Appendix B — ATtiny25/V Specification at +125°C This document contains information specific to devices operating at temperatures up to 125°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash ATtiny25 ATtiny25V Appendix B Rev. 2586N-Appendix B–AVR–08/11 1. Memories 1.1 EEPROM Data Memory The EEPROM has an endurance of at least 50,000 write/erase cycles. 2 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 2. Electrical Characteristics 2.1 DC Characteristics Table 2-1. DC Characteristics. TA = -40°C to +125°C Symbol Parameter Condition Min. VIL Input Low-voltage, except XTAL1 and RESET pin VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V VIH Input High-voltage, except XTAL1 and RESET pin VIL1 Typ.(1) Max. Units -0.5 -0.5 0.2VCC(3) 0.3VCC(3) V V VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC +0.5 VCC +0.5 V V Input Low-voltage, XTAL1 pin, External Clock Selected VCC = 1.8V - 5.5V -0.5 0.1VCC(3) V VIH1 Input High-voltage, XTAL1 pin, External Clock Selected VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.8VCC(2) 0.7VCC(2) VCC +0.5 VCC +0.5 V V VIL2 Input Low-voltage, RESET pin VCC = 1.8V - 5.5V -0.5 0.2VCC(3) V V VIH2 Input High-voltage, RESET pin VCC = 1.8V - 5.5V 0.9VCC(2) VCC +0.5 V VIL3 Input Low-voltage, RESET pin as I/O VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V -0.5 -0.5 0.2VCC(3) 0.3VCC(3) V V VIH3 Input High-voltage, RESET pin as I/O VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC +0.5 VCC +0.5 V V VOL Output Low-voltage,(4) Port B (except RESET) (6) IOL = 10 mA, VCC = 5V IOL = 5 mA, VCC = 3V 0.6 0.5 V V VOH Output High-voltage, (5) Port B (except RESET) (6) IOH = -10 mA, VCC = 5V IOH = -5 mA, VCC = 3V IIL Input Leakage Current I/O Pin VCC = 5.5V, pin low (absolute value) < 0.05 1 µA IIH Input Leakage Current I/O Pin VCC = 5.5V, pin high (absolute value) < 0.05 1 µA RRST Reset Pull-up Resistor VCC = 5.5V, input low 30 60 kΩ Rpu I/O Pin Pull-up Resistor VCC = 5.5V, input low 20 50 kΩ Power Supply Current (7) ICC Power-down mode (8) Notes: 4.3 2.5 V V Active 1 MHz, VCC = 2V 0.3 0.55 mA Active 4 MHz, VCC = 3V 1.5 2.5 mA Active 8 MHz, VCC = 5V 5 8 mA Idle 1 MHz, VCC = 2V 0.1 0.2 mA Idle 4 MHz, VCC = 3V 0.35 0.6 mA Idle 8 MHz, VCC = 5V 1.2 2 mA WDT enabled, VCC = 3V 4 20 µA WDT disabled, VCC = 3V 0.2 14 µA 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is guaranteed to be read as high. 3. “Max” means the highest value where the pin is guaranteed to be read as low. 3 2586N-Appendix B–AVR–08/11 4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL, for all ports, should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH, for all ports, should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See Figure 3-19, Figure 3-20, Figure 3-21, and Figure 3-22 (starting on page 18). 7. Values are with external clock using methods described in “Minimizing Power Consumption” on page 37. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive. 8. Brown-Out Detection (BOD) disabled. 2.2 Clock Characteristics 2.2.1 Calibrated Internal RC Oscillator Accuracy It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Please note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 3-36 on page 27 and Figure 3-37 on page 27. Table 2-2. Calibration Accuracy of Internal RC Oscillator Calibration Method Target Frequency VCC Temperature Accuracy at given Voltage & Temperature (1) 8.0 MHz (2) 3V 25°C ±10% Fixed frequency within: 6 – 8 MHz Fixed voltage within: 1.8V - 5.5V (3) 2.7V - 5.5V (4) Fixed temperature within: -40°C to +125°C ±1% Factory Calibration User Calibration Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). 2. 6.4 MHz in ATtiny15 Compatibility Mode. 3. Voltage range for ATtiny25V. 4. Voltage range for ATtiny25. 