ALM-1222 1.8-2.2GHz Low Noise, High Gain, High Linearity Balanced Amplifier Module Data Sheet Description Features Avago Technologies’ ALM-1222 is a very low noise, high linearity balanced amplifier module operating in the 1.8 to 2.2GHz frequency range. The exceptional noise and linearity performances are achieved through the use of Avago Technologies’ proprietary 0.5um GaAs Enhancement-mode pHEMT process. • Low noise figure The ALM-1222 is housed in a miniature 5.0 x 6.0 x 1.1 mm3 22-lead multiple-chips-on-board (MCOB) module package. The compact footprint and low profile makes this product an ideal choice for Wireless Infrastructure Basestation Tower-Mounted Amplifiers (TMA), Radiocards and Multi-Carrier Driver Amplifiers in the cellular/ PCS/CDMA bands. Component Image 5.0 x 6.0 x 1.1 mm3 22-lead MCOB Top View AVAGO ALM-1222 MAYWWDD XXXX Bottom View Note: Package marking provides orientation and identification “ALM-1222” = Device Part Number “YWWDD” = Year, work week and day of manufacture “XXXX” = Assembly lot number • High linearity and P1dB • GaAs E-pHEMT Technology[1] • 50Ω internal matching • Small package size: 5x6x1.1 mm3 • 5V supply • Adjustable current for optimum NF or OIP3 • Excellent uniformity in product specifications • Tape-and-Reel packaging option available • MSL-2a and Lead-free • Point MTTF > 300 years at 120oC channel temperature • Shutdown function • Specifications • 2GHz; 5V, 280mA (typ) per section • Vctrl typically at 2.3V • 31 dB Gain • 0.62 dB Noise Figure • 43.7 dBm Output IP3 • 27.5 dBm Output Power at 1dB gain compression • 45dB Reverse Isolation Applications • Diversity Antenna, TMA & Front End LNA for EGSM/ PCS/W-CDMA Base Stations. • Driver amplifier. Notes: 1. Enhancement mode technology employs positive gate voltage, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 50 V ESD Human Body Model = 250 V Refer to Avago Technologies Application Note A004R: Electrostatic Discharge, Damage and Control. Absolute Maximum Rating [2] TA=25oC Symbol Parameter Units Absolute Max. Vdd Device Voltage, RF output to ground V 5.5 Thermal Resistance [3](Vdd = 5.0V, Vctrl=2.2V)qjc = 20 oC/W Vctrl Control Voltage V 3.0 Notes: Pin,max CW RF Input Power (Vdd = 5.0, Idd=280mA) dBm 22 Pdiss Total Power Dissipation [4] W 5 2. 3. 4. Tj Junction Temperature oC 150 TSTG Storage Temperature oC -65 to 150 Operation of this device in excess of any of these limits may cause permanent damage. Thermal resistance measured using Infra-Red measurement technique. Board (module belly) temperature TB is 25 oC. Derate 50mW/oC for TB>95 oC. Product Consistency Distribution Charts [5,6] Process Capability for NF 150 Nominal = 0.62, USL = 1.0 Std dev=0.014 CPK>2 90 60 30 0.5 0.55 0.6 0.65 NF (dB) 0.7 Std dev=0.35 CPK=1.45 300 200 0 0.75 Figure 1. NF@ 2.0GHz; 5V, 280mA Process Capability for OIP3 200 LSL = 39.0, Nominal = 43.7 120 Std dev=0.93 CPK=1.6 90 28.5 29 29.5 30 30.5 31 31.5 32 32.5 33 Gain (dB) Figure 2. Gain @ 2.0GHz; 5V, 280mA 60 Process Capability for Vctrl LSL = 1.9, Nominal = 2.3, USL = 2.8 Std dev = 0.07 CPK_L = 2.0 CPK_U = 2.1 160 frequency 150 frequency LSL = 29.5, Nominal = 31.0 100 0 120 80 40 30 0 Process Capability for Gain 400 frequency 120 frequency 500 0 38 40 42 44 OIP3 (dBm) Figure 3. OIP3@ 2.0GHz; 5V, 280mA 46 48 1.8 2 2.2 2.4 Vctrl (V) 2.6 2.8 Figure 4. Vctrl @ 2.0GHz; 5V, 280mA Note: 5. Distribution data sample size is 500 samples taken from 3 different wafers and 3 different lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 6. Measurements are made on a production test board, which can show a variance of up to 1dB in gain and OIP3 compared to a soldered-down demo board. Input trace losses have been de-embedded from actual measurements. 