ON NCV8406STT3G Self-protected low side driver with temperature and current limit Datasheet

NCV8406, NCV8406A
Self-Protected Low Side
Driver with Temperature
and Current Limit
65 V, 7.0 A, Single N−Channel
NCV8406/A is a three terminal protected Low-Side Smart Discrete
device. The protection features include overcurrent, overtemperature,
ESD and integrated Drain-to-Gate clamping for overvoltage protection.
This device offers protection and is suitable for harsh automotive
environments.
http://onsemi.com
VDSS
(Clamped)
RDS(on) TYP
ID TYP
(Limited)
65 V
210 mW
7.0 A
Features
•
•
•
•
•
•
•
•
•
•
•
Drain
Short Circuit Protection
Thermal Shutdown with Automatic Restart
Over Voltage Protection
Integrated Clamp for Inductive Switching
ESD Protection
dV/dt Robustness
Analog Drive Capability (Logic Level Input)
These Devices are Faster than the Rest of the NCV Devices
AEC−Q101 Qualified and PPAP Capable
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements
These Devices are Pb−Free and are RoHS Compliant
Overvoltage
Protection
Gate
Input
ESD Protection
Temperature
Limit
Current
Sense
Source
Typical Applications
• Switch a Variety of Resistive, Inductive and Capacitive Loads
• Can Replace Electromechanical Relays and Discrete Circuits
• Automotive / Industrial
Current
Limit
4
1
2
DRAIN
4
3
SOT−223
CASE 318E
STYLE 3
4
1 2
MARKING
DIAGRAM
3
DPAK
CASE 369C
AYW
xxxxxG
G
1
2
3
SOURCE
GATE
DRAIN
YWW
xxxxxG
A
= Assembly Location
Y
= Year
W, WW = Work Week
xxxxx = V8406 or 8406A
G or G = Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
© Semiconductor Components Industries, LLC, 2011
November, 2011 − Rev. 2
1
Publication Order Number:
NCV8406/D
NCV8406, NCV8406A
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
Drain−to−Source Voltage Internally Clamped
VDSS
70
Vdc
Gate−to−Source Voltage
VGS
"14
Vdc
Drain Current
Continuous
ID
Total Power Dissipation − SOT−223 Version
@ TA = 25°C (Note 1)
@ TA = 25°C (Note 2)
PD
Total Power Dissipation − DPAK Version
@ TA = 25°C (Note 1)
@ TA = 25°C (Note 2)
PD
Internally Limited
1.25
1.81
1.31
2.31
W
W
Thermal Resistance − SOT−223 Version
Junction−to−Case
Junction−to−Ambient (Note 1)
Junction−to−Ambient (Note 2)
RqJC
RqJA
RqJA
7.0
100
69
Thermal Resistance − DPAK Version
Junction−to−Case
Junction−to−Ambient (Note 1)
Junction−to−Ambient (Note 2)
RqJC
RqJA
RqJA
1.0
95
54
Single Pulse Inductive Load Switching Energy
(Starting TJ = 25°C, VDD = 50 Vdc, VGS = 5.0 Vdc,
IL = 2.1 Apk, L = 50 mH, RG = 25 W)
EAS
110
mJ
Load Dump Voltage (VGS = 0 and 10 V, RI = 2 W, RL = 7 W, td = 400 ms)
VLD
75
V
Operating Junction Temperature Range
TJ
−40 to 150
°C
Storage Temperature Range
Tstg
−55 to 150
°C
°C/W
°C/W
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Surface mounted onto minimum pad size (100 sq/mm) FR4 PCB, 1 oz cu.
