
–80
0
80
160
INPUT BIAS CURRENT – pA
–120
TPC 2. Typical Distribution
of Input Bias Current
VS
–1.5
1.5
1.0
0.5
–VS
5
10
15
SUPPLY VOLTAGE – Volts
30
25
20
15
10
5
0
1k
20
TPC 4. Input Common-Mode Voltage
Range vs. Supply Voltage
100
OFFSET VOLTAGE DRIFT – V/C
OUTPUT VOLTAGE – Volts p-p
–1.0
10k
100k
FREQUENCY – Hz
80
40
3
2
1
0
0
–0.8
–0.4
0
0.4
0.8
OFFSET VOLTAGE DRIFT – V/C
TPC 7. Typical Distribution
of Offset Voltage Drift
FOR INDUSTRIAL
TEMPERATURE
RANGE
1.0
10k
100k
1M
10M
SOURCE RESISTANCE – 100M
60
INPUT BIAS CURRENT – pA
120
CHANGE IN OFFSET VOLTAGE – V
160
10
TPC 6. Offset Voltage Drift
vs. Source Resistance
4
SAMPLE SIZE: 375
–55C TO 125C
SOURCE RESISTANCE
MAY BE EITHER BALANCED
OR UNBALANCED
0.1
1k
1M
TPC 5. Large Signal Frequency
Response
200
–60
0
60
120
INPUT OFFSET CURRENT – pA
TPC 3. Typical Distribution
of Input Offset Current
35
–0.5
0
400
0
–160
–40
0
40
80
INPUT OFFSET VOLTAGE – V
600
200
0
0
INPUT COMMON-MODE VOLTAGE LIMIT – Volts
(REFERRED TO SUPPLY VOLTAGES)
SAMPLE SIZE: 2400
800
NUMBER OF UNITS
NUMBER OF UNITS
800
NUMBER OF UNITS
1000
SAMPLE
SIZE: 5100
0
1
2
3
4
WARM-UP TIME – Minutes
TPC 8. Change in Input Offset
Voltage vs. Warm-Up Time
–4–
5
40
20
POSITIVE IB
0
–20
–40
–60
–15
NEGATIVE IB
–10
–5
0
5
10
15
COMMON-MODE VOLTAGE – Volts
TPC 9. Input Bias Current vs.
Common-Mode Voltage
REV. E
AD706
1000
CURRENT NOISE – fA/冪Hz
10
100
10
FREQUENCY – Hz
100
20M
10
VOUT
1
1000
CMRR – dB
QUIESCENT CURRENT – A
900
160
180
160
120
140
100
120
–55C
600
5
10
15
SUPPLY VOLTAGE – Volts
OPEN-LOOP VOLTAGE GAIN – dB
OPEN-LOOP VOLTAGE GAIN
–55C
+25C
+125C
1M
2
4 6 8 10
LOAD RESISTANCE – k
100
TPC 16. Open-Loop Gain vs. Load
Resistance vs. Load Resistance
REV. E
100
– PSRR
80
40
60
20
40
1
10
20
0.1
100 1k
10k 100k 1M
FREQUENCY – Hz
TPC 14. Common-Mode Rejection
Ratio vs. Frequency
10M
1
60
0
0.1
20
TPC 13. Quiescent Supply
Current vs. Supply Voltage
100k
80
+ PSRR
700
0
10
TPC 12. 0.1 Hz to 10 Hz
Noise Voltage
140
+25C
5
TIME – Seconds
0
1000
TPC 11. Input Noise Current
Spectral Density
1000
+125C
100
10
FREQUENCY – Hz
1
TPC 10. Input Noise Voltage
Spectral Density
800
10k
140
0
+VS
120
30
–0.5
100
60
PHASE
80
90
60
120
150
40
GAIN
20
180
0
210
–20
0.01 0.1
1
240
10 100 1k 10k 100k 1M 10M
FREQUENCY – Hz
TPC 17. Open-Loop Gain and
Phase Shift vs. Frequency
–5–
1
10
100 1k
10k 100k 1M
FREQUENCY – Hz
TPC 15. Power Supply Rejection
Ratio vs. Frequency
(REFERRED TO SUPPLY VOLTAGES)
1
0.5V
OUTPUT VOLTAGE SWING – Volts
1
100
PSRR – dB
100
PHASE SHIFT – Degrees
VOLTAGE NOISE – nV/冪Hz
1000
–1.0
–1.5
+1.5
+1.0
+0.5
–VS
0
5
10
15
SUPPLY VOLTAGE – Volts
20
TPC 18. Output Voltage Swing vs.