2 Electrical Specifications [7], [10] TA = 25 °C, Vdd =5V @ 280mA, RF performance at 2.0 GHz, given for each of the 2 RF paths, measured on demo board (see Fig. 5) unless otherwise specified. Symbol Parameter and Test Condition Vctrl Control Voltage, Idd=280mA Gain Gain OIP3 [8] Units Min. Typ. Max. 1.9 2.3 2.8 dB 29.5 31 32.5 Output Third Order Intercept Point dBm 39 43.7 - NF [9] Noise Figure (Typ.Vctrl=2.2V) dB - 0.62 1.00 OP1dB Output Power at 1dB Gain Compression dBm - 27.5 - S11 Input Return Loss, 50W source dB - -8 - S22 Output Return Loss, 50W load dB - -10 - S12 Reverse Isolation dB - 45 - ISO1-2 Isolation between RF Input 1 and RF Input 2 dB - 22 - Notes: 7. Measurements at 2GHz obtained using demo board described in Fig 5. 8. 2GHz OIP3 test condition: FRF1 = 2.0 GHz, FRF2 = 2.01 GHz with input power of -20dBm per tone measured at lower side band. 9. For NF data, board losses of 0.12dB at the input have been de-embedded. 10. Use proper bias, heatsink and derating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application note for more details. 3 Demo Board Layout Circuit Symbol C1, C10 Size Description 0805 2.2uF ceramic C2, C7 0402 Not used C3, C6 0402 0.1uF ceramic C4, C9 C5, C8 0402 0402 Not used 0.1uF ceramic Ground Pinout Designation 10 1 RF output 1 RF input 2 RF output 2 Recommended PCB material is 10 mils Rogers RO4350. Suggested component values may vary according to layout and PCB material. Vsupply Bias1 Vsense Demo Board Schematic Module Outline C3 C5 21 20 C1 19 17,18 Bias 50-Ohms TL 2 Input Match 50-Ohms TL Interstage Match Output Match 3,4 50-Ohms TL Input Match Interstage Match 6 Output Match 8 Figure 6. Demo Board Schematic Diagram 9 10 11 Bias2 Vsupply 1,2,19,20 C8 10 C6 13 12 Bias 7 4 16 14,15 5 Vsupply RF input 1 Figure 5. Demo Board Layout Diagram 1,22 20-pin Connector C10 50-Ohms TL 1,2 Balanced Amplifier Demo Board Layout Circuit Symbol C1, C10 C2, C7 C3, C6 C4, C9 C5, C8 R1, R4 R2, R3 Coupler Size Description 0805 0402 0402 0402 0402 0402 0402 14.22x5.08 mm2 2.2uF ceramic Not used 0.1uF ceramic Not used 0.1uF ceramic Not used 49.9 ohms Anaren Xinger II XC1900E-03 or equiv Ground 20-pin Connector RF Input RF Output Figure 7. Suggested Balanced Amplifier Demo Board Layout Recommended PCB material is 10 mils Rogers RO4350. Suggested component values may vary according to layout and PCB material. Vsupply Vsense Bias1 Balanced Demo Board Schematic Module Outline C3 Coupler C5 21 1,22 20 2 Input Match Interstage Match Output Match Input Match Interstage Match 6 5 Output Match 7 8 9 13 RF Output 12 Bias 10 11 Bias2 Vsupply 1,2,19,20 C8 10 C6 Figure 8. Application Schematic for Balanced Amplifier 16 14,15 5 R3 R2 50-Ohms TL 3,4 50-Ohms TL Coupler 17,18 Bias 50-Ohms TL RF Input C1 19 C10 50-Ohms TL ALM-1222 Typical Performance I TA = +25 oC, Vdd = 5V, Idd = 280mA Input Signal=CW unless stated otherwise. 