2. Mounted onto 1″ square pad size (700 sq/mm) FR4 PCB, 1 oz cu.
+
ID
DRAIN
IG
+
VDS
GATE
SOURCE
VGS
−
−
Figure 1. Voltage and Current Convention
http://onsemi.com
2
NCV8406, NCV8406A
MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
60
65
70
V
−
22
100
−
30
100
1.2
−
1.66
4.0
2.0
−
−
185
210
−
−
210
445
240
520
−
0.9
1.1
OFF CHARACTERISTICS
V(BR)DSS
Drain−to−Source Clamped Breakdown Voltage
(VGS = 0 V, ID = 2 mA)
Zero Gate Voltage Drain Current
(VDS = 52 V, VGS = 0 V)
IDSS
Gate Input Current
(VGS = 5.0 V, VDS = 0 V)
IGSS
mA
mA
ON CHARACTERISTICS
Gate Threshold Voltage
(VDS = VGS, ID = 150 mA)
Threshold Temperature Coefficient
VGS(th)
Static Drain−to−Source On−Resistance (Note 3)
(VGS = 10 V, ID = 2.0 A, TJ @ 25°C)
RDS(on)
Static Drain−to−Source On−Resistance (Note 3)
(VGS = 5.0 V, ID = 2.0 A, TJ @ 25°C)
(VGS = 5.0 V, ID = 2.0 A, TJ @ 150°C)
RDS(on)
Source−Drain Forward On Voltage
(IS = 7.0 A, VGS = 0 V)
VSD
V
−mV/°C
mW
mW
V
SWITCHING CHARACTERISTICS (Note 6)
Turn−on Delay Time
RL = 6.6 W, Vin = 0 to 10 V,
VDD = 13.8 V, ID = 2.0 A, 10% Vin to 10% ID
td(on)
−
127
−
ns
Turn−on Rise Time
RL = 6.6 W, Vin = 0 to 10 V,
VDD = 13.8 V, ID = 2.0 A, 10% ID to 90% ID
trise
−
486
−
ns
Turn−off Delay Time
RL = 6.6 W, Vin = 0 to 10 V,
VDD = 13.8 V, ID = 2.0 A, 90% Vin to 90% ID
td(off)
−
1600
−
ns
Turn−off Fall Time
RL = 6.6 W, Vin = 0 to 10 V,
VDD = 13.8 V, ID = 2.0 A, 90% ID to 10% ID
tfall
−
692
−
ns
Slew Rate ON
RL = 6.6 W, Vin = 0 to 10 V,
VDD = 13.8 V, ID = 2.0 A, 70% to 50% VDD
dVDS/dTon
−
79
−
V/ms
Slew Rate OFF
RL = 6.6 W, Vin = 0 to 10 V,
VDD = 13.8 V, ID = 2.0 A, 50% to 70% VDD
dVDS/dToff
−
27
−
V/ms
VDS = 10 V, VGS = 5.0 V, TJ = 25°C (Note 5)
VDS = 10 V, VGS = 5.0 V, TJ = 150°C (Notes 5, 6)
VDS = 10 V, VGS = 10 V, TJ = 25°C (Notes 5)
ILIM
5.0
3.5
6.5
7.0
4.5
8.5
9.5
6.0
10.5
A
VGS = 5.0 V (Note 6)
TLIM(off)
150
180
200
°C
SELF PROTECTION CHARACTERISTICS (Note 4)
Current Limit
Temperature Limit (Turn−off)
Thermal Hysteresis
VGS = 5.0 V
DTLIM(on)
−
10
−
°C
VGS = 10 V (Note 6)
TLIM(off)
150
180
200
°C
Thermal Hysteresis
VGS = 10 V
DTLIM(on)
−
20
−
°C
Input Current during
Thermal Fault
VDS = 0 V, VGS = 5.0 V, TJ = TJ > T(fault) (Note 6)
VDS = 0 V, VGS = 10 V, TJ = TJ > T(fault) (Note 6)
Ig(fault)
−
−
5.9
12.3
−
mA
6000
500
−
−
−
−
Temperature Limit (Turn−off)
ESD ELECTRICAL CHARACTERISTICS
ESD
Electro−Static Discharge Capability
Human Body Model (HBM)
Machine Model (MM)
3.
4.
5.
6.
Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2%.
Fault conditions are viewed as beyond the normal operating range of the part.
Current limit measured at 380 ms after gate pulse.
Not subject to production test.
http://onsemi.com
3
V
NCV8406, NCV8406A
TYPICAL PERFORMANCE CURVES
1000
TJstart = 25°C
Emax (mJ)
ILmax (A)
10
TJstart = 25°C
100
TJstart = 150°C
TJstart = 150°C
1
10
10
100
L (mH)
Figure 2. Single Pulse Maximum Switch−off
Current vs. Load Inductance
Figure 3. Single−Pulse Maximum Switching
Energy vs. Load Inductance
Emax (mJ)
ILmax (A)
1000
TJstart = 25°C
1
TJstart = 150°C
1
TJstart = 25°C
100
TJstart = 150°C
10
10
1
10
TIME IN CLAMP (ms)
TIME IN CLAMP (ms)
Figure 4. Single Pulse Maximum Inductive
