Fairchild FDN337N N-channel logic level enhancement mode field effect transistor Datasheet

March 1998
FDN337N
N-Channel Logic Level Enhancement Mode Field Effect Transistor
General Description
Features
TM
SuperSOT -3 N-Channel logic level enhancement mode
power field effect transistors are produced using Fairchild's
proprietary, high cell density, DMOS technology. This very
high density process is especially tailored to minimize
on-state resistance. These devices are particularly suited for
low voltage applications in notebook computers, portable
phones, PCMCIA cards, and other battery powered circuits
where fast switching, and low in-line power loss are needed
in a very small outline surface mount package.
SuperSOTTM-8
SuperSOTTM-6
SOT-23
2.2 A, 30 V, RDS(ON) = 0.065 Ω @ VGS = 4.5 V
RDS(ON) = 0.082 Ω @ VGS = 2.5 V.
Industry standard outline SOT-23 surface mount
package using proprietary SuperSOTTM-3 design for
superior thermal and electrical capabilities.
High density cell design for extremely low RDS(ON).
Exceptional on-resistance and maximum DC current
capability.
SO-8
SOIC-16
SOT-223
D
D
3
37
S
TM
SuperSOT -3
G
Absolute Maximum Ratings
Symbol
Parameter
VDSS
Drain-Source Voltage
VGSS
ID
PD
Maximum Power Dissipation
TA = 25oC unless other wise noted
FDN337N
Units
30
V
Gate-Source Voltage - Continuous
±8
V
Drain/Output Current - Continuous
2.2
A
- Pulsed
TJ,TSTG
S
G
10
(Note 1a)
0.5
(Note 1b)
0.46
Operating and Storage Temperature Range
W
-55 to 150
°C
THERMAL CHARACTERISTICS
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
250
°C/W
RθJC
Thermal Resistance, Junction-to-Case
(Note 1)
75
°C/W
© 1998 Fairchild Semiconductor Corporation
FDN337N Rev.C
Electrical Characteristics (TA = 25 OC unless otherwise noted )
Symbol
Parameter
Conditions
Min
Typ
Max
Units
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = 250 µA
∆BVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
ID = 250 µA, Referenced to 25 oC
30
V
IDSS
Zero Gate Voltage Drain Current
VDS = 24 V, VGS = 0 V
IGSSF
Gate - Body Leakage, Forward
VGS = 8 V,VDS = 0 V
IGSSR
Gate - Body Leakage, Reverse
VGS = -8 V, VDS = 0 V
-100
nA
TJ = 55°C
ON CHARACTERISTICS
mV/ oC
41
1
µA
10
µA
100
nA
(Note)
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
∆VGS(th)/∆TJ
Gate Threshold Voltage Temp. Coefficient
ID = 250 µA, Referenced to 25 oC
0.4
RDS(ON)
Static Drain-Source On-Resistance
VGS = 4.5 V, ID = 2.2 A
0.7
1
V
mV/ oC
-2.3
TJ =125°C
VGS = 2.5 V, ID = 2 A
0.054
0.065
0.08
0.11
0.07
0.082
10
Ω
ID(ON)
On-State Drain Current
VGS = 4.5 V, VDS = 5 V
A
gFS
Forward Transconductance
VDS = 5 V, ID = 2.2 A
13
S
VDS = 10 V, VGS = 0 V,
f = 1.0 MHz
300
pF
145
pF
35
pF
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS
tD(on)
Turn - On Delay Time
tr
Turn - On Rise Time
tD(off)
Turn - Off Delay Time
tf
Turn - Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
(Note)
VDD = 5 V, ID = 1 A,
VGS = 4.5 V, RGEN = 6 Ω
VDS = 10 V, ID = 2.2 A,
VGS = 4.5 V
4
10
ns
10
18
ns
17
28
ns
4
10
ns
7
9
nC
1.1
nC
1.9
nC
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
IS
Maximum Continuous Drain-Source Diode Forward Current
VSD
Drain-Source Diode Forward Voltage
VGS = 0 V, IS = 0.42 A
(Note)
0.65
0.42
A
1.2
V
Note:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by
design while RθCA is determined by the user's board design.
