ATMEL ATTINY25 Microcontroller with 2/4/8k bytes in-system programmable flash Datasheet

Appendix B — ATtiny25/V Specification at +125°C
This document contains information specific to devices operating at temperatures up
to 125°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.
8-bit
Microcontroller
with 2/4/8K
Bytes In-System
Programmable
Flash
ATtiny25
ATtiny25V
Appendix B
Rev. 2586N-Appendix B–AVR–08/11
1. Memories
1.1
EEPROM Data Memory
The EEPROM has an endurance of at least 50,000 write/erase cycles.
2
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
2. Electrical Characteristics
2.1
DC Characteristics
Table 2-1.
DC Characteristics. TA = -40°C to +125°C
Symbol
Parameter
Condition
Min.
VIL
Input Low-voltage, except
XTAL1 and RESET pin
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
VIH
Input High-voltage, except
XTAL1 and RESET pin
VIL1
Typ.(1)
Max.
Units
-0.5
-0.5
0.2VCC(3)
0.3VCC(3)
V
V
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
0.7VCC(2)
0.6VCC(2)
VCC +0.5
VCC +0.5
V
V
Input Low-voltage, XTAL1 pin,
External Clock Selected
VCC = 1.8V - 5.5V
-0.5
0.1VCC(3)
V
VIH1
Input High-voltage, XTAL1 pin,
External Clock Selected
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
0.8VCC(2)
0.7VCC(2)
VCC +0.5
VCC +0.5
V
V
VIL2
Input Low-voltage,
RESET pin
VCC = 1.8V - 5.5V
-0.5
0.2VCC(3)
V
V
VIH2
Input High-voltage,
RESET pin
VCC = 1.8V - 5.5V
0.9VCC(2)
VCC +0.5
V
VIL3
Input Low-voltage,
RESET pin as I/O
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
-0.5
-0.5
0.2VCC(3)
0.3VCC(3)
V
V
VIH3
Input High-voltage,
RESET pin as I/O
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
0.7VCC(2)
0.6VCC(2)
VCC +0.5
VCC +0.5
V
V
VOL
Output Low-voltage,(4)
Port B (except RESET) (6)
IOL = 10 mA, VCC = 5V
IOL = 5 mA, VCC = 3V
0.6
0.5
V
V
VOH
Output High-voltage, (5)
Port B (except RESET) (6)
IOH = -10 mA, VCC = 5V
IOH = -5 mA, VCC = 3V
IIL
Input Leakage
Current I/O Pin
VCC = 5.5V, pin low
(absolute value)
< 0.05
1
µA
IIH
Input Leakage
Current I/O Pin
VCC = 5.5V, pin high
(absolute value)
< 0.05
1
µA
RRST
Reset Pull-up Resistor
VCC = 5.5V, input low
30
60
kΩ
Rpu
I/O Pin Pull-up Resistor
VCC = 5.5V, input low
20
50
kΩ
Power Supply Current (7)
ICC
Power-down mode (8)
Notes:
4.3
2.5
V
V
Active 1 MHz, VCC = 2V
0.3
0.55
mA
Active 4 MHz, VCC = 3V
1.5
2.5
mA
Active 8 MHz, VCC = 5V
5
8
mA
Idle 1 MHz, VCC = 2V
0.1
0.2
mA
Idle 4 MHz, VCC = 3V
0.35
0.6
mA
Idle 8 MHz, VCC = 5V
1.2
2
mA
WDT enabled, VCC = 3V
4
20
µA
WDT disabled, VCC = 3V
0.2
14
µA
1. Typical values at 25°C.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. “Max” means the highest value where the pin is guaranteed to be read as low.
3
2586N-Appendix B–AVR–08/11
4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOL, for all ports, should not exceed 60 mA. If IOL exceeds the test condition, VOL
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOH, for all ports, should not exceed 60 mA. If IOH exceeds the test condition, VOH
may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.
6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence,
has a weak drive strength as compared to regular I/O pins. See Figure 3-19, Figure 3-20, Figure 3-21, and Figure 3-22
(starting on page 18).
7. Values are with external clock using methods described in “Minimizing Power Consumption” on page 37. Power Reduction is
enabled (PRR = 0xFF) and there is no I/O drive.
8. Brown-Out Detection (BOD) disabled.
2.2
Clock Characteristics
2.2.1
Calibrated Internal RC Oscillator Accuracy
It is possible to manually calibrate the internal oscillator to be more accurate than default factory
calibration. Please note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 3-36 on page 27 and Figure 3-37 on
page 27.
Table 2-2.