Switch−off Current vs. Time in Clamp
Figure 5. Single−Pulse Maximum Inductive
Switching Energy vs. Time in Clamp
6V
12
7V
8V
9V
12
10 V
−40°C
VDS = 10 V
10
25°C
9
100°C
ID (A)
5V
8
ID (A)
100
L (mH)
10
0.1
10
4V
Ta = 25°C
6
6
150°C
3.3 V
4
3V
2
0
3
VGS = 2.5 V
0
5
10
0
15
0
1
2
3
4
VDS (V)
VGS (V)
Figure 6. On−state Output Characteristics
Figure 7. Transfer Characteristics
http://onsemi.com
4
5
NCV8406, NCV8406A
TYPICAL PERFORMANCE CURVES
500
600
ID = 2 A
ID = 0.5 A
550
450
150°C
400
350
100°C
300
250
200
150
100
3
4
5
300
100
8
9
50
10
25°C, VGS = 5 V
200
−40°C
7
100°C, VGS = 10 V
250
150
6
100°C, VGS = 5 V
350
25°C
25°C, VGS = 10 V
−40°C, VGS = 5 V
−40°C, VGS = 10 V
0.5 0.75
1
1.25 1.5 1.75
2
2.25 2.5 2.75
VGS (V)
ID (A)
Figure 8. RDS(on) vs. Gate−Source Voltage
Figure 9. RDS(on) vs. Drain Current
3
15
2.5
ID = 2 A
VGS = 10 V
2.0
VGS = 5 V
1.5
ILIM (A)
NORMALIZED RDS(on)
150°C, VGS = 10 V
400
RDS(on) (mW)
RDS(on) (mW)
500
150°C, VGS = 5 V
450
13
−40°C
11
25°C
9
100°C
7
1.0
150°C
5
0.5
−40 −20
0
20
40
60
80
100
120
3
140
VDS = 10 V
4
5
6
7
8
9
T (°C)
VGS (V)
Figure 10. Normalized RDS(on) vs. Temperature
Figure 11. Current Limit vs. Gate−Source
Voltage
15
10
1000
VGS = 10 V
VDS = 10 V
100
13
11
VGS = 5 V
IDSS (mA)
ILIM (A)
10
9
150°C
1
100°C
0.1
0.01 25°C
7
VGS = 0 V
0.001
5
−40 −20
0
20
40
60
80
100
0.0001
120 140
−40°C
10
20
30
40
50
60
TJ (°C)
VDS (V)
Figure 12. Current Limit vs. Junction
Temperature
Figure 13. Drain−to−Source Leakage Current
http://onsemi.com
5
70
NCV8406, NCV8406A
TYPICAL PERFORMANCE CURVES
1100
ID = 150 mA
VDS = VGS
1.1
VSD (mV)
0.9
25°C
800
0.8
700
0.7
600
0.6
−40 −20
500
100°C
150°C
0
20
40
80
60
100
120 140
VGS = 0 V
1
2
3
4
5
6
8
9
IS (A)
Figure 14. Normalized Threshold Voltage vs.
Temperature
Figure 15. Source−Drain Diode Forward
Characteristics
3400
VDD = 13.8 V
ID = 2 A
RG = 0 W
1200
td(off)
2600
2200
tf
600
tr
TIME (ns)
800
td(off), VGS = 5 V
1800
tf, VGS = 5 V
tr, VGS = 10 V
1000
600
td(on)
200
5
6
7
8
9
td(on), VGS = 5 V
200
−200
10
tr, VGS = 5 V
tf, VGS = 10 V
1400
400
4
10
td(off), VGS = 10 V
3000
1000
3
7
T (°C)
1400
0
−40°C
900
1600
TIME (ns)
1000
1.0
td(on), VGS = 10 V
0
500
1000
1500
2000
VGS (V)
RG (W)
Figure 16. Resistive Load Switching Time vs.
Gate−Source Voltage
Figure 17. Resistive Load Switching Time vs.
Gate Resistance
DRAIN−SOURCE VOLTAGE SLOPE (V/ms)
NORMALIZED VGS(th) (V)
1.2
35
30
25
dVDS/dt(off), VGS = 5 V
20
dVDS/dt(off), VGS = 10 V
15
10
5
0
500
1000
1500
2000
RG (W)
Figure 18. Drain−Source Voltage Slope during
Turn On and Turn Off vs. Gate Resistance
http://onsemi.com
6
NCV8406, NCV8406A
TYPICAL PERFORMANCE CURVES
110
110
100
100
90
PCB Cu thickness, 1.0 oz
RqJA (°C/W)
RqJA (°C/W)
90
80
70
PCB Cu thickness, 2.0 oz
60
80
70
PCB Cu thickness, 1.0 oz
60
50
50
40
40
100
200
300
400
500
600
PCB Cu thickness, 2.0 oz
100
200
300
400
500
COPPER HEAT SPREADER AREA (mm2)
COPPER HEAT SPREADER AREA (mm2)
Figure 19. RqJA vs. Copper Area − SOT−223
Figure 20. RqJA vs. Copper Area − DPAK
600
1000
R(t) (°C/W)
100 50% Duty Cycle
20%
10%
10
5%
2%
1
0.1
1%
Single Pulse
0.01
0.000001 0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
10
