TI1 OMAP3503 Omap3515/03 applications processor Datasheet

OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
1 OMAP3515/03 Applications Processor
1.1 Features
•
•
•
OMAP3515/03 Applications Processor:
– OMAP™ 3 Architecture
– MPU Subsystem
• Up to 720-MHz ARM Cortex™-A8 Core
• NEON™ SIMD Coprocessor
– POWERVR SGX™ Graphics Accelerator
(OMAP3515 Device Only)
• Tile Based Architecture Delivering up to
10 MPoly/sec
• Universal Scalable Shader Engine:
Multi-threaded Engine Incorporating
Pixel and Vertex Shader Functionality
• Industry Standard API Support:
OpenGLES 1.1 and 2.0, OpenVG1.0
• Fine Grained Task Switching, Load
Balancing, and Power Management
• Programmable High Quality Image
Anti-Aliasing
– Fully Software-Compatible With ARM9™
– Commercial and Extended Temperature
Grades
ARM Cortex™-A8 Core
– ARMv7 Architecture
• Trust Zone®
• Thumb®-2
• MMU Enhancements
– In-Order, Dual-Issue, Superscalar
Microprocessor Core
– NEON™ Multimedia Architecture
– Over 2x Performance of ARMv6 SIMD
– Supports Both Integer and Floating Point
SIMD
– Jazelle® RCT Execution Environment
Architecture
– Dynamic Branch Prediction with Branch
Target Address Cache, Global History
Buffer, and 8-Entry Return Stack
– Embedded Trace Macrocell (ETM) Support
for Non-Invasive Debug
ARM Cortex™-A8 Memory Architecture:
– 16K-Byte Instruction Cache (4-Way
Set-Associative)
– 16K-Byte Data Cache (4-Way
Set-Associative)
– 256K-Byte L2 Cache
•
•
•
•
•
•
112K-Byte ROM
64K-Byte Shared SRAM
Endianess:
– ARM Instructions - Little Endian
– ARM Data – Configurable
External Memory Interfaces:
– SDRAM Controller (SDRC)
• 16, 32-bit Memory Controller With
1G-Byte Total Address Space
• Interfaces to Low-Power Double Data
Rate (LPDDR) SDRAM
• SDRAM Memory Scheduler (SMS) and
Rotation Engine
– General Purpose Memory Controller
(GPMC)
• 16-bit Wide Multiplexed Address/Data
Bus
• Up to 8 Chip Select Pins With 128M-Byte
Address Space per Chip Select Pin
• Glueless Interface to NOR Flash, NAND
Flash (With ECC Hamming Code
Calculation), SRAM and Pseudo-SRAM
• Flexible Asynchronous Protocol Control
for Interface to Custom Logic (FPGA,
CPLD, ASICs, etc.)
• Nonmultiplexed Address/Data Mode
(Limited 2K-Byte Address Space)
System Direct Memory Access (sDMA)
Controller (32 Logical Channels With
Configurable Priority)
Camera Image Signal Processing (ISP)
– CCD and CMOS Imager Interface
– Memory Data Input
– RAW Data Interface
– BT.601/BT.656 Digital YCbCr 4:2:2
(8-/10-Bit) Interface
– A-Law Compression and Decompression
– Preview Engine for Real-Time Image
Processing
– Glueless Interface to Common Video
Decoders
– Histogram Module/Auto-Exposure,
Auto-White Balance, and Auto-Focus
Engine
– Resize Engine
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this document.
POWERVR SGX is a trademark of Imagination Technologies Ltd.
OMAP is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2008–2009, Texas Instruments Incorporated
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
•
•
•
•
2
• Resize Images From 1/4x to 4x
• Separate Horizontal/Vertical Control
Display Subsystem
– Parallel Digital Output
• Up to 24-Bit RGB
• HD Maximum Resolution
• Supports Up to 2 LCD Panels
• Support for Remote Frame Buffer
Interface (RFBI) LCD Panels
– 2 10-Bit Digital-to-Analog Converters
(DACs) Supporting:
• Composite NTSC/PAL Video
• Luma/Chroma Separate Video (S-Video)
– Rotation 90-, 180-, and 270-degrees
– Resize Images From 1/4x to 8x
– Color Space Converter
– 8-bit Alpha Blending
Serial Communication
– 5 Multichannel Buffered Serial Ports
(McBSPs)
• 512 Byte Transmit/Receive Buffer
(McBSP1/3/4/5)
• 5K-Byte Transmit/Receive Buffer
(McBSP2)
• SIDETONE Core Support (McBSP2 and 3
Only) For Filter, Gain, and Mix
Operations
• Direct Interface to I2S and PCM Device
and TDM Buses
• 128 Channel Transmit/Receive Mode
– Four Master/Slave Multichannel Serial Port
Interface (McSPI) Ports
– High-Speed/Full-Speed/Low-Speed USB
OTG Subsystem (12-/8-Pin ULPI Interface)
– High-Speed/Full-Speed/Low-Speed
Multiport USB Host Subsystem
• 12-/8-Pin ULPI Interface or 6-/4-/3-Pin
Serial Interface
• Supports Transceiverless Link Logic
(TLL)
– One HDQ/1-Wire Interface
– Three UARTs (One with Infrared Data
Association [IrDA] and Consumer Infrared
[CIR] Modes)
– Three Master/Slave High-Speed
Inter-Integrated Circuit (I2C) Controllers
Removable Media Interfaces:
– Three Multimedia Card (MMC)/ Secure
Digital (SD) With Secure Data I/O (SDIO)
Comprehensive Power, Reset, and Clock
Management
OMAP3515/03 Applications Processor
www.ti.com
•
•
•
•
•
•
•
•
•
•
•
– SmartReflex™ Technology
– Dynamic Voltage and Frequency Scaling
(DVFS)
Test Interfaces
– IEEE-1149.1 (JTAG) Boundary-Scan
Compatible
– Embedded Trace Macro Interface (ETM)
– Serial Data Transport Interface (SDTI)
12 32-bit General Purpose Timers
2 32-bit Watchdog Timers
1 32-bit 32-kHz Sync Timer
Up to 188 General-Purpose I/O (GPIO) Pins
(Multiplexed With Other Device Functions)
65-nm CMOS Technology
Package-On-Package (POP) Implementation
for Memory Stacking (Not Available in CUS
Package)
Discrete Memory Interface (Not Available in
CBC Package)
Packages:
– 515-pin s-PBGA package (CBB Suffix),
.5mm Ball Pitch (Top), .4mm Ball Pitch
(Bottom)
– 515-pin s-PBGA package (CBC Suffix),
.65mm Ball Pitch (Top), .5mm Ball Pitch
(Bottom)
– 423-pin s-PBGA package (CUS Suffix),
.65mm Ball Pitch
1.8-V I/O and 3.0-V (MMC1 only),
0.985-V to 1.35-V Adaptive Processor Core
Voltage
0.985-V to 1.35-V Adaptive Core Logic Voltage
Note: These are default Operating
Performance Point (OPP) voltages and could
be optimized to lower values using
SmartReflex™ AVS.
Applications:
– Portable Navigation Devices
– Portable Media Player
– Advanced Portable Consumer Electronics
– Digital TV
– Digital Video Camera
– Portable Data Collection
– Point-of-Sale Devices
– Gaming
– Web Tablet
– Smart White Goods
– Smart Home Controllers
– Ultra Mobile Devices
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
1.2 Description
OMAP3515 and OMAP3503 high-performance, applications processors are based on the enhanced
OMAP™ 3 architecture.
The OMAP™ 3 architecture is designed to provide best-in-class video, image, and graphics processing
sufficient to support the following:
• Streaming video
• 3D mobile gaming
• Video conferencing
• High-resolution still image
The device supports high-level operating systems (OSs), such as:
• Linux
• Windows CE
This OMAP device includes state-of-the-art power-management techniques required for high-performance
mobile products.
The following subsystems are part of the device:
• Microprocessor unit (MPU) subsystem based on the ARM Cortex™-A8 microprocessor
• POWERVR SGX™ subsystem for 3D graphics acceleration to support display and gaming effects
(3515 only)
• Camera image signal processor (ISP) that supports multiple formats and interfacing options connected
to a wide variety of image sensors
• Display subsystem with a wide variety of features for multiple concurrent image manipulation, and a
programmable interface supporting a wide variety of displays. The display subsystem also supports
NTSC/PAL video out.
• Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth data transfers for multiple
initiators to the internal and external memory controllers and to on-chip peripherals
The device also offers:
• A comprehensive power and clock-management scheme that enables high-performance, low-power
operation, and ultralow-power standby features. The device also supports SmartReflex™ adaptative
voltage control. This power management technique for automatic control of the operating voltage of a
module reduces the active power consumption.
• Memory stacking feature using the package-on-package (POP) implementation (CBB and CBC
packages only)
OMAP15/03 devices are available in a 515-pin s-PBGA package (CBB suffix), 515-pin s-PBGA package
(CBC suffix), and a 423-pin s-PBGA package (CUS suffix). Some features of the CBB and CBC packages
are not available in the CUS package.
Table 1-1 lists the differences between the CBB, CBC, and CUS packages.
Submit Documentation Feedback
OMAP3515/03 Applications Processor
3
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 1-1. Differences Between CBB, CBC, and CUS Packages
FEATURE
CBB PACKAGE
CBC PACKAGE
For CBC package pin
assignments see , Ball
Characteristics (CBC Pkg.)
For CUS package pin
assignments see , Ball
Characteristics (CUS Pkg.)
POP interface supported
POP interface supported
POP interface not available
Discrete Memory Interface
supported
Discrete Memory Interface not
supported
Discrete Memory Interface
supported
Eight chip select pins available
Eight chip select pins available
Chip select pins gpmc_ncs1 and
gpmc_ncs2 are not available
Four wait pins available
Four wait pins available
Wait pins gpmc_wait1 and
gpmc_wait2 are not available
UART1
CTS signal is available on 3 pins
(triple muxed): uart1_cts (AG22 /
W8 / T21), uart1_rts (AH22 /
AA9), uart1_tx (F28 / Y8 / AE7),
uart1_rx (E26 / AA8)
The following signals are either
available on two (double muxed)
or three pins (triple muxed):
uart1_cts (AE21 / T19 / W2),
uart1_rts (AE22 / R2), uart1_rx
(H3 / H25 / AE4), uart1_tx (L4 /
G26)
CTS signal is available on 3 pins
(triple muxed): uart1_cts (AC19 /
AC2 / AA18), uart1_rts (W6 /
AB19), uart1_tx (E23 / V7 / AC3),
uart1_rx (D24 / W7)
UART2
The following signals are
available on two pins (double
muxed): uart2_cts (AF6/AB26),
uart2_rts (AE6/AB25), uart2_tx
(AF5/AA25), uart2_rx
(AE5/AD25)
The following signals are
available on two pins (double
muxed): uart2_cts (Y24/P3),
uart2_rts (AA24/N3), uart2_tx
(AD22/U3), uart2_rx (AD21/W3)
The following signals are
available on one pin only:
uart2_cts (V6), uart2_rts (V5),
uart2_tx (W4), uart2_rx (V4)
McBSP3
The following signals are
available on three pins (triple
muxed): mcbsp3_dx (AF6 / AB26
/ V21), mcbsp3_dr (AE6 / AB25 /
U21), mcbsp3_clkx (AF5 / AA25 /
W21), and mcbsp3_fsx (AE5 /
AD25 / K26)
The following signals are
available on two pins (triple
muxed): mcbsp3_dx (U17/ Y24/
P3), mcbsp3_dr (T20/ AA24 /
N3), mcbsp3_clkx (T17/ AD22 /
U3), mcbsp3_fsx (P20/ AD21 /
W3)
The following signals are
available on two pins only
(double muxed): mcbsp3_dx
(V6/W18), mcbsp3_dr (V5/Y18),
mcbsp3_clkx (W4/V18), and
mcbsp3_fsx (V4/AA19)
GP Timer
The following signals are
available on three pins (triple
muxed): gpt8_pwm_evt (N8 /
AD25 / V3), gpt9_pwm_evt (T8 /
AB26 / Y2), gpt10_pwm_evt (R8
/ AB25 / Y3), and
gpt11_pwm_evt (P8 / AA25 / Y4)
The following signals are
available on three pins (triple
muxed): gpt8_pwm_evt
(C5/AD21/V9), gpt9_pwm_evt
(B4/W8/Y24),
gpt10_pwm_evt(C4/U8/AA24),
gpt11_pwm_evt(B5/V8/AD22)
The following signals are
available on two pins only
(double muxed): gpt8_pwm_evt
(G4/M4), gpt9_pwm_evt (F4/N4),
gpt10_pwm_evt (G5/N3), and
gpt11_pwm_evt (F3/M5)
McBSP4
The following signals are
available on two pins (double
muxed): mcbsp4_clkx (T8/AE1),
mcbsp4_dr (R8/AD1),
mcbsp4_dx (P8/AD2),
mcbsp4_fsx (N8/AC1)
The following signals are
available on two pins(double
muxed): mcbsp4_clkx (B4 / V3),
mcbsp4_dr (C4 / U4),
mcbsp4_dx (B5 / R3),
mcbsp4_fsx (C5 / T3)
The following signals are
available on one pin only:
mcbsp4_clkx (F4), mcbsp4_dr
(G5), mcbsp4_dx (F3),
mcbsp4_fsx (G4)
HSUSB3_TLL
Supported
Supported
Not supported
MM_FSUSB3
Supported
Supported
Not supported
McSPI1
Four chip select pins are
available
Four chip select pins are
available
Chip select pins mcspi1_cs1 and
mcspi_cs2 are not available
MMC3
The following signals are
available on two pins (double
muxed): mmc3_cmd (AC3 /
AE10), and mmc3_clk (AB1 /
AF10)
The following signals are
available on two pins (double
muxed): mmc3_cmd (R8 / AB3),
mmc3_clk (R9 / AB2)
The following signals are
available on one pin only:
mmc3_cmd (AD3), and
mmc3_clk (AC1)
Pin Assignments
Package-On-Package (POP)
Interface
Discrete Memory Interface
GPMC
4
CUS PACKAGE
For CBB package pin
assignments see, Ball
Characteristics (CBB Pkg.)
OMAP3515/03 Applications Processor
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 1-1. Differences Between CBB, CBC, and CUS Packages (continued)
FEATURE
CBB PACKAGE
CBC PACKAGE
CUS PACKAGE
A maximum of 170 GPIO pins
are supported.
GPIO
A maximum of 188 GPIO pins
are supported.
A maximum of 188 GPIO pins
are supported.
The following GPIO pins are not
available: gpio_112, gpio_113,
gpio_114, gpio_115, gpio_52,
gpio_53, gpio_63, gpio_64,
gpio_144, gpio_145, gpio_146,
gpio_147, gpio_152, gpio_153,
gpio_154, gpio_155, gpio_175,
and gpio_176.
Pin muxing restricts the total
number of GPIO pins available at
one time. For more details, see ,
Multiplexing Characteristics (CUS
Pkg.).
This OMAP3515/03 Applications Processor data manual presents the electrical and mechanical
specifications for the OMAP3515/03 Applications Processor. The information contained in this data
manual applies to both the commercial and extended temperature versions of the OMAP3515/03
Applications Processor unless otherwise indicated. It consists of the following sections:
• A description of the OMAP3515/03 terminals: assignment, electrical characteristics, multiplexing, and
functional description (Section 2)
• A presentation of the electrical characteristics requirements: power domains, operating conditions,
power consumption, and dc characteristics (Section 3)
• The clock specifications: input and output clocks, DPLL and DLL (Section 4)
• The video DAC specification (Section 5)
• The timing requirements and switching characteristics (ac timings) of the interfaces (Section 6)
• A description of thermal characteristics, device nomenclature, and mechanical data about the available
packaging (Section 7)
Submit Documentation Feedback
OMAP3515/03 Applications Processor
5
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
1.3 Functional Block Diagram
Figure 1-1 shows the functional block diagram of the OMAP3515/03 Applications Processor.
OMAP Applications Processor
LCD Panel
MPU
Subsystem
Camera
(Parallel)
Amp
Parallel
ARM CortexA8TM Core
16K/16K L1$
POWERVR
SGXTM
Graphics
Accelerator
(3515 Only)
L2$
256K
64
64
CVBS
or
S-Video
32
32
32
Channel
System
DMA
32
32
TV
Camera
ISP
Image
Capture
Hardware
Image
Pipeline
and
Preview
Dual Output 3-Layer
Display Processor
(1xGraphics, 2xVideo)
Temporal Dithering
SDTV→QCIF Support
32
64
HS USB
Host
(with
USB
TTL)
HS
USB
OTG
32
Async
64
64
L3 Interconnect Network-Hierarchial, Performance, and Power Driven
32
32
64K
On-Chip
RAM
2KB
Public/
62KB
Secure
112K
On-Chip
ROM
80KB
Secure/
32KB
BOOT
64
SMS:
SDRAM
Memory
Scheduler/
Rotation
SDRC:
SDRAM
Memory
Controller
32
32
32
L4 Interconnect
GPMC:
General
Purpose
Memory
Controller
NAND/
NOR
Flash,
SRAM
External and
Stacked Memories
Peripherals:
3xUART, 3xHigh-Speed I2C,
5xMcBSP
(2x with Sidetone/Audio Buffer)
4xMcSPI, 6xGPIO,
3xHigh-Speed MMC/SDIO,
HDQ/1 Wire,
2xMailboxes
12xGPTimers, 2xWDT,
32K Sync Timer
System
Controls
PRCM
2xSmartReflexTM
Control
Module
External
Peripherals
Interfaces
Emulation
Debug: SDTI, ETM, JTAG,
CoresightTM DAP
Figure 1-1. OMAP3515/03 Functional Block Diagram
6
OMAP3515/03 Applications Processor
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Contents
1
OMAP3515/03 Applications Processor .............. 1
1.1
Features .............................................. 1
1.2
Description ............................................ 3
1.3
Functional Block Diagram ............................ 6
4.3
5
DPLL and DLL Specifications ...................... 141
VIDEO DAC SPECIFICATIONS ..................... 147
5.1
5.2
Revision History ............................................... 8
2 TERMINAL DESCRIPTION.............................. 9
Interface Description ............................... 147
Electrical Specifications Over Recommended
Operating Conditions .............................. 149
5.3
Analog Supply (vdda_dac) Noise Requirements
Terminal Assignment ................................. 9
5.4
External Component Value Choice ................ 152
2.1
.................................... 13
2.3
Ball Characteristics .................................. 26
2.4
Multiplexing Characteristics ......................... 85
2.5
Signal Description ................................... 93
ELECTRICAL CHARACTERISTICS ................ 118
3.1
Power Domains .................................... 118
3.2
Absolute Maximum Ratings ........................ 120
3.3
Recommended Operating Conditions ............. 122
3.4
DC Electrical Characteristics....................... 124
3.5
Core Voltage Decoupling .......................... 127
3.6
Power-up and Power-down ........................ 129
CLOCK SPECIFICATIONS ........................... 133
4.1
Input Clock Specifications ......................... 134
4.2
Output Clock Specifications........................ 139
2.2
3
4
Pin Assignments
Submit Documentation Feedback
6
7
..
151
TIMING REQUIREMENTS AND SWITCHING
CHARACTERISTICS .................................. 153
............................
.....................
6.3
Timing Parameters .................................
6.4
External Memory Interfaces........................
6.5
Video Interfaces ....................................
6.6
Serial Communications Interfaces .................
6.7
Removable Media Interfaces ......................
6.8
Test Interfaces .....................................
PACKAGE CHARACTERISTICS ....................
7.1
Package Thermal Resistance ......................
7.2
Device Support.....................................
6.1
Timing Test Conditions
153
6.2
Interface Clock Specifications
153
Contents
154
155
184
201
234
249
255
255
255
7
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history table highlights the technical changes made to the SPRS505E
device-specific data manual to make it an SPRS505F revision.
Scope: This data manual revision includes a global update to CBB, CBC, and CUS-package
Terminal Descriptions.
SEE
"Terminal
Description" section
ADDITIONS/MODIFICATIONS/DELETIONS
Updated/Changed the following tables for CBB, CBC, and CUS packages:
• Ball Characteristics
• Multiplexing Characteristics
• Signal Description
Added Pin Maps (Top View) for CBB, CBC, and CUS packages
Updated/Changed CBC Package Terminal Assignment (Bottom View) illustration
8
Revision History
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
2 TERMINAL DESCRIPTION
2.1 Terminal Assignment
Figure 2-1 through Figure 2-5 show the ball locations for the 515- and 423- ball plastic ball grid array
(s-PBGA) packages. through Table 2-25 indicate the signal names and ball grid numbers for both
packages.
Note: There are no balls present on the top of the 423-ball s-PBGA package.
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
030-001
Figure 2-1. OMAP3515/03 Applications Processor CBB s-PBGA-N515 Package (Bottom View)
Submit Documentation Feedback
TERMINAL DESCRIPTION
9
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
030-002
Balls A1, A2, A22, A23, AB1, AB2, AB22, AB23, AC1, AC2, AC22, AC23, B1, B2, B22, and B23 are unused.
Figure 2-2. OMAP3515/03 Applications Processor CBB s-PBGA-N515 Package (Top View)
10
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Figure 2-3. OMAP3515/03 Applications Processor CBC s-PBGA-515 Package (Bottom View)
Submit Documentation Feedback
TERMINAL DESCRIPTION
11
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
Figure 2-4. OMAP3515/03 Applications Processor CBC s-PBGA-515 Package (Top View)
12
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Figure 2-5. OMAP3515/03 Applications Processor CUS s-PBGA-N423 Package (Bottom View)
2.2 Pin Assignments
2.2.1
Pin Map (Top View)
The following pin maps show the top views of the 515-pin sPBGA package [CBB], the 515-pin sPBGA
package [CBC], and the 423-pin sPBGA package [CUS] pin assignments in four quadrants (A, B, C, and
D).
Submit Documentation Feedback
TERMINAL DESCRIPTION
13
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
1
2
3
4
A
NC
pop_a2_a2
vss
sdrc_a0
vdds_mem sdrc_dqs0
B
NC
vss
sdrc_a2
sdrc_a1
vdds_mem
C
sdrc_a8
sdrc_a7
sdrc_a6
sdrc_a4
D
sdrc_a12
sdrc_a11
sdrc_a10
sdrc_a9
E
sdrc_a14
sdrc_a13
vss
vss
F vdds_mem vdds_mem
G
NC
H gpmc_nwp
5
6
www.ti.com
7
8
9
10
11
12
13
14
sdrc_d5
vdds_mem
sdrc_d7
sdrc_dqs2
sdrc_d21
vdds_mem
sdrc_clk
sdrc_nclk
sdrc_d2
sdrc_dm0
vdds_mem
sdrc_d6
sdrc_d17
sdrc_dm2
vdds_mem
sdrc_d22
sdrc_d9
sdrc_a3
sdrc_d1
vss
sdrc_d3
sdrc_d4
vss
sdrc_d18
sdrc_d20
vss
sdrc_d8
sdrc_a5
sdrc_d0
vss
vdd_core
vdd_core
vss
sdrc_d16
sdrc_d19
vss
sdrc_d23
sdrc_ba0
sdrc_ba1
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
gpmc_nadv gpmc_nwe
_ale
gpmc_noe gpmc_nbe0 gpmc_ncs0
_cle
gpmc_d8
J vdds_mem vdds_mem
gpmc_ncs1
vdd_core
vss
vdd_core
gpmc_wait3
vdd_mpu
vdd_mpu
vdd_mpu
vss
vss
vdd_mpu
vss
vss
vdd_mpu
vss
vdd_mpu
vdd_mpu
K
gpmc_d0
gpmc_d9
gpmc_a10
gpmc_a4
gpmc_wait2
L
gpmc_d1
gpmc_d2
gpmc_a9
gpmc_a3
gpmc_wait1 vdd_mpu
vdd_mpu
M
pop_y23
_m1
pop_k2_m2 gpmc_a8
gpmc_a2
gpmc_wait0
vdd_mpu
vdd_mpu
gpmc_a7
gpmc_a1
gpmc_ncs7
vss
vdd_mpu
vss
vss
gpmc_ncs6
vss
vss
N pop_u1_n1 pop_l2_n2
P gpmc_d10
A.
gpmc_d3
Top Views are provided to assist in hardware debugging efforts.