Calibration Accuracy of Internal RC Oscillator
Calibration
Method
Target Frequency
VCC
Temperature
Accuracy at given Voltage
& Temperature (1)
8.0 MHz (2)
3V
25°C
±10%
Fixed frequency within:
6 – 8 MHz
Fixed voltage within:
1.8V - 5.5V (3)
2.7V - 5.5V (4)
Fixed temperature
within:
-40°C to +125°C
±1%
Factory Calibration
User
Calibration
Notes:
1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
2. 6.4 MHz in ATtiny15 Compatibility Mode.
3. Voltage range for ATtiny25V.
4. Voltage range for ATtiny25.
2.3
2.3.1
System and Reset Characteristics
Power-On Reset
Table 2-3.
Symbol
Characteristics of Power-On Reset. TA = -40°C to +125°C
Parameter
(2)
Min(1)
Typ(1)
Max(1)
Units
1.1
1.4
1.7
V
1.3
1.7
V
VPOR
Release threshold of power-on reset
VPOA
Activation threshold of power-on reset (3)
0.6
SRON
Power-On Slope Rate
0.01
Note:
V/ms
1. Values are guidelines, only
2. Threshold where device is released from reset when voltage is rising
3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)
4
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
2.4
Brown-Out Detection
Table 2-4.
BODLEVEL Fuse Coding. TA = -40°C to +125°C
BODLEVEL[2:0] Fuses
Min(1)
111
2.5
Max(1)
Units
BOD Disabled
110
1.7
1.8
2.0
101
2.5
2.7
2.9
100
4.1
4.3
4.5
0XX
Note:
Typ(1)
V
Reserved
1. VBOT may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to VCC = VBOT during the production test. This guarantees that a Brown-out Reset will occur before VCC drops to a voltage where correct
operation of the microcontroller is no longer guaranteed.
Serial Programming Characteristics
Table 2-5.
Serial Programming Characteristics, TA = -40°C to +125°C, VCC = 1.8 - 5.5V
(Unless Otherwise Noted)
Symbol
Parameter
1/tCLCL
Oscillator Frequency (VCC = 1.8 - 5.5V)
tCLCL
Oscillator Period (VCC = 1.8 - 5.5V)
1/tCLCL
Oscillator Frequency (VCC = 2.7 - 5.5V)
Oscillator Period (VCC = 2.7 - 5.5V)
tCLCL
1/tCLCL
Min
0
Typ
Max
Units
4
MHz
250
0
ns
10
100
MHz
ns
Oscillator Frequency (VCC = 4.5V - 5.5V)
0
tCLCL
Oscillator Period (VCC = 4.5V - 5.5V)
50
ns
tSHSL
SCK Pulse Width High
2 tCLCL*
ns
tSLSH
SCK Pulse Width Low
2 tCLCL*
ns
tOVSH
MOSI Setup to SCK High
tCLCL
ns
tSHOX
MOSI Hold after SCK High
2 tCLCL
ns
tSLIV
SCK Low to MISO Valid
Note:
20
100
MHz
ns
1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz
5
2586N-Appendix B–AVR–08/11
2.6
ADC Characteristics
Table 2-6.
Symbol
ADC Characteristics, Single Ended Channels. TA = -40°C to +125°C
Parameter
Condition
Min
Typ
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and
Offset errors)
VINT
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
3
LSB
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
Noise Reduction Mode
1.5
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode
2.5
LSB
Integral Non-linearity (INL)
(Accuracy after offset and gain
calibration)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1
LSB
Differential Non-linearity (DNL)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
0.5
LSB
Gain Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
2.5
LSB
Offset Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1.5
LSB
Conversion Time
Free Running Conversion
Input Voltage
14
280
µs
50
1000
kHz
GND
VREF
V
38.4
External Reference Voltage
2.0
Internal Voltage Reference
1.0
2.3
Internal 2.56V Reference
(1)
VCC > 3.0V
Analog Input Resistance
ADC Output
Note:
6
Bits
LSB
RREF
RAIN
10
2
Input Bandwidth
AREF
Units
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
Clock Frequency
VIN
Max
0
kHz
VCC
V
1.1
1.2
V
2.56
2.8
V
32
kΩ
100
MΩ
1023
LSB
1. Values are guidelines only.
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Table 2-7.