1.6 31 1.4 29 1.2 27 1.0 25 0.8 0.6 23 21 -15 -20 -25 -30 -35 -40 0.2 17 -45 1.8 1.9 2.0 2.1 Freq (GHz) 2.2 15 2.3 1.7 1.8 1.9 2.0 2.1 Freq (GHz) 2.2 -50 2.3 Figure 10. Gain vs Frequency and channel -15 S22 ch1 S22 ch2 -20 0 2 4 6 8 10 12 14 16 18 20 Freq (GHz) Figure 12. S22 vs Frequency and channel -50 1.0 0.8 0.4 0.2 0 2 4 6 0.0 8 10 12 14 16 18 20 Freq (GHz) 1.7 33 31 40 31 29 35 29 27 30 27 21 19 15 1.7 1.8 1.9 2 2.1 Freq (GHz) 2.2 20 15 10 -40˚C 25˚C 85˚C 17 OP1dB (dBm) 35 45 OIP3 (dBm) 50 33 25 Figure 15. Gain vs Frequency and temperature 1.7 1.8 1.9 2 2.1 Freq (GHz) 2.2 2.3 Figure 16. OIP3 vs Frequency and temperature 2.2 2.3 25 23 21 -40˚C 25˚C 85˚C 17 0 2.3 1.9 2 2.1 Freq (GHz) 19 -40˚C 25˚C 85˚C 5 1.8 Figure 14. NF vs Frequency and temperature 35 23 -40˚C 25˚C 85˚C 0.6 -60 Figure 13. Isolation vs Frequency and channel 25 8 10 12 14 16 18 20 Freq (GHz) 1.2 -40 -80 6 1.4 -30 -70 -25 4 1.6 NF (dB) Reverse Isolation (dB) -10 2 1.8 -20 -5 0 2.0 S12 ch1 S12 ch2 -10 0 S11 ch1 S11 ch2 Figure 11. S11 vs Frequency and channel 0 5 Output return loss (dB) -10 19 Figure 9. NF vs Frequency and channel Gain (dB) 0 -5 0.4 0.0 1.7 6 5 ch1 ch2 33 Gain (dB) NF (dB) 35 ch1 ch2 1.8 Input return loss (dB) 2.0 15 1.7 1.8 1.9 2 2.1 Freq (GHz) 2.2 2.3 Figure 17. OP1dB vs Frequency and temperature ALM-1222 Typical Performance II TA = +25 oC, Vdd = 5V, Idd = 280mA, Frequency = 2GHz. Input Signal=CW unless stated otherwise. 50 33 45 31 40 1.4 29 35 1.2 27 30 -40˚C 25˚C 85˚C Gain (dB) NF (dB) 1.6 1.0 0.8 25 23 0.6 21 0.4 19 0.2 17 0.0 100 15 100 150 200 250 300 Idd (mA) 350 400 450 Figure 18. NF vs Idd and temperature -40˚C 25˚C 85˚C 31 Input return loss (dB) 29 OP1dB (dBm) 150 200 250 300 Idd (mA) 350 27 25 23 21 19 2 2.2 2.4 2.6 Vctrl (V) 2.8 -15 -40˚C 25˚C 85˚C 200 250 300 Idd (mA) 5 5 4 4 3 3 2 2 1 1 0 0 13.5 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 Figure 24. Stability over frequency 7 150 350 150 200 250 300 Idd (mA) 350 400 450 Figure 20. OIP3 vs Idd and temperature -10 Figure 22. S11 vs Idd and temperature Freq (GHz) 0 100 450 -5 -20 -40˚C 25˚C 85˚C 5 -5 Source_Stability Load_Stability Figure 21. OP1dB vs Vctrl and temperature 15 0 -25 100 3 20 0 17 15 1.8 400 25 10 Figure 19. Gain vs Idd and temperature 35 33 -40˚C 25˚C 85˚C Output return loss (dB) 1.8 OIP3_L (dBm) 35 2.0 400 -10 -15 -40˚C 25˚C 85˚C -20 450 -25 100 150 200 250 300 Idd (mA) 350 Figure 23. S22 vs Idd and temperature 400 450 Package Dimensions Device Orientation REEL User Feed Direction AVAGO ALM-1222 MAYWWDD XXXX CARRIER TAPE USER FEED DIRECTION AVAGO ALM-1222 MAYWWDD XXXX AVAGO ALM-1222 MAYWWDD XXXX Top View End View COVER TAPE Tape Dimensions Bo 1.75 ± 0.10 5° l Al nd u Aro A SECTION B-B 8 R0.50 B 8.00 ± 0.10 ø1.50 (Min.) 12.00 ± 0.30 ø1.55 ± 0.05 5.50 ± 0.10 B 4.00 ± 0.10 See Note #2 2.00 ± 0.05 Reel Dimensions Ø178.0±1.0 FRONT BACK SEE DETAIL "X" RECYCLE LOGO FRONT VIEW Part Number Ordering Information Part Number No. of Devices Container ALM-1222-BLKG 100 Antistatic bag ALM-1222-TR1G 1000 7” Reel ALM-1222-TR2G 3000 13” Reel For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes AV01-0058EN AV02-1470EN - April 7, 2009