Figure 2-6. CBB Pin Map [Quadrant A - Top View]
14
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
17
19
20
21
22
23
24
25
26
27
28
sdrc_d25
sdrc_dqs3
sdrc_d29
vdds_mem
cam_vs
cam_hs
cam_d5
vss
pop_a22
_a27
pop_a23
_a28
A
vdds_mem sdrc_d26
sdrc_d27
sdrc_d30
vdds_mem
cam_wen
cam_d2
cam_d10
cam_xclkb
vss
pop_b23
_b28
B
vss
sdrc_dm3
sdrc_d31
vss
cam_fld
cam_d3
cam_xclka
cam_d11
cam_pclk
vdds_mem
C
vss
sdrc_d28
vss
vdd_core
vdd_core
cam_d4
cam_strobe dss_hsync dss_vsync
dss_pclk
D
15
16
18
pop_a12
_a15
sdrc_dm1
sdrc_dqs1 vdds_mem
pop_b12
_b15
sdrc_d11
sdrc_d14
sdrc_d10
vdds_mem
sdrc_d13
sdrc_d24
vdd_core
vdds_mem
sdrc_d12
sdrc_d15
vdd_core
vdds
dss_data6 dss_acbias dss_data20 E
vdds
dss_data16 dss_data9
sdrc_nwe
sdrc_cke0
sdrc_cke1
uart3_cts
_rctx
uart3_rts
_sd
uart3_rx
_irrx
uart3_tx
_irtx
vdd_mpu
vss
vss
vdd_core
vdd_core
vdd_core
i2c1_sda
vdds_dpll
_dll
vss
vss
vdd_core
vss
vdd_core
i2c1_scl
vss
vss
cap_vdd
_sram_core
vdd_core
vdd_core
vss
mcbsp2_dx
vdd_core
vdd_core
vdd_core
mcbsp2
_clkx
vss
vdd_core mcbsp2_fsx
dss_data8
dss_data7
F
vss
vdds_mem
G
vdds
H
dss_data19 dss_data18 dss_data17
dss_data21
pop_h22
_j27
pop_k1_j28
J
vdds_mmc1 mcbsp1_fsx
cam_d8
cam_d6
K
vss
cam_d9
cam_d7
L
pop_k22
_m26
mmc1_cmd
vss
M
hdq_sio
mmc1_dat2 mmc1_dat1 mmc1_dat0 mmc1_clk
vdds_
mmc1a
N
mmc1_dat5 mmc1_dat4 mmc1_dat3 P
Figure 2-7. CBB Pin Map [Quadrant B - Top View]
Submit Documentation Feedback
TERMINAL DESCRIPTION
15
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
gpmc_ncs5 vdd_mpu
vdd_mpu
gpmc_clk
gpmc_ncs4
vdd_mpu
vdd_mpu
gpmc_nbe1
NC
gpmc_ncs3
vss
vdd_mpu
gpmc_d6
mcspi2
_cs1
cap_vdd
_sram
_mpu
gpmc_ncs2
vss
vss
W gpmc_d14
gpmc_d7
vss
vdds
uart1_cts
vdd_mpu
vss
vdd_mpu
vdd_mpu
vss
vss
Y gpmc_d15
mcspi2_
simo
mcspi2
_somi
mcspi2
_cs0
uart1_rx
vdd_mpu
vdd_mpu
vdd_mpu
vss
vss
vdd_mpu
uart1_tx
uart1_rts
jtag_rtck
jtag_tck
vdds_wkup
_bg
etk_d10
vdds
vdd_core
etk_ctl
etk_d4
vss
etk_d3
sys_boot2
mcbsp3_dx
etk_d11
vdds
etk_d8
etk_clk
etk_d0
vss
etk_d6
i2c3_scl
vss
etk_d12
etk_d14
etk_d9
pop_ab8
_ag10
pop_ab9
_ag11
etk_d1
pop_ab11
_ag13
i2c3_sda
etk_d13
etk_d15
etk_d5
pop_ac13
_ah10
pop_ac9
_ah11
etk_d2
pop_ac11
_ah13
etk_d7
7
8
9
10
11
12
13
14
R
gpmc_d11
gpmc_d12
gpmc_a6
vdds_mem
T
gpmc_d4
gpmc_d13
gpmc_a5
U
vdds_mem
vss
V
gpmc_d5
AA
pop_aa1
_aa1
pop_aa2
_aa2
mcspi2_clk
mcspi1
_somi
AB
mcspi1
_cs2
mcspi1
_cs3
mcspi1_clk
mcspi1
_simo
AC
mcbsp4
_fsx
mcspi1
_cs0
mcspi1_cs1 vdd_core
AD mcbsp4_dr mcbsp4_dx
vdds
vdds
mmc2_clk mmc2_dat7 mmc2_dat4 mcbsp3_fsx mcbsp3_dr
AE
mcbsp4
_clkx
AF
pop_ac8
_af1
pop_u2
_af2
AG
pop_ab1
_ag1
vss
AH
pop_ac1
_ah1
pop_ac2
_ah2
1
2
mmc2_dat6 mmc2_dat3
vss
mcbsp3
_clkx
mmc2_dat2 mmc2_cmd
mmc2_dat5 mmc2_dat1 mmc2_dat0 vdds_mem
3
jtag_emu1 jtag_emu0
4
5
6
Figure 2-8. CBB Pin Map [Quadrant C - Top View]
16
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
vss
vss
mcbsp2_dr
mmc1_dat7
vdd_core
vss
mcbsp_clks
hsusb0_stp hsusb0_nxt
vdd_core
vss
vdd_mpu
vdds_sram
vss
vdd_core
vss
vdd_mpu
vdd_core
vss
vdd_core
vdd_core
cap_vdd
_wkup
vdds_dpll
_per
jtag_ntrst
jtag_tms
_tmsc
jtag_tdo
vdd_core
vdd_core
vdd_core
vdd_core
jtag_tdi
hsusb0
_data0
hsusb0_clk
T
hsusb0
_data2
hsusb0
_data1
U
mcbsp1_dx
vdda_dac
hsusb0
_data7
hsusb0
_data6
hsusb0
_data5
V
mcbsp1
_clkx
vss
tv_vref
tv_vfb2
tv_out2
W
mcbsp1
_clkr
vss
vssa_dac
tv_out1
Y
mcbsp1_fsr
uart2_tx
vss
dss_data15 dss_data14
AA
uart2_rts
uart2_cts
dss_data13 dss_data12
AB
vss
vss
dss_data22 dss_data23
AC
uart2_rx
i2c4_scl
dss_data11 dss_data10
AD
sys_32k
i2c4_sda
vdds
pop_aa23
_ae28
AE
sys_nirq
pop_aa22
_af27
pop_h23
_af28
AF
vdds
pop_ab23
_ag28
AG
pop_ac22
_ah27
pop_ac23
_ah28
AH
27
28
sys_xtalin
vdd_core
vss
sys_boot5 sys_clkout2
i2c2_scl
vdds
sys_xtalout sys_boot3 sys_boot4
vss
sys_boot6
pop_ab13
_ag15
vss
cam_d0
gpio_114
gpio_112
vdds
vdds
pop_ac14
_ah16
cam_d1
gpio_115
gpio_113
cap_vdd_d
vss
dss_data1
dss_data3
dss_data5
16
17
18
19
20
21
22
23
24
15
R
hsusb0
_data4
vdds
pop_l1
_ah15
hsusb0
_data3
mmc1_dat6 hsusb0_dir
mcbsp1_dr
i2c2_sda
vdd_core
vss
sys_off
_mode
vdds
vdds
dss_data0 dss_data2
vdd_core
sys_clkreq
sys
_nreswarm
dss_data4 sys_clkout1 sys_boot1
sys
sys_boot0
_nrespwron
25
26
tv_vfb1
Figure 2-9. CBB Pin Map [Quadrant D - Top View]
Submit Documentation Feedback
TERMINAL DESCRIPTION
17
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
1
A pop_a1_a1
www.ti.com
2
3
4
5
6
7
8
9
10
11
12
13
NC
gpmc_ncs2
NC
NC
vss
NC
vss
NC
NC
NC
NC
vss
B
NC
vss
gpmc_wait2 gpmc_ncs4 gpmc_ncs6 gpmc_ncs3
NC
NC
NC
NC
NC
NC
NC
C
i2c2_sda
i2c2_scl
sys_boot2 gpmc_ncs5 gpmc_ncs7 gpmc_wait3
NC
NC
NC
NC
vdds
vss
NC
D
gpmc_a9
gpmc_a10
sys_boot1
sys_boot6
vss
NC
vdds
vss
NC
vss
vdd_mpu
E
gpmc_a7
gpmc_a8
sys_boot3
sys_boot4
F
gpmc_a5
gpmc_a6
sys_boot0
NC
G
vss
gpmc_a4
sys_boot5
vdds
NC
vss
vdd_mpu
vss
vdd_core
vdd_mpu
NC
H
gpmc_a2
gpmc_a3
uart1_rx
vss
vdd_mpu
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
vdds_dpll
J gpmc_nbe1 gpmc_a1
NC
NC
K
vss
gpmc_nbe0 mmc2_dat7
_cle
NC
NC
NC
NC
NC
L
pop_j1_l1
gpmc_d14 mmc2_dat6
uart1_tx
vdds
NC
vdd_mpu
vss
M gpmc_nwe gpmc_d15 mmc2_dat5
vdds
vdd_core
NC
vdd_mpu
vdd_mpu
gpmc_noe mcbsp3_dr
vss
vdd_mpu
vdd_mpu
cap_vdd
_sram_mpu
vss
N
gpmc_clk
A.
vdd_mpu
Top Views are provided to assist in hardware debugging efforts.
Figure 2-10. CBC Pin Map [Quadrant A - Top View]
18
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
14
15
16
17
18
19
20
21
22
23
24
25
26
NC
NC
NC
NC
vdds
NC
pop_b16
_a20
NC
NC
cam_wen
cam_d2
pop_a20
_a25
pop_a21
_a26
A
NC
NC
NC
NC
NC
NC
NC
NC
NC
cam_fld
cam_d3
vss
pop_b21
_b26
B
NC
NC
NC
NC
NC
NC
NC
NC
NC
cam_hs
cam_d5
cam_xclka
cam_pclk
C
vss
vdd_core
NC
NC
vss
NC
vss
NC
NC
cam_vs
cam_d4
vss
NC
vdds
uart3_cts
_rctx
uart3_rts
_sd
cam_d10 cam_strobe D
cam_xclkb
cam_d11
dss_data20 dss_acbias
E
F
NC
NC
NC
NC
vdd_core
NC
vss
vss
uart3_tx
_irtx
dss_pclk
dss_data6
G
NC
NC
NC
NC
NC
NC
vdd_core
NC
uart3_rx
_irrx
dss_data7
dss_data8
H
NC
vdds
NC
NC
vdds
NC
NC
hdq_sio
i2c1_sda
i2c1_scl
dss_data9
J
cap_vdd
_wkup
vss
NC
NC
mmc1_dat2
NC
cap_vdd
_sram
_core
NC
dss_hsync
vss
pop_h21
_k26
K
vss
mmc1_cmd
vss
vdds
vss
vdds
vdd_core mmc1_dat1 mmc1_dat0 mmc1_dat4
vss
NC
mmc1_clk mmc1_dat3
NC
dss_data16 dss_data17
L
dss_data18 dss_vsync dss_data19 M
vdds_mmc1 dss_data21
cam_d8
cam_d9
N
Figure 2-11. CBC Pin Map [Quadrant B - Top View]
Submit Documentation Feedback
TERMINAL DESCRIPTION
19
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
P
gpmc_d13
NC
mcbsp3_dx
NC
R
vss
uart1_rts
mcbsp4_dx
vss
T gpmc_d10
pop_n2_t2 mcbsp4_fsx
U gpmc_d12
gpmc_d11
V
gpmc_d8
W
vss
Y
gpmc_d9
pop_t2_y2
AA
gpmc_d1
AB
AC
etk_d9
mcbsp3
_clkx
mcbsp4
_clkx
www.ti.com
mcspi1
_somi
mcspi1
_simo
mcspi1_clk
vdd_mpu
mcspi1_cs0 mcspi1_cs1 mcspi1_cs2 mmc2_cmd
vdds
vdd_core
mcbsp4_dr
vdd_mpu
mcspi1_cs3 mmc2_dat1 mmc2_dat0
mcspi2
_somi
mmc2_dat3 mmc2_dat2 vdd_mpu
vdd_mpu mcspi2_cs0 mcspi2_cs1 mmc2_dat4
NC
vdd_mpu
vdds_sram
vdd_mpu
sys_off
_mode
sys_
nrespwron
NC
jtag_rtck
vss
mcspi2_clk
mcspi2
_simo
vdd_mpu
etk_d4
vdds
vss
vdd_core
vdd_mpu
vss
vdd_mpu
vdd_core
jtag_tdo
gpmc_d0
etk_d3
etk_d8
etk_d5
etk_clk
etk_ctl
i2c3_scl
vss
gpmc_d3
gpmc_d2
etk_d0
i2c3_sda
gpmc_d7
gpmc_nwp
vdds
gpmc_wait1
NC
vss
gpmc_wait0
NC
NC
etk_d7
etk_d2
etk_d1
gpmc_d6
gpmc_d5
sys_
gpmc_ncs0
nreswarm
NC
gpmc_nadv
_ale
NC
NC
NC
AD gpmc_ncs1
uart1_cts mcbsp3_fsx
mmc2_clk sys_clkout2
AE
NC
pop_w2
_ae2
etk_d6
etk_d10
gpmc_d4
etk_d12
vss
NC
etk_d15
vdds
NC
NC
NC
AF
pop_aa1
_af1
NC
NC
pop_y2
_af4
pop_aa6
_af5
etk_d11
etk_d13
pop_y7
_af8
etk_d14
pop_y9
_af10
NC
pop_aa10
_af12
pop_aa11
_af13
1
2
3
4
5
6
7
8
9
10
11
12
13
Figure 2-12. CBC Pin Map [Quadrant C - Top View]
20
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
mmc1_dat5 mmc1_dat6 mmc1_dat7 mcbsp1_fsx
vdds
_mmc1a
NC
cam_d6
cam_d7
P
vss
mcbsp2
_clkx
mcbsp2_dx
vdd_core
NC
NC
NC
NC
R
mcbsp1
_clkx
mcbsp2_dr
mcbsp
_clks
mcbsp1_dr
vss
vdds
NC
NC
T
vdds_dpll
_per
jtag_ntrst
jtag_tdi
mcbsp1_dx
mcbsp2
_fsx
mcbsp1
_clkr
hsusb0_stp
NC
tv_vfb2
vss
pop_p21
_u26
U
jtag_tck
jtag_tms
_tmsc
sys_nirq
mcbsp1_fsr
hsusb0
_data2
hsusb0_dir
hsusb0
_data0
tv_vref
vssa_dac
vdda_dac
tv_out2
V
i2c4_sda
hsusb0
_data4
hsusb0_nxt hsusb0_clk
hsusb0
_data3
vss
vdds
tv_vfb1
tv_out1
W
vss
hsusb0
_data7
hsusb0
_data1
NC
uart2_cts
dss_data13
vss
Y
NC
uart2_rts
dss_data12 dss_data14 AA
vss
NC
vdds
dss_data23 dss_data15 AB
dss_data22 dss_data10 AC
vdds_wkup
sys_clkreq
_bg
jtag_emu1
jtag_emu0
hsusb0
_data5
hsusb0
_data6
NC
vdds
vss
NC
vdds
vss
NC
vdd_core
NC
NC
vdds
vss
i2c4_scl
gpio_113
gpio_112
vdds
vdds
vdds
uart2_rx
uart2_tx
dss_data4
dss_data5
sys_clkout1
cam_d1
cam_d0
gpio_115
gpio_114
cap_vdd_d
sys_32k
dss_data0
dss_data1
pop_aa12
_af14
pop_aa13
_af15
pop_aa14
_af16
pop_y14
_af17
pop_aa17
_af18
sys_xtalin
sys_xtalout
pop_y17
_af21
pop_aa19
_af22
vss
14
15
16
17
18
19
20
21
22
23
vss
dss_data11 AD
pop_y20
_ae25
pop_y21
_ae26
AE
pop_y19
_af24
pop_aa20
_af25
pop_aa21
_af26
AF
24
25
26
dss_data2 dss_data3
Figure 2-13. CBC Pin Map [Quadrant D - Top View]
Submit Documentation Feedback
TERMINAL DESCRIPTION
21
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
1
2
A
NC
NC
B
NC
sdrc_a4
3
sdrc_a3
C gpmc_wait0 gpmc_wait3
sdrc_a5
gpmc_ncs3
sdrc_a10
E gpmc_nwp gpmc_ncs0
sdrc_a6
D
4
5
sdrc_a0
sdrc_dqs0
sdrc_a1
sdrc_d3
sdrc_d1
F gpmc_nadv gpmc_noe gpmc_ncs6 gpmc_ncs4
_ale
gpmc_a10 gpmc_nwe gpmc_ncs7 gpmc_ncs5
G
www.ti.com
6
7
8
sdrc_dm2
sdrc_dqs2
sdrc_dm0
sdrc_d7
sdrc_d18
sdrc_d2
sdrc_a2
10
11
sdrc_clk
sdrc_nclk
sdrc_d19
sdrc_d21
sdrc_d8
sdrc_d6
sdrc_d16
sdrc_d20
sdrc_d9
sdrc_d0
sdrc_d4
sdrc_d5
sdrc_d22
sdrc_a10
sdrc_a9
sdrc_a8
sdrc_d17
sdrc_a7
sdrc_a13
sdrc_a14
vdd_mpu
vdd_core
sdrc_a11
sdrc_a12
vdd_mpu
vdd_mpu
vdd_core
vdd_mmc1a vdd_mpu
vdd_mpu
vss
vdd_core
vdd_mpu
vss
vss
vss
vss
vss
vdd_mpu
vdd_mpu
vss
vss
vdd_mpu
H
gpmc_a8
gpmc_a9
gpmc_ncs1
J
gpmc_a7
gpmc_a6
gpmc_a5
gpmc_a4
vdds_mem vdds_mem vdds_mem
gpmc_a3
gpmc_a2
gpmc_a1
gpmc_nbe0
vdds_mem vdds_mem vdds_mem
_cle
K
L gpmc_nbe1 gpmc_d0
M
A.
gpmc_d1
gpmc_d2
9
vdd_mpu
vss
gpmc_d4
mcspi2_cs1 mcspi2_cs0 vdd_mpu
vdd_mpu
vdd_mpu
vss
12
sdrc_d10
Top Views are provided to assist in hardware debugging efforts.
Figure 2-14. CUS Pin Map [Quadrant A - Top View]
22
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
16
17
sdrc_dm3
sdrc_dqs3
sdrc_d15
sdrc_d27
sdrc_d30
sdrc_d12
sdrc_d26
sdrc_d11
sdrc_d23
13
14
sdrc_dqs1
sdrc_d14
sdrc_dm1
sdrc_d13
19
20
sdrc_ncs0
sdrc_nwe
sdrc_d31
sdrc_ncs1
sdrc_cke0
sdrc_d28
sdrc_ba0
sdrc_ncas
sdrc_cke1
sdrc_d25
sdrc_d29
sdrc_ba1
sdrc_nras
sdrc_d24
vdds_mem
cam_vs
15
18
22
23
24
cam_hs
uart3_cts
_rctx
hdq_sio
A
cam_xclka
uart3_rts
_sd
uart3_rx
_irrx
B
21
cam_d5
cam_xclkb
vdds_mem vdds_mem
cam_wen
cam_d3
vdd_core
vdds_mem vdds_mem
vdds_dpll
_dll
cam_d2
cam_d4
cam_d10
dss_vsync
cam_d11
dss_pclk
vdd_core
vss
vdds_mem
vss
cap_vdd
_sram_core
vss
vss
vss
vss
vdd_core
vdd_core
cam_pclk cam_strobe dss_acbias dss_data16
vss
vss
vdd_core
vdd_core
vdd_core
vss
vdd_core
vdd_core
vss
vss
vdd_core
vdd_core
vdds
vdds
i2c1_scl
i2c1_sda
dss_data21
dss_data8 E
dss_data9
F
dss_data17 dss_data18 G
dss_data19
vdds
C
dss_data20 dss_data6 D
dss_hsync dss_data7
vdd_core
vss
uart3_tx
_irtx
cam_fld
cam_d8
H
J
cam_d9
cam_d7
K
mmc1_cmd
cam_d6
L
mmc1_dat2 mmc1_dat1 mmc1_dat0 mmc1_clk
M
Figure 2-15. CUS Pin Map [Quadrant B - Top View]
Submit Documentation Feedback
TERMINAL DESCRIPTION
23
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
gpmc-d3
N
mcspi2
_somi
mcspi2
_somo
mcspi2
_clk
www.ti.com
vdd_mpu
vdd_mpu
vss
vss
vss
vss
vss
vss
vss
vss
vss
vdd_mpu
vss
P
gpmc_d5
gpmc_d6
R
gpmc_d7
gpmc_d8
gpmc_d11
mcspi1
_simo
mcspi1
_cs3
vdd_mpu
vdd_mpu
vdd_mpu
T
gpmc_d9
gpmc_d12
mcspi1
_somi
mcspi1
_clk
mcspi1
_cs0
vdd_mpu
vdd_mpu
vss
vss
vss
vss
U
gpmc_d10 gpmc_d13
cap_vdd
_sram_mpu
vss
vdds
vss
vdd_mpu
V
gpmc_d14 gpmc_d15 mmc2_dat3 mcbsp3_fsx mcbsp3_dr mcbsp3_dx
uart1_rx
vdds
vdds
vdd_mpu
uart1_tx
vdds
vdds
vdd_mpu
sys_clkout1
vdds
sys_
nreswarm
sys_clkout2
jtag_rtck
jtag_tms
_tmsc
sys_
nrespwron
vdds_sram
mmc2_cmd
jtag_tck
jtag_ntrst
jtag_tdo
jtag_tdi
sys_boot0
etk_d4
etk_d1
etk_d2
etk_d6
etk_d11
etk_d12
etk_d9
etk_d0
etk_d3
etk_d7
5
6
8
9
gpmc_clk mmc2_dat2 mcbsp3_
clkx
W
Y
uart1_rts
mmc2_clk mmc2_dat6 mmc2_dat1
AA mmc2_dat7 mmc2_dat5
mmc2_dat4 mmc2_dat0
AB
AC
etk_clk
uart1_cts
etk_d10
AD
NC
etk_d5
etk_ctl
1
2
3
etk_d8
4
7
10
cap_vdd
_wkup
etk_d14
i2c3_sda
etk_d13
etk_d15
11
12
Figure 2-16. CUS Pin Map [Quadrant C - Top View]
24
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
vss
vss
vss
vss
vss
vss
vss
vss
vss
vdd_core
vdd_core
vdd_core
vss
vss
vss
vss
vdd_core
vdd_core
vdd_core
vdd_mpu
vss
vss
vss
vdds_dpll
_per
vdd_mpu
vss
vss
vdd_mpu
vss
sys_clkreq
vss
vdds
vdds
vdds
mmc1_dat6 mmc1_dat5 mmc1_dat4 mmc1_dat3 vdds_mmc1 N
hsusb0_dir mmc1_dat7 P
mcbsp2_dx hsusb0_clk hsusb0_nxt hsusb0_stp
vdd_core
mcbsp2
_fsx
mcbsp2
_clkx
hsusb0
_data7
R
hsusb0
_data1
hsusb0
_data0
T
hsusb0
_data3
hsusb0
_data2
U
dss_data22 dss_data15
hsusb0
_data5
dss_data23 dss_data14
hsusb0
_data6
hsusb0
_data4
W
dss_data13
tv_vfb2
tv_vref
Y
mcbsp1
_clkx
mcbsp2_dr
sys_nirq
mcbsp1
_dx
mcbsp1
_clkr
i2c4_sda
i2c4_scl
mcbsp1
_dr
vdds_wkup
_bg
sys_boot6
sys_32k
mcbsp
_clks
mcbsp1
_fsx
vdda_dac
vssa_dac
sys_boot5
cam_d0
dss_data1
mcbsp1
_fsr
i2c2_scl
sys_boot1
sys_boot4
cam_d1
dss_data0
dss_data3
dss_data5 dss_data10 dss_data11 jtag_emu0 AC
sys_boot2
sys_boot3
dss_data2
dss_data4
17
18
20
21
i2c3_scl
i2c2_sda
sys_xtalout sys_xtalin
13
14
15
16
19
V
tv_out2
dss_data12
tv_vfb1
sys_off_
mode
22
23
AA
tv_out1
AB
jtag_emu1 AD
24
Figure 2-17. CUS Pin Map [Quadrant D - Top View]
Submit Documentation Feedback
TERMINAL DESCRIPTION
25
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
2.3 Ball Characteristics
through describe the terminal characteristics and the signals multiplexed on each pin for the CBB, CBC,
and CUS packages, respectively. The following list describes the table column headers.
1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom.
2. BALL TOP: Ball number(s) on the top side associated with each signal(s) on the top.
3. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the
signal name in mode 0).
Note: through do not take into account subsystem pin multiplexing options. Subsystem pin multiplexing
options are described in Section 2.5, Signal Descriptions.
4. MODE: Multiplexing mode number.
a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin
corresponds to the name of the pin. There is always a function mapped on the primary mode.
Notice that primary mode is not necessarily the default mode.
Note: The default mode is the mode which is automatically configured on release of the internal
GLOBAL_PWRON reset; also see the RESET REL. MODE column.
b. Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively
used for alternate functions, while some modes are not used and do not correspond to a functional
configuration.
5. TYPE: Signal direction
– I = Input
– O = Output
– I/O = Input/Output
– D = Open drain
– DS = Differential
– A = Analog
Note: In the safe_mode, the buffer is configured in high-impedance.
6. BALL RESET STATE: The state of the terminal at reset (power up).
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H : High-impedance with an active pullup resistor
7. BALL RESET REL. STATE: The state of the terminal at reset release.
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H : High-impedance with an active pullup resistor
8. RESET REL. MODE: This mode is automatically configured on release of the internal
GLOBAL_PWRON reset.
9. POWER: The voltage supply that powers the terminal’s I/O buffers.
10. HYS: Indicates if the input buffer is with hysteresis.
11. BUFFER STRENGTH: Drive strength of the associated output buffer.
12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and
pulldown resistors can be enabled or disabled via software.
26
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Note: The pullup/pulldown drive strength is equal to 100 µA except for CBB balls P27, P26, R27, and
R25 and CUS balls N22, N21, N20, and P24, which the pulldown drive strength is equal to 1.8 kΩ.
13. IO CELL: IO cell information.
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.
This can be easily prevented with the proper software configuration.
Table 2-1. Ball Characteristics (CBB Pkg.) (1)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
D6
J2
sdrc_d0
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C6
J1
sdrc_d1
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B6
G2
sdrc_d2
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C8
G1
sdrc_d3
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C9
F2
sdrc_d4
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A7
F1
sdrc_d5
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B9
D2
sdrc_d6
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A9
D1
sdrc_d7
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C14
B13
sdrc_d8
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B14
A13
sdrc_d9
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C15
B14
sdrc_d10
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B16
A14
sdrc_d11
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D17
B16
sdrc_d12
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C17
A16
sdrc_d13
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B17
B19
sdrc_d14
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D18
A19
sdrc_d15
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D11
B3
sdrc_d16
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B10
A3
sdrc_d17
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C11
B5
sdrc_d18
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D12
A5
sdrc_d19
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C12
B8
sdrc_d20
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A11
A8
sdrc_d21
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B13
B9
sdrc_d22
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D14
A9
sdrc_d23
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C18
B21
sdrc_d24
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A19
A21
sdrc_d25
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B19
D22
sdrc_d26
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B20
D23
sdrc_d27
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D20
E22
sdrc_d28
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A21
E23
sdrc_d29
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B21
G22
sdrc_d30
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C21
G23
sdrc_d31
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
H9
AB21
sdrc_ba0
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
H10
AC21
sdrc_ba1
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A4
N22
sdrc_a0
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
B4
N23
sdrc_a1
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
B3
P22
sdrc_a2
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
C5
P23
sdrc_a3
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
C4
R22
sdrc_a4
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
D5
R23
sdrc_a5
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
C3
T22
sdrc_a6
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
C2
T23
sdrc_a7
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
C1
U22
sdrc_a8
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
D4
U23
sdrc_a9
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
D3
V22
sdrc_a10
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
D2
V23
sdrc_a11
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
(1)
NA in this table stands for "Not Applicable".