Symbol
ADC Characteristics, Differential Channels (Unipolar Mode). TA = -40°C to +125°C
Parameter
Condition
Min
Typ
Max
Units
Gain = 1x
10
Bits
Gain = 20x
10
Bits
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
10.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
20.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
10.0
LSB
Gain = 1x
10.0
LSB
Gain = 20x
15.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
3.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain Error
Offset Error
Conversion Time
Free Running Conversion
Clock Frequency
VIN
Input Voltage
VDIFF
Input Differential Voltage
70
280
µs
50
200
kHz
GND
VCC
V
VREF/Gain
V
Input Bandwidth
AREF
VINT
4
External Reference Voltage
2.0
Internal Voltage Reference
1.0
2.3
Internal 2.56V Reference (1)
VCC > 3.0V
kHz
VCC - 1.0
V
1.1
1.2
V
2.56
2.8
V
RREF
Reference Input Resistance
32
kΩ
RAIN
Analog Input Resistance
100
MΩ
ADC Conversion Output
Note:
0
1023
LSB
1. Values are guidelines only.
7
2586N-Appendix B–AVR–08/11
Table 2-8.
Symbol
ADC Characteristics, Differential Channels (Bipolar Mode). TA = -40°C to +125°C
Parameter
Condition
Min
Typ
Max
Units
Gain = 1x
10
Bits
Gain = 20x
10
Bits
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
8.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
8.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
5.0
LSB
Gain = 1x
4.0
LSB
Gain = 20x
5.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
3.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain Error
Offset Error
Conversion Time
Free Running Conversion
Clock Frequency
VIN
Input Voltage
VDIFF
Input Differential Voltage
70
280
µs
50
200
kHz
GND
VCC
V
VREF/Gain
V
Input Bandwidth
AREF
VINT
4
External Reference Voltage
2.0
Internal Voltage Reference
1.0
2.3
Internal 2.56V Reference (1)
VCC > 3.0V
kHz
VCC - 1.0
V
1.1
1.2
V
2.56
2.8
V
RREF
Reference Input Resistance
32
kΩ
RAIN
Analog Input Resistance
100
MΩ
ADC Conversion Output
Note:
8
-512
511
LSB
1. Values are guidelines only.
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
3. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave.
The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.
The power consumption in Power-down mode is independent of clock selection.
The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.
The current drawn from capacitive loaded pins may be estimated (for one pin) as C L*V CC*f
where CL = load capacitance, VCC = operating voltage and f = average switching frequency of
I/O pin.
The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.
The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.
3.1
Active Supply Current
Figure 3-1.
Active Supply Current vs. VCC (Internal RC oscillator, 8 MHz)
7
25 °C
125 °C
-40 °C
6
ICC (mA)
5
4
3
2
1
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
9
2586N-Appendix B–AVR–08/11
Figure 3-2.
Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)
1.6
25 °C
125 °C
-40 °C
1.4
1.2
ICC (mA)
1
0.8
0.6
0.4
0.2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-3.
Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
0.25
-40 °C
25 °C
125 °C
ICC (mA)
0.2
0.15
0.1
0.05
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
10
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
3.2
Idle Supply Current
Figure 3-4.
Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)I
1.8
125 °C
85 °C
25 °C
-40 °C
1.6
1.4
ICC (mA)
1.2
1
0.8
0.6
0.4
0.2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-5.
Idle Supply Current vs. VCC (Internal RC Oscilllator, 1 MHz)
0.5
125 °C
25 °C
85 °C
-40 °C
0.45
0.4
ICC (mA)
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
11
2586N-Appendix B–AVR–08/11
Figure 3-6.
Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
0.1
-40 °C
25 °C
125 °C
85 °C
0.09
0.08
ICC (mA)
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.3
Power-down Supply Current
Figure 3-7.
Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
8
7
125 °C
6
ICC (uA)
5
4
3
2
85 °C
1
-40 °C
25 °C
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
12
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-8.
Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
16
14
125 °C
12
ICC (uA)
10
-40 °C
85 °C
25 °C
8
6
4
2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.4
Pin Pull-up
Figure 3-9.