100
1000
PULSE TIME (sec)
Figure 21. Transient Thermal Resistance − SOT−223 Version
100
50% Duty Cycle
R(t) (°C/W)
10
20%
10%
5%
2%
1 1%
0.1
Single Pulse
0.01
0.000001 0.00001
0.0001
0.001
0.01
0.1
1
PULSE TIME (sec)
Figure 22. Transient Thermal Resistance − DPAK Version
http://onsemi.com
7
NCV8406, NCV8406A
TEST CIRCUITS AND WAVEFORMS
RL
VIN
+
D
RG
VDD
G DUT
−
S
IDS
Figure 23. Resistive Load Switching Test Circuit
90%
VIN
10%
td(ON)
tr
td(OFF)
tf
90%
10%
IDS
Figure 24. Resistive Load Switching Waveforms
http://onsemi.com
8
NCV8406, NCV8406A
TEST CIRCUITS AND WAVEFORMS
L
VDS
VIN
D
RG
+
VDD
G DUT
−
S
tp
IDS
Figure 25. Inductive Load Switching Test Circuit
5V
VIN
0V
Tav
Tp
V(BR)DSS
Ipk
VDD
VDS
VDS(on)
IDS
0
Figure 26. Inductive Load Switching Waveforms
http://onsemi.com
9
NCV8406, NCV8406A
ORDERING INFORMATION
Package
Shipping†
NCV8406STT3G
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV8406ASTT3G
SOT−223
(Pb−Free)
4000 / Tape & Reel
NCV8406DTRKG
DPAK
(Pb−Free)
2500 / Tape & Reel
NCV8406ADTRKG
DPAK
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
10
NCV8406, NCV8406A
PACKAGE DIMENSIONS
SOT−223 (TO−261)
CASE 318E−04
ISSUE N
D
b1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCH.
4
HE
E
1
2
3
b
e1
e
0.08 (0003)
A1
C
q
A
DIM
A
A1
b
b1
c
D
E
e
e1
L
L1
HE
MIN
1.50
0.02
0.60
2.90
0.24
6.30
3.30
2.20
0.85
0.20
1.50
6.70
0°
q
L
STYLE 3:
PIN 1.
2.
3.
4.
L1
MILLIMETERS
NOM
MAX
1.63
1.75
0.06
0.10
0.75
0.89
3.06
3.20
0.29
0.35
6.50
6.70
3.50
3.70
2.30
2.40
0.94
1.05
−−−
−−−
1.75
2.00
7.00
7.30
10°
−
GATE
DRAIN
SOURCE
DRAIN
SOLDERING FOOTPRINT*
3.8
0.15
2.0
0.079
2.3
0.091
2.3
0.091
6.3
0.248
2.0
0.079
1.5
0.059
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
11
MIN
0.060
0.001
0.024
0.115
0.009
0.249
0.130
0.087
0.033
0.008
0.060
0.264
0°
INCHES
NOM
0.064
0.002
0.030
0.121
0.012
0.256
0.138
0.091
0.037
−−−
0.069
0.276
−
MAX
0.068
0.004
0.035
0.126
0.014
0.263
0.145
0.094
0.041
−−−
0.078
0.287
10°
NCV8406, NCV8406A
PACKAGE DIMENSIONS
DPAK (SINGLE GAUGE)
CASE 369C−01
ISSUE D
A
E
b3
c2
B
Z
D
1
L4
A
4
L3
b2
e
2
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR BURRS. MOLD
FLASH, PROTRUSIONS, OR GATE BURRS SHALL
NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE
OUTERMOST EXTREMES OF THE PLASTIC BODY.
6. DATUMS A AND B ARE DETERMINED AT DATUM
PLANE H.
C
H
DETAIL A
3
c
b
0.005 (0.13)
M
H
C
L2
GAUGE
PLANE
C
L
SEATING
PLANE
A1
L1
DETAIL A
ROTATED 905 CW
SOLDERING FOOTPRINT*
6.20
0.244
2.58
0.102
5.80
0.228
INCHES
MIN
MAX
0.086 0.094
0.000 0.005
0.025 0.035
0.030 0.045
0.180 0.215
0.018 0.024
0.018 0.024
0.235 0.245
0.250 0.265
0.090 BSC
0.370 0.410
0.055 0.070
0.108 REF
0.020 BSC
0.035 0.050
−−− 0.040
0.155
−−−
MILLIMETERS
MIN
MAX
2.18
2.38
0.00
0.13
0.63
0.89
0.76
1.14
4.57
5.46
0.46
0.61
0.46
0.61
5.97
6.22
6.35
6.73
2.29 BSC
9.40 10.41
1.40
1.78
2.74 REF
0.51 BSC
0.89
1.27
−−−
1.01
3.93
−−−
STYLE 2:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN
3.00
0.118
1.60
0.063
DIM
A
A1
b
b2
b3
c
c2
D
E
e
H
L
L1
L2
L3
L4
Z
6.17
0.243
SCALE 3:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
12
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCV8406/D
Similar pages