Submit Documentation Feedback
TERMINAL DESCRIPTION
27
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
D1
W22
sdrc_a12
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
E2
W23
sdrc_a13
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
E1
Y22
sdrc_a14
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
H11
M22
sdrc_ncs0
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
H12
M23
sdrc_ncs1
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
A13
A11
sdrc_clk
0
IO
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A14
B11
sdrc_nclk
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
H16
J22
sdrc_cke0
0
O
H
1
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
safe_mode
7
sdrc_cke1
0
O
H
1
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
safe_mode
7
H17
J23
H14
L23
sdrc_nras
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
H13
L22
sdrc_ncas
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
H15
K23
sdrc_nwe
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
B7
C1
sdrc_dm0
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A16
A17
sdrc_dm1
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
B11
A6
sdrc_dm2
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
C20
A20
sdrc_dm3
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A6
C2
sdrc_dqs0
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A17
B17
sdrc_dqs1
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A10
B6
sdrc_dqs2
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A20
B20
sdrc_dqs3
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
N4
AC15
gpmc_a1
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_34
4
IO
safe_mode
7
gpmc_a2
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_35
4
IO
safe_mode
7
gpmc_a3
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_36
4
IO
safe_mode
7
gpmc_a4
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_37
4
IO
safe_mode
7
gpmc_a5
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_38
4
IO
safe_mode
7
gpmc_a6
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_39
4
IO
safe_mode
7
gpmc_a7
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_40
4
IO
safe_mode
7
gpmc_a8
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_41
4
IO
safe_mode
7
gpmc_a9
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq2
1
I
gpio_42
4
IO
safe_mode
7
gpmc_a10
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq3
1
I
gpio_43
4
IO
M4
L4
K4
T3
R3
N3
M3
L3
K3
28
AB15
AC16
AB16
AC17
AB17
AC18
AB18
AC19
AB19
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
safe_mode
7
K1
M2
gpmc_d0
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
L1
M1
gpmc_d1
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
L2
N2
gpmc_d2
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
P2
N1
gpmc_d3
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
T1
R2
gpmc_d4
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
V1
R1
gpmc_d5
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
V2
T2
gpmc_d6
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
W2
T1
gpmc_d7
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
H2
AB3
gpmc_d8
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_44
4
IO
safe_mode
7
gpmc_d9
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_45
4
IO
safe_mode
7
gpmc_d10
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_46
4
IO
safe_mode
7
gpmc_d11
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_47
4
IO
safe_mode
7
gpmc_d12
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_48
4
IO
safe_mode
7
gpmc_d13
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_49
4
IO
safe_mode
7
gpmc_d14
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_50
4
IO
safe_mode
7
gpmc_d15
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_51
4
IO
K2
P1
R1
R2
T2
W1
Y1
AC3
AB4
AC4
AB6
AC6
AB7
AC7
safe_mode
7
G4
Y2
gpmc_ncs0
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
H3
Y1
gpmc_ncs1
0
O
H
1
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_52
4
IO
safe_mode
7
gpmc_ncs2
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_53
4
IO
safe_mode
7
gpmc_ncs3
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq0
1
I
gpio_54
4
IO
safe_mode
7
gpmc_ncs4
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq1
1
I
mcbsp4_
clkx
2
IO
gpt9_pwm_e 3
vt
IO
gpio_55
4
IO
safe_mode
7
gpmc_ncs5
0
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
V8
U8
T8
R8
NA
NA
NA
NA
Submit Documentation Feedback
O
TERMINAL DESCRIPTION
29
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
P8
N8
T4
NA
NA
W2
PIN NAME
[3]
MODE [4]
TYPE [5]
sys_
ndmareq2
1
I
mcbsp4_dr
2
I
gpt10_pwm_ 3
evt
IO
gpio_56
4
IO
safe_mode
7
gpmc_ncs6
0
O
sys_
ndmareq3
1
I
mcbsp4_dx
2
IO
gpt11_pwm_ 3
evt
IO
gpio_57
4
IO
safe_mode
7
gpmc_ncs7
0
O
gpmc_io_dir
1
O
mcbsp4_fsx
2
IO
gpt8_pwm_e 3
vt
IO
gpio_58
4
IO
safe_mode
7
gpmc_clk
0
O
gpio_59
4
IO
safe_mode
7
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
F3
W1
gpmc_nadv_ 0
ale
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
G2
V2
gpmc_noe
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
F4
V1
gpmc_nwe
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
G3
AC12
gpmc_nbe0_ 0
cle
O
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_60
4
IO
safe_mode
7
gpmc_nbe1
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_61
4
IO
safe_mode
7
gpmc_nwp
0
O
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_62
4
IO
U3
H1
NA
AB10
safe_mode
7
M8
AB12
gpmc_wait0
0
I
H
H
0
vdds_ mem
Yes
NA
PU/ PD
LVCMOS
L8
AC10
gpmc_wait1
0
I
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_63
4
IO
safe_mode
7
gpmc_wait2
0
I
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_64
4
IO
safe_mode
7
gpmc_wait3
0
I
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq1
1
I
gpio_65
4
IO
safe_mode
7
dss_pclk
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_66
4
IO
safe_mode
7
dss_hsync
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_67
4
IO
safe_mode
7
K8
J8
D28
D26
30
NA
NA
NA
NA
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
D27
dss_vsync
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_68
4
IO
safe_mode
7
dss_acbias
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_69
4
IO
safe_mode
7
dss_data0
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart1_cts
2
I
gpio_70
4
IO
safe_mode
7
dss_data1
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
uart1_rts
2
O
gpio_71
4
IO
safe_mode
7
dss_data2
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_72
4
IO
safe_mode
7
dss_data3
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_73
4
IO
safe_mode
7
dss_data4
0
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
E27
AG22
AH22
AG23
AH23
AG24
AH24
E26
F28
F27
G26
AD28
AD27
AB28
AB27
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
IO
uart3_rx_ irrx 2
I
gpio_74
4
IO
safe_mode
7
dss_data5
0
IO
uart3_tx_ irtx 2
O
gpio_75
4
IO
safe_mode
7
dss_data6
0
IO
uart1_tx
2
O
gpio_76
4
IO
safe_mode
7
dss_data7
0
IO
uart1_rx
2
I
gpio_77
4
IO
safe_mode
7
dss_data8
0
IO
gpio_78
4
IO
safe_mode
7
dss_data9
0
IO
gpio_79
4
IO
safe_mode
7
dss_data10
0
IO
gpio_80
4
IO
safe_mode
7
dss_data11
0
IO
gpio_81
4
IO
safe_mode
7
dss_data12
0
IO
gpio_82
4
IO
safe_mode
7
dss_data13
0
IO
gpio_83
4
IO
safe_mode
7
Submit Documentation Feedback
TERMINAL DESCRIPTION
31
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
AA28
dss_data14
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_84
4
IO
safe_mode
7
dss_data15
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_85
4
IO
safe_mode
7
dss_data16
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_86
4
IO
safe_mode
7
dss_data17
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_87
4
IO
safe_mode
7
dss_data18
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
dss_data19
0
IO
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_
simo
2
IO
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
dss_data20
0
O
H
H
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_
somi
2
IO
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
dss_data21
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_cs0
2
IO
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
dss_data22
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
mcspi3_cs1
2
O
dss_data4
3
IO
gpio_92
4
IO
safe_mode
7
dss_data23
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
dss_data5
3
IO
gpio_93
4
IO
safe_mode
7
AA27
G25
H27
H26
H25
E28
J26
AC27
AC28
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
W28
NA
tv_out2
0
O
Z
0
0
vdda_dac
NA (2)
NA
10-bit DAC
Y28
NA
tv_out1
0
O
Z
0
0
vdda_dac
NA (2)
NA
10-bit DAC
Y27
NA
tv_vfb1
0
AO
Z
NA
0
vdda_dac
NA (2)
NA
10-bit DAC
W27
NA
tv_vfb2
0
AO
Z
NA
0
vdda_dac
NA (2)
NA
10-bit DAC
W26
NA
tv_vref
0
AO
Z
NA
0
vdda_dac
NA (2)
NA
10-bit DAC
A24
NA
cam_hs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_94
4
IO
safe_mode
7
cam_vs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_95
4
IO
safe_mode
7
A23
(2)
32
NA
The drive strength is fixed regardless of the load. The driver is designed to drive 75ohm for video applications.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
C25
cam_ xclka
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_96
4
IO
safe_mode
7
cam_pclk
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_97
4
IO
safe_mode
7
cam_fld
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
PU/PD
LVCMOS
PU/PD
LVCMOS
PU/PD
LVCMOS
C27
C23
AG17
AH17
B24
C24
D24
A25
K28
L28
K27
L27
B25
C26
B26
B23
D25
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0
IO
cam_global_r 2
eset
IO
gpio_98
4
IO
safe_mode
7
cam_d0
0
I
gpio_99
4
I
safe_mode
7
cam_d1
0
I
gpio_100
4
I
safe_mode
7
cam_d2
0
I
gpio_101
4
IO
safe_mode
7
cam_d3
0
I
gpio_102
4
IO
safe_mode
7
cam_d4
0
I
gpio_103
4
IO
safe_mode
7
cam_d5
0
I
gpio_104
4
IO
safe_mode
7
cam_d6
0
I
gpio_105
4
IO
safe_mode
7
cam_d7
0
I
gpio_106
4
IO
safe_mode
7
cam_d8
0
I
gpio_107
4
IO
safe_mode
7
cam_d9
0
I
gpio_108
4
IO
safe_mode
7
cam_d10
0
I
gpio_109
4
IO
safe_mode
7
cam_d11
0
I
gpio_110
4
IO
safe_mode
7
cam_ xclkb
0
O
gpio_111
4
IO
safe_mode
7
cam_wen
0
NA
L
7
vdds
Yes
NA
8
L
L
7
vdds
Yes
NA
8
NA
L
L
7
vdds
Yes
NA
8
NA
I
O
gpio_167
4
IO
safe_mode
7
Submit Documentation Feedback
L
NA
cam_ shutter 2
cam_ strobe 0
8
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
33
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
AG19
AH19
AG18
AH18
P21
N21
R21
M21
N28
M27
N27
N26
N25
P28
P27
P26
R27
R25
(3)
(4)
34
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
gpio_126
4
IO
safe_mode
7
gpio_112
4
safe_mode
7
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
gpio_113
4
safe_mode
7
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
gpio_114
4
safe_mode
7
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
gpio_115
4
safe_mode
7
I
L
L
7
vdds
Yes
NA
PU/PD
LVCMOS
mcbsp2_fsx
gpio_116
0
IO
L
L
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
4
IO
safe_mode
7
mcbsp2_
clkx
0
IO
L
L
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
gpio_117
4
IO
safe_mode
7
mcbsp2_dr
0
I
gpio_118
4
IO
L
L
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
safe_mode
7
mcbsp2_dx
0
IO
gpio_119
4
IO
L
L
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
safe_mode
7
mmc1_clk
0
O
L
L
7
vdds_mmc1
Yes
8
PU/ PD (4)
gpio_120
4
IO
LVCMOS
safe_mode
7
mmc1_cmd
0
IO
gpio_121
4
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD (4)
LVCMOS
safe_mode
7
mmc1_dat0
0
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD (4)
gpio_122
4
IO
LVCMOS
safe_mode
7
mmc1_dat1
0
IO
gpio_123
4
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD (4)
LVCMOS
safe_mode
7
mmc1_dat2
0
IO
gpio_124
4
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD
safe_mode
7
mmc1_dat3
0
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD (4)
gpio_125
4
IO
LVCMOS
safe_mode
7
mmc1_dat4
0
IO
gpio_126
4
IO
L
L
7
vdds_mmc1a No
8
PD (4)
LVCMOS
safe_mode
7
mmc1_dat5
0
IO
L
L
7
vdds_mmc1a No
8
PD (4)
gpio_127
4
IO
LVCMOS
safe_mode
7
mmc1_dat6
0
IO
gpio_128
4
IO
L
L
7
vdds_mmc1a No
8
PD (4)
LVCMOS
safe_mode
7
mmc1_dat7
0
L
L
7
vdds_mmc1a No
8
PD
IO
(4)
(4)
LVCMOS
LVCMOS
The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in
the above table.
The PU nominal drive strength of this IO cell is equal to 25 uA @ 1.8V and 41.6 uA @ 3.0V. The PD nominal drive strength of this IO
cell is equal to 1 mA @ 1.8V and 1.66 mA @ 3.0V.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
AE2
AG5
AH5
AH4
AG4
AF4
AE4
AH3
AF3
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
gpio_129
4
IO
safe_mode
7
mmc2_clk
0
O
mcspi3_clk
1
IO
gpio_130
4
IO
safe_mode
7
mmc2_ cmd 0
IO
mcspi3_
simo
1
IO
gpio_131
4
IO
safe_mode
7
mmc2_ dat0 0
IO
mcspi3_
somi
1
IO
gpio_132
4
IO
safe_mode
7
mmc2_ dat1 0
IO
gpio_133
4
IO
safe_mode
7
mmc2_ dat2 0
IO
mcspi3_cs1
1
O
gpio_134
4
IO
safe_mode
7
mmc2_ dat3 0
IO
mcspi3_cs0
1
IO
gpio_135
4
IO
safe_mode
7
mmc2_ dat4 0
IO
mmc2_dir_da 1
t0
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
mmc2_ dat5 0
IO
mmc2_dir_da 1
t1
O
cam_global_r 2
eset
IO
mmc3_dat1
3
IO
gpio_137
4
IO
hsusb3_tll_st 5
p
IO
mm3_rxdp
6
IO
safe_mode
7
mmc2_ dat6 0
IO
mmc2_dir_
cmd
1
O
cam_ shutter 2
O
mmc3_dat2
3
IO
gpio_138
4
IO
hsusb3_tll_di 5
r
IO
safe_mode
AE3
NA
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
7
mmc2_ dat7 0
IO
mmc2_ clkin 1
I
mmc3_dat3
3
IO
gpio_139
4
IO
Submit Documentation Feedback
TERMINAL DESCRIPTION
35
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
AF6
AE6
AF5
AE5
AB26
AB25
AA25
AD25
AA8
AA9
36
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
hsusb3_tll_n 5
xt
IO
mm3_rxdm
6
IO
safe_mode
7
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
hsusb3_tll_
data4
5
IO
safe_mode
7
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
hsusb3_tll_
data5
5
IO
safe_mode
7
mcbsp3_
clkx
0
IO
uart2_tx
1
O
gpio_142
4
IO
hsusb3_tll_
data6
5
IO
safe_mode
7
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
hsusb3_tll_
data7
5
IO
safe_mode
7
uart2_cts
0
I
mcbsp3_dx
1
IO
gpt9_pwm_e 2
vt
IO
gpio_144
4
IO
safe_mode
7
uart2_rts
0
O
mcbsp3_dr
1
I
gpt10_pwm_ 2
evt
IO
gpio_145
4
IO
safe_mode
7
uart2_tx
0
O
mcbsp3_
clkx
1
IO
gpt11_pwm
_evt
2
IO
gpio_146
4
IO
safe_mode
7
uart2_rx
0
I
mcbsp3_fsx
1
IO
gpt8_pwm_e 2
vt
IO
gpio_147
4
IO
safe_mode
7
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
uart1_rts
0
TERMINAL DESCRIPTION
O
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
W8
Y8
AE1
AD1
AD2
AC1
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
gpio_149
4
IO
safe_mode
7
uart1_cts
0
I
gpio_150
4
IO
hsusb3_tll_cl 5
k
O
safe_mode
7
uart1_rx
0
IO
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
mcbsp4_
clkx
0
IO
gpio_152
4
IO
hsusb3_tll_
data1
5
IO
mm3_txse0
6
IO
safe_mode
7
mcbsp4_dr
0
I
gpio_153
4
IO
hsusb3_tll_
data0
5
IO
mm3_rxrcv
6
IO
safe_mode
7
mcbsp4_dx
0
IO
gpio_154
4
IO
hsusb3_tll_
data2
5
IO
mm3_txdat
6
IO
safe_mode
7
mcbsp4_fsx
0
IO
gpio_155
4
IO
hsusb3_tll_
data3
5
IO
mm3_txen_n 6
IO
safe_mode
Y21
AA21
V21
U21
NA
NA
NA
NA
I
mcbsp1_ clkr 2
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
7
mcbsp1_ clkr 0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
safe_mode
7
mcbsp1_fsr
0
IO
cam_global_r 2
eset
IO
gpio_157
4
IO
safe_mode
7
mcbsp1_dx
0
IO
mcspi4_
simo
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
mcbsp1_dr
0
I
mcspi4_
somi
1
IO
mcbsp3_dr
2
O
gpio_159
4
IO
safe_mode
7
Submit Documentation Feedback
TERMINAL DESCRIPTION
37
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
T21
mcbsp_clks
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
K26
W21
H18
H19
H20
H21
T28
T25
R28
T26
T27
U28
U27
38
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
cam_ shutter 2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
mcbsp1_
clkx
0
IO
mcbsp3_
clkx
2
IO
gpio_162
4
IO
safe_mode
7
uart3_cts_
rctx
0
IO
gpio_163
4
IO
safe_mode
7
uart3_rts_ sd 0
O
gpio_164
4
IO
safe_mode
7
uart3_rx_ irrx 0
I
gpio_165
4
IO
safe_mode
7
uart3_tx_ irtx 0
O
gpio_166
4
IO
safe_mode
7
hsusb0_clk
0
I
gpio_120
4
IO
safe_mode
7
hsusb0_stp
0
O
gpio_121
4
IO
safe_mode
7
hsusb0_dir
0
I
gpio_122
4
IO
safe_mode
7
hsusb0_nxt
0
I
gpio_124
4
IO
safe_mode
7
hsusb0_
data0
0
IO
uart3_tx_ irtx 2
O
gpio_125
4
IO
safe_mode
7
hsusb0_
data1
0
IO
uart3_rx_ irrx 2
I
gpio_130
4
IO
safe_mode
7
hsusb0_
data2
0
IO
uart3_rts_ sd 2
O
gpio_131
4
IO
safe_mode
7
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
U26
hsusb0_
data3
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
uart3_cts_
rctx
2
IO
gpio_169
4
IO
safe_mode
7
hsusb0_
data4
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_188
4
IO
safe_mode
7
hsusb0_
data5
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_189
4
IO
safe_mode
7
hsusb0_
data6
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_190
4
IO
safe_mode
7
hsusb0_
data7
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_191
4
IO
safe_mode
7
U25
V28
V27
V26
NA
NA
NA
NA
NA
K21
NA
i2c1_scl
0
IOD
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
J21
NA
i2c1_sda
0
IOD
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
AF15
NA
i2c2_scl
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_168
4
IO
safe_mode
7
i2c2_sda
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_183
4
IO
safe_mode
7
i2c3_scl
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_184
4
IO
safe_mode
7
i2c3_sda
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_185
4
IO
safe_mode
7
i2c4_scl
0
IOD
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
sys_
nvmode1
1
O
safe_mode
7
i2c4_sda
0
IOD
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
sys_
nvmode2
1
O
safe_mode
7
hdq_sio
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
sys_altclk
1
I
i2c2_sccbe
2
O
i2c3_sccbe
3
O
gpio_170
4
IO
safe_mode
7
mcspi1_clk
0
IO
L
L
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
mmc2_dat4
1
IO
gpio_171
4
IO
safe_mode
7
mcspi1_
simo
0
IO
L
L
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
mmc2_dat5
1
IO
gpio_172
4
IO
AE15
AF14
AG14
AD26
AE26
J25
AB3
AB4
NA
NA
NA
NA
NA
NA
NA
NA
Submit Documentation Feedback
TERMINAL DESCRIPTION
39
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
AA4
AC2
AC3
AB1
AB2
AA3
Y2
Y3
Y4
40
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
safe_mode
7
mcspi1_
somi
0
IO
L
L
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
mmc2_dat6
1
IO
gpio_173
4
IO
safe_mode
7
mcspi1_cs0
0
IO
H
H
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
mmc2_dat7
1
IO
gpio_174
4
IO
safe_mode
7
mcspi1_cs1
0
O
L
H
7
vdds
Yes
4
PU/ PD
LVCMOS
mmc3_cmd
3
IO
gpio_175
4
IO
safe_mode
7
mcspi1_cs2
0
O
L
H
7
vdds
Yes
4 (3)
PU/ PD
LVCMOS
mmc3_clk
3
O
gpio_176
4
IO
safe_mode
7
mcspi1_cs3
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
hsusb2_tll_
data2
2
IO
hsusb2_
data2
3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
mcspi2_clk
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
hsusb2_tll_
data7
2
IO
hsusb2_
data7
3
O
gpio_178
4
IO
safe_mode
7
mcspi2_
simo
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpt9_pwm_e 1
vt
IO
hsusb2_tll_
data4
2
IO
hsusb2_
data4
3
I
gpio_179
4
IO
safe_mode
7
mcspi2_
somi
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpt10_pwm_ 1
evt
IO
hsusb2_tll_
data5
2
IO
hsusb2_
data5
3
O
gpio_180
4
IO
safe_mode
7
mcspi2_cs0
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
0
IO
gpt11_pwm_ 1
evt
IO
hsusb2_tll_
data6
2
IO
hsusb2_
data6
3
O
TERMINAL DESCRIPTION
(3)
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
V3
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
gpio_181
4
IO
safe_mode
7
mcspi2_cs1
0
O
gpt8_pwm_e 1
vt
IO
hsusb2_tll_
data3
2
IO
hsusb2_
data3
3
IO
gpio_182
4
IO
mm2_txen_n 5
IO
safe_mode
7
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
AE25
NA
sys_32k
0
I
Z
I
NA
vdds
Yes
NA
NA
LVCMOS
AE17
NA
sys_xtalin
0
I
Z
I
NA
vdds
NA
NA
NA
LVCMOS
AF17
NA
sys_xtalout
0
O
Z
O
NA
vdds
NA
NA
NA
LVCMOS
AF25
NA
sys_clkreq
0
IO
0
1
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_1
4
IO
safe_mode
7
sys_nirq
0
I
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_0
4
IO
AF26
NA
safe_mode
7
AH25
NA
sys_
nrespwron
0
I
Z
I
NA
vdds
Yes
NA
NA
LVCMOS
AF24
NA
sys_
nreswarm
0
IOD
0
1 (PU)
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_30
4
IO
safe_mode
7
sys_boot0
0
I
gpio_2
4
IO
safe_mode
7
sys_boot1
0
I
gpio_3
4
IO
safe_mode
7
sys_boot2
0
I
gpio_4
4
IO
safe_mode
7
sys_boot3
0
I
gpio_5
4
IO
safe_mode
7
sys_boot4
0
AH26
AG26
AE14
AF18
AF19
AE21
AF21
AF22
AG25
NA
NA
NA
NA
NA
NA
NA
NA
NA
I
mmc2_dir_da 1
t2
O
gpio_6
4
IO
safe_mode
7
sys_boot5
0
I
mmc2_dir_da 1
t3
O
gpio_7
4
IO
safe_mode
7
sys_boot6
0
I
gpio_8
4
IO
safe_mode
7
sys_off_
mode
0
O
gpio_9
4
IO
safe_mode
7
sys_clkout1
0
Submit Documentation Feedback
O
Open Drain
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
0
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
41
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
AE22
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
gpio_10
4
IO
safe_mode
7
sys_clkout2
0
O
gpio_186
4
IO
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
safe_mode
7
AA17
NA
jtag_ntrst
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA13
NA
jtag_tck
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA12
NA
jtag_rtck
0
O
L
0
0
vdds
Yes
8
PU/ PD
LVCMOS
AA18
NA
jtag_tms_tms 0
c
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
AA20
NA
jtag_tdi
0
I
H
H
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA19
NA
jtag_tdo
0
O
L
Z
0
vdds
Yes
8
PU/ PD
LVCMOS
AA11
NA
jtag_emu0
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_11
4
IO
safe_mode
7
jtag_emu1
0
IO
H
H
0
vdds
Yes
8
PU/ PD
LVCMOS
gpio_31
4
IO
safe_mode
7
etk_clk
0
O
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
mcbsp5_
clkx
1
IO
mmc3_clk
2
O
hsusb1_stp
3
O
gpio_12
4
IO
mm1_rxdp
5
IO
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
AA10
AF10
AE10
AF11
AG12
AH12
42
NA
NA
NA
NA
NA
NA
hsusb1_tll_st 6
p
I
etk_ctl
0
O
mmc3_cmd
2
IO
hsusb1_clk
3
O
gpio_13
4
IO
hsusb1_tll_cl 6
k
O
etk_d0
0
O
mcspi3_
simo
1
IO
mmc3_dat4
2
IO
hsusb1_
data0
3
IO
gpio_14
4
IO
mm1_rxrcv
5
IO
hsusb1_tll_
data0
6
IO
etk_d1
0
O
mcspi3_
somi
1
IO
hsusb1_
data1
3
IO
gpio_15
4
IO
mm1_txse0
5
IO
hsusb1_tll_
data1
6
IO
etk_d2
0
O
mcspi3_cs0
1
IO
hsusb1_
data2
3
IO
gpio_16
4
IO
mm1_txdat
5
IO
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
AE13
AE11
AH9
AF13
AH14
AF9
AG9
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
hsusb1_tll_d 6
ata2
IO
etk_d3
0
O
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_
data7
3
IO
gpio_17
4
IO
hsusb1_tll_
data7
6
IO
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_
data4
3
IO
gpio_18
4
IO
hsusb1_tll_
data4
6
IO
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_
data5
3
IO
gpio_19
4
IO
hsusb1_tll_
data5
6
IO
etk_d6
0
O
mcbsp5_dx
1
IO
mmc3_dat2
2
IO
hsusb1_
data6
3
IO
gpio_20
4
IO
hsusb1_tll_
data6
6
IO
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_
data3
3
IO
gpio_21
4
IO
mm1_txen_n 5
IO
hsusb1_tll_
data3
6
IO
etk_d8
0
O
sys_drm_
msecure
1
I
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
hsusb1_tll_di 6
r
O
etk_d9
0
O
sys_secure_i 1
ndic ator
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hsusb1_tll_n 6
xt
O
Submit Documentation Feedback
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
43
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
AE7
etk_d10
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
hsusb2_tll_cl 6
k
O
etk_d11
0
O
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
AF7
AG7
NA
NA
NA
hsusb2_tll_st 6
p
I
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
hsusb2_tll_di 6
r
O
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm2_rxdm
5
IO
hsusb2_tll_n 6
xt
O
etk_d14
0
O
hsusb2_
data0
3
IO
gpio_28
4
IO
mm2_rxrcv
5
IO
hsusb2_tll_
data0
6
IO
etk_d15
0
O
hsusb2_
data1
3
IO
gpio_29
4
IO
mm2_txse0
5
IO
hsusb2_tll_
data1
6
IO
AE9, AE18, NA
AE19, AE24,
AC4, Y16,
Y18, Y19,
Y20, W18,
W20, V20,
U19, U20,
T19, P20,
N19, N20,
M19, M25,
L25, K18,
K20, J4, J18,
J19, J20, H4,
E25, D8, D9,
D15, D22,
D23
vdd_core
0
PWR
-
-
-
-
-
-
-
-
Y9, Y10,
NA
Y11, Y14,
Y15, W9,
W11, W12,
W15, U10,
T9, T10, R9,
R10, N10,
M9, M10, L9,
L10, K11,
K14, K13, J9,
J10, J11,
J14, J15
vdd_mpu
0
PWR
-
-
-
-
-
-
-
-
AH7
AG8
AH8
44
NA
NA
NA
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
AH6, U1, R4, NA
J1, J2, G28,
F1, F2, D16,
C16, C28,
B5, B8, B12,
B18, B22,
A5, A8, A12,
A18, A22
vdds_mem
0
PWR
-
-
-
-
-
-
-
-
AG20, AG21, NA
AG27, AF8,
AF16, AF23,
AE8, AE16,
AE23, AE27,
AD3, AD4,
W4, H28,
F25, F26
vdds
0
PWR
-
-
-
-
-
-
-
-
W16
NA
vdds_sram
0
K15
NA
vdds_dpll_dll 0
PWR
-
-
-
-
-
-
-
-
AA16
NA
vdds_dpll_pe 0
r
PWR
-
-
-
-
-
-
-
-
AA14
NA
vdds_wkup_ 0
bg
PWR
-
-
-
-
-
-
-
-
K25, P25
NA
vdds_mmc1, 0
vdds_mmc1a
PWR
-
-
-
-
-
-
-
-
V25
NA
vdda_dac
0
PWR
-
-
-
-
-
-
-
-
Y26
NA
vssa_dac
0
GND
-
-
-
-
-
-
-
-
AA26, AG2, NA
AG3, AG6,
AF12, AF20,
AE12, AE20,
AC25, AC26,
AG16, AH21,
Y12, Y13,
Y17, Y25,
W3, W10,
W13, W14,
W17, W19,
W25, V9,
V10, V19,
U2, U9, T20,
R19, R20,
R26, P3, P4,
P9, P10,
P19, N9,
M20, M28,
L19, L20,
L26, K9,
K10, K12,
K16, K17,
K19, J3, J12,
J13, J16,
J17, G27,
E3,E4, D7,
D10, D13,
D19, D21,
C7, C10,
C13, C19,
C22, B2,
B27, A3, A26
vss
0
GND
-
-
-
-
-
-
-
-
AH20, AA15, NA
V4, L21
cap_vdd_d, 0
cap_vdd_wk
up,
cap_vdd_sra
m_mpu,
cap_vdd_sra
m_core
PWR
-
-
-
-
-
-
-
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
45
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BALL TOP
BOTTOM [1] [2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL. POWER [9]
RESET REL. MODE [8]
STATE [7]
HYS [10]
BUFFER
PULLUP
STRENG TH /DOWN
(mA) [11]
TYPE [12]
IO CELL [13]
-
-
-
-
-
AH1, AH2,
AH10, AH11,
AH13, AH15,
AH16, AH27,
AH28, AG1,
AG10, AG11,
AG13, AG15,
AG28, AF1,
AF2, AF27,
AF28, AE28,
AA1, AA2,
N1, N2, M1,
M2, M26,
J27, J28,
B15, B28,
A2, A15,
A27, A28
A2, A12,
FeedThrough A22, A23,
Pins (5)
AA1, AA2,
AA22, AA23,
AB1, AB11,
AB13, AB23,
AB8, AB9,
AC1, AC11,
AC13, AC14,
AC2, AC22,
AC23, AC8,
AC9, B12,
B23, H22,
H23, K1, K2,
K22, L1, L2,
U1, U2, Y23
-
A1, B1, G1,
U4
A1, AB2,
AB22, B1,
B2, B22
-
(5)
No Connect
-
-
-
-
These signals are feed-through balls. For more information, see Section 2.5.10.