I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)
60
50
IOP (uA)
40
30
20
25 °C
-40 °C
85 °C
125 °C
10
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
VOP (V)
13
2586N-Appendix B–AVR–08/11
Figure 3-10. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)
80
70
60
IOP (uA)
50
40
30
20
25 °C
85 °C
-40 °C
125 °C
10
0
0
0.5
1
1.5
2
2.5
3
VOP (V)
Figure 3-11. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)
160
140
120
IOP (uA)
100
80
60
40
25 °C
85 °C
-40 °C
125 °C
20
0
0
1
2
3
4
5
6
VOP (V)
14
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
40
35
IRESET (uA)
30
25
20
15
10
25 °C
-40 °C
85 °C
125 °C
5
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
VRESET (V)
Figure 3-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
60
50
IRESET (uA)
40
30
20
25 °C
-40 °C
85 °C
125 °C
10
0
0
0.5
1
1.5
2
2.5
3
VRESET (V)
15
2586N-Appendix B–AVR–08/11
Figure 3-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
120
100
IRESET (uA)
80
60
40
25 °C
-40 °C
85 °C
125 °C
20
0
0
1
2
3
4
5
6
VRESET (V)
3.5
Pin Driver Strength
Figure 3-15. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)
1.2
1
VOL (V)
125
0.8
85
0.6
25
-40
0.4
0.2
0
0
2
4
6
8
10
12
14
16
18
20
IOL (mA)
16
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-16. I/O Pin Output Voltage vs. Sink Current (VCC = 5V)
0.6
125
85
0.5
25
VOL (V)
0.4
-40
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
18
20
IOL (mA)
Figure 3-17. I/O Pin Output Voltage vs. Source Current (VCC = 3V)
3.5
3
VOH (V)
2.5
-40
25
85
125
2
1.5
1
0.5
0
0
2
4
6
8
10
12
14
16
18
20
IOH (mA)
17
2586N-Appendix B–AVR–08/11
Figure 3-18. I/O Pin Output Voltage vs. Source Current (VCC = 5V)
5.1
5
4.9
VOH (V)
4.8
4.7
4.6
4.5
-40
25
4.4
85
125
4.3
0
2
4
6
8
10
12
14
16
18
20
IOH (mA)
Figure 3-19. Reset Pin Output Voltage vs. Sink Current (VCC = 3V)
1.6
125 °C
1.4
1.2
85 °C
VOL (V)
1
0.8
0 °C
0.6
-45 °C
0.4
0.2
0
0
0.5
1
1.5
2
2.5
3
IOL (mA)
18
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-20. Reset Pin Output Voltage vs. Sink Current (VCC = 5V)
0.7
125 °C
0.6
85 °C
VOL (V)
0.5
0.4
0 °C
-45 °C
0.3
0.2
0.1
0
0
0.5
1
1.5
2
2.5
3
IOL (mA)
Figure 3-21. Reset Pin Output Voltage vs. Source Current (VCC = 3V)
3
2.5
VOH (V)
2
1.5
-45 °C
1
25 °C
85 °C
125 °C
0.5
0
0
0.5
1
1.5
2
IOH (mA)
19
2586N-Appendix B–AVR–08/11
Figure 3-22. Reset Pin Output Voltage vs. Source Current (VCC = 5V)
5
4.5
VOH (V)
4
3.5
3
-45 °C
25 °C
85 °C
125 °C
2.5
2
0
0.5
1
1.5
2
IOH (mA)
3.6
Pin Threshold and Hysteresis
Figure 3-23. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)
3
-40 °C
25 °C
85 °C
125 °C
2.5
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
20
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-24. I/O Pin Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)
3
125 °C
85 °C
25 °C
-40 °C
2.5
Threshold (V)
2
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-25. I/O Pin Input Hysteresis vs. VCC
0.6
Input Hysteresis (mV)
0.5
0.4
-40 °C
25 °C
85 °C
125 °C
0.3
0.2
0.1
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
21
2586N-Appendix B–AVR–08/11
Figure 3-26. Reset Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)
-40 °C
2.5
25 °C
85 °C
2
Threshold (V)
125 °C
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-27. Reset Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)
2.5
125 °C
85 °C
2
25 °C
Threshold (V)
-40 °C
1.5
1
0.5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
22
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-28. Reset Pin Input Hysteresis vs. VCC
0.5
0.45
Input Hysteresis (mV)
0.4
0.35
0.3
0.25
0.2
-40 °C
0.15
25 °C
0.1
85 °C
0.05
125 °C
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.7
BOD Threshold
Figure 3-29. BOD Threshold vs. Temperature (BOD Level is 4.3V)
4.4
4.38
Rising VCC
Threshold (V)
4.36
4.34
4.32
4.3
Falling VCC
4.28
4.26
-50 -40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90 100 110 120 130 140
Temperature (C)
23
2586N-Appendix B–AVR–08/11
Figure 3-30. BOD Threshold vs. Temperature (BOD Level is 2.7V)
2.8
2.78
Rising VCC
Threshold (V)
2.76
2.74
2.72
Falling VCC
2.7
2.68
-50 -40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90 100 110 120 130 140
Temperature (C)