Supply Voltage
AD706
1000
CLOSED-LOOP OUTPUT IMPEDANCE – –80
CROSSTALK – dB
–100
–120
–140
100
10
AV = –1000
1
AV = + 1
0.1
0.01
IOUT = +1mA
0.001
–160
10
100
1k
FREQUENCY – Hz
10k
100k
1
Figure 2a. Crosstalk vs. Frequency
10
100
1k
FREQUENCY – Hz
10k
100k
Figure 3. Magnitude of Closed-Loop Output
Impedance vs. Frequency
+VS 0.1F
2
1/2
AD706
3
4
RF
VOUT1
1
20V p-p
+VS
0.1F
RL
2k
SINE WAVE
GENERATOR
0.1F
8
–VS
VOUT
1/2
AD706
VIN
4
RL
2k
20k
+VS
0.1F
1F
2.21k
6
CL
SQUARE
WAVE
INPUT
0.1F
–VS
8
1/2
AD706
Figure 4a. Unity Gain Follower (For large signal
applications, resistor RF limits the current
through the input protection diodes.)
VOUT2
7
5
CROSSTALK = 20 LOG10
VOUT2
VOUT1
–20dB
Figure 2b. Crosstalk Test Circuit
Figure 4b. Unity Gain Follower Large
Signal Pulse Response, RF = 10 kΩ,
CL = 1,000 pF
Figure 4c. Unity Gain Follower
Small Signal Pulse Response,
RF = 0 Ω, CL = 100 pF
–6–
Figure 4d. Unity Gain Follower
Small Signal Pulse Response,
RF = 0 Ω, CL = 1000 pF
REV. E
AD706
10k
+VS
+
0.1F
10k
–
VIN
8
VOUT
1/2
AD706
SQUARE
WAVE
INPUT
RL
2.5k
4
+
CL
0.1µF
–VS
Figure 5a. Unity Gain Inverter Connection
Figure 5b. Unity Gain Inverter Large
Signal Pulse Response, CL = 1,000 pF
Figure 5c. Unity Gain Inverter Small
Signal Pulse Response, CL = 100 pF
Figure 6 shows an in-amp circuit that has the obvious advantage
of requiring only one AD706, rather than three op amps, with
subsequent savings in cost and power consumption. The transfer
function of this circuit (without RG) is
VOUT = (VIN1
Figure 5d. Unity Gain Inverter Small
Signal Pulse Response, CL = 1000 pF
CMR is still dependent upon the ratio matching of Resistors R1
through R4. Resistor values for this circuit, using the optional
gain resistor, RG, can be calculated using
R1= R4 = 49.9 kΩ
49.9 kΩ
R2 = R3 =
0.9 G −1
99.8 kΩ
RG =
0.06 G
R4 

− VIN2 )  1 +


R3
for R1 = R4 and R2 = R3.
Input resistance is high, thus permitting the signal source to
have an unbalanced output impedance.
where G = The desired circuit gain.
Table I provides practical 1% resistance values. Note that
without resistor RG, R2 and R3 = 49.9 kΩ/G–1.
RG (OPTIONAL)
R1
R2
49.9k
R3
R4
Table I. Operating Gains of Amplifiers A1 and A2 and
Practical 1% Resistor Values for the Circuit of Figure 6
49.9k
+VS
0.1F
2
3
1k
+
1/2
8
A1
RP*
VIN1
–
AD706
1
5
–
A2
1/2
AD706
6
+
4
7
OUTPUT
RP*
VIN2
–VS
1k
0.1F
VOUT = (VIN1 – VIN2) (1+ R4 ) + ( 2R4 )
R3
RG
FOR R1 = R4, R2 = R3
*OPTIONAL INPUT PROTECTION RESISTOR FOR GAINS GREATER
THAN 100 OR INPUT VOLTAGES EXCEEDING THE SUPPLY VOLTAGE.
Gain of A1 Gain of A2 R2, R3
R1, R4
1.10
1.33
1.50
2.00
10.1
101.0
1001
11.00
4.01
3.00
2.00
1.11
1.01
1.001
49.9 kΩ
49.9 kΩ
49.9 kΩ
49.9 kΩ
49.9 kΩ
49.9 kΩ
49.9 kΩ
1.10
1.33
1.50
2.00
10.10
101.0
1001
499 kΩ
150 kΩ
100 kΩ
49.9 kΩ
5.49 kΩ
499 Ω
49.9 Ω
For a much more comprehensive discussion of in-amp applications, refer to the Instrumentation Amplifier Applications Guide—
available free from Analog Devices, Inc.