Table 2-2. Ball Characteristics (CBC Pkg.) (1)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
AE16
NA
cam_d0
0
I
L
L
7
L
L
L
AE15
(1)
(2)
46
NA
gpio_99
4
I
safe_mode
7
-
cam_d1
0
I
gpio_100
4
I
safe_mode
7
-
gpio_112
4
I
safe_mode
7
-
gpio_114
4
I
safe_mode
7
-
gpio_113
4
I
safe_mode
7
-
gpio_115
4
I
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
vdds
Yes
4
PU100/
PD100
LVCMOS
7
vdds
Yes
4
PU100/
PD100
LVCMOS
L
7
vdds
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
PU100/
PD100
LVCMOS
IO CELL [13]
AD17
NA
AE18
NA
AD16
NA
AE17
NA
safe_mode
7
-
NA
G20
sdrc_a0
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
K20
sdrc_a1
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
J20
sdrc_a2
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
J21
sdrc_a3
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
U21
sdrc_a4
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
R20
sdrc_a5
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
M21
sdrc_a6
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
M20
sdrc_a7
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
N20
sdrc_a8
0
O
0
0
0
vdds
No
4
(2)
NA
LVCMOS
NA
K21
sdrc_a9
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
Y16
sdrc_a10
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
N21
sdrc_a11
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
R21
sdrc_a12
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
AA15
sdrc_a13
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
Y12
sdrc_a14
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA in this table stands for Not Applicable.
The drive strength is programmable vs the capacity load: load range = [2 pF to 6 pF] per default or [6 pF to 12 pF] according to the
selected mode.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
NA
AA18
sdrc_ba0
0
O
0
0
0
vdds
No
4
NA
V20
sdrc_ba1
0
O
0
0
0
vdds
No
4
(2)
NA
LVCMOS
(2)
NA
NA
Y15
sdrc_cke0
0
O
H
1
7
vdds
Yes
LVCMOS
4
(2)
PU100/
PD100
LVCMOS
safe_mode
7
NA
Y13
sdrc_cke1
0
O
H
1
7
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
safe_mode
7
NA
A12
sdrc_clk
0
IO
L
0
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
D1
sdrc_d0
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
G1
sdrc_d1
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
G2
sdrc_d2
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
(2)
PU100/
PD100
LVCMOS
HYS [10]
BUFFER
STRENG TH
(mA) [11]
NA
E1
sdrc_d3
0
IO
L
Z
0
vdds
Yes
4
NA
D2
sdrc_d4
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
E2
sdrc_d5
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B3
sdrc_d6
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B4
sdrc_d7
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
A10
sdrc_d8
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B11
sdrc_d9
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
A11
sdrc_d10
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B12
sdrc_d11
0
IO
L
Z
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
NA
A16
sdrc_d12
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
A17
sdrc_d13
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B17
sdrc_d14
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B18
sdrc_d15
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B7
sdrc_d16
0
IO
L
Z
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
NA
A5
sdrc_d17
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B6
sdrc_d18
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
A6
sdrc_d19
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
A8
sdrc_d20
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B9
sdrc_d21
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
A9
sdrc_d22
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
(2)
PU100/
PD100
LVCMOS
NA
B10
sdrc_d23
0
IO
L
Z
0
vdds
Yes
4
NA
C21
sdrc_d24
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
D20
sdrc_d25
0
IO
L
Z
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
NA
B19
sdrc_d26
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
C20
sdrc_d27
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
Submit Documentation Feedback
TERMINAL DESCRIPTION
47
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
NA
D21
sdrc_d28
0
IO
L
Z
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
NA
E20
sdrc_d29
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
E21
sdrc_d30
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
G21
sdrc_d31
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
H1
sdrc_dm0
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
A14
sdrc_dm1
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
A4
sdrc_dm2
0
O
0
0
0
vdds
No
4
(2)
NA
LVCMOS
NA
A18
sdrc_dm3
0
O
0
0
0
vdds
No
4 (2)
NA
LVCMOS
NA
C2
sdrc_dqs0
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
B15
sdrc_dqs1
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
(2)
PU100/
PD100
LVCMOS
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
NA
B8
sdrc_dqs2
0
IO
L
Z
0
vdds
Yes
4
NA
A19
sdrc_dqs3
0
IO
L
Z
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
U20
sdrc_ncas
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
NA
B13
sdrc_nclk
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
NA
T21
sdrc_ncs0
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
NA
T20
sdrc_ncs1
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
NA
V21
sdrc_nras
0
O
1
1
0
vdds
No
4
(2)
NA
LVCMOS
NA
Y18
sdrc_nwe
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
AE21
NA
dss_data0
0
IO
L
L
7
vdds
No
4
PU100/
PD100
LVCMOS
uart1_cts
2
I
gpio_70
4
IO
safe_mode
7
-
dss_data1
0
IO
L
L
7
vdds
No
4
PU100/
PD100
LVCMOS
uart1_rts
2
O
gpio_71
4
IO
safe_mode
7
-
dss_data2
0
IO
L
L
7
vdds
No
4
PU100/
PD100
LVCMOS
IO
L
L
7
vdds
No
4
PU100/
PD100
LVCMOS
L
L
7
vdds
No
4
PU100/
PD100
LVCMOS
L
L
7
vdds
No
4
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
AE22
AE23
AE24
AD23
AD24
AC26
AD26
48
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
NA
NA
NA
NA
NA
NA
NA
gpio_72
4
safe_mode
7
-
dss_data3
0
IO
IO
gpio_73
4
safe_mode
7
-
dss_data4
0
IO
uart3_rx_irrx
2
I
gpio_74
4
IO
safe_mode
7
-
dss_data5
0
IO
uart3_tx_irtx
2
O
gpio_75
4
IO
safe_mode
7
-
dss_data10
0
IO
IO
gpio_80
4
safe_mode
7
-
dss_data11
0
IO
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
AA25
Y25
AA26
AB26
F25
AC25
AB25
G25
J2
H1
H2
G2
F1
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
IO
gpio_81
4
safe_mode
7
-
dss_data12
0
IO
IO
gpio_82
4
safe_mode
7
-
dss_data13
0
IO
IO
gpio_83
4
safe_mode
7
-
dss_data14
0
IO
IO
gpio_84
4
safe_mode
7
-
dss_data15
0
IO
IO
gpio_85
4
safe_mode
7
-
dss_data20
0
O
mcspi3_somi
2
IO
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
-
dss_data22
0
O
mcspi3_cs1
2
O
dss_data4
3
IO
IO
gpio_92
4
safe_mode
7
-
dss_data23
0
O
dss_data5
3
IO
gpio_93
4
IO
safe_mode
7
-
dss_pclk
0
O
gpio_66
4
IO
hw_dbg12
5
O
safe_mode
7
-
gpmc_a1
0
O
IO
gpio_34
4
safe_mode
7
-
gpmc_a2
0
O
IO
gpio_35
4
safe_mode
7
-
gpmc_a3
0
O
IO
gpio_36
4
safe_mode
7
-
gpmc_a4
0
O
IO
gpio_37
4
safe_mode
7
-
gpmc_a5
0
O
gpio_38
4
IO
Submit Documentation Feedback
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
TERMINAL DESCRIPTION
49
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
F2
NA
E1
E2
D1
D2
N1
NA
NA
NA
L1
MODE [4]
safe_mode
7
-
gpmc_a6
0
O
IO
TYPE [5]
gpio_39
4
safe_mode
7
-
gpmc_a7
0
O
IO
gpio_40
4
safe_mode
7
-
gpmc_a8
0
O
IO
gpio_41
4
safe_mode
7
-
gpmc_a9
0
O
sys_ndmareq
2
1
I
IO
gpio_42
4
safe_mode
7
-
gpmc_a10
0
O
sys_ndmareq
3
1
I
IO
gpio_43
4
safe_mode
7
-
gpmc_clk
0
O
IO
gpio_59
4
safe_mode
7
-
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
H
H
7
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
L
0
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AA2
U2
gpmc_d0
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AA1
U1
gpmc_d1
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AC2
V2
gpmc_d2
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AC1
V1
gpmc_d3
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AE5
AA3
gpmc_d4
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AD6
AA4
gpmc_d5
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AD5
Y3
gpmc_d6
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AC5
Y4
gpmc_d7
0
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
V1
R1
gpmc_d8
0
IO
H
H
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
IO
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
Y1
T1
U2
50
NA
PIN NAME
[3]
T1
N1
P2
gpio_44
4
safe_mode
7
-
gpmc_d9
0
IO
IO
gpio_45
4
safe_mode
7
-
gpmc_d10
0
IO
IO
gpio_46
4
safe_mode
7
-
gpmc_d11
0
IO
gpio_47
4
IO
safe_mode
7
-
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
U1
P1
gpmc_d12
0
IO
H
H
0
IO
H
H
H
P1
L2
M2
M1
J2
K2
gpio_48
4
safe_mode
7
-
gpmc_d13
0
IO
IO
gpio_49
4
safe_mode
7
-
gpmc_d14
0
IO
IO
gpio_50
4
safe_mode
7
-
gpmc_d15
0
IO
IO
gpio_51
4
safe_mode
7
-
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
NA
LVCMOS
(2)
IO CELL [13]
AD10
AA9
gpmc_nadv_
ale
0
O
0
0
0
vdds
No
4
K2
NA
gpmc_nbe0_
cle
0
O
L
0
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
IO
L
L
7
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
J1
NA
gpio_60
4
safe_mode
7
-
gpmc_nbe1
0
O
IO
gpio_61
4
safe_mode
7
-
AD8
AA8
gpmc_ncs0
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
AD1
W1
gpmc_ncs1
0
O
H
1
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
IO
H
H
7
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
A3
B6
B4
C4
B5
NA
NA
NA
NA
NA
gpio_52
4
safe_mode
7
-
gpmc_ncs2
0
O
IO
gpio_53
4
safe_mode
7
-
gpmc_ncs3
0
O
sys_ndmareq
0
1
I
IO
gpio_54
4
safe_mode
7
-
gpmc_ncs4
0
O
sys_ndmareq
1
1
I
mcbsp4_clkx
2
IO
gpt9_pwm_e
vt
3
IO
IO
gpio_55
4
safe_mode
7
-
gpmc_ncs5
0
O
sys_ndmareq
2
1
I
mcbsp4_dr
2
I
gpt10_pwm_
evt
3
IO
IO
gpio_56
4
safe_mode
7
-
gpmc_ncs6
0
O
Submit Documentation Feedback
TERMINAL DESCRIPTION
51
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
C5
MODE [4]
TYPE [5]
sys_ndmareq
3
1
I
mcbsp4_dx
2
IO
gpt11_pwm_
evt
3
IO
IO
gpio_57
4
safe_mode
7
-
gpmc_ncs7
0
O
gpmc_io_dir
1
O
mcbsp4_fsx
2
IO
gpt8_pwm_e
vt
3
IO
IO
gpio_58
4
safe_mode
7
-
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
L2
gpmc_noe
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
M1
K1
gpmc_nwe
0
O
1
1
0
vdds
No
4 (2)
NA
LVCMOS
AC6
Y5
gpmc_nwp
0
O
L
0
0
vdds
Yes
4
(2)
PU100/
PD100
LVCMOS
gpio_62
4
IO
safe_mode
7
-
AC11
Y10
gpmc_wait0
0
I
H
H
0
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
AC8
Y8
gpmc_wait1
0
I
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
C6
W19
V20
Y20
V18
W20
52
NA
PIN NAME
[3]
N2
B3
(3)
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
gpio_63
4
IO
safe_mode
7
-
gpmc_wait2
0
I
gpio_64
4
IO
safe_mode
7
-
gpmc_wait3
0
I
sys_ndmareq
1
1
I
gpio_65
4
IO
safe_mode
7
-
hsusb0_clk
0
I
IO
gpio_120
4
safe_mode
7
-
hsusb0_data
0
0
IO
uart3_tx_irtx
2
O
gpio_125
4
IO
safe_mode
7
-
hsusb0_data
1
0
IO
uart3_rx_irrx
2
I
gpio_130
4
IO
safe_mode
7
-
hsusb0_data
2
0
IO
uart3_rts_sd
2
O
gpio_131
4
IO
safe_mode
7
-
hsusb0_data
3
0
IO
The capacity load range is [2 pf to 6 pF].
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
W17
Y18
Y19
Y17
V19
W18
U20
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
uart3_cts_rct
x
2
IO
IO
gpio_169
4
safe_mode
7
-
hsusb0_data
4
0
IO
IO
gpio_188
4
safe_mode
7
-
hsusb0_data
5
0
IO
IO
gpio_189
4
safe_mode
7
-
hsusb0_data
6
0
IO
IO
gpio_190
4
safe_mode
7
-
hsusb0_data
7
0
IO
gpio_191
4
IO
safe_mode
7
-
hsusb0_dir
0
I
gpio_122
4
IO
safe_mode
7
-
hsusb0_nxt
0
I
IO
gpio_124
4
safe_mode
7
-
hsusb0_stp
0
O
gpio_121
4
IO
safe_mode
7
-
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
U15
NA
jtag_ntrst
0
I
L
L
0
vdds
Yes
NA
PU100/
PD100
LVCMOS
W13
NA
jtag_rtck
0
O
L
0
0
vdds
Yes
4
PU100/
PD100
LVCMOS
V14
NA
jtag_tck
0
I
L
L
0
vdds
Yes
NA
PU100/
PD100
LVCMOS
U16
NA
jtag_tdi
0
I
H
H
0
vdds
Yes
NA
PU100/
PD100
LVCMOS
Y13
NA
jtag_tdo
0
O
L
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
V15
NA
jtag_tms_tms
c
0
IO
H
H
0
vdds
Yes
4
PU100/
PD100
LVCMOS
N19
NA
mmc1_clk
0
O
L
L
7
vdds_mmc1
Yes
8
PU100/
PD100
LVCMOS
IO
L
L
7
vdds_mmc1
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds_mmc1
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds_mmc1
Yes
8
PU100/
PD100
LVCMOS
L18
M19
M18
NA
NA
NA
gpio_120
4
safe_mode
7
-
mmc1_cmd
0
IO
IO
gpio_121
4
safe_mode
7
-
mmc1_dat0
0
IO
IO
gpio_122
4
safe_mode
7
-
mmc1_dat1
0
IO
gpio_123
4
IO
safe_mode
7
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
53
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
K18
NA
mmc1_dat2
0
IO
L
L
7
IO
L
L
L
N20
M20
P17
P18
P19
NA
NA
NA
7
-
mmc1_dat3
0
IO
IO
gpio_125
4
safe_mode
7
-
mmc1_dat4
0
IO
gpio_126
4
IO
safe_mode
7
-
mmc1_dat5
0
IO
gpio_127
4
IO
safe_mode
7
-
mmc1_dat6
0
IO
gpio_128
4
IO
safe_mode
7
-
mmc1_dat7
0
IO
gpio_129
4
IO
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
vdds_mmc1
Yes
8
PU100/
PD100
LVCMOS
7
vdds_mmc1
Yes
8
PU100/
PD100
LVCMOS
L
7
vdds_mmc1a
No
8
PU/PD (4)
LVCMOS
L
L
7
vdds_mmc1a
No
8
PU/PD (4)
LVCMOS
L
L
7
vdds_mmc1a
No
8
PU/PD (4)
LVCMOS
L
L
7
vdds_mmc1a
No
8
PU/PD (4)
LVCMOS
IO CELL [13]
safe_mode
7
-
NA
i2c1_scl
0
IOD
H
H
0
vdds
Yes
3
PU100/
PD100
Open Drain
J24
NA
i2c1_sda
0
IOD
H
H
0
vdds
Yes
3
PU100/
PD100
Open Drain
C2
NA
i2c2_scl
0
IOD
H
H
7
vdds
Yes
3
PU100/
PD100
Open Drain
PU100/
PD100
Open Drain
PU100/
PD100
Open Drain
PU100/
PD100
Open Drain
AB4
AC4
U19
T17
T20
54
NA
4
HYS [10]
J25
C1
(4)
NA
gpio_124
safe_mode
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
NA
NA
NA
NA
NA
NA
gpio_168
4
IO
safe_mode
7
-
i2c2_sda
0
IOD
gpio_183
4
IO
safe_mode
7
-
i2c3_scl
0
IOD
gpio_184
4
IO
safe_mode
7
-
i2c3_sda
0
IOD
gpio_185
4
IO
safe_mode
7
-
mcbsp1_clkr
0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
safe_mode
7
-
mcbsp1_clkx
0
IO
mcbsp3_clkx
2
IO
gpio_162
4
IO
safe_mode
7
-
mcbsp1_dr
0
I
mcspi4_somi
1
IO
mcbsp3_dr
2
I
gpio_159
4
IO
safe_mode
7
-
4
4
H
H
7
vdds
Yes
3
4
4
H
H
7
vdds
Yes
3
4
4
H
H
7
vdds
Yes
3
4
4
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
The PU nominal drive strength of this IO cell is equal to 25 mA @ 1.8 V and 41.6 mA @ 3.0 V. The PD nominal drive strength of this IO
cell is equal to 1 mA @ 1.8 V and 1.66 mA @ 3.0 V.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
U17
NA
mcbsp1_dx
0
IO
L
L
7
mcspi4_simo
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
-
mcbsp1_fsr
0
IO
L
L
cam_global_r
eset
2
IO
IO
L
V17
P20
R18
T18
R19
U18
P9
R7
R9
P8
P7
(5)
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
gpio_157
4
safe_mode
7
-
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
-
mcbsp2_clkx
0
IO
gpio_117
4
IO
safe_mode
7
-
mcbsp2_dr
0
I
IO
gpio_118
4
safe_mode
7
-
mcbsp2_dx
0
IO
IO
gpio_119
4
safe_mode
7
-
mcbsp2_fsx
0
IO
IO
gpio_116
4
safe_mode
7
-
mcspi1_clk
0
IO
mmc2_dat4
1
IO
gpio_171
4
IO
safe_mode
7
-
mcspi1_cs0
0
IO
mmc2_dat7
1
IO
gpio_174
4
IO
safe_mode
7
-
mcspi1_cs2
0
O
mmc3_clk
3
O
gpio_176
4
IO
safe_mode
7
-
mcspi1_simo
0
IO
mmc2_dat5
1
IO
gpio_172
4
IO
safe_mode
7
-
mcspi1_somi
0
IO
mmc2_dat6
1
IO
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(5)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
IO CELL [13]
The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in
the above table.
Submit Documentation Feedback
TERMINAL DESCRIPTION
55
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
W7
V8
W8
U8
W10
R10
T10
T9
U10
56
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
IO
gpio_173
4
safe_mode
7
-
mcspi2_clk
0
IO
hsusb2_tll_d
ata7
2
IO
hsusb2_data
7
3
O
IO
gpio_178
4
safe_mode
7
-
mcspi2_cs0
0
IO
gpt11_pwm_
evt
1
IO
hsusb2_tll_d
ata6
2
IO
hsusb2_data
6
3
O
IO
gpio_181
4
safe_mode
7
-
mcspi2_simo
0
IO
gpt9_pwm_e
vt
1
IO
hsusb2_tll_d
ata4
2
IO
hsusb2_data
4
3
I
IO
gpio_179
4
safe_mode
7
-
mcspi2_somi
0
IO
gpt10_pwm_
evt
1
IO
hsusb2_tll_d
ata5
2
IO
hsusb2_data
5
3
O
IO
gpio_180
4
safe_mode
7
-
mmc2_clk
0
O
mcspi3_clk
1
IO
gpio_130
4
IO
safe_mode
7
-
mmc2_cmd
0
IO
mcspi3_simo
1
IO
gpio_131
4
IO
safe_mode
7
-
mmc2_dat0
0
IO
mcspi3_somi
1
IO
gpio_132
4
IO
safe_mode
7
-
mmc2_dat1
0
IO
IO
gpio_133
4
safe_mode
7
-
mmc2_dat2
0
IO
mcspi3_cs1
1
O
TERMINAL DESCRIPTION
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
U9
V10
R2
H3
L4
Y24
AA24
AD21
AD22
F23
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
IO
gpio_134
4
safe_mode
7
-
mmc2_dat3
0
IO
mcspi3_cs0
1
IO
gpio_135
4
IO
safe_mode
7
-
mmc2_dat4
0
IO
mmc2_dir_da
t0
1
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
-
uart1_rts
0
O
gpio_149
4
IO
safe_mode
7
-
uart1_rx
0
I
mcbsp1_clkr
2
IO
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
-
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
-
uart2_cts
0
I
mcbsp3_dx
1
IO
gpt9_pwm_e
vt
2
IO
IO
gpio_144
4
safe_mode
7
-
uart2_rts
0
O
mcbsp3_dr
1
I
gpt10_pwm_
evt
2
IO
gpio_145
4
IO
safe_mode
7
-
uart2_rx
0
I
mcbsp3_fsx
1
IO
gpt8_pwm_e
vt
2
IO
IO
gpio_147
4
safe_mode
7
-
uart2_tx
0
O
mcbsp3_clkx
1
IO
gpt11_pwm_
evt
2
IO
IO
gpio_146
4
safe_mode
7
-
uart3_cts_rct
x
0
IO
gpio_163
4
IO
safe_mode
7
-
Submit Documentation Feedback
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
TERMINAL DESCRIPTION
57
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
F24
NA
uart3_rts_sd
0
O
H
H
7
H
H
H
H24
G24
J23
AD15
W16
F3
D3
C3
E3
E4
G3
D4
58
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
gpio_164
4
IO
safe_mode
7
-
uart3_rx_irrx
0
I
IO
gpio_165
4
safe_mode
7
-
uart3_tx_irtx
0
O
IO
gpio_166
4
safe_mode
7
-
hdq_sio
0
IOD
sys_altclk
1
I
i2c2_sccbe
2
O
i2c3_sccbe
3
O
gpio_170
4
IO
safe_mode
7
-
i2c4_scl
0
IOD
sys_nvmode
1
1
O
safe_mode
7
-
i2c4_sda
0
IOD
sys_nvmode
2
1
O
safe_mode
7
-
sys_boot0
0
I
gpio_2
4
IO
safe_mode
7
-
sys_boot1
0
I
gpio_3
4
IO
safe_mode
7
-
sys_boot2
0
I
gpio_4
4
IO
safe_mode
7
-
sys_boot3
0
I
gpio_5
4
IO
safe_mode
7
-
sys_boot4
0
I
mmc2_dir_da
t2
1
O
gpio_6
4
IO
safe_mode
7
-
sys_boot5
0
I
mmc2_dir_da
t3
1
O
gpio_7
4
IO
safe_mode
7
-
sys_boot6
0
I
gpio_8
4
IO
safe_mode
7
-
TERMINAL DESCRIPTION
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
vdds
Yes
4
PU100/
PD100
LVCMOS
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
0
vdds
Yes
3
PU100/
PD100
Open Drain
PU100/
PD100
Open Drain
IO CELL [13]
4
4
H
H
0
vdds
Yes
3
4
4
Z
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds
Yes
4
PU100/
PD100
LVCMOS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
AE14
NA
sys_clkout1
0
O
L
L
7
IO
L
L
0
W11
W15
V16
NA
NA
NA
gpio_10
4
safe_mode
7
-
sys_clkout2
0
O
IO
gpio_186
4
safe_mode
7
-
sys_clkreq
0
IO
gpio_1
4
IO
safe_mode
7
-
sys_nirq
0
I
gpio_0
4
IO
safe_mode
7
-
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
vdds
Yes
4
PU100/
PD100
LVCMOS
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
1
0
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
IO CELL [13]
V13
NA
sys_nrespwr
on
0
I
Z
I
NA
vdds
Yes
NA
NA
LVCMOS
AD7
AA5
sys_nreswar
m
0
IOD
0
1 (PU)
0
vdds
Yes
4
PU100/
PD100
LVCMOS
V12
NA
gpio_30
4
IO
safe_mode
7
-
sys_off_mod
e
0
O
gpio_9
4
IO
safe_mode
7
-
Open Drain
0
L
7
vdds
Yes
4
PU100/
PD100
LVCMOS
LVCMOS
AF19
NA
sys_xtalin
0
I
Z
I
NA
vdds
Yes
NA
NA
AF20
NA
sys_xtalout
0
O
Z
O
NA
vdds
Yes
NA
NA
LVCMOS
W26
NA
tv_out1
0
AO
Z
0
0
vdda_dac
No
8
NA
10-bit DAC
V26
NA
tv_out2
0
AO
Z
0
0
vdda_dac
No
8
NA
10-bit DAC
W25
NA
tv_vfb1
0
O
Z
NA
0
vdda_dac
No
2
NA
10-bit DAC
U24
NA
tv_vfb2
0
O
Z
NA
0
vdda_dac
No
2
NA
10-bit DAC
V23
NA
tv_vref
0
I
Z
NA
0
vdda_dac
No
NA
NA
10-bit DAC
AE20
NA
sys_32k
0
I
Z
I
NA
vdds
Yes
NA
NA
LVCMOS
A24
NA
cam_d2
0
I
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
gpio_101
4
IO
hw_dbg4
5
O
safe_mode
7
-
cam_d3
0
I
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
gpio_102
4
IO
hw_dbg5
5
O
safe_mode
7
-
cam_d4
0
I
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
gpio_103
4
IO
hw_dbg6
5
O
safe_mode
7
-
cam_d5
0
I
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
gpio_104
4
IO
hw_dbg7
5
O
safe_mode
7
-
cam_d10
0
I
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
gpio_109
4
IO
hw_dbg8
5
O
safe_mode
7
-
B24
D24
C24
D25
NA
NA
NA
NA
Submit Documentation Feedback
TERMINAL DESCRIPTION
59
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
E26
NA
cam_d11
0
I
L
L
7
gpio_110
4
IO
hw_dbg9
5
O
safe_mode
7
-
cam_fld
0
IO
L
L
cam_global_r
eset
2
IO
L
B23
C23
C26
D26
C25
E25
P25
P26
N25
N26
D23
A23
60
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
gpio_98
4
IO
hw_dbg3
5
O