Figure 3-31. BOD Threshold vs. Temperature (BOD Level is 1.8V)
1.85
1.845
1.84
Rising VCC
Threshold (V)
1.835
1.83
1.825
1.82
1.815
1.81
1.805
Falling VCC
1.8
1.795
-50 -40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90 100 110 120 130 140
Temperature (C)
24
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-32. Bandgap Voltage vs. Supply Voltage
1.2
1.18
1.16
Bandgap Voltage (V)
1.14
1.12
125 °C
1.1
85 °C
25 °C
1.08
1.06
1.04
-40 °C
1.02
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
Vcc (V)
Figure 3-33. Bandgap Voltage vs. Temperature
1.2
1.18
1.16
Bandgap Voltage (V)
1.14
1.8
1.12
3
5
1.1
1.08
1.06
1.04
1.02
1
-40
-20
0
20
40
60
80
100
120
140
Temperature
25
2586N-Appendix B–AVR–08/11
3.8
Internal Oscillator Speed
Figure 3-34. Watchdog Oscillator Frequency vs. VCC
0.128
0.126
0.124
-40 °C
Frequency (MHz)
0.122
25 °C
0.12
0.118
0.116
0.114
85 °C
0.112
105 °C
0.11
125 °C
0.108
0.106
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-35. Watchdog Oscillator Frequency vs. Temperature
0.128
0.126
0.124
Frequency (MHz)
0.122
0.12
0.118
0.116
0.114
1.8 V
0.112
2.7 V
3.3 V
4.0 V
5.5 V
0.11
0.108
0.106
-40
-20
0
20
40
60
80
100
120
140
Temperature
26
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-36. Calibrated 8 MHz RC Oscillator Frequency vs. VCC
8.3
8.1
125 °C
105 °C
85 °C
8
25 °C
Frequency (MHz)
8.2
7.9
-40 °C
7.8
7.7
7.6
7.5
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-37. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature
8.3
3.0 V
5.0 V
Frequency (MHz)
8.2
8.1
8
7.9
7.8
7.7
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature
27
2586N-Appendix B–AVR–08/11
Figure 3-38. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value
16
85 °C
25 °C
125 °C
-40 °C
14
Frequency (MHz)
12
10
8
6
4
2
0
0
16
32
48
64
80
96
112 128 144 160 176 192 208 224 240
OSCCAL
3.9
Current Consumption of Peripheral Units
Figure 3-39. Brownout Detector Current vs. VCC
30
125 °C
85 °C
25
25 °C
-40 °C
ICC (uA)
20
15
10
5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
28
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-40. ADC Current vs. VCC (AREF = AVCC)
250
200
125 °C
85 °C
25 °C
-40 °C
ICC (uA)
150
100
50
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
Figure 3-41. Analog Comparator Current vs. VCC
50
125 °C
45
85 °C
40
25 °C
-40 °C
35
ICC (uA)
30
25
20
15
10
5
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
29
2586N-Appendix B–AVR–08/11
Figure 3-42. Programming Current vs. VCC
12
-40 °C
10
25 °C
ICC (mA)
8
6
85 °C
4
125 °C
2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
3.10
Current Consumption in Reset and Reset Pulsewidth
Figure 3-43. Reset Supply Current vs. VCC (0.1 - 1.0 MHz, Excluding Current Through The
Reset Pull-up)
0.25
5.5 V
0.2
5.0 V
ICC (mA)
4.5 V
0.15
4.0 V
3.3 V
0.1
2.7 V
1.8 V
0.05
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency (MHz)
30
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
Figure 3-44. Reset Supply Current vs. VCC (1 - 20 MHz, Excluding Current Through The Reset
Pull-up)
3
5.5 V
2.5
5.0 V
ICC (mA)
2
4.5 V
4.0 V
1.5
3.3 V
1
2.7 V
1.8 V
0.5
0
0
2
4
6
8
10
12
14
16
18
20
Frequency (MHz)
Figure 3-45. Minimum Reset Pulse Width vs. VCC
2500
Pulsewidth (ns)
2000
1500
1000
125 °C
85 °C
25 °C
-40 °C
500
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VCC (V)
31
2586N-Appendix B–AVR–08/11
4. Ordering Information
4.1
ATtiny25
Speed (MHz)
Supply Voltage (V)
Temperature Range
Package (1)
10
1.8 – 5.5
Extended
(-40°C to +125°C)
20M1
Extended
(-40°C to +125°C)
20M1
20
Notes:
2.7 – 5.5
Ordering Code (2)
ATTINY25V-10MF
ATTINY25V-10MFR
ATTINY25-20MF
ATTINY25-20MFR
1. All packages are Pb-free, halide-free and fully green, and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
2. Code indicator:
– R: tape & reel
Package Types
20M1
32
20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
ATtiny25
2586N-Appendix B–AVR–08/11
ATtiny25
33
2586N-Appendix B–AVR–08/11
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2011 Atmel Corporation. All rights reserved.
Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms
and product names may be trademarks of others.
2586N-Appendix B–AVR–08/11
Similar pages