2.3 2.3.1 System and Reset Characteristics Power-On Reset Table 2-3. Symbol Characteristics of Power-On Reset. TA = -40°C to +125°C Parameter (2) Min(1) Typ(1) Max(1) Units 1.1 1.4 1.7 V 1.3 1.7 V VPOR Release threshold of power-on reset VPOA Activation threshold of power-on reset (3) 0.6 SRON Power-On Slope Rate 0.01 Note: V/ms 1. Values are guidelines, only 2. Threshold where device is released from reset when voltage is rising 3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling) 4 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 2.4 Brown-Out Detection Table 2-4. BODLEVEL Fuse Coding. TA = -40°C to +125°C BODLEVEL[2:0] Fuses Min(1) 111 2.5 Max(1) Units BOD Disabled 110 1.7 1.8 2.0 101 2.5 2.7 2.9 100 4.1 4.3 4.5 0XX Note: Typ(1) V Reserved 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to VCC = VBOT during the production test. This guarantees that a Brown-out Reset will occur before VCC drops to a voltage where correct operation of the microcontroller is no longer guaranteed. Serial Programming Characteristics Table 2-5. Serial Programming Characteristics, TA = -40°C to +125°C, VCC = 1.8 - 5.5V (Unless Otherwise Noted) Symbol Parameter 1/tCLCL Oscillator Frequency (VCC = 1.8 - 5.5V) tCLCL Oscillator Period (VCC = 1.8 - 5.5V) 1/tCLCL Oscillator Frequency (VCC = 2.7 - 5.5V) Oscillator Period (VCC = 2.7 - 5.5V) tCLCL 1/tCLCL Min 0 Typ Max Units 4 MHz 250 0 ns 10 100 MHz ns Oscillator Frequency (VCC = 4.5V - 5.5V) 0 tCLCL Oscillator Period (VCC = 4.5V - 5.5V) 50 ns tSHSL SCK Pulse Width High 2 tCLCL* ns tSLSH SCK Pulse Width Low 2 tCLCL* ns tOVSH MOSI Setup to SCK High tCLCL ns tSHOX MOSI Hold after SCK High 2 tCLCL ns tSLIV SCK Low to MISO Valid Note: 20 100 MHz ns 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz 5 2586N-Appendix B–AVR–08/11 2.6 ADC Characteristics Table 2-6. Symbol ADC Characteristics, Single Ended Channels. TA = -40°C to +125°C Parameter Condition Min Typ Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset errors) VINT VREF = 4V, VCC = 4V, ADC clock = 1 MHz 3 LSB VREF = 4V, VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 1.5 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 2.5 LSB Integral Non-linearity (INL) (Accuracy after offset and gain calibration) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1 LSB Differential Non-linearity (DNL) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.5 LSB Offset Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1.5 LSB Conversion Time Free Running Conversion Input Voltage 14 280 µs 50 1000 kHz GND VREF V 38.4 External Reference Voltage 2.0 Internal Voltage Reference 1.0 2.3 Internal 2.56V Reference (1) VCC > 3.0V Analog Input Resistance ADC Output Note: 6 Bits LSB RREF RAIN 10 2 Input Bandwidth AREF Units VREF = 4V, VCC = 4V, ADC clock = 200 kHz Clock Frequency VIN Max 0 kHz VCC V 1.1 1.2 V 2.56 2.8 V 32 kΩ 100 MΩ 1023 LSB 1. Values are guidelines only. ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Table 2-7. Symbol ADC Characteristics, Differential Channels (Unipolar Mode). TA = -40°C to +125°C Parameter Condition Min Typ Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 20.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10.0 LSB Gain = 1x 10.0 LSB Gain = 20x 15.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain Error Offset Error Conversion Time Free Running Conversion Clock Frequency VIN Input Voltage VDIFF Input Differential Voltage 70 280 µs 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth AREF VINT 4 External Reference Voltage 2.0 Internal Voltage Reference 1.0 2.3 Internal 2.56V Reference (1) VCC > 3.0V kHz VCC - 1.0 V 1.1 1.2 V 2.56 2.8 V RREF Reference Input Resistance 32 kΩ RAIN Analog Input Resistance 100 MΩ ADC Conversion Output Note: 0 1023 LSB 1. Values are guidelines only. 7 2586N-Appendix B–AVR–08/11 Table 2-8. Symbol ADC Characteristics, Differential Channels (Bipolar Mode). TA = -40°C to +125°C Parameter Condition Min Typ Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 5.0 LSB Gain = 1x 4.0 LSB Gain = 20x 5.