safe_mode
7
-
cam_hs
0
IO
gpio_94
4
IO
hw_dbg0
5
O
safe_mode
7
-
cam_pclk
0
I
gpio_97
4
IO
hw_dbg2
5
O
safe_mode
7
-
cam_strobe
0
O
gpio_126
4
IO
hw_dbg11
5
O
safe_mode
7
-
cam_xclka
0
O
IO
gpio_96
4
safe_mode
7
-
cam_xclkb
0
O
gpio_111
4
IO
safe_mode
7
-
cam_d6
0
I
gpio_105
4
IO
safe_mode
7
-
cam_d7
0
I
gpio_106
4
IO
safe_mode
7
-
cam_d8
0
I
gpio_107
4
IO
safe_mode
7
-
cam_d9
0
I
IO
gpio_108
4
safe_mode
7
-
cam_vs
0
IO
gpio_95
4
IO
hw_dbg1
5
O
safe_mode
7
-
cam_wen
0
I
cam_shutter
2
O
gpio_167
4
IO
TERMINAL DESCRIPTION
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
NA
4
PU100/
PD100
SubLVDS
L
L
7
vdds
NA
4
PU100/
PD100
SubLVDS
L
L
7
vdds
NA
4
PU100/
PD100
SubLVDS
L
L
7
vdds
NA
4
PU100/
PD100
SubLVDS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
IO CELL [13]
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
F26
G26
H25
H26
J26
L25
L26
M24
M26
N24
K24
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
O
hw_dbg10
5
safe_mode
7
-
dss_acbias
0
O
IO
gpio_69
4
safe_mode
7
-
dss_data6
0
IO
uart1_tx
2
O
gpio_76
4
IO
O
hw_dbg14
5
safe_mode
7
-
dss_data7
0
IO
uart1_rx
2
I
gpio_77
4
IO
O
hw_dbg15
5
safe_mode
7
-
dss_data8
0
IO
gpio_78
4
IO
hw_dbg16
5
O
safe_mode
7
-
dss_data9
0
IO
gpio_79
4
IO
hw_dbg17
5
O
safe_mode
7
-
dss_data16
0
IO
IO
gpio_86
4
safe_mode
7
-
dss_data17
0
IO
IO
gpio_87
4
safe_mode
7
-
dss_data18
0
IO
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
-
dss_data19
0
IO
mcspi3_simo
2
IO
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
-
dss_data21
0
O
mcspi3_cs0
2
IO
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
-
dss_hsync
0
O
gpio_67
4
IO
hw_dbg13
5
O
Submit Documentation Feedback
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
8
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
TERMINAL DESCRIPTION
61
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
M25
NA
R8
T8
V9
T19
AB2
AB3
AC3
62
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
safe_mode
7
-
dss_vsync
0
O
IO
TYPE [5]
gpio_68
4
safe_mode
7
-
mcspi1_cs1
0
O
mmc3_cmd
3
IO
gpio_175
4
IO
safe_mode
7
-
mcspi1_cs3
0
O
hsusb2_tll_d
ata2
2
IO
hsusb2_data
2
3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
-
mcspi2_cs1
0
O
gpt8_pwm_e
vt
1
IO
hsusb2_tll_d
ata3
2
IO
hsusb2_data
3
3
IO
gpio_182
4
IO
mm2_txen_n
5
IO
safe_mode
7
-
mcbsp_clks
0
I
cam_shutter
2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
-
etk_clk
0
O
mcbsp5_clkx
1
IO
mmc3_clk
2
O
hsusb1_stp
3
O
gpio_12
4
IO
mm1_rxdp
5
IO
hsusb1_tll_st
p
6
I
hw_dbg0
7
O
etk_ctl
0
O
mmc3_cmd
2
IO
hsusb1_clk
3
O
gpio_13
4
IO
hsusb1_tll_cl
k
6
O
hw_dbg1
7
O
etk_d0
0
O
mcspi3_simo
1
IO
mmc3_dat4
2
IO
hsusb1_data
0
3
IO
TERMINAL DESCRIPTION
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
H
H
7
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (5)
PU100/
PD100
LVCMOS
H
H
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
H
H
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
4
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
AD4
AD3
AA3
Y3
AB1
AE3
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
gpio_14
4
IO
mm1_rxrcv
5
IO
hsusb1_tll_d
ata0
6
IO
hw_dbg2
7
O
etk_d1
0
O
mcspi3_somi
1
IO
hsusb1_data
1
3
IO
gpio_15
4
IO
mm1_txse0
5
IO
hsusb1_tll_d
ata1
6
IO
hw_dbg3
7
O
etk_d2
0
O
mcspi3_cs0
1
IO
hsusb1_data
2
3
IO
gpio_16
4
IO
mm1_txdat
5
IO
hsusb1_tll_d
ata2
6
IO
hw_dbg4
7
O
etk_d3
0
O
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_data
7
3
IO
gpio_17
4
IO
hsusb1_tll_d
ata7
6
IO
hw_dbg5
7
O
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_data
4
3
IO
gpio_18
4
IO
hsusb1_tll_d
ata4
6
IO
hw_dbg6
7
O
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_data
5
3
IO
gpio_19
4
IO
hsusb1_tll_d
ata5
6
IO
hw_dbg7
7
O
etk_d6
0
O
mcbsp5_dx
1
IO
mmc3_dat2
2
IO
hsusb1_data
6
3
IO
Submit Documentation Feedback
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
H
H
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
TERMINAL DESCRIPTION
63
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
AD2
AA4
V2
AE4
AF6
AE6
AF7
64
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
TYPE [5]
gpio_20
4
IO
hsusb1_tll_d
ata6
6
IO
hw_dbg8
7
O
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_data
3
3
IO
gpio_21
4
IO
mm1_txen_n
5
IO
hsusb1_tll_d
ata3
6
IO
hw_dbg9
7
O
etk_d8
0
O
sys_drm_ms
ecure
1
O
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
hsusb1_tll_di
r
6
O
hw_dbg10
7
O
etk_d9
0
O
sys_secure_i
ndicator
1
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hsusb1_tll_n
xt
6
O
hw_dbg11
7
O
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
hsusb2_tll_cl
k
6
O
hw_dbg12
7
O
etk_d11
0
O
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
hsusb2_tll_st
p
6
I
hw_dbg13
7
O
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
hsusb2_tll_di
r
6
O
hw_dbg14
7
O
etk_d13
0
O
TERMINAL DESCRIPTION
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
AF9
AE9
Y15
Y14
U3
N3
P3
W3
BALL TOP
[2]
NA
NA
NA
NA
NA
NA
NA
NA
PIN NAME
[3]
MODE [4]
hsusb2_nxt
3
I
gpio_27
4
IO
TYPE [5]
mm2_rxdm
5
IO
hsusb2_tll_n
xt
6
O
hw_dbg15
7
O
etk_d14
0
O
hsusb2_data
0
3
IO
gpio_28
4
IO
mm2_rxrcv
5
IO
hsusb2_tll_d
ata0
6
IO
hw_dbg16
7
O
etk_d15
0
O
hsusb2_data
1
3
IO
gpio_29
4
IO
mm2_txse0
5
IO
hsusb2_tll_d
ata1
6
IO
hw_dbg17
7
O
jtag_emu0
0
IO
IO
gpio_11
4
safe_mode
7
-
jtag_emu1
0
IO
IO
gpio_31
4
safe_mode
7
-
mcbsp3_clkx
0
IO
uart2_tx
1
O
gpio_142
4
IO
hsusb3_tll_d
ata6
5
IO
safe_mode
7
-
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
hsusb3_tll_d
ata5
5
IO
safe_mode
7
-
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
hsusb3_tll_d
ata4
5
IO
safe_mode
7
-
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
hsusb3_tll_d
ata7
5
IO
safe_mode
7
-
Submit Documentation Feedback
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
4
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
H
H
0
vdds
Yes
4
PU100/
PD100
LVCMOS
H
H
0
vdds
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
TERMINAL DESCRIPTION
65
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
V3
NA
mcbsp4_clkx
0
IO
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4
(3)
PU100/
PD100
LVCMOS
L
L
7
vdds
Yes
4 (3)
PU100/
PD100
LVCMOS
U4
R3
T3
M3
L3
K3
W2
66
NA
NA
NA
NA
NA
NA
NA
gpio_152
4
IO
hsusb3_tll_d
ata1
5
IO
mm3_txse0
6
IO
safe_mode
7
-
mcbsp4_dr
0
I
gpio_153
4
IO
hsusb3_tll_d
ata0
5
IO
mm3_rxrcv
6
IO
safe_mode
7
-
mcbsp4_dx
0
IO
gpio_154
4
IO
hsusb3_tll_d
ata2
5
IO
mm3_txdat
6
IO
safe_mode
7
-
mcbsp4_fsx
0
IO
gpio_155
4
IO
hsusb3_tll_d
ata3
5
IO
mm3_txen_n
6
IO
safe_mode
7
-
mmc2_dat5
0
IO
mmc2_dir_da
t1
1
O
cam_global_r
eset
2
IO
mmc3_dat1
3
IO
gpio_137
4
IO
hsusb3_tll_st
p
5
I
IO
mm3_rxdp
6
safe_mode
7
-
mmc2_dat6
0
IO
mmc2_dir_c
md
1
O
cam_shutter
2
O
mmc3_dat2
3
IO
gpio_138
4
IO
hsusb3_tll_di
r
5
O
safe_mode
7
-
mmc2_dat7
0
IO
mmc2_clkin
1
I
mmc3_dat3
3
IO
gpio_139
4
IO
hsusb3_tll_n
xt
5
IO
mm3_rxdm
6
IO
safe_mode
7
-
uart1_cts
0
I
TERMINAL DESCRIPTION
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
gpio_150
4
IO
hsusb3_tll_cl
k
5
O
BALL
RESET
STATE [6]
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
safe_mode
7
-
AC21, D15,
G11, G18,
H20, M7,
M17, R20,
T7, Y8, Y12
NA
vdd_core
0
PWR
-
-
-
-
-
-
-
-
D13, G9,
G12, H7,
K11, L9, M9,
M10, N7, N8,
P10, U7,
U11, U13,
V7, V11, W9,
Y9, Y11
NA
vdd_mpu
0
PWR
-
-
-
-
-
-
-
-
A18, AC7,
AC15, AC18,
AC24, AD20,
AE10, C11,
D9, E24, G4,
J15, J18, L7,
L24, M4, T4,
T24, W24,
Y4, L20,
AB24, AD18,
AD19
NA
vdds
0
PWR
-
-
-
-
-
-
-
-
U12
NA
vdds_sram
0
PWR
-
-
-
-
-
-
-
-
K13
NA
vdds_dpll_dll
0
PWR
-
-
-
-
-
-
-
-
U14
NA
vdds_dpll_pe
r
0
PWR
-
-
-
-
-
-
-
-
W14
NA
vdds_wkup_
bg
0
PWR
-
-
-
-
-
-
-
-
N23, P23
NA
vdds_mmc1,
vdds_mmc1a
0
PWR
-
-
-
-
-
-
-
-
V25
NA
vdda_dac
0
PWR
-
-
-
-
-
-
-
-
V24
NA
vssa_dac
0
PWR
-
-
-
-
-
-
-
-
A6, A8, A13,
AB5, AB22,
AC10, AC16,
AC19, AD14,
AD25,AE7,
AF23, B2,
B25, C12,
D7, D10,
D12, D14,
D18, D20,
E22, G1, G8,
G10, G20,
G23, H4, K1,
K15, K25,
L10, L17,
L19, L23, N4,
N10, N17,
R1, R4, R17,
T23, U25,
W1, W4,
W23, Y7,
Y10, Y16,
Y26
NA
vss
0
GND
-
-
-
-
-
-
-
-
K14, K20,
N9, AE19
NA
cap_vdd_wk
up,
cap_vdd_sra
m_core,
cap_vdd_sra
m_mpu,
cap_vdd_d
0
PWR
-
-
-
-
-
-
-
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
67
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM [1]
A1, L1, AF1,
T2, Y2, AE2,
AF4, AF5,
AF8, AF10,
AF12, AF13,
AF14, AF15,
AF17, AF16,
A20, AF21,
AF18, AF24,
AF22, A25,
AE25, AF25,
A26, B26,
K26, U26,
AE26, AF26
A2, A4, A5,
A7, A9, A10,
A11, A12,
A14, A15,
A16, A17,
A19, A21,
A22, AA23,
AB23, AC9,
AC12, AC13,
AC14, AC17,
AC20, AC22,
AC23, AD9,
AD11, AD12,
AD13, AE1,
AE8, AE11,
AE12, AE13,
AF2, AF3,
AF11, B1,
B7, B8, B9,
B10, B11,
B12, B13,
B14, B15,
B16, B17,
B18, B19,
B20, B21,
B22, C7, C8,
C9, C10,
C13, C14,
C15, C16,
C17 C18,
C19, C20,
C21, C22,
D5, D6, D8,
D11, D16,
D17, D19,
D21, D22,
E23, F4, G7,
G13, G14,
G15, G16,
G17, G19,
H8, H9, H10,
H11, H12,
H13, H14,
H15, H16,
H17, H18,
H19, H23,
J3, J4, J7,
J8, J9, J10,
J11, J12,
J13, J14,
J16, J17,
J19, J20, K4,
K7, K8, K9,
K10, K12,
K16, K17,
K19, K23,
L8, M8, M23,
N18, P2, P4,
P24, R23,
R24, R25,
R26, T25,
T26, U23,
V4, W12,
Y23
(6)
68
BALL TOP
[2]
PIN NAME
[3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
-
-
-
-
-
-
-
-
-
-
A1, J1, AA1, FeedThrough
N2, T2, W2,
Pins (6)
Y2, AA6, Y7,
Y9, AA10,
AA11, AA12,
AA13, Y14,
AA14, B16,
Y17, AA17,
Y19, AA19,
A20, Y20,
AA20, A21,
B21, H21,
P21, Y21,
AA21
-
No Connect
BALL
RESET REL.
RESET REL.
POWER [9]
MODE [8]
STATE [7]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN
TYPE [12]
IO CELL [13]
-
-
-
-
-
-
-
-
-
-
These signals are feed-through balls. For more information, refer to Section 2.5.10.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
D7
sdrc_d0
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C5
sdrc_d1
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C6
sdrc_d2
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B5
sdrc_d3
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D9
sdrc_d4
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D10
sdrc_d5
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C7
sdrc_d6
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B7
sdrc_d7
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B11
sdrc_d8
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C12
sdrc_d9
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B12
sdrc_d10
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D13
sdrc_d11
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C13
sdrc_d12
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B14
sdrc_d13
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A14
sdrc_d14
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B15
sdrc_d15
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C9
sdrc_d16
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
E12
sdrc_d17
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B8
sdrc_d18
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B9
sdrc_d19
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C10
sdrc_d20
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B10
sdrc_d21
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D12
sdrc_d22
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
E13
sdrc_d23
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
E15
sdrc_d24
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D15
sdrc_d25
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C15
sdrc_d26
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B16
sdrc_d27
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C16
sdrc_d28
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
D16
sdrc_d29
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B17
sdrc_d30
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
B18
sdrc_d31
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C18
sdrc_ba0
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
D18
sdrc_ba1
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A4
sdrc_a0
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
B4
sdrc_a1
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
D6
sdrc_a2
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
B3
sdrc_a3
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
B2
sdrc_a4
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
C3
sdrc_a5
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
E3
sdrc_a6
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
F6
sdrc_a7
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
E10
sdrc_a8
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
E9
sdrc_a9
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
E7
sdrc_a10
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
G6
sdrc_a11
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
G7
sdrc_a12
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
F7
sdrc_a13
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
F9
sdrc_a14
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A19
sdrc_ncs0
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
B19
sdrc_ncs1
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
A10
sdrc_clk
0
IO
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A11
sdrc_nclk
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
Submit Documentation Feedback
TERMINAL DESCRIPTION
69
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
B20
sdrc_cke0
0
O
H
1
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
safe_mode
7
sdrc_cke1
0
O
H
1
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
safe_mode
7
D19
sdrc_nras
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
C19
sdrc_ncas
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
A20
sdrc_nwe
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
B6
sdrc_dm0
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
B13
sdrc_dm1
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A7
sdrc_dm2
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A16
sdrc_dm3
0
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
A5
sdrc_dqs0
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A13
sdrc_dqs1
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A8
sdrc_dqs2
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
A17
sdrc_dqs3
0
IO
L
Z
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
K4
gpmc_a1
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_34
4
IO
safe_mode
7
gpmc_a2
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_35
4
IO
safe_mode
7
gpmc_a3
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_36
4
IO
safe_mode
7
gpmc_a4
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_37
4
IO
safe_mode
7
gpmc_a5
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_38
4
IO
safe_mode
7
gpmc_a6
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_39
4
IO
safe_mode
7
gpmc_a7
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_40
4
IO
safe_mode
7
gpmc_a8
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_41
4
IO
safe_mode
7
gpmc_a9
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq2
1
I
gpio_42
4
IO
safe_mode
7
gpmc_a10
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq3
1
I
gpio_43
4
IO
safe_mode
7
L2
gpmc_d0
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
M1
gpmc_d1
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
M2
gpmc_d2
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
N2
gpmc_d3
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
M3
gpmc_d4
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
P1
gpmc_d5
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
C20
K3
K2
J4
J3
J2
J1
H1
H2
G2
70
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
P2
gpmc_d6
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
R1
gpmc_d7
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
R2
gpmc_d8
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_44
4
IO
safe_mode
7
gpmc_d9
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_45
4
IO
safe_mode
7
gpmc_d10
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_46
4
IO
safe_mode
7
gpmc_d11
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_47
4
IO
safe_mode
7
gpmc_d12
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_48
4
IO
safe_mode
7
gpmc_d13
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_49
4
IO
safe_mode
7
gpmc_d14
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_50
4
IO
safe_mode
7
gpmc_d15
0
IO
H
H
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_51
4
IO
T2
U1
R3
T3
U2
V1
V2
safe_mode
7
E2
gpmc_ncs0
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
D2
gpmc_ncs3
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq0
1
I
gpio_54
4
IO
safe_mode
7
gpmc_ncs4
0
O
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq1
1
I
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
F4
G5
F3
G4
mcbsp4_ clkx 2
IO
gpt9_pwm_evt 3
IO
gpio_55
4
IO
safe_mode
7
gpmc_ncs5
0
O
sys_
ndmareq2
1
I
mcbsp4_dr
2
I
gpt10_pwm_e 3
vt
IO
gpio_56
4
IO
safe_mode
7
gpmc_ncs6
0
O
sys_
ndmareq3
1
I
mcbsp4_dx
2
IO
gpt11_pwm_e 3
vt
IO
gpio_57
4
IO
safe_mode
7
gpmc_ncs7
0
O
gpmc_io_dir
1
O
Submit Documentation Feedback
TERMINAL DESCRIPTION
71
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
mcbsp4_fsx
W2
2
IO
gpt8_pwm_evt 3
IO
gpio_58
4
IO
safe_mode
7
gpmc_clk
0
O
gpio_59
4
IO
safe_mode
7
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
F1
gpmc_nadv_al 0
e
O
0
0
0
vdds_ mem
No
4
NA
LVCMOS
F2
gpmc_noe
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
G3
gpmc_nwe
0
O
1
1
0
vdds_ mem
No
4
NA
LVCMOS
K5
gpmc_nbe0_cl 0
e
O
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_60
4
IO
safe_mode
7
gpmc_nbe1
0
O
L
L
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_61
4
IO
safe_mode
7
gpmc_nwp
0
O
L
0
0
vdds_ mem
Yes
4
PU/ PD
LVCMOS
gpio_62
4
IO
L1
E1
safe_mode
7
C1
gpmc_wait0
0
I
H
H
0
vdds_ mem
Yes
NA
PU/ PD
LVCMOS
C2
gpmc_wait3
0
I
H
H
7
vdds_ mem
Yes
4
PU/ PD
LVCMOS
sys_
ndmareq1
1
I
gpio_65
4
IO
safe_mode
7
dss_pclk
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_66
4
IO
safe_mode
7
dss_hsync
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_67
4
IO
safe_mode
7
dss_vsync
0
O
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_68
4
IO
safe_mode
7
dss_acbias
0
O
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
gpio_69
4
IO
safe_mode
7
dss_data0
0
IO
L
L
7
vdds
No
4
PU/ PD
LVCMOS
uart1_cts
2
I
gpio_70
4
IO
safe_mode
7
dss_data1
0
IO
L
L
7
vdds
No
4
PU/ PD
LVCMOS
uart1_rts
2
O
gpio_71
4
IO
safe_mode
7
dss_data2
0
IO
L
L
7
vdds
No
4
PU/ PD
LVCMOS
gpio_72
4
IO
safe_mode
7
dss_data3
0
IO
L
L
7
vdds
No
4
PU/ PD
LVCMOS
gpio_73
4
IO
safe_mode
7
dss_data4
0
IO
L
L
7
vdds
No
4
PU/ PD
LVCMOS
uart3_rx_ irrx
2
I
G22
E22
F22
J21
AC19
AB19
AD20
AC20
AD21
72
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
AC21
D24
E23
E24
F23
AC22
AC23
AB22
Y22
W22
V22
J22
G23
G24
H23
BALL TOP [2] PIN NAME [3] MODE [4]
gpio_74
4
safe_mode
7
dss_data5
0
IO
uart3_tx_ irtx
2
O
gpio_75
4
IO
safe_mode
7
dss_data6
0
IO
uart1_tx
2
O
gpio_76
4
IO
safe_mode
7
dss_data7
0
IO
uart1_rx
2
I
gpio_77
4
IO
safe_mode
7
dss_data8
0
IO
gpio_78
4
IO
safe_mode
7
dss_data9
0
IO
gpio_79
4
IO
safe_mode
7
dss_data10
0
IO
gpio_80
4
IO
safe_mode
7
dss_data11
0
IO
gpio_81
4
IO
safe_mode
7
dss_data12
0
IO
gpio_82
4
IO
safe_mode
7
dss_data13
0
IO
gpio_83
4
IO
safe_mode
7
dss_data14
0
IO
gpio_84
4
IO
safe_mode
7
dss_data15
0
IO
gpio_85
4
IO
safe_mode
7
dss_data16
0
IO
gpio_86
4
IO
safe_mode
7
dss_data17
0
IO
gpio_87
4
IO
safe_mode
7
dss_data18
0
IO
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
dss_data19
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
L
7
vdds
No
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
IO
0
IO
mcspi3_ simo 2
IO
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
Submit Documentation Feedback
TYPE [5]
TERMINAL DESCRIPTION
73
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
D23
dss_data20
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PU/ PD
LVCMOS
0
O
mcspi3_ somi 2
IO
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
dss_data21
0
O
mcspi3_cs0
2
IO
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
dss_data22
0
O
mcspi3_cs1
2
O
dss_data4
3
IO
gpio_92
4
IO
safe_mode
7
dss_data23
0
O
dss_data5
3
IO
gpio_93
4
IO
safe_mode
7
AA23
tv_out2
0
O
Z
0
0
vdda_dac
8
NA
10-bit DAC
AB24
tv_out1
0
O
Z
0
0
vdda_dac
8
NA
10-bit DAC
AB23
tv_vfb1
0
O
Z
NA
0
vdda_dac
NA
10-bit DAC
Y23
tv_vfb2
0