Typical RθJA using the board layouts shown below on FR-4 PCB in a still air environment :
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
a. 250oC/W when mounted on
0.02 in2 pad of 2oz Cu.
a
b. 270oC/W when mounted on
a 0.001 in2 pad of 2oz Cu.
FDN337N Rev.C
Typical Electrical Characteristics
VGS = 4.5V
5
2
R DS(ON ) , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
I D , DRAIN-SOURCE CURRENT (A)
6
3.0
2.5
2.0
4
3
1.5
2
1
1.8
1.4
2.5
1.2
0
0.3
0.6
0.9
1.2
3.0
3.5
4.5
1
0.8
0
VGS = 2.0V
1.6
1.5
0
1
2
3
4
I D , DRAIN CURRENT (A)
VDS , DRAIN-SOURCE VOLTAGE (V)
0.25
R DS(ON) , ON-RESISTANCE (OHM)
R DS(ON) , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
1.6
ID = 2.2A
VGS = 4.5 V
1.2
1
0.8
0.6
-50
6
Figure 2. On-Resistance Variation with
Drain Current and Gate
Figure 1. On-Region Characteristics.
1.4
5
I D = 1.1A
0.2
0.15
25°C
0.05
0
-25
0
25
50
75
100
125
125°C
0.1
150
1
2
3
4
5
VGS , GATE TO SOURCE VOLTAGE (V)
T , JUNCTION TEMPERATURE (°C)
J
Figure 3. On-Resistance Variation
with Temperature.
Figure 4. On-Resistance Variation with
Gate-to-Source Voltage.
ID , DRAIN CURRENT (A)
V DS = 5.0V
TJ = -55°C
6
I S , REVERSE DRAIN CURRENT (A)
7
25°C
125°C
5
4
3
2
1
0
0
0.5
V
GS
1
1.5
2
, GATE TO SOURCE VOLTAGE (V)
2.5
4
2
VGS = 0V
TJ = 125°C
0.5
25°C
0.1
-55°C
0.01
0.001
0.0001
0
0.2
0.4
0.6
0.8
1
VSD , BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics.
FDN337N Rev.C
Typical Electrical Characteristics (continued)
1000
I D = 2.2A
VDS = 5V
4
500
15V 10V
CAPACITANCE (pF)
VGS , GATE-SOURCE VOLTAGE (V)
5
3
2
Ciss
200
Coss
100
50
1
0
20
0.1
0
2
4
6
f = 1 MHz
VGS = 0V
Crss
0.2
8
0.5
V
DS
1
2
5
10
20
, DRAIN TO SOURCE VOLTAGE (V)
Q g , GATE CHARGE (nC)
Figure 7. Gate Charge Characteristics.
Figure 8. Capacitance Characteristics.
50
20
5
VGS = 4.5V
SINGLE PULSE
Rθ JA =250 °C/W
TA = 25°C
0.03
0.01
0.1
0.5
V
30
20
10
0
0.0001
1
DS
ms
1s
10s
DC
0.3
0.1
POWER (W)
100
1
SINGLE PULSE
R θJA =270° C/W
TA = 25°C
40
10m
s
2
2
5
10
20
0.001
50
0.01
0.1
1
10
100 300
SINGLE PULSE TIME (SEC)
, DRAI N-SOURCE VOLTAGE (V)
Figure 10. Single Pulse Maximum Power
Dissipation.
Figure 9. Maximum Safe Operating Area.
1
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
I D , DRAIN CURRENT (A)
1m
s
IT
LIM
N)
S(O
RD
10
0.5
D = 0.5
0.2
0.1
0.05
0.02
0.01
0.2
R θJA (t) = r(t) * RθJA
R θJA = 270 °C/W
0.1
0.05
0.02
0.01
P(pk)
t1
Single Pulse
0.005
Duty Cycle, D = t1 /t2
0.002
0.001
0.0001
t2
TJ - TA = P * RθJA (t)
0.001
0.01
0.1
1
10
100
300
t1 , TIME (sec)
Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in note 1b.
Transient thermal response will change depending on the circuit board design.
FDN337N Rev.C
Similar pages