Figure 6. Two Op Amp Instrumentation Amplifier
Furthermore, the circuit gain may be fine trimmed using an
optional trim resistor, RG. Like the three op amp circuit, CMR
increases with gain, once initial trimming is accomplished—but
REV. E
Circuit Gain
–7–
AD706
R1
1M
C1
R2
1M
+
3
INPUT
1/2
C2
AD706
2
*WITHOUT THE NETWORK,
PINS 1 AND 2, AND 6 AND 7
OF THE AD706 ARE TIED
TOGETHER.
CAPACITORS C1 AND C2
ARE SOUTHERN ELECTRONICS
MPCC, POLYCARB 5%, 50V
–
+VS
C3
R3
1M
1
0.1F
R4
1M
5 +
C4
4
8
1/2
7
AD706
6
0.1F
OUTPUT
–
–VS
R5
2M
R6
2M
C5
0.01F
C6
0.01F
OPTIONAL BALANCE
RESISTOR NETWORKS*
OFFSET VOLTAGE OF FILTER CIRCUIT (RTI) – V
Figure 7. 1 Hz, 4-Pole Active Filter
1 Hz, 4-Pole, Active Filter
Figure 7 shows the AD706 in an active filter application. An
important characteristic of the AD706 is that both the input bias
current, input offset current, and their drift remain low over
most of the op amp’s rated temperature range. Therefore, for
most applications, there is no need to use the normal balancing
resistor. Adding the balancing resistor enhances performance at
high temperatures, as shown by Figure 8.
180
WITHOUT OPTIONAL
BALANCE RESISTOR, R3
120
60
0
WITH OPTIONAL BALANCE
RESISTOR, R3
–60
–120
–180
–40
0
40
80
TEMPERATURE – C
120
Figure 8. VOS vs. Temperature Performance
of the 1 Hz Filter
Table II. 1 Hz, 4-Pole, Low Pass Filter Recommended Component Values
Desired Low
Pass Response
Section 1
Frequency
(Hz)
Bessel
Butterworth
0.1 dB Chebychev
0.2 dB Chebychev
0.5 dB Chebychev
1.0 dB Chebychev
1.43
1.00
0.648
0.603
0.540
0.492
Q
Section 2
Frequency
(Hz)
Q
C1
(F)
C2
(F)
C3
(F)
C4
(F)
0.522
0.541
0.619
0.646
0.705
0.785
1.60
1.00
0.948
0.941
0.932
0.925
0.806
1.31
2.18
2.44
2.94
3.56
0.116
0.172
0.304
0.341
0.416
0.508
0.107
0.147
0.198
0.204
0.209
0.206
0.160
0.416
0.733
0.823
1.00
1.23
0.0616
0.0609
0.0385
0.0347
0.0290
0.0242
NOTE
Specified Values are for a –3 dB point of 1.0 Hz. For other frequencies simply scale capacitors C1 through C4 directly, i.e. for 3 Hz
Bessel response, C1 = 0.0387 µF, C2 = 0.0357 µF, C3 = 0.0533 µF, C4 = 0.0205 µF.
–8–
REV. E
AD706
OUTLINE DIMENSIONS
8-Lead Standard Small Outline Package [SOIC]
(R-8)
Dimensions shown in millimeters and (inches)
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
8
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2440)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
SEATING
0.10
PLANE
0.50 (0.0196)
45
0.25 (0.0099)
8
0.25 (0.0098) 0 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
8-Lead Plastic Dual-in-Line Package [PDIP]
(N-8)
Dimensions shown in inches and (millimeters)
0.375 (9.53)
0.365 (9.27)
0.355 (9.02)
8
5
1
4
0.295 (7.49)
0.285 (7.24)
0.275 (6.98)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.180
(4.57)
MAX
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.015
(0.38)
MIN
SEATING
PLANE
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
REV. E
–9–
AD706
Revision History
Location
Page
10/03–Data Sheet changed from REV. D to REV. E
Removed the K Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal
Updated FEATURES list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Updated PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Renumbered TPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Renumbered Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10/02–Data Sheet changed from REV. C to REV. D
Deleted 8-Lead CERDIP (Q-8) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
–10–
REV. E
–11–
–12–
C00820–0–10/03(E)
Similar pages