O
Z
NA
0
vdda_dac
NA
10-bit DAC
Y24
tv_vref
0
I
Z
NA
0
vdda_dac
NA
10-bit DAC
A22
cam_hs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_94
4
IO
safe_mode
7
cam_vs
0
IO
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_95
4
IO
safe_mode
7
cam_ xclka
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_96
4
IO
safe_mode
7
cam_pclk
0
I
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
gpio_97
4
IO
safe_mode
7
cam_fld
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PD
LVCMOS
L
L
7
vdds
Yes
4
PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
K22
V21
W21
E18
B22
J19
H24
AB18
AC18
G19
F19
G20
74
0
IO
cam_global_re 2
set
IO
gpio_98
4
IO
safe_mode
7
cam_d0
0
I
gpio_99
4
I
safe_mode
7
cam_d1
0
I
gpio_100
4
I
safe_mode
7
cam_d2
0
I
gpio_101
4
IO
safe_mode
7
cam_d3
0
I
gpio_102
4
IO
safe_mode
7
cam_d4
0
I
gpio_103
4
IO
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
B21
L24
K24
J23
K23
F21
G21
C22
F18
J20
V20
T21
V19
R20
M23
L23
M22
(1)
BALL TOP [2] PIN NAME [3] MODE [4]
safe_mode
7
cam_d5
0
I
gpio_104
4
IO
safe_mode
7
cam_d6
0
I
gpio_105
4
IO
safe_mode
7
cam_d7
0
I
gpio_106
4
IO
safe_mode
7
cam_d8
0
I
gpio_107
4
IO
safe_mode
7
cam_d9
0
I
gpio_108
4
IO
safe_mode
7
cam_d10
0
I
gpio_109
4
IO
safe_mode
7
cam_d11
0
I
gpio_110
4
IO
safe_mode
7
cam_ xclkb
0
O
gpio_111
4
IO
safe_mode
7
cam_wen
0
I
cam_ shutter
2
O
gpio_167
4
IO
safe_mode
7
cam_ strobe
0
O
gpio_126
4
IO
safe_mode
7
mcbsp2_fsx
0
IO
gpio_116
4
IO
safe_mode
7
mcbsp2_ clkx 0
IO
gpio_117
4
IO
safe_mode
7
mcbsp2_dr
0
I
gpio_118
4
IO
safe_mode
7
mcbsp2_dx
0
IO
gpio_119
4
IO
safe_mode
7
mmc1_clk
0
O
gpio_120
4
IO
safe_mode
7
mmc1_cmd
0
IO
gpio_121
4
IO
safe_mode
7
mmc1_dat0
0
IO
gpio_122
4
IO
safe_mode
7
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
NA
4
PD
LVCMOS
L
L
7
vdds
NA
4
PD
LVCMOS
L
L
7
vdds
NA
4
PD
LVCMOS
L
L
7
vdds
NA
4
PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4 (1)
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4 (1)
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4 (1)
PU/ PD
LVCMOS
L
L
7
vdds_mmc1
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds_mmc1
Yes
8
PU/ PD
LVCMOS
L
L
7
vdds_mmc1
Yes
8
PU/ PD
LVCMOS
(1)
The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in
Submit Documentation Feedback
TERMINAL DESCRIPTION
75
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
M21
mmc1_dat1
0
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD
LVCMOS
gpio_123
4
IO
safe_mode
7
mmc1_dat2
0
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD
LVCMOS
gpio_124
4
IO
safe_mode
7
mmc1_dat3
0
IO
L
L
7
vdds_mmc1
Yes
8
PU/ PD
LVCMOS
gpio_125
4
IO
safe_mode
7
mmc1_dat4
0
IO
L
L
7
vdds_mmc1a
No
8
PD
LVCMOS
gpio_126
4
IO
safe_mode
7
mmc1_dat5
0
IO
L
L
7
vdds_mmc1a
No
8
PD
LVCMOS
gpio_127
4
IO
safe_mode
7
mmc1_dat6
0
IO
L
L
7
vdds_mmc1a
No
8
PD
LVCMOS
gpio_128
4
IO
safe_mode
7
mmc1_dat7
0
IO
L
L
7
vdds_mmc1a
No
8
PD
LVCMOS
gpio_129
4
IO
safe_mode
7
mmc2_clk
0
O
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
mcspi3_clk
1
IO
gpio_130
4
IO
safe_mode
7
mmc2_ cmd
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
M20
N23
N22
N21
N20
P24
Y1
AB5
AB3
Y3
W3
V3
AB2
AA2
76
0
IO
mcspi3_ simo 1
IO
gpio_131
4
IO
safe_mode
7
mmc2_ dat0
0
IO
mcspi3_ somi 1
IO
gpio_132
4
IO
safe_mode
7
mmc2_ dat1
0
IO
gpio_133
4
IO
safe_mode
7
mmc2_ dat2
0
IO
mcspi3_cs1
1
O
gpio_134
4
IO
safe_mode
7
mmc2_ dat3
0
IO
mcspi3_cs0
1
IO
gpio_135
4
IO
safe_mode
7
mmc2_ dat4
0
IO
mmc2_dir_dat 1
0
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
mmc2_ dat5
0
IO
mmc2_dir_dat 1
1
O
cam_global_re 2
set
IO
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
Y2
AA1
V6
V5
W4
V4
W7
W6
AC2
V7
W19
AB20
W18
BALL TOP [2] PIN NAME [3] MODE [4]
mmc3_dat1
3
IO
gpio_137
4
IO
safe_mode
7
mmc2_ dat6
0
IO
mmc2_dir_
cmd
1
O
cam_ shutter
2
O
mmc3_dat2
3
IO
gpio_138
4
IO
safe_mode
7
mmc2_ dat7
0
IO
mmc2_ clkin
1
I
mmc3_dat3
3
IO
gpio_139
4
IO
safe_mode
7
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
safe_mode
7
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
safe_mode
7
mcbsp3_ clkx 0
IO
uart2_tx
1
O
gpio_142
4
IO
safe_mode
7
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
safe_mode
7
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
uart1_rts
0
O
gpio_149
4
IO
safe_mode
7
uart1_cts
0
I
gpio_150
4
IO
safe_mode
7
uart1_rx
0
I
mcbsp1_ clkr
2
IO
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
mcbsp1_ clkr
0
IO
mcspi4_clk
1
IO
gpio_156
4
IO
safe_mode
7
mcbsp1_fsr
0
IO
cam_global_re 2
set
IO
gpio_157
4
IO
safe_mode
7
mcbsp1_dx
0
Submit Documentation Feedback
IO
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
77
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
Y18
AA18
AA19
V18
A23
B23
B24
C23
R21
R23
P23
R22
T24
T23
78
BALL TOP [2] PIN NAME [3] MODE [4]
mcspi4_ simo 1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
mcbsp1_dr
0
I
mcspi4_ somi 1
IO
mcbsp3_dr
2
O
gpio_159
4
IO
safe_mode
7
mcbsp_clks
0
I
cam_ shutter
2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
mcbsp1_ clkx 0
IO
mcbsp3_ clkx 2
IO
gpio_162
4
IO
safe_mode
7
uart3_cts_ rctx 0
IO
gpio_163
4
IO
safe_mode
7
uart3_rts_ sd
0
O
gpio_164
4
IO
safe_mode
7
uart3_rx_ irrx
0
I
gpio_165
4
IO
safe_mode
7
uart3_tx_ irtx
0
O
gpio_166
4
IO
safe_mode
7
hsusb0_clk
0
I
gpio_120
4
IO
safe_mode
7
hsusb0_stp
0
O
gpio_121
4
IO
safe_mode
7
hsusb0_dir
0
I
gpio_122
4
IO
safe_mode
7
hsusb0_nxt
0
I
gpio_124
4
IO
safe_mode
7
hsusb0_ data0 0
IO
uart3_tx_ irtx
2
O
gpio_125
4
IO
safe_mode
7
hsusb0_ data1 0
IO
uart3_rx_ irrx
2
I
gpio_130
4
IO
TERMINAL DESCRIPTION
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
safe_mode
U24
U23
W24
V23
W23
T22
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
7
hsusb0_ data2 0
IO
uart3_rts_ sd
2
O
gpio_131
4
IO
safe_mode
7
hsusb0_ data3 0
IO
uart3_cts_ rctx 2
IO
gpio_169
4
IO
safe_mode
7
hsusb0_ data4 0
IO
gpio_188
4
IO
safe_mode
7
hsusb0_ data5 0
IO
gpio_189
4
IO
safe_mode
7
hsusb0_ data6 0
IO
gpio_190
4
IO
safe_mode
7
hsusb0_ data7 0
IO
gpio_191
4
IO
safe_mode
7
K20
i2c1_scl
0
IOD
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
K21
i2c1_sda
0
IOD
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
AC15
i2c2_scl
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_168
4
IO
safe_mode
7
i2c2_sda
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_183
4
IO
safe_mode
7
i2c3_scl
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_184
4
IO
safe_mode
7
i2c3_sda
0
IOD
H
H
7
vdds
Yes
4
PU/ PD
Open Drain
gpio_185
4
IO
safe_mode
7
i2c4_scl
0
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
H
H
0
vdds
Yes
4
PU/ PD
Open Drain
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4 (1)
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4 (1)
PU/ PD
LVCMOS
AC14
AC13
AC12
Y16
sys_ nvmode1 1
Y15
safe_mode
7
i2c4_sda
0
sys_ nvmode2 1
A24
T5
R4
IOD
O
IOD
O
safe_mode
7
hdq_sio
0
IOD
sys_altclk
1
I
i2c2_sccbe
2
O
i2c3_sccbe
3
O
gpio_170
4
IO
safe_mode
7
mcspi1_clk
0
IO
mmc2_dat4
1
IO
gpio_171
4
IO
safe_mode
7
mcspi1_ simo 0
IO
mmc2_dat5
1
IO
gpio_172
4
IO
Submit Documentation Feedback
TERMINAL DESCRIPTION
79
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
safe_mode
T4
T6
R5
N5
N4
N3
M5
M4
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4 (1)
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
NA
7
mcspi1_ somi 0
IO
mmc2_dat6
1
IO
gpio_173
4
IO
safe_mode
7
mcspi1_cs0
0
IO
mmc2_dat7
1
IO
gpio_174
4
IO
safe_mode
7
mcspi1_cs3
0
O
hsusb2_tll_
data2
2
IO
hsusb2_ data2 3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
mcspi2_clk
0
IO
hsusb2_tll_
data7
2
IO
hsusb2_ data7 3
O
gpio_178
4
IO
safe_mode
7
mcspi2_ simo 0
IO
gpt9_pwm_evt 1
IO
hsusb2_tll_
data4
IO
2
hsusb2_ data4 3
I
gpio_179
4
IO
safe_mode
7
mcspi2_ somi 0
IO
gpt10_pwm_e 1
vt
IO
hsusb2_tll_
data5
2
IO
hsusb2_ data5 3
O
gpio_180
4
IO
safe_mode
7
mcspi2_cs0
0
IO
gpt11_pwm_e 1
vt
IO
hsusb2_tll_
data6
2
IO
hsusb2_ data6 3
O
gpio_181
4
IO
safe_mode
7
mcspi2_cs1
(1)
0
O
gpt8_pwm_evt 1
IO
hsusb2_tll_
data3
2
IO
hsusb2_ data3 3
IO
gpio_182
4
IO
mm2_txen_n
5
IO
safe_mode
7
AA16
sys_32k
0
I
Z
I
NA
vdds
Yes
NA
LVCMOS
AD15
sys_xtalin
0
I
Z
I
NA
vdds
Yes
NA
LVCMOS
AD14
sys_xtalout
0
O
Z
O
NA
vdds
Yes
NA
LVCMOS
Y13
sys_clkreq
0
IO
0
1
0
vdds
Yes
PU/ PD
LVCMOS
80
TERMINAL DESCRIPTION
4
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
W16
BALL TOP [2] PIN NAME [3] MODE [4]
gpio_1
4
safe_mode
7
sys_nirq
0
I
gpio_0
4
IO
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
H
H
7
vdds
Yes
4
PU/ PD
LVCMOS
IO
safe_mode
7
AA10
sys_
nrespwron
0
I
Z
I
NA
vdds
Yes
NA
NA
LVCMOS
Y10
sys_
nreswarm
0
IOD
0
1 (PU)
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_30
4
IO
safe_mode
7
sys_boot0
0
I
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_2
4
IO
safe_mode
7
sys_boot1
0
I
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_3
4
IO
safe_mode
7
sys_boot2
0
I
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_4
4
IO
safe_mode
7
sys_boot3
0
I
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_5
4
IO
safe_mode
7
sys_boot4
0
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
Z
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
0
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
L
L
7
vdds
Yes
4
PU/ PD
LVCMOS
AB12
AC16
AD17
AD18
AC17
AB16
AA15
AD23
Y7
AA6
I
mmc2_dir_dat 1
2
O
gpio_6
4
IO
safe_mode
7
sys_boot5
0
I
mmc2_dir_dat 1
3
O
gpio_7
4
IO
safe_mode
7
sys_boot6
0
I
gpio_8
4
IO
safe_mode
7
sys_off_ mode 0
O
gpio_9
4
IO
safe_mode
7
sys_clkout1
0
O
gpio_10
4
IO
safe_mode
7
sys_clkout2
0
O
gpio_186
4
IO
safe_mode
7
AB7
jtag_ntrst
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AB6
jtag_tck
0
I
L
L
0
vdds
Yes
NA
PU/ PD
LVCMOS
AA7
jtag_rtck
0
O
L
0
0
vdds
Yes
4
PU/ PD
LVCMOS
AA9
jtag_tms_tmsc 0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
AB10
jtag_tdi
0
I
H
H
0
vdds
Yes
NA
PU/ PD
LVCMOS
AB9
jtag_tdo
0
O
L
Z
0
vdds
Yes
4
PU/ PD
LVCMOS
AC24
jtag_emu0
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_11
4
IO
safe_mode
7
jtag_emu1
0
IO
H
H
0
vdds
Yes
4
PU/ PD
LVCMOS
gpio_31
4
IO
AD24
Submit Documentation Feedback
TERMINAL DESCRIPTION
81
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
AC1
AD3
AD6
AC6
AC7
AD8
AC5
AD2
AC8
82
BALL TOP [2] PIN NAME [3] MODE [4]
safe_mode
7
etk_clk
0
O
mcbsp5_ clkx 1
IO
mmc3_clk
2
O
hsusb1_stp
3
O
gpio_12
4
IO
mm1_rxdp
5
IO
hsusb1_tll_stp 6
I
etk_ctl
0
O
mmc3_cmd
2
IO
hsusb1_clk
3
O
gpio_13
4
IO
hsusb1_tll_clk 6
O
etk_d0
0
O
mcspi3_ simo 1
IO
mmc3_dat4
2
IO
hsusb1_ data0 3
IO
gpio_14
4
IO
mm1_rxrcv
5
IO
hsusb1_tll_
data0
6
IO
etk_d1
0
O
mcspi3_ somi 1
IO
hsusb1_ data1 3
IO
gpio_15
4
IO
mm1_txse0
5
IO
hsusb1_tll_
data1
6
IO
etk_d2
0
O
mcspi3_cs0
1
IO
hsusb1_ data2 3
IO
gpio_16
4
IO
mm1_txdat
5
IO
hsusb1_tll_dat 6
a2
IO
etk_d3
0
O
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_ data7 3
IO
gpio_17
4
IO
hsusb1_tll_
data7
6
IO
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_ data4 3
IO
gpio_18
4
IO
hsusb1_tll_
data4
6
IO
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_ data5 3
IO
gpio_19
4
IO
hsusb1_tll_
data5
6
IO
etk_d6
0
O
TERMINAL DESCRIPTION
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
H
H
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
AD9
AC4
AD5
AC3
AC9
AC10
AD11
AC11
AD12
BALL TOP [2] PIN NAME [3] MODE [4]
mcbsp5_dx
1
IO
mmc3_dat2
2
IO
hsusb1_ data6 3
IO
gpio_20
4
IO
hsusb1_tll_
data6
6
IO
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_ data3 3
IO
gpio_21
4
IO
mm1_txen_n
5
IO
hsusb1_tll_
data3
6
IO
etk_d8
0
O
sys_drm_
msecure
1
O
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
hsusb1_tll_dir 6
O
etk_d9
0
O
sys_secure_in 1
dic ator
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hsusb1_tll_nxt 6
O
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
hsusb2_tll_clk 6
O
etk_d11
0
O
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
hsusb2_tll_stp 6
I
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
hsusb2_tll_dir 6
O
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm2_rxdm
5
IO
hsusb2_tll_nxt 6
O
etk_d14
0
O
hsusb2_ data0 3
IO
gpio_28
4
IO
mm2_rxrcv
5
IO
hsusb2_tll_
data0
6
IO
etk_d15
0
O
hsusb2_ data1 3
IO
Submit Documentation Feedback
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
L
L
4
vdds
Yes
4
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
83
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-3. Ball Characteristics (CUS Pkg.) (continued)
BALL
BOTTOM [1]
BALL TOP [2] PIN NAME [3] MODE [4]
TYPE [5]
BALL RESET BALL RESET RESET REL.
STATE [6]
REL. STATE MODE [8]
[7]
POWER [9]
HYS [10]
BUFFER
STRENG TH
(mA) [11]
PULLUP
/DOWN TYPE
[12]
gpio_29
4
IO
mm2_txse0
5
IO
hsusb2_tll_
data1
6
IO
E16, F15,
vdds_mem
F16, G15,
G16, H15, J6,
J7, J8, K6, K7,
K8
0
PWR
-
-
-
-
-
-
-
-
F12, F13,
vdd_core
G12, G13,
H12, H13,
J17, J18, K17,
K18, K19,
L14, L15,
M14, M15,
R17, R18,
R19, T17,
T18, T19, T20
0
PWR
-
-
-
-
-
-
-
-
F10, G9, G10, vdd_mpu
H9, H10, J9,
J10, L11, L12,
M6, M7, M8,
M12, N6, N7,
N8, R6, R7,
R8, T7, T8,
U12, U13,
V12, V13,
W12, W13
0
PWR
-
-
-
-
-
-
-
-
H8
0
PWR
-
-
-
-
-
-
-
-
M17, M18,
vdds
M19, N17,
N18, N19,
U10, V9, V10,
W9, W10, Y9
vdds_mmc1a
0
PWR
-
-
-
-
-
-
-
-
N24
0
PWR
-
-
-
-
-
-
-
-
Y12, U8, H17 cap_vdd_wku 0
p,
cap_vdd_sram
_mpu,
cap_vdd_sram
_core
PWR
-
-
-
-
-
-
-
-
G18
vdds_dpll_dll
0
PWR
-
-
-
-
-
-
-
-
U17
vdds_dpll_per 0
PWR
-
-
-
-
-
-
-
-
AA12
vdds_sram
0
PWR
-
-
-
-
-
-
-
-
AA13
vdds_wkup_b 0
g
PWR
-
-
-
-
-
-
-
-
AB15
vssa_dac
0
GND
-
-
-
-
-
-
-
-
AB13
vdda_dac
0
PWR
-
-
-
-
-
-
-
-
H11, H14,
vss
H16, J11, J12,
J13, J14, J15,
J16, K10,
K11, K14,
K15, L8, L10,
L13, L17, M9,
M10, M11,
M13, M16,
N9, N10, N11,
N12, N13,
N14, N15,
N16, P8, P10,
P11, P12,
P13, P14,
P15, P17,
R10, R11,
R14, R15, T9,
T10, T11,
T12, T13,
T14, T15,
T16, U9, U11,
U14, U15,
U16, V15,
V16, W15
0
GND
-
-
-
-
-
-
-
-
AD1, A1, A2,
B1
-
-
-
-
-
-
-
-
-
-
84
vdds_mmc1
No Connect
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
2.4 Multiplexing Characteristics
Table 2-4 provides a description of the OMAP3515/03 multiplexing on the CBB, CBC, and CUS packages,
respectively.
Note: The following does not take into account subsystem pin multiplexing options. Subsystem pin
multiplexing options are described in Section 2.5, Signal Description.
Table 2-4. Multiplexing Characteristics
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
D6
J2
NA
D1
D7
sdrc_d0
C6
J1
NA
G1
C5
sdrc_d1
B6
G2
NA
G2
C6
sdrc_d2
C8
G1
NA
E1
B5
sdrc_d3
C9
F2
NA
D2
D9
sdrc_d4
A7
F1
NA
E2
D10
sdrc_d5
B9
D2
NA
B3
C7
sdrc_d6
A9
D1
NA
B4
B7
sdrc_d7
C14
B13
NA
A10
B11
sdrc_d8
B14
A13
NA
B11
C12
sdrc_d9
C15
B14
NA
A11
B12
sdrc_d10
B16
A14
NA
B12
D13
sdrc_d11
D17
B16
NA
A16
C13
sdrc_d12
C17
A16
NA
A17
B14
sdrc_d13
B17
B19
NA
B17
A14
sdrc_d14
D18
A19
NA
B18
B15
sdrc_d15
D11
B3
NA
B7
C9
sdrc_d16
B10
A3
NA
A5
E12
sdrc_d17
C11
B5
NA
B6
B8
sdrc_d18
D12
A5
NA
A6
B9
sdrc_d19
C12
B8
NA
A8
C10
sdrc_d20
A11
A8
NA
B9
B10
sdrc_d21
B13
B9
NA
A9
D12
sdrc_d22
D14
A9
NA
B10
E13
sdrc_d23
C18
B21
NA
C21
E15
sdrc_d24
A19
A21
NA
D20
D15
sdrc_d25
B19
D22
NA
B19
C15
sdrc_d26
B20
D23
NA
C20
B16
sdrc_d27
D20
E22
NA
D21
C16
sdrc_d28
A21
E23
NA
E20
D16
sdrc_d29
B21
G22
NA
E21
B17
sdrc_d30
C21
G23
NA
G21
B18
sdrc_d31
H9
AB21
NA
AA18
C18
sdrc_ba0
H10
AC21
NA
V20
D18
sdrc_ba1
A4
N22
NA
G20
A4
sdrc_a0
B4
N23
NA
K20
B4
sdrc_a1
B3
P22
NA
J20
D6
sdrc_a2
C5
P23
NA
J21
B3
sdrc_a3
C4
R22
NA
U21
B2
sdrc_a4
D5
R23
NA
R20
C3
sdrc_a5
C3
T22
NA
M21
E3
sdrc_a6
C2
T23
NA
M20
F6
sdrc_a7
C1
U22
NA
N20
E10
sdrc_a8
D4
U23
NA
K21
E9
sdrc_a9
D3
V22
NA
Y16
E7
sdrc_a10
D2
V23
NA
N21
G6
sdrc_a11
D1
W22
NA
R21
G7
sdrc_a12
Submit Documentation Feedback
TERMINAL DESCRIPTION
85
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
E2
W23
NA
AA15
F7
sdrc_a13
E1
Y22
NA
Y12
F9
sdrc_a14
H11
M22
NA
T21
A19
sdrc_ncs0
H12
M23
NA
T20
B19
sdrc_ncs1
A13
A11
NA
A12
A10
sdrc_clk
A14
B11
NA
B13
A11
sdrc_nclk
H16
J22
NA
Y15
B20
sdrc_cke0
safe_mode
H17
J23
NA
Y13
C20
sdrc_cke1
safe_mode
H14
L23
NA
V21
D19
sdrc_nras
H13
L22
NA
U20
C19
sdrc_ncas
H15
K23
NA
Y18
A20
sdrc_nwe
B7
C1
NA
H1
B6
sdrc_dm0
A16
A17
NA
A14
B13
sdrc_dm1
B11
A6
NA
A4
A7
sdrc_dm2
C20
A20
NA
A18
A16
sdrc_dm3
A6
C2
NA
C2
A5
sdrc_dqs0
A17
B17
NA
B15
A13
sdrc_dqs1
A10
B6
NA
B8
A8
sdrc_dqs2
A20
B20
NA
A19
A17
sdrc_dqs3
N4
AC15
J2
NA
K4
gpmc_a1
gpio_34
safe_mode
M4
AB15
H1
NA
K3
gpmc_a2
gpio_35
safe_mode
L4
AC16
H2
NA
K2
gpmc_a3
gpio_36
safe_mode
K4
AB16
G2
NA
J4
gpmc_a4
gpio_37
safe_mode
T3
AC17
F1
NA
J3
gpmc_a5
gpio_38
safe_mode
R3
AB17
F2
NA
J2
gpmc_a6
gpio_39
safe_mode
N3
AC18
E1
NA
J1
gpmc_a7
gpio_40
safe_mode
M3
AB18
E2
NA
H1
gpmc_a8
gpio_41
safe_mode
L3
AC19
D1
NA
H2
gpmc_a9
sys_ndmareq
2
gpio_42
safe_mode
K3
AB19
D2
NA
G2
gpmc_a10
sys_ndmareq
3
gpio_43
safe_mode
K1
M2
AA2
U2
L2
gpmc_d0
L1
M1
AA1
U1
M1
gpmc_d1
L2
N2
AC2
V2
M2
gpmc_d2
P2
N1
AC1
V1
N2
gpmc_d3
T1
R2
AE5
AA3
M3
gpmc_d4
V1
R1
AD6
AA4
P1
gpmc_d5
V2
T2
AD5
Y3
P2
gpmc_d6
W2
T1
AC5
Y4
R1
gpmc_d7
H2
AB3
V1
R1
R2
gpmc_d8
gpio_44
safe_mode
K2
AC3
Y1
T1
T2
gpmc_d9
gpio_45
safe_mode
P1
AB4
T1
N1
U1
gpmc_d10
gpio_46
safe_mode
R1
AC4
U2
P2
R3
gpmc_d11
gpio_47
safe_mode
R2
AB6
U1
P1
T3
gpmc_d12
gpio_48
safe_mode
T2
AC6
P1
M1
U2
gpmc_d13
gpio_49
safe_mode
W1
AB7
L2
J2
V1
gpmc_d14
gpio_50
safe_mode
Y1
AC7
M2
K2
V2
gpmc_d15
gpio_51
safe_mode
G4
Y2
AD8
AA8
E2
gpmc_ncs0
H3
Y1
AD1
W1
NA
gpmc_ncs1
gpio_52
safe_mode
V8
NA
A3
NA
NA
gpmc_ncs2
gpio_53
safe_mode
U8
NA
B6
NA
D2
gpmc_ncs3
sys_ndmareq
0
gpio_54
safe_mode
T8
NA
B4
NA
F4
gpmc_ncs4
sys_ndmareq mcbsp4_clkx gpt9_pwm_e gpio_55
1
vt
safe_mode
R8
NA
C4
NA
G5
gpmc_ncs5
sys_ndmareq mcbsp4_dr
2
safe_mode
86
TERMINAL DESCRIPTION
gpt10_pwm_ gpio_56
evt
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-4. Multiplexing Characteristics (continued)
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
P8
NA
B5
NA
F3
gpmc_ncs6
sys_ndmareq mcbsp4_dx
3
gpt11_pwm_ gpio_57
evt
safe_mode
N8
NA
C5
NA
G4
gpmc_ncs7
gpmc_io_dir
gpt8_pwm_e gpio_58
vt
safe_mode
T4
W2
N1
L1
W2
gpmc_clk
gpio_59
safe_mode
F3
W1
AD10
AA9
F1
gpmc_nadv_
ale
G2
V2
N2
L2
F2
gpmc_noe
F4
V1
M1
K1
G3
gpmc_nwe
G3
AC12
K2
FT (1)
K5
gpmc_nbe0_
cle
gpio_60
safe_mode
U3
NA
J1
NA
L1
gpmc_nbe1
gpio_61
safe_mode
H1
AB10
AC6
Y5
E1
gpmc_nwp
gpio_62
safe_mode
M8
AB12
AC11
Y10
C1
gpmc_wait0
L8
AC10
AC8
Y8
NA
gpmc_wait1
gpio_63
safe_mode
K8
NA
B3
NA
NA
gpmc_wait2
gpio_64
safe_mode
J8
NA
C6
NA
C2
gpmc_wait3
gpio_65
safe_mode
D28
NA
G25
NA
G22
dss_pclk
gpio_66
hw_dbg12
safe_mode
D26
NA
K24
NA
E22
dss_hsync
gpio_67
hw_dbg13
safe_mode
D27
NA
M25
NA
F22
dss_vsync
gpio_68
safe_mode
E27
NA
F26
NA
J21
dss_acbias
gpio_69
safe_mode
AG22
NA
AE21
NA
AC19
dss_data0
uart1_cts
dssvenc656_ gpio_70
data0
safe_mode
AH22
NA
AE22
NA
AB19
dss_data1
uart1_rts
dssvenc656_ gpio_71
data1
safe_mode
AG23
NA
AE23
NA
AD20
dss_data2
dssvenc656_ gpio_72
data2
safe_mode
AH23
NA
AE24
NA
AC20
dss_data3
dssvenc656_ gpio_73
data3
safe_mode
AG24
NA
AD23
NA
AD21
dss_data4
uart3_rx_irrx dssvenc656_ gpio_74
data4
safe_mode
AH24
NA
AD24
NA
AC21
dss_data5
uart3_tx_irtx dssvenc656_ gpio_75
data5
safe_mode
E26
NA
G26
NA
D24
dss_data6
uart1_tx
dssvenc656_ gpio_76
data6
hw_dbg14
safe_mode
F28
NA
H25
NA
E23
dss_data7
uart1_rx
dssvenc656_ gpio_77
data7
hw_dbg15
safe_mode
F27
NA
H26
NA
E24
dss_data8
gpio_78
hw_dbg16
safe_mode
G26
NA
J26
NA
F23
dss_data9
gpio_79
hw_dbg17
safe_mode
AD28
NA
AC26
NA
AC22
dss_data10
gpio_80
safe_mode
AD27
NA
AD26
NA
AC23
dss_data11
gpio_81
safe_mode
AB28
NA
AA25
NA
AB22
dss_data12
gpio_82
safe_mode
AB27
NA
Y25
NA
Y22
dss_data13
gpio_83
safe_mode
AA28
NA
AA26
NA
W22
dss_data14
gpio_84
safe_mode
AA27
NA
AB26
NA
V22
dss_data15
gpio_85
safe_mode
G25
NA
L25
NA
J22
dss_data16
gpio_86
safe_mode
H27
NA
L26
NA
G23
dss_data17
gpio_87
safe_mode
H26
NA
M24
NA
G24
dss_data18
mcspi3_clk
dss_data0
gpio_88
safe_mode
H25
NA
M26
NA
H23
dss_data19
mcspi3_simo dss_data1
gpio_89
safe_mode
E28
NA
F25
NA
D23
dss_data20
mcspi3_somi dss_data2
gpio_90
safe_mode
J26
NA
N24
NA
K22
dss_data21
mcspi3_cs0
dss_data3
gpio_91
safe_mode
AC27
NA
AC25
NA
V21
dss_data22
mcspi3_cs1
dss_data4
gpio_92
safe_mode
AC28
NA
AB25
NA
W21
dss_data23
dss_data5
gpio_93
safe_mode
W28
NA
V26
NA
AA23
tv_out2
Y28
NA
W26
NA
AB24
tv_out1
Y27
NA
W25
NA
AB23
tv_vfb1
W27
NA
U24
NA
Y23
tv_vfb2
W26
NA
V23
NA
Y24
tv_vref
(1)
mcbsp4_fsx
sys_ndmareq
1
"FT" indicates Feed-Through. For more information, refer to Section 2.5.10.