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain Error Offset Error Conversion Time Free Running Conversion Clock Frequency VIN Input Voltage VDIFF Input Differential Voltage 70 280 µs 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth AREF VINT 4 External Reference Voltage 2.0 Internal Voltage Reference 1.0 2.3 Internal 2.56V Reference (1) VCC > 3.0V kHz VCC - 1.0 V 1.1 1.2 V 2.56 2.8 V RREF Reference Input Resistance 32 kΩ RAIN Analog Input Resistance 100 MΩ ADC Conversion Output Note: 8 -512 511 LSB 1. Values are guidelines only. ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 3. Typical Characteristics The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave. The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source. The power consumption in Power-down mode is independent of clock selection. The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. The current drawn from capacitive loaded pins may be estimated (for one pin) as C L*V CC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin. The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates. The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. 3.1 Active Supply Current Figure 3-1. Active Supply Current vs. VCC (Internal RC oscillator, 8 MHz) 7 25 °C 125 °C -40 °C 6 ICC (mA) 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 9 2586N-Appendix B–AVR–08/11 Figure 3-2. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) 1.6 25 °C 125 °C -40 °C 1.4 1.2 ICC (mA) 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-3. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) 0.25 -40 °C 25 °C 125 °C ICC (mA) 0.2 0.15 0.1 0.05 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 10 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 3.2 Idle Supply Current Figure 3-4. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)I 1.8 125 °C 85 °C 25 °C -40 °C 1.6 1.4 ICC (mA) 1.2 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-5. Idle Supply Current vs. VCC (Internal RC Oscilllator, 1 MHz) 0.5 125 °C 25 °C 85 °C -40 °C 0.45 0.4 ICC (mA) 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 11 2586N-Appendix B–AVR–08/11 Figure 3-6. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) 0.1 -40 °C 25 °C 125 °C 85 °C 0.09 0.08 ICC (mA) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.3 Power-down Supply Current Figure 3-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) 8 7 125 °C 6 ICC (uA) 5 4 3 2 85 °C 1 -40 °C 25 °C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 12 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) 16 14 125 °C 12 ICC (uA) 10 -40 °C 85 °C 25 °C 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.4 Pin Pull-up Figure 3-9. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V) 60 50 IOP (uA) 40 30 20 25 °C -40 °C 85 °C 125 °C 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOP (V) 13 2586N-Appendix B–AVR–08/11 Figure 3-10. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V) 80 70 60 IOP (uA) 50 40 30 20 25 °C 85 °C -40 °C 125 °C 10 0 0 0.5 1 1.5 2 2.5 3 VOP (V) Figure 3-11. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V) 160 140 120 IOP (uA) 100 80 60 40 25 °C 85 °C -40 °C 125 °C 20 0 0 1 2 3 4 5 6 VOP (V) 14 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) 40 35 IRESET (uA) 30 25 20 15 10 25 °C -40 °C 85 °C 125 °C 5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VRESET (V) Figure 3-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) 60 50 IRESET (uA) 40 30 20 25 °C -40 °C 85 °C 125 °C 10 0 0 0.5 1 1.5 2 2.5 3 VRESET (V) 15 2586N-Appendix B–AVR–08/11 Figure 3-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) 120 100 IRESET (uA) 80 60 40 25 °C -40 °C 85 °C 125 °C 20 0 0 1 2 3 4 5 6 VRESET (V) 3.5 Pin Driver Strength Figure 3-15. I/O Pin Output Voltage vs. Sink Current (VCC = 3V) 1.2 1 VOL (V) 125 0.8 85 0.6 25 -40 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) 16 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-16. I/O Pin Output Voltage vs. Sink Current (VCC = 5V) 0.6 125 85 0.5 25 VOL (V) 0.4 -40 0.3 0.2 0.1 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) Figure 3-17. I/O Pin Output Voltage vs. Source Current (VCC = 3V) 3.5 3 VOH (V) 2.5 -40 25 85 125 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 IOH (mA) 17 2586N-Appendix B–AVR–08/11 Figure 3-18. I/O Pin Output Voltage vs. Source Current (VCC = 5V) 5.1 5 4.9 VOH (V) 4.8 4.7 4.6 4.5 -40 25 4.4 85 125 4.3 0 2 4 6 8 10 12 14 16 18 20 IOH (mA) Figure 3-19. Reset Pin Output Voltage vs. Sink Current (VCC = 3V) 1.6 125 °C 1.4 1.2 85 °C VOL (V) 1 0.8 0 °C 0.6 -45 °C 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 IOL (mA) 18 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-20. Reset Pin Output Voltage vs. Sink Current (VCC = 5V) 0.7 125 °C 0.6 85 °C VOL (V) 0.5 0.4 0 °C -45 °C 0.3 0.2 0.1 0 0 0.5 1 1.5 2 2.5 3 IOL (mA) Figure 3-21. Reset Pin Output Voltage vs. Source Current (VCC = 3V) 3 2.5 VOH (V) 2 1.5 -45 °C 1 25 °C 85 °C 125 °C 0.5 0 0 0.5 1 1.5 2 IOH (mA) 19 2586N-Appendix B–AVR–08/11 Figure 3-22. Reset Pin Output Voltage vs. Source Current (VCC = 5V) 5 4.5 VOH (V) 4 3.5 3 -45 °C 25 °C 85 °C 125 °C 2.5 2 0 0.5 1 1.5 2 IOH (mA) 3.6 Pin Threshold and Hysteresis Figure 3-23. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’) 3 -40 °C 25 °C 85 °C 125 °C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 20 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-24. I/O Pin Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’) 3 125 °C 85 °C 25 °C -40 °C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-25. I/O Pin Input Hysteresis vs. VCC 0.6 Input Hysteresis (mV) 0.5 0.4 -40 °C 25 °C 85 °C 125 °C 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 21 2586N-Appendix B–AVR–08/11 Figure 3-26. Reset Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’) -40 °C 2.5 25 °C 85 °C 2 Threshold (V) 125 °C 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-27. Reset Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’) 2.5 125 °C 85 °C 2 25 °C Threshold (V) -40 °C 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 22 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-28. Reset Pin Input Hysteresis vs. VCC 0.5 0.45 Input Hysteresis (mV) 0.4 0.35 0.3 0.25 0.2 -40 °C 0.15 25 °C 0.1 85 °C 0.05 125 °C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.7 BOD Threshold Figure 3-29. BOD Threshold vs. Temperature (BOD Level is 4.3V) 4.4 4.38 Rising VCC Threshold (V) 4.36 4.34 4.32 4.3 Falling VCC 4.28 4.26 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Temperature (C) 23 2586N-Appendix B–AVR–08/11 Figure 3-30. BOD Threshold vs. Temperature (BOD Level is 2.7V) 2.8 2.78 Rising VCC Threshold (V) 2.76 2.74 2.72 Falling VCC 2.7 2.68 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Temperature (C) Figure 3-31. BOD Threshold vs. Temperature (BOD Level is 1.8V) 1.85 1.845 1.84 Rising VCC Threshold (V) 1.835 1.83 1.825 1.82 1.815 1.81 1.805 Falling VCC 1.8 1.795 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Temperature (C) 24 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-32. Bandgap Voltage vs. Supply Voltage 1.2 1.18 1.16 Bandgap Voltage (V) 1.14 1.12 125 °C 1.1 85 °C 25 °C 1.08 1.06 1.04 -40 °C 1.02 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Vcc (V) Figure 3-33. Bandgap Voltage vs. Temperature 1.2 1.18 1.16 Bandgap Voltage (V) 1.14 1.8 1.12 3 5 1.1 1.08 1.06 1.04 1.02 1 -40 -20 0 20 40 60 80 100 120 140 Temperature 25 2586N-Appendix B–AVR–08/11 3.8 Internal Oscillator Speed Figure 3-34. Watchdog Oscillator Frequency vs. VCC 0.128 0.126 0.124 -40 °C Frequency (MHz) 0.122 25 °C 0.12 0.118 0.116 0.114 85 °C 0.112 105 °C 0.11 125 °C 0.108 0.106 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-35. Watchdog Oscillator Frequency vs. Temperature 0.128 0.126 0.124 Frequency (MHz) 0.122 0.12 0.118 0.116 0.114 1.8 V 0.112 2.7 V 3.3 V 4.0 V 5.5 V 0.11 0.108 0.106 -40 -20 0 20 40 60 80 100 120 140 Temperature 26 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-36. Calibrated 8 MHz RC Oscillator Frequency vs. VCC 8.3 8.1 125 °C 105 °C 85 °C 8 25 °C Frequency (MHz) 8.2 7.9 -40 °C 7.8 7.7 7.6 7.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-37. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature 8.3 3.0 V 5.0 V Frequency (MHz) 8.2 8.1 8 7.9 7.8 7.7 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature 27 2586N-Appendix B–AVR–08/11 Figure 3-38. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value 16 85 °C 25 °C 125 °C -40 °C 14 Frequency (MHz) 12 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL 3.9 Current Consumption of Peripheral Units Figure 3-39. Brownout Detector Current vs. VCC 30 125 °C 85 °C 25 25 °C -40 °C ICC (uA) 20 15 10 5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 28 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-40. ADC Current vs. VCC (AREF = AVCC) 250 200 125 °C 85 °C 25 °C -40 °C ICC (uA) 150 100 50 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 3-41. Analog Comparator Current vs. VCC 50 125 °C 45 85 °C 40 25 °C -40 °C 35 ICC (uA) 30 25 20 15 10 5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 29 2586N-Appendix B–AVR–08/11 Figure 3-42. Programming Current vs. VCC 12 -40 °C 10 25 °C ICC (mA) 8 6 85 °C 4 125 °C 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 3.10 Current Consumption in Reset and Reset Pulsewidth Figure 3-43. Reset Supply Current vs. VCC (0.1 - 1.0 MHz, Excluding Current Through The Reset Pull-up) 0.25 5.5 V 0.2 5.0 V ICC (mA) 4.5 V 0.15 4.0 V 3.3 V 0.1 2.7 V 1.8 V 0.05 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) 30 ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 Figure 3-44. Reset Supply Current vs. VCC (1 - 20 MHz, Excluding Current Through The Reset Pull-up) 3 5.5 V 2.5 5.0 V ICC (mA) 2 4.5 V 4.0 V 1.5 3.3 V 1 2.7 V 1.8 V 0.5 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Figure 3-45. Minimum Reset Pulse Width vs. VCC 2500 Pulsewidth (ns) 2000 1500 1000 125 °C 85 °C 25 °C -40 °C 500 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 31 2586N-Appendix B–AVR–08/11 4. Ordering Information 4.1 ATtiny25 Speed (MHz) Supply Voltage (V) Temperature Range Package (1) 10 1.8 – 5.5 Extended (-40°C to +125°C) 20M1 Extended (-40°C to +125°C) 20M1 20 Notes: 2.7 – 5.5 Ordering Code (2) ATTINY25V-10MF ATTINY25V-10MFR ATTINY25-20MF ATTINY25-20MFR 1. All packages are Pb-free, halide-free and fully green, and they comply with the European directive for Restriction of Hazardous Substances (RoHS). 2. Code indicator: – R: tape & reel Package Types 20M1 32 20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) ATtiny25 2586N-Appendix B–AVR–08/11 ATtiny25 33 2586N-Appendix B–AVR–08/11 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (+81)(3) 3523-3551 Fax: (+81)(3) 3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2011 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 2586N-Appendix B–AVR–08/11