Submit Documentation Feedback
TERMINAL DESCRIPTION
87
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
A24
NA
C23
NA
A22
cam_hs
gpio_94
hw_dbg0
safe_mode
A23
NA
D23
NA
E18
cam_vs
gpio_95
hw_dbg1
safe_mode
C25
NA
C25
NA
B22
cam_xclka
gpio_96
C27
NA
C26
NA
J19
cam_pclk
gpio_97
hw_dbg2
safe_mode
C23
NA
B23
NA
H24
cam_fld
gpio_98
hw_dbg3
safe_mode
AG17
NA
AE16
NA
AB18
cam_d0
gpio_99
AH17
NA
AE15
NA
AC18
cam_d1
gpio_100
B24
NA
A24
NA
G19
cam_d2
gpio_101
hw_dbg4
safe_mode
C24
NA
B24
NA
F19
cam_d3
gpio_102
hw_dbg5
safe_mode
D24
NA
D24
NA
G20
cam_d4
gpio_103
hw_dbg6
safe_mode
A25
NA
C24
NA
B21
cam_d5
gpio_104
hw_dbg7
safe_mode
K28
NA
P25
NA
L24
cam_d6
gpio_105
safe_mode
L28
NA
P26
NA
K24
cam_d7
gpio_106
safe_mode
K27
NA
N25
NA
J23
cam_d8
gpio_107
safe_mode
L27
NA
N26
NA
K23
cam_d9
gpio_108
B25
NA
D25
NA
F21
cam_d10
gpio_109
hw_dbg8
safe_mode
C26
NA
E26
NA
G21
cam_d11
gpio_110
hw_dbg9
safe_mode
B26
NA
E25
NA
C22
cam_xclkb
gpio_111
B23
NA
A23
NA
F18
cam_wen
D25
NA
D26
NA
J20
cam_strobe
AG19
NA
AD17
NA
NA
gpio_112
safe_mode
AH19
NA
AD16
NA
NA
gpio_113
safe_mode
AG18
NA
AE18
NA
NA
gpio_114
safe_mode
AH18
NA
AE17
NA
NA
gpio_115
safe_mode
P21
NA
U18
NA
V20
mcbsp2_fsx
gpio_116
safe_mode
N21
NA
R18
NA
T21
mcbsp2_clkx
gpio_117
safe_mode
R21
NA
T18
NA
V19
mcbsp2_dr
gpio_118
safe_mode
M21
NA
R19
NA
R20
mcbsp2_dx
gpio_119
safe_mode
N28
NA
N19
NA
M23
mmc1_clk
gpio_120
safe_mode
M27
NA
L18
NA
L23
mmc1_cmd
gpio_121
safe_mode
N27
NA
M19
NA
M22
mmc1_dat0
gpio_122
safe_mode
N26
NA
M18
NA
M21
mmc1_dat1
gpio_123
safe_mode
N25
NA
K18
NA
M20
mmc1_dat2
gpio_124
safe_mode
P28
NA
N20
NA
N23
mmc1_dat3
gpio_125
safe_mode
P27
NA
M20
NA
N22
mmc1_dat4
gpio_126
safe_mode
P26
NA
P17
NA
N21
mmc1_dat5
gpio_127
safe_mode
R27
NA
P18
NA
N20
mmc1_dat6
gpio_128
safe_mode
R25
NA
P19
NA
P24
mmc1_dat7
gpio_129
safe_mode
AE2
NA
W10
NA
Y1
mmc2_clk
mcspi3_clk
gpio_130
safe_mode
AG5
NA
R10
NA
AB5
mmc2_cmd
mcspi3_simo
gpio_131
safe_mode
AH5
NA
T10
NA
AB3
mmc2_dat0
mcspi3_somi
gpio_132
safe_mode
AH4
NA
T9
NA
Y3
mmc2_dat1
gpio_133
safe_mode
AG4
NA
U10
NA
W3
mmc2_dat2
mcspi3_cs1
gpio_134
safe_mode
AF4
NA
U9
NA
V3
mmc2_dat3
mcspi3_cs0
gpio_135
safe_mode
AE4
NA
V10
NA
AB2
mmc2_dat4
mmc2_dir_da
t0
mmc3_dat0
gpio_136
safe_mode
AH3
NA
M3
NA
AA2
mmc2_dat5
mmc2_dir_da cam_global_r mmc3_dat1
t1
eset
gpio_137
hsusb3_tll_st mm3_rxdp
p
safe_mode
AF3
NA
L3
NA
Y2
mmc2_dat6
mmc2_dir_c
md
cam_shutter mmc3_dat2
gpio_138
hsusb3_tll_di
r
safe_mode
AE3
NA
K3
NA
AA1
mmc2_dat7
mmc2_clkin
mmc3_dat3
gpio_139
hsusb3_tll_n mm3_rxdm
xt
safe_mode
AF6
NA
P3
NA
V6
mcbsp3_dx
uart2_cts
gpio_140
hsusb3_tll_d
ata4
safe_mode
AE6
NA
N3
NA
V5
mcbsp3_dr
uart2_rts
gpio_141
hsusb3_tll_d
ata5
safe_mode
88
TERMINAL DESCRIPTION
cam_global_r
eset
cam_shutter
safe_mode
safe_mode
safe_mode
safe_mode
safe_mode
gpio_167
hw_dbg10
safe_mode
gpio_126
hw_dbg11
safe_mode
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-4. Multiplexing Characteristics (continued)
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
AF5
NA
U3
NA
W4
mcbsp3_clkx uart2_tx
gpio_142
hsusb3_tll_d
ata6
safe_mode
AE5
NA
W3
NA
V4
mcbsp3_fsx
uart2_rx
gpio_143
hsusb3_tll_d
ata7
safe_mode
AB26
NA
Y24
NA
NA
uart2_cts
mcbsp3_dx
gpt9_pwm_e
vt
gpio_144
safe_mode
AB25
NA
AA24
NA
NA
uart2_rts
mcbsp3_dr
gpt10_pwm_
evt
gpio_145
safe_mode
AA25
NA
AD22
NA
NA
uart2_tx
mcbsp3_clkx gpt11_pwm_
evt
gpio_146
safe_mode
AD25
NA
AD21
NA
NA
uart2_rx
mcbsp3_fsx
gpio_147
safe_mode
AA8
NA
L4
NA
W7
uart1_tx
gpio_148
safe_mode
AA9
NA
R2
NA
W6
uart1_rts
gpio_149
W8
NA
W2
NA
AC2
uart1_cts
gpio_150
Y8
NA
H3
NA
V7
uart1_rx
AE1
NA
V3
NA
NA
mcbsp4_clkx
gpio_152
hsusb3_tll_d mm3_txse0
ata1
safe_mode
AD1
NA
U4
NA
NA
mcbsp4_dr
gpio_153
hsusb3_tll_d mm3_rxrcv
ata0
safe_mode
AD2
NA
R3
NA
NA
mcbsp4_dx
gpio_154
hsusb3_tll_d mm3_txdat
ata2
safe_mode
AC1
NA
T3
NA
NA
mcbsp4_fsx
gpio_155
hsusb3_tll_d mm3_txen_n safe_mode
ata3
Y21
NA
U19
NA
W19
mcbsp1_clkr mcspi4_clk
gpio_156
safe_mode
AA21
NA
V17
NA
AB20
mcbsp1_fsr
gpio_157
safe_mode
V21
NA
U17
NA
W18
mcbsp1_dx
mcspi4_simo mcbsp3_dx
gpio_158
safe_mode
U21
NA
T20
NA
Y18
mcbsp1_dr
mcspi4_somi mcbsp3_dr
gpio_159
T21
NA
T19
NA
AA18
mcbsp_clks
K26
NA
P20
NA
AA19
mcbsp1_fsx
W21
NA
T17
NA
V18
mcbsp1_clkx
H18
NA
F23
NA
A23
H19
NA
F24
NA
H20
NA
H24
NA
H21
NA
G24
T28
NA
T25
gpt8_pwm_e
vt
mcbsp1_clkr mcspi4_clk
cam_global_r
eset
safe_mode
hsusb3_tll_cl
k
gpio_151
safe_mode
safe_mode
safe_mode
cam_shutter
gpio_160
mcbsp3_fsx
gpio_161
safe_mode
mcbsp3_clkx
gpio_162
safe_mode
uart3_cts_rct
x
gpio_163
safe_mode
B23
uart3_rts_sd
gpio_164
safe_mode
B24
uart3_rx_irrx
gpio_165
safe_mode
NA
C23
uart3_tx_irtx
gpio_166
safe_mode
W19
NA
R21
hsusb0_clk
gpio_120
safe_mode
NA
U20
NA
R23
hsusb0_stp
gpio_121
safe_mode
R28
NA
V19
NA
P23
hsusb0_dir
gpio_122
safe_mode
T26
NA
W18
NA
R22
hsusb0_nxt
gpio_124
safe_mode
T27
NA
V20
NA
T24
hsusb0_data
0
uart3_tx_irtx
gpio_125
safe_mode
U28
NA
Y20
NA
T23
hsusb0_data
1
uart3_rx_irrx
gpio_130
safe_mode
U27
NA
V18
NA
U24
hsusb0_data
2
uart3_rts_sd
gpio_131
safe_mode
U26
NA
W20
NA
U23
hsusb0_data
3
uart3_cts_rct
x
gpio_169
safe_mode
U25
NA
W17
NA
W24
hsusb0_data
4
gpio_188
safe_mode
V28
NA
Y18
NA
V23
hsusb0_data
5
gpio_189
safe_mode
V27
NA
Y19
NA
W23
hsusb0_data
6
gpio_190
safe_mode
V26
NA
Y17
NA
T22
hsusb0_data
7
gpio_191
safe_mode
K21
NA
J25
NA
K20
i2c1_scl
J21
NA
J24
NA
K21
i2c1_sda
AF15
NA
C2
NA
AC15
i2c2_scl
gpio_168
safe_mode
AE15
NA
C1
NA
AC14
i2c2_sda
gpio_183
safe_mode
Submit Documentation Feedback
mcspi4_cs0
uart1_cts
safe_mode
TERMINAL DESCRIPTION
89
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
AF14
NA
AB4
NA
AC13
i2c3_scl
gpio_184
safe_mode
AG14
NA
AC4
NA
AC12
i2c3_sda
gpio_185
safe_mode
AD26
NA
AD15
NA
Y16
i2c4_scl
sys_nvmode
1
safe_mode
AE26
NA
W16
NA
Y15
i2c4_sda
sys_nvmode
2
safe_mode
J25
NA
J23
NA
A24
hdq_sio
sys_altclk
gpio_170
safe_mode
AB3
NA
P9
NA
T5
mcspi1_clk
mmc2_dat4
gpio_171
safe_mode
AB4
NA
P8
NA
R4
mcspi1_simo mmc2_dat5
gpio_172
safe_mode
AA4
NA
P7
NA
T4
mcspi1_somi mmc2_dat6
gpio_173
safe_mode
AC2
NA
R7
NA
T6
mcspi1_cs0
gpio_174
safe_mode
AC3
NA
R8
NA
NA
mcspi1_cs1
mmc3_cmd
gpio_175
safe_mode
AB1
NA
R9
NA
NA
mcspi1_cs2
mmc3_clk
gpio_176
AB2
NA
T8
NA
R5
mcspi1_cs3
hsusb2_tll_d hsusb2_data gpio_177
ata2
2
AA3
NA
W7
NA
N5
mcspi2_clk
hsusb2_tll_d hsusb2_data gpio_178
ata7
7
safe_mode
Y2
NA
W8
NA
N4
mcspi2_simo gpt9_pwm_e hsusb2_tll_d hsusb2_data gpio_179
vt
ata4
4
safe_mode
Y3
NA
U8
NA
N3
mcspi2_somi gpt10_pwm_ hsusb2_tll_d hsusb2_data gpio_180
evt
ata5
5
safe_mode
Y4
NA
V8
NA
M5
mcspi2_cs0
gpt11_pwm_ hsusb2_tll_d hsusb2_data gpio_181
evt
ata6
6
safe_mode
V3
NA
V9
NA
M4
mcspi2_cs1
gpt8_pwm_e hsusb2_tll_d hsusb2_data gpio_182
vt
ata3
3
AE25
NA
AE20
NA
AA16
sys_32k
AE17
NA
AF19
NA
AD15
sys_xtalin
AF17
NA
AF20
NA
AD14
sys_xtalout
AF25
NA
W15
NA
Y13
sys_clkreq
gpio_1
safe_mode
AF26
NA
V16
NA
W16
sys_nirq
gpio_0
safe_mode
AH25
NA
V13
NA
AA10
sys_nrespwr
on
AF24
NA
AD7
NA
Y10
sys_nreswar
m
gpio_30
safe_mode
AH26
NA
F3
NA
AB12
sys_boot0
gpio_2
safe_mode
AG26
NA
D3
NA
AC16
sys_boot1
gpio_3
safe_mode
AE14
NA
C3
NA
AD17
sys_boot2
gpio_4
safe_mode
AF18
NA
E3
NA
AD18
sys_boot3
gpio_5
safe_mode
AF19
NA
E4
NA
AC17
sys_boot4
mmc2_dir_da
t2
gpio_6
safe_mode
AE21
NA
G3
NA
AB16
sys_boot5
mmc2_dir_da
t3
gpio_7
safe_mode
AF21
NA
D4
NA
AA15
sys_boot6
gpio_8
safe_mode
AF22
NA
V12
NA
AD23
sys_off_mod
e
gpio_9
safe_mode
AG25
NA
AE14
NA
Y7
sys_clkout1
gpio_10
safe_mode
AE22
NA
W11
NA
AA6
sys_clkout2
gpio_186
safe_mode
AA17
NA
U15
NA
AB7
jtag_ntrst
AA13
NA
V14
NA
AB6
jtag_tck
AA12
NA
W13
NA
AA7
jtag_rtck
AA18
NA
V15
NA
AA9
jtag_tms_tms
c
AA20
NA
U16
NA
AB10
jtag_tdi
AA19
NA
Y13
NA
AB9
jtag_tdo
AA11
NA
Y15
NA
AC24
jtag_emu0
gpio_11
safe_mode
AA10
NA
Y14
NA
AD24
jtag_emu1
gpio_31
AF10
NA
AB2
NA
AC1
etk_clk
AE10
NA
AB3
NA
AD3
etk_ctl
90
TERMINAL DESCRIPTION
i2c2_sccbe
i2c3_sccbe
mmc2_dat7
mcbsp5_clkx mmc3_clk
mmc3_cmd
hsusb1_stp
gpio_12
hsusb1_clk
gpio_13
safe_mode
mm2_txdat
mm2_txen_n
safe_mode
safe_mode
safe_mode
mm1_rxdp
hsusb1_tll_st hw_dbg0
p
hsusb1_tll_cl hw_dbg1
k
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-4. Multiplexing Characteristics (continued)
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
AF11
NA
AC3
NA
AD6
etk_d0
mcspi3_simo mmc3_dat4
hsusb1_data gpio_14
0
mm1_rxrcv
hsusb1_tll_d hw_dbg2
ata0
AG12
NA
AD4
NA
AC6
etk_d1
mcspi3_somi
hsusb1_data gpio_15
1
mm1_txse0
hsusb1_tll_d hw_dbg3
ata1
AH12
NA
AD3
NA
AC7
etk_d2
mcspi3_cs0
hsusb1_data gpio_16
2
mm1_txdat
hsusb1_tll_d hw_dbg4
ata2
AE13
NA
AA3
NA
AD8
etk_d3
mcspi3_clk
mmc3_dat3
hsusb1_data gpio_17
7
hsusb1_tll_d hw_dbg5
ata7
AE11
NA
Y3
NA
AC5
etk_d4
mcbsp5_dr
mmc3_dat0
hsusb1_data gpio_18
4
hsusb1_tll_d hw_dbg6
ata4
AH9
NA
AB1
NA
AD2
etk_d5
mcbsp5_fsx
mmc3_dat1
hsusb1_data gpio_19
5
hsusb1_tll_d hw_dbg7
ata5
AF13
NA
AE3
NA
AC8
etk_d6
mcbsp5_dx
mmc3_dat2
hsusb1_data gpio_20
6
hsusb1_tll_d hw_dbg8
ata6
AH14
NA
AD2
NA
AD9
etk_d7
mcspi3_cs1
mmc3_dat7
hsusb1_data gpio_21
3
mm1_txen_n hsusb1_tll_d hw_dbg9
ata3
AF9
NA
AA4
NA
AC4
etk_d8
sys_drm_ms mmc3_dat6
ecure
hsusb1_dir
gpio_22
AG9
NA
V2
NA
AD5
etk_d9
sys_secure_i mmc3_dat5
ndicator
hsusb1_nxt
gpio_23
AE7
NA
AE4
NA
AC3
etk_d10
hsusb2_clk
gpio_24
AF7
NA
AF6
NA
AC9
etk_d11
hsusb2_stp
gpio_25
AG7
NA
AE6
NA
AC10
etk_d12
hsusb2_dir
gpio_26
AH7
NA
AF7
NA
AD11
etk_d13
hsusb2_nxt
gpio_27
mm2_rxdm
hsusb2_tll_n hw_dbg15
xt
AG8
NA
AF9
NA
AC11
etk_d14
hsusb2_data gpio_28
0
mm2_rxrcv
hsusb2_tll_d hw_dbg16
ata0
AH8
NA
AE9
NA
AD12
etk_d15
hsusb2_data gpio_29
1
mm2_txse0
hsusb2_tll_d hw_dbg17
ata1
AC4, J4, H4, NA
D8, AE9, D9,
D15, Y16,
AE18, Y18,
W18, K18,
J18, AE19,
Y19, U19,
T19, N19,
M19, J19,
Y20, W20,
V20, U20,
P20, N20,
K20, J20,
D22, D23,
AE24, M25,
L25, E25
AC21, D15,
G11, G18,
H20, M7,
M17, R20,
T7, Y8, Y12
NA
F12, F13,
G12, G13,
H12, H13,
J17, J18,
K17, K18,
K19, L14,
L15, M14,
M15, R17,
R18, R19,
T17, T18,
T19, T20
vdd_core
Y9, W9, T9,
R9, M9, L9,
J9, Y10,
U10, T10,
R10, N10,
M10, L10,
J10, Y11,
W11, K11,
J11, W12,
K13, Y14,
K14, J14,
Y15, W15,
J15
NA
D13, G9,
NA
G12, H7,
K11, L9, M9,
M10, N7, N8,
P10, U7,
U11, U13,
V7, V11, W9,
Y9, Y11
F10, G9,
vdd_mpu
G10, H9,
H10, J9, J10,
L11, L12,
M6, M7, M8,
M12, N6, N7,
N8, R6, R7,
R8, T7, T8,
U12, U13,
V12, V13,
W12, W13
AA15
NA
K14
NA
Y12
cap_vdd_wk
up
K15
NA
K13
NA
G18
vdds_dpll_dll
W16
NA
U12
NA
AA12
vdds_sram
Submit Documentation Feedback
uart1_rx
hsusb1_tll_di hw_dbg10
r
mm1_rxdm
hsusb1_tll_n hw_dbg11
xt
hsusb2_tll_cl hw_dbg12
k
mm2_rxdp
hsusb2_tll_st hw_dbg13
p
hsusb2_tll_di hw_dbg14
r
TERMINAL DESCRIPTION
91
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (continued)
CBB
Bottom
CBC
Top
Bottom
CUS
MODE 0
AD3, AD4,
NA
W4, AF8,
AE8, AF16,
AE16, AF23,
AE23, F25,
F26, AG27
A18, AC7,
NA
AC15, AC18,
AC24, AD20,
AE10, C11,
D9, E24, G4,
J15, J18, L7,
L24, M4, T4,
T24, W24,
Y4, L20,
AB24, AD18,
AD19
M17, M18,
M19, N17,
N18, N19,
U10, V9,
V10, W9,
W10, Y9
vdds
U1, J1, F1,
NA
J2, F2, R4,
B5, A5, AH6,
B8, A8, B12,
A12, D16,
C16, B18,
A18, B22,
A22, G28,
C28
NA
E16, F15,
F16, G15,
G16, H15,
J6, J7, J8,
K6, K7, K8
vdds_mem
AA16
NA
U14
NA
U17
vdds_dpll_pe
r
AA14
NA
W14
NA
AA13
vdds_wkup_
bg
AG2, U2, B2, NA
AG3, W3,
P3, J3, E3,
A3, P4, E4,
AG6, D7, C7,
V9, U9, P9,
N9, K9, W10,
V10, P10,
K10, D10,
C10, AF12,
AE12, Y12,
K12, J12,
Y13, W13,
J13, D13,
C13, W14,
K16, J16,
Y17, W17,
K17, J17,
W19, V19,
R19, P19,
L19, K19,
D19, C19,
AF20, AE20,
T20, R2
A6, A8, A13, NA
AB5, AB22,
AC10, AC16,
AC19, AD14,
AD25,AE7,
AF23, B2,
B25, C12,
D7, D10,
D12, D14,
D18, D20,
E22, G1, G8,
G10, G20,
G23, H4, K1,
K15, K25,
L10, L17,
L19, L23, N4,
N10, N17,
R1, R4, R17,
T23, U25,
W1, W4,
W23, Y7,
Y10, Y16,
Y26
H11, H14,
vss
H16, J11,
J12, J13,
J14, J15,
J16, K10,
K11, K14,
K15, L8, L10,
L13, L17,
M9, M10,
M11, M13,
M16, N9,
N10, N11,
N12, N13,
N14, N15,
N16, P8,
P10, P11,
P12, P13,
P14, P15,
P17, R10,
R11, R14,
R15, T9,
T10, T11,
T12, T13,
T14, T15,
T16, U9,
U11, U14,
U15, U16,
V15, V16,
W15
V25
NA
V25
NA
AB13
vdda_dac
Y26
NA
V24
NA
AB15
vssa_dac
K25
NA
N23
NA
N24
vdds_mmc1
P25
NA
P23
NA
H8
vdds_mmc1a
AA26
NA
Y26
NA
NA
vss
AE27
NA
AB24
NA
NA
vdds
AG21
NA
AD19
NA
NA
vdds
AH20
NA
AE19
NA
NA
cap_vdd_d
AH21
NA
AC19
NA
NA
vss
AG16
NA
NA
NA
NA
vss
AG20
NA
NA
NA
NA
vdds
M28
NA
L19
NA
NA
vss
H28
NA
L20
NA
NA
vdds
V4
NA
N9
NA
U8
cap_vdd_sra
m_mpu
L21
NA
K20
NA
H17
cap_vdd_sra
m_core
92
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
Top
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
2.5 Signal Description
Many signals are available on multiple pins according to the software configuration of the pin multiplexing
options.
1. SIGNAL NAME: The signal name
2. DESCRIPTION: Description of the signal
3. TYPE: Type = Ball type for this specific function:
– I = Input
– O = Output
– Z = High-impedance
– D = Open Drain
– DS = Differential
– A = Analog
4. BALL BOTTOM: Associated ball(s) bottom
5. BALL TOP: Associated ball(s) top
6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the
module/subsystem level. The pin function is selected at the module/system level.
Note: The Subsystem Multiplexing Signals are not described in the following tables.
2.5.1
External Memory Interfaces
Table 2-5. External Memory Interfaces – GPMC Signals Description
SIGNAL NAME
[1]
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBB
Pkg.) [4]
BALL
TOP
(CBB
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
BALL
BOTTOM
(CUS
Pkg.) [4]
SUBSYSTEM
PIN
MULTIPLEXING
[6]
gpmc_a1
General-purpose memory address
bit 1
O
N4 / K1
AC15 / M2
J2 / AA2
NA / U2
K4/ L2
/ gpmc_d0
gpmc_a2
General-purpose memory address
bit 2
O
M4 / L1
AB15 / M1
H1 / AA1
NA / U1
K3/ M1
gpmc_a18/
gpmc_d1
gpmc_a3
General-purpose memory address
bit 3
O
L4 / L2
AC16 / N2
H2 / AC2
NA / V2
K2/ M2
gpmc_a19/
gpmc_d2
gpmc_a4
General-purpose memory address
bit 4
O
K4 / P2
AB16 / N1
G2 / AC1
NA / V1
J4/ N2
gpmc_a20/
gpmc_d3
gpmc_a5
General-purpose memory address
bit 5
O
T3 / T1
AC17 / R2
F1 / AE5
NA / AA3
J3/ M3
gpmc_a21/
gpmc_d4
gpmc_a6
General-purpose memory address
bit 6
O
R3 / V1
AB17 / R1
F2 / AD6
NA / AA4
J2/ P1
gpmc_a22/
gpmc_d5
gpmc_a7
General-purpose memory address
bit 7
O
N3 / V2
AC18 / T2
E1 / AD5
NA / Y3
J1/ P2
gpmc_a23/
gpmc_d6
gpmc_a8
General-purpose memory address
bit 8
O
M3 / W2
AB18 / T1
E2 / AC5
NA / Y4
H1/ R1
gpmc_a24/
gpmc_d7
gpmc_a9
General-purpose memory address
bit 9
O
L3 / H2
AC19 /
AB3
D1 / V1
NA / R1
H2/ R2
gpmc_a25/
gpmc_d8
gpmc_a10
General-purpose memory address
bit 10
O
K3 / K2
AB19 /
AC3
D2 / Y1
T1
G2/ T2
gpmc_a26/
gpmc_d9
gpmc_a11
General-purpose memory address
bit 11
O
P1
AB4
T1
N1
U1
gpmc_d10
gpmc_a12
General-purpose memory address
bit 12
O
R1
AC4
U2
P2
R3
gpmc_d11
gpmc_a13
General-purpose memory address
bit 13
O
R2
AB6
U1
P1
T3
gpmc_d12
gpmc_a14
General-purpose memory address
bit 14
O
T2
AC6
P1
M1
U2
gpmc_d13
gpmc_a15
General-purpose memory address
bit 15
O
W1
AB7
L2
J2
V1
gpmc_d14
gpmc_a16
General-purpose memory address
bit 16
O
Y1
AC7
M2
K2
V2
gpmc_d15
Submit Documentation Feedback
TERMINAL DESCRIPTION
93
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)
SIGNAL NAME
[1]
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBB
Pkg.) [4]
BALL
TOP
(CBB
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
BALL
BOTTOM
(CUS
Pkg.) [4]
SUBSYSTEM
PIN
MULTIPLEXING
[6]
gpmc_a17
General-purpose memory address
bit 17
O
N4
AC15
J2
NA
K4
gpmc_a1
gpmc_a18
General-purpose memory address
bit 18
O
M4
AB15
H1
NA
K3
gpmc_a2
gpmc_a19
General-purpose memory address
bit 19
O
L4
AC16
H2
NA
K2
gpmc_a3
gpmc_a20
General-purpose memory address
bit 20
O
K4
AB16
G2
NA
J4
gpmc_a4
gpmc_a21
General-purpose memory address
bit 21
O
T3
AC17
F1
NA
J3
gpmc_a5
gpmc_a22
General-purpose memory address
bit 22
O
R3
AB17
F2
NA
J2
gpmc_a6
gpmc_a23
General-purpose memory address
bit 23
O
N3
AC18
E1
NA
J1
gpmc_a7
gpmc_a24
General-purpose memory address
bit 24
O
M3
AB18
E2
NA
H1
gpmc_a8
gpmc_a25
General-purpose memory address
bit 25
O
L3
AC19
D1
NA
H2
gpmc_a9
gpmc_a26
General-purpose memory address
bit 26
O
K3
AB19
D2
NA
G2
gpmc_a10
gpmc_d0
GPMC Data bit 0
IO
K1
M2
AA2
U2
L2
gpmc_a1/
gpmc_d0
gpmc_d1
GPMC Data bit 1
IO
L1
M1
AA1
U1
M1
gpmc_a2/
gpmc_d1
gpmc_d2
GPMC Data bit 2
IO
L2
N2
AC2
V2
M2
gpmc_a3/
gpmc_d2
gpmc_d3
GPMC Data bit 3
IO
P2
N1
AC1
V1
N2
gpmc_a4/
gpmc_d3
gpmc_d4
GPMC Data bit 4
IO
T1
R2
AE5
AA3
M3
gpmc_a5/
gpmc_d4
gpmc_d5
GPMC Data bit 5
IO
V1
R1
AD6
AA4
P1
gpmc_a6/
gpmc_d5
gpmc_d6
GPMC Data bit 6
IO
V2
T2
AD5
Y3
P2
gpmc_a7
/gpmc_d6
gpmc_d7
GPMC Data bit 7
IO
W2
T1
AC5
Y4
R1
gpmc_a8/
gpmc_d7
gpmc_d8
GPMC Data bit 8
IO
H2
AB3
V1
R1
R2
gpmc_a9/
gpmc_d8
gpmc_d9
GPMC Data bit 9
IO
K2
AC3
Y1
T1
T2
gpmc_a10/
gpmc_d9
gpmc_d10
GPMC Data bit 10
IO
P1
AB4
T1
N1
U1
gpmc_a11/
gpmc_d10
gpmc_d11
GPMC Data bit 11
IO
R1
AC4
U2
P2
R3
gpmc_a12/
gpmc_d11
gpmc_d12
GPMC Data bit 12
IO
R2
AB6
U1
P1
T3
gpmc_a13/
gpmc_d12
gpmc_d13
GPMC Data bit 13
IO
T2
AC6
P1
M1
U2
gpmc_a14/
gpmc_d13
gpmc_d14
GPMC Data bit 14
IO
W1
AB7
L2
J2
V1
gpmc_a15/
gpmc_d14
gpmc_d15
GPMC Data bit 15
IO
Y1
AC7
M2
K2
V2
gpmc_a16/
gpmc_d15
gpmc_ncs0
GPMC Chip Select bit 0
O
G4
Y2
AD8
AA8
E2
NA
gpmc_ncs1
GPMC Chip Select bit 1
O
H3
Y1
AD1
W1
NA
NA
gpmc_ncs2
GPMC Chip Select bit 2
O
V8
NA
A3
NA
NA
NA
gpmc_ncs3
GPMC Chip Select bit 3
O
U8
NA
B6
NA
D2
NA
gpmc_ncs4
GPMC Chip Select bit 4
O
T8
NA
B4
NA
F4
NA
gpmc_ncs5
GPMC Chip Select bit 5
O
R8
NA
C4
NA
G5
NA
94
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)
SIGNAL NAME
[1]
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBB
Pkg.) [4]
BALL
TOP
(CBB
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
BALL
BOTTOM
(CUS
Pkg.) [4]
SUBSYSTEM
PIN
MULTIPLEXING
[6]
gpmc_ncs6
GPMC Chip Select bit 6
O
P8
NA
B5
NA
F3
NA
gpmc_ncs7
GPMC Chip Select bit 7
O
N8
NA
C5
NA
G4
NA
gpmc_io_dir
GPMC IO direction control for use
with external transceivers
O
N8
NA
C5
NA
G4
NA
gpmc_clk
GPMC clock
O
T4
W2
N1
L1
W2
NA
gpmc_nadv_ale Address Valid or Address Latch
Enable
O
F3
W1
AD10
AA9
F1
NA
gpmc_noe
Output Enable
O
G2
V2
N2
L2
F2
NA
gpmc_nwe
Write Enable
O
F4
V1
M1
K1
G3
NA
gpmc_nbe0_cle Lower Byte Enable. Also used for
Command Latch Enable
O
G3
AC12
K2
FT (1)
K5
NA
gpmc_nbe1
Upper Byte Enable
O
U3
NA
J1
NA
L1
NA
gpmc_nwp
Flash Write Protect
O
H1
AB10
AC6
Y5
E1
NA
gpmc_wait0
External indication of wait
I
M8
AB12
AC11
Y10
C1
NA
gpmc_wait1
External indication of wait
I
L8
AC10
AC8
Y8
NA
NA
gpmc_wait2
External indication of wait
I
K8
NA
B3
NA
NA
NA
gpmc_wait3
External indication of wait
I
J8
NA
C6
NA
C2
NA
(1)
FT indicates "Feed-Through. For more information, refer to Section 2.5.10.
Table 2-6. External Memory Interfaces – SDRC Signals Description
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL
BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
sdrc_d0
SDRAM data bit 0
IO
D6
J2
NA
D1
D7
sdrc_d1
SDRAM data bit 1
IO
C6
J1
NA
G1
C5
sdrc_d2
SDRAM data bit 2
IO
B6
G2
NA
G2
C6
sdrc_d3
SDRAM data bit 3
IO
C8
G1
NA
E1
B5
sdrc_d4
SDRAM data bit 4
IO
C9
F2
NA
D2
D9
sdrc_d5
SDRAM data bit 5
IO
A7
F1
NA
E2
D10
sdrc_d6
SDRAM data bit 6
IO
B9
D2
NA
B3
C7
sdrc_d7
SDRAM data bit 7
IO
A9
D1
NA
B4
B7
sdrc_d8
SDRAM data bit 8
IO
C14
B13
NA
A10
B11
sdrc_d9
SDRAM data bit 9
IO
B14
A13
NA
B11
C12
sdrc_d10
SDRAM data bit 10
IO
C15
B14
NA
A11
B12
sdrc_d11
SDRAM data bit 11
IO
B16
A14
NA
B12
D13
sdrc_d12
SDRAM data bit 12
IO
D17
B16
NA
A16
C13
sdrc_d13
SDRAM data bit 13
IO
C17
A16
NA
A17
B14
sdrc_d14
SDRAM data bit 14
IO
B17
B19
NA
B17
A14
sdrc_d15
SDRAM data bit 15
IO
D18
A19
NA
B18
B15
sdrc_d16
SDRAM data bit 16
IO
D11
B3
NA
B7
C9
sdrc_d17
SDRAM data bit 17
IO
B10
A3
NA
A5
E12
sdrc_d18
SDRAM data bit 18
IO
C11
B5
NA
B6
B8
sdrc_d19
SDRAM data bit 19
IO
D12
A5
NA
A6
B9
sdrc_d20
SDRAM data bit 20
IO
C12
B8
NA
A8
C10
sdrc_d21
SDRAM data bit 21
IO
A11
A8
NA
B9
B10
sdrc_d22
SDRAM data bit 22
IO
B13
B9
NA
A9
D12
sdrc_d23
SDRAM data bit 23
IO
D14
A9
NA
B10
E13
sdrc_d24
SDRAM data bit 24
IO
C18
B21
NA
C21
E15
sdrc_d25
SDRAM data bit 25
IO
A19
A21
NA
D20
D15
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Submit Documentation Feedback
TERMINAL DESCRIPTION
95
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL
BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
C15
sdrc_d26
SDRAM data bit 26
IO
B19
D22
NA
B19
sdrc_d27
SDRAM data bit 27
IO
B20
D23
NA
C20
B16
sdrc_d28
SDRAM data bit 28
IO
D20
E22
NA
D21
C16
sdrc_d29
SDRAM data bit 29
IO
A21
E23
NA
E20
D16
sdrc_d30
SDRAM data bit 30
IO
B21
G22
NA
E21
B17
sdrc_d31
SDRAM data bit 31
IO
C21
G23
NA
G21
B18
sdrc_ba0
SDRAM bank select 0
O
H9
AB21
NA
AA18
C18
sdrc_ba1
SDRAM bank select 1
O
H10
AC21
NA
V20
D18
sdrc_a0
SDRAM address bit 0
O
A4
N22
NA
G20
A4
sdrc_a1
SDRAM address bit 1
O
B4
N23
NA
K20
B4
sdrc_a2
SDRAM address bit 2
O
B3
P22
NA
J20
D6
sdrc_a3
SDRAM address bit 3
O
C5
P23
NA
J21
B3
sdrc_a4
SDRAM address bit 4
O
C4
R22
NA
U21
B2
sdrc_a5
SDRAM address bit 5
O
D5
R23
NA
R20
C3
sdrc_a6
SDRAM address bit 6
O
C3
T22
NA
M21
E3
sdrc_a7
SDRAM address bit 7
O
C2
T23
NA
M20
F6
sdrc_a8
SDRAM address bit 8
O
C1
U22
NA
N20
E10
sdrc_a9
SDRAM address bit 9
O
D4
U23
NA
K21
E9
sdrc_a10
SDRAM address bit 10
O
D3
V22
NA
Y16
E7
sdrc_a11
SDRAM address bit 11
O
D2
V23
NA
N21
G6
sdrc_a12
SDRAM address bit 12
O
D1
W22
NA
R21
G7
sdrc_a13
SDRAM address bit 13
O
E2
W23
NA
AA15
F7
sdrc_a14
SDRAM address bit 14
O
E1
Y22
NA
Y12
F9
sdrc_ncs0
Chip select 0
O
H11
M22
NA
T21
A19
sdrc_ncs1
Chip select 1
O
H12
M23
NA
T20
B19
sdrc_clk
Clock
IO
A13
A11
NA
A12
A10
sdrc_nclk
Clock Invert
O
A14
B11
NA
B13
A11
sdrc_cke0
Clock Enable 0
O
H16
J22
NA
Y15
B20
sdrc_cke1
Clock Enable 1
O
H17
J23
NA
Y13
C20
sdrc_nras
SDRAM Row Access
O
H14
L23
NA
V21
D19
sdrc_ncas
SDRAM column
address strobe
O
H13
L22
NA
U20
C19
sdrc_nwe
SDRAM write enable
O
H15
K23
NA
Y18
A20
sdrc_dm0
Data Mask 0
O
B7
C1
NA
H1
B6
sdrc_dm1
Data Mask 1
O
A16
A17
NA
A14
B13
sdrc_dm2
Data Mask 2
O
B11
A6
NA
A4
A7
sdrc_dm3
Data Mask 3
O
C20
A20
NA
A18
A16
sdrc_dqs0
Data Strobe 0
IO
A6
C2
NA
C2
A5
sdrc_dqs1
Data Strobe 1
IO
A17
B17
NA
B15
A13
sdrc_dqs2
Data Strobe 2
IO
A10
B6
NA
B8
A8
sdrc_dqs3
Data Strobe 3
IO
A20
B20
NA
A19
A17
96
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
2.5.2
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Video Interfaces
Table 2-7. Video Interfaces – CAM Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
A24
C23
A22
E18
cam_hs
Camera Horizontal Synchronization
IO
cam_vs
Camera Vertical Synchronization
IO
A23
D23
cam_xclka
Camera Clock Output a
O
C25
C25
B22
cam_xclkb
Camera Clock Output b
O
B26
E25
C22
cam_d0
Camera digital image data bit 0
I
AG17
AE16
AB18
cam_d1
Camera digital image data bit 1
I
AH17
AE15
AC18
cam_d2
Camera digital image data bit 2
I
B24
A24
G19
cam_d3
Camera digital image data bit 3
I
C24
B24
F19
cam_d4
Camera digital image data bit 4
I
D24
D24
G20
cam_d5
Camera digital image data bit 5
I
A25
C24
B21
cam_d6
Camera digital image data bit 6
I
K28
P25
L24
cam_d7
Camera digital image data bit 7
I
L28
P26
K24
cam_d8
Camera digital image data bit 8
I
K27
N25
J23
cam_d9
Camera digital image data bit 9
I
L27
N26
K23
cam_d10
Camera digital image data bit 10
I
B25
D25
F21
cam_d11
Camera digital image data bit 11
I
C26
E26
G21
cam_fld
Camera field identification
IO
C23
B23
H24
cam_pclk
Camera pixel clock
I
C27
C26
J19
cam_wen
Camera Write Enable
I
B23
A23
F18
cam_strobe
Flash strobe control signal
O
D25
D26
J20
cam_global_reset
Global reset is used strobe
synchronization
IO
C23 / AH3 / AA21
B23/M3/V17
H24/ AA2/ AB20
cam_shutter
Mechanical shutter control signal
O
B23 / AF3 / T21
A23 / T19
F18/ Y2/ AA18
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-8. Video Interfaces – DSS Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
dss_pclk
LCD Pixel Clock
O
D28
G25
G22
dss_hsync
LCD Horizontal Synchronization
O
D26
K24
E22
dss_vsync
LCD Vertical Synchronization
O
D27
M25
F22
dss_acbias
AC bias control (STN) or pixel data enable (TFT) output
O
E27
F26
J21
dss_data0
LCD Pixel Data bit 0
IO
AG22 / H26
AE21 / M24
AC19/G24
dss_data1
LCD Pixel Data bit 1
IO
AH22 / H25
AE22 / M26
AB19/H23
dss_data2
LCD Pixel Data bit 2
IO
AG23 / E28
AE23 / F25
AD20/D23
dss_data3
LCD Pixel Data bit 3
IO
AH23 / J26
AE24 / N24
AC20/K22
dss_data4
LCD Pixel Data bit 4
IO
AG24 / AC27
AD23 / AC25
AD21/V21
dss_data5
LCD Pixel Data bit 5
IO
AH24 / AC28
AD24/ AB25
AC21/W21
dss_data6
LCD Pixel Data bit 6
IO
E26
G26
D24
dss_data7
LCD Pixel Data bit 7
IO
F28
H25
E23
dss_data8
LCD Pixel Data bit 8
IO
F27
H26
E24
dss_data9
LCD Pixel Data bit 9
IO
G26
J26
F23
dss_data10
LCD Pixel Data bit 10
IO
AD28
AC26
AC22
dss_data11
LCD Pixel Data bit 11
IO
AD27
AD26
AC23
dss_data12
LCD Pixel Data bit 12
IO
AB28
AA25
AB22
dss_data13
LCD Pixel Data bit 13
IO
AB27
Y25
Y22
dss_data14
LCD Pixel Data bit 14
IO
AA28
AA26
W22
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Submit Documentation Feedback
TERMINAL DESCRIPTION
97
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-8. Video Interfaces – DSS Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
V22
dss_data15
LCD Pixel Data bit 15
IO
AA27
AB26
dss_data16
LCD Pixel Data bit 16
IO
G25
L25
J22
dss_data17
LCD Pixel Data bit 17
IO
H27
L26
G23
dss_data18
LCD Pixel Data bit 18
IO
H26
M24
G24
dss_data19
LCD Pixel Data bit 19
IO
H25
M26
H23
dss_data20
LCD Pixel Data bit 20
O
E28
F25
D23
dss_data21
LCD Pixel Data bit 21
O
J26
N24
K22
dss_data22
LCD Pixel Data bit 22
O
AC27
AC25
V21
dss_data23
LCD Pixel Data bit 23
O
AC28
AB25
W21
Table 2-9. Video Interfaces – RFBI Signals Description
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
SUBSYSTEM PIN
MULTIPLEXING (2)
rfbi_a0
RFBI command/data control
O
E27
F26
J21
dss_acbias
rfbi_cs0
1st LCD chip select
O
D26
K24
E22
dss_hsync
rfbi_da0
RFBI data bus 0
IO
AG22
AE21
AC19
dss_data0
rfbi_da1
RFBI data bus 1
IO
AH22
AE22
AB19
dss_data1
rfbi_da2
RFBI data bus 2
IO
AG23
AE23
AD20
dss_data2
rfbi_da3
RFBI data bus 3
IO
AH23
AE24
AC20
dss_data3
rfbi_da4
RFBI data bus 4
IO
AG24
AD23
AD21
dss_data4
rfbi_da5
RFBI data bus 5
IO
AH24
AD24
AC21
dss_data5
rfbi_da6
RFBI data bus 6
IO
E26
G26
D24
dss_data6
rfbi_da7
RFBI data bus 7
IO
F28
H25
E23
dss_data7
rfbi_da8
RFBI data bus 8
IO
F27
H26
E24
dss_data8
rfbi_da9
RFBI data bus 9
IO
G26
J26
F23
dss_data9
rfbi_da10
RFBI data bus 10
IO
AD28
AC26
AC22
dss_data10
rfbi_da11
RFBI data bus 11
IO
AD27
AD26
AC23
dss_data11
rfbi_da12
RFBI data bus 12
IO
AB28
AA25
AB22
dss_data12
rfbi_da13
RFBI data bus 13
IO
AB27
Y25
Y22
dss_data13
rfbi_da14
RFBI data bus 14
IO
AA28
AA26
W22
dss_data14
rfbi_da15
RFBI data bus 15
IO
AA27
AB26
V22
dss_data15
rfbi_rd
Read enable for RFBI
O
D28
G25
G22
dss_pclk
rfbi_wr
Write Enable for RFBI
O
D27
M25
F22
dss_vsync
rfbi_te_vsync
0
tearing effect removal and Vsync input
from 1st LCD
I
G25
L25
J22
dss_data16
rfbi_hsync0
Hsync for 1st LCD
I
H27
L26
G23
dss_data17
rfbi_te_vsync
1
tearing effect removal and Vsync input
from 2nd LCD
I
H26
M24
G24
dss_data18
rfbi_hsync1
Hsync for 2nd LCD
I
H25
M26
H23
dss_data19
rfbi_cs1
2nd LCD chip select
O
E28
F25
D23
dss_data20
(1)
(2)
98
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
The subsystem pin multiplexing options are not described in and
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-10. Video Interfaces – TV Signals Description
SIGNAL NAME
(1)
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
tv_out1
TV analog output Composite: tv_out1
O
Y28
W26
AB24
tv_out2
TV analog output S-VIDEO: tv_out2
O
W28
V26
AA23
tv_vfb1
tv_vfb1: Feedback through external
resistorto composite
AO
Y27
W25
AB23
tv_vfb2
tv_vfb2: Feedback through external
resistorto S-VIDEO
AO
W27
U24
Y23
tv_vref
External capacitor
AO
W26
V23
Y24
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Submit Documentation Feedback
TERMINAL DESCRIPTION
99
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
2.5.3
www.ti.com
Serial Communication Interfaces
Table 2-11. Serial Communication Interfaces – HDQ/1-Wire Signals Description
SIGNAL
NAME
hdq_sio
(1)
DESCRIPTION
Bidirectional HDQ 1-Wire control and data
Interface. Output is open drain.
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
IOD
J25
J23
A24
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-12. Serial Communication Interfaces – I2C Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C1)
i2c1_scl
I2C Master Serial clock. Output is open
drain.
IOD
K21
J25
K20
i2c1_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
J21
J24
K21
INTER-INTEGRATED CIRCUIT INTERFACE (I2C3)
i2c3_scl
I2C Master Serial clock. Output is open
drain.
IOD
AF14
AB4
AC13
i2c3_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
AG14
AC4
AC12
i2c3_sccbe
Serial Camera Control Bus Enable
O
J25
J23
A24
INTER-INTEGRATED CIRCUIT INTERFACE (I2C2)
i2c2_scl
I2C Master Serial clock. Output is open
drain.
IOD
AF15
C2
AC15
i2c2_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
AE15
C1
AC14
i2c2_sccbe
Serial Camera Control Bus Enable
O
J25
J23
A24
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-13. Serial Communication Interfaces – SmartReflex Signals Description (1)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C4)
i2c4_scl
I2C Master Serial clock. Output is open
drain.
IOD
AD26
AD15
Y16
i2c4_sda
I2C Serial Bidirectional Data. Output is
open drain.
IOD
AE26
W16
Y15
(1)
(2)
For more information on SmartReflex voltage control, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUFA5].
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
MULTICHANNEL SERIAL (McBSP LP 1)
mcbsp1_dr
Received serial data
I
U21
T20
Y18
mcbsp1_clkr
Receive Clock
IO
Y8 / Y21
U19 / H3
V7 / W19
mcbsp1_fsr
Receive frame synchronization
IO
AA21
V17
AB20
mcbsp1_dx
Transmitted serial data
IO
V21
U17
W18
mcbsp1_clkx
Transmit clock
IO
W21
T17
V18
mcbsp1_fsx
Transmit frame synchronization
IO
K26
P20
AA19
mcbsp_clks
External clock input (shared by McBSP1, 2,
3, 4, and 5)
I
T21
T19
AA18
(1)
100
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description (continued)
SIGNAL NAME
TYPE (1)
DESCRIPTION
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
MULTICHANNEL SERIAL (McBSP LP 2)
mcbsp2_dr
Received serial data
I
R21
T18
V19
mcbsp2_dx
Transmitted serial data
IO
M21
R19
R20
mcbsp2_clkx
Combined serial clock
IO
N21
R18
T21
mcbsp2_fsx
Combined frame synchronization
IO
P21
U18
V20
MULTICHANNEL SERIAL (McBSP LP 3)
mcbsp3_dr
Received serial data
I
AE6 / AB25 / U21
T20 / AA24 / N3
V5 / Y18
mcbsp3_dx
Transmitted serial data
IO
AF6 / AB26 / V21
U17 / Y24 / P3
V6 / W18
mcbsp3_clkx
Combined serial clock
IO
AF5 / AA25 / W21
T17 / AD22 / U3
W4 / V18
mcbsp3_fsx
Combined frame synchronization
IO
AE5 / AD25 / K26
P20 / AD21 / W3
V4 / AA19
MULTICHANNEL SERIAL (McBSP LP 4)
mcbsp4_dr
Received serial data
I
R8 / AD1
C4 / U4
G5
mcbsp4_dx
Transmitted serial data
IO
P8 / AD2
B5 / R3
F3
mcbsp4_clkx
Combined serial clock
IO
T8 / AE1
B4 / V3
F4
mcbsp4_fsx
Combined frame synchronization
IO
N8 / AC1
C5 / T3
G4
MULTICHANNEL SERIAL (McBSP LP 5)
mcbsp5_dr
Received serial data
I
AE11
Y3
AC5
mcbsp5_dx
Transmitted serial data
IO
AF13
AE3
AC8
mcbsp5_clkx
Combined serial clock
IO
AF10
AB2
AC1
mcbsp5_fsx
Combined frame synchronization
IO
AH9
AB1
AD2
Table 2-15. Serial Communication Interfaces – McSPI Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)
mcspi1_clk
SPI Clock
IO
AB3
P9
T5
mcspi1_simo
Slave data in, master data out
IO
AB4
P8
R4
mcspi1_somi
Slave data out, master data in
IO
AA4
P7
T4
mcspi1_cs0
SPI Enable 0, polarity configured by
software
IO
AC2
R7
T6
mcspi1_cs1
SPI Enable 1, polarity configured by
software
O
AC3
R8
NA
mcspi1_cs2
SPI Enable 2, polarity configured by
software
O
AB1
R9
NA
mcspi1_cs3
SPI Enable 3, polarity configured by
software
O
AB2
T8
R5
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)
mcspi2_clk
SPI Clock
IO
AA3
W7
N5
mcspi2_simo
Slave data in, master data out
IO
Y2
W8
N4
mcspi2_somi
Slave data out, master data in
IO
Y3
U8
N3
mcspi2_cs0
SPI Enable 0, polarity configured by
software
IO
Y4
V8
M5
mcspi2_cs1
SPI Enable 1, polarity configured by
software
O
V3
V9
M4
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)
mcspi3_clk
SPI Clock
IO
H26 / AE2 / AE13
W10 / M24 / AA3
G24 / Y1 / AD8
mcspi3_simo
Slave data in, master data out
IO
H25 / AG5 / AF11
R10 / M26 / AC3
H23 / AB5 / AD6
mcspi3_somi
Slave data out, master data in
IO
E28 / AH5 / AG12
F25 / T10 / AD4
D23 / AB3 / AC6
mcspi3_cs0
SPI Enable 0, polarity configured by
software
IO
J26 / AF4 / AH12
U9 / N24 / AD3
K22 / V3 / AC7
mcspi3_cs1
SPI Enable 1, polarity configured by
software
O
AC27 / AG4 / AH14
AC25 / U10 / AD2
V21 / W3 / AD9
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback
TERMINAL DESCRIPTION
101
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-15. Serial Communication Interfaces – McSPI Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)
mcspi4_clk
SPI Clock
IO
Y8 / Y21
U19 / H3
V7 / W19
mcspi4_simo
Slave data in, master data out
IO
V21
U17
W18
mcspi4_somi
Slave data out, master data in
IO
U21
T20
Y18
mcspi4_cs0
SPI Enable 0, polarity configured by
software
IO
K26
P20
AA19
Table 2-16. Serial Communication Interfaces – UARTs Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)
uart1_cts
UART1 Clear To Send
I
AG22 / W8 / T21
AE21 / T19 / W2
AC19 / AC2 / AA18
uart1_rts
UART1 Request To Send
O
AH22 / AA9
AE22 / R2
W6 / AB19
uart1_rx
UART1 Receive data
I
F28 / Y8 / AE7
H3 / H25 / AE4
E23 / V7 / AC3
uart1_tx
UART1 Transmit data
O
E26 / AA8
L4 / G26
D24 / W7
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)
uart2_cts
UART2 Clear To Send
I
AF6 / AB26
N23/Y24
V6
uart2_rts
UART2 Request To Send
O
AE6 / AB25
P3/AA24
V5
uart2_rx
UART2 Receive data
I
AE5 / AD25
W3/AD21
V4
uart2_tx
UART2 Transmit data
O
AF5 / AA25
V3/AD22
W4
H18 / U26
W20 / F23
A23 / U23
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA
uart3_cts_rctx
UART3 Clear To Send (input),
Remote TX (output)
IO
uart3_rts_sd
UART3 Request To Send, IR enable
O
H19 / U27
V18 / F24
B23 / U24
uart3_rx_irrx
UART3 Receive data, IR and
Remote RX
I
AG24 / H20 / U28
AD23 / Y20 / H24
AD21 / B24 / T23
uart3_tx_irtx
UART3 Transmit data, IR TX
O
AH24 / H21 / T27
AD24 / V20 / G24
AC21 / C23 / T24
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Table 2-17. Serial Communication Interfaces – USB Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1
)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
T28
W19
R21
HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0)
hsusb0_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
hsusb0_stp
Dedicated for external transceiver Stop signal
O
T25
U20
R23
hsusb0_dir
Dedicated for external transceiver Data direction control from
PHY
I
R28
V19
P23
hsusb0_nxt
Dedicated for external transceiver Next signal from PHY
I
T26
W18
R22
hsusb0_data0
Dedicated for external transceiver Bidirectional data bus
IO
T27
V20
T24
hsusb0_data1
Dedicated for external transceiver Bidirectional data bus
IO
U28
Y20
T23
hsusb0_data2
Dedicated for external transceiver Bidirectional data bus
IO
U27
V18
U24
hsusb0_data3
Dedicated for external transceiver Bidirectional data bus
IO
U26
W20
U23
hsusb0_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
U25
W17
W24
hsusb0_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V28
Y18
V23
hsusb0_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V27
Y19
W23
hsusb0_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V26
Y17
T22
MM_FSUSB3
(1)
102
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-17. Serial Communication Interfaces – USB Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (1
)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
mm3_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AE3
K3
NA (2)
mm3_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AH3
M3
NA (2)
mm3_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AD1
U4
NA
mm3_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AE1
V3
NA
mm3_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AD2
R3
NA
mm3_txen_n
Transmit enable
IO
AC1
T3
NA
mm2_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AH7
AF7
AD11
mm2_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AF7
AF6
AC9
mm2_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AG8
AF9
AC11
mm2_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AH8
AE9
AD12
mm2_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AB2
T8
R5
mm2_txen_n
Transmit enable
IO
V3
V9
M4
mm1_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AG9
V2
AD5
mm1_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AF10
AB2
AC1
mm1_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AF11
AC3
AD6
mm1_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AG12
AD4
AC6
mm1_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AH12
AD3
AC7
mm1_txen_n
Transmit enable
IO
AH14
AD2
AD9
hsusb3_tll_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
W8
W2
NA
hsusb3_tll_stp
Dedicated for external transceiver Stop signal
I
AH3
M3
NA
hsusb3_tll_dir
dedicated for external transceiver Data direction control from
PHY
O
AF3
L3
NA
hsusb3_tll_nxt
Dedicated for external transceiver Next signal from PHY
O
AE3
K3
NA
hsusb3_tll_data0
Dedicated for external transceiver Bidirectional data bus
IO
AD1
U4
NA
hsusb3_tll_data1
Dedicated for external transceiver Bidirectional data bus
IO
AE1
V3
NA
hsusb3_tll_data2
Dedicated for external transceiver Bidirectional data bus
IO
AD2
R3
NA
hsusb3_tll_data3
Dedicated for external transceiver Bidirectional data bus
IO
AC1
T3
NA
hsusb3_tll_data4
Dedicated for external transceiver Bidirectional data bus
IO
AF6
P3
NA
hsusb3_tll_data5
Dedicated for external transceiver Bidirectional data bus
IO
AE6
N3
NA
hsusb3_tll_data6
Dedicated for external transceiver Bidirectional data bus
IO
AF5
V3
NA
hsusb3_tll_data7
Dedicated for external transceiver Bidirectional data bus
IO
AE5
W3
NA
hsusb2_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
AE7
AE4
AC3
hsusb2_stp
Dedicated for external transceiver Stop signal
O
AF7
AF6
AC9
hsusb2_dir
Dedicated for external transceiver Data direction control from
PHY
I
AG7
AE6
AC10
hsusb2_nxt
Dedicated for external transceiver Next signal from PHY
I
AH7
AF7
AD11
hsusb2_data0
Dedicated for external transceiver Bidirectional data bus
IO
AG8
AF9
AC11
hsusb2_data1
Dedicated for external transceiver Bidirectional data bus
IO
AH8
AE9
AD12
hsusb2_data2
Dedicated for external transceiver Bidirectional data bus
IO
AB2
T8
R5
hsusb2_data3
Dedicated for external transceiver Bidirectional data bus
IO
V3
V9
M4
hsusb2_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y2
W8
N4
hsusb2_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y3
U8
N3
hsusb2_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y4
V8
M5
MM_FSUSB2
MM_FSUSB1
HSUSB3_TLL
HSUSB2
(2)
This pin is not available on the CUS package. For a list of pins not supported on a particular package, see Table 1-1.
Submit Documentation Feedback
TERMINAL DESCRIPTION
103
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-17. Serial Communication Interfaces – USB Signals Description (continued)
SIGNAL NAME
TYPE (1
)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AA3
W7
N5
hsusb2_tll_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
AE7
AE4
AC3
hsusb2_tll_stp
Dedicated for external transceiver Stop signal
I
AF7
AF6
AC9
hsusb2_tll_dir
Dedicated for external transceiver data direction control from
PHY
O
AG7
AE6
AC10
hsusb2_tll_nxt
Dedicated for external transceiver Next signal from PHY
O
AH7
AF7
AD11
hsusb2_tll_data0
Dedicated for external transceiver Bidirectional data bus
IO
AG8
AF9
AC11
hsusb2_tll_data1
Dedicated for external transceiver Bidirectional data bus
IO
AH8
AE9
AD12
hsusb2_tll_data2
Dedicated for external transceiver Bidirectional data bus
IO
AB2
T8
R5
hsusb2_tll_data3
Dedicated for external transceiver Bidirectional data bus
IO
V3
V9
M4
hsusb2_tll_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y2
W8
N4
hsusb2_tll_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y3
U8
N3
hsusb2_tll_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y4
V8
M5
hsusb2_tll_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AA3
W7
N5
hsusb1_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
AE10
AB3
AD3
hsusb1_stp
Dedicated for external transceiver Stop signal
O
AF10
AB2
AC1
hsusb1_dir
Dedicated for external transceiver data direction control from
PHY
I
AF9
AA4
AC4
hsusb1_nxt
Dedicated for external transceiver Next signal from PHY
I
AG9
V2
AD5
hsusb1_data0
Dedicated for external transceiver Bidirectional data bus
IO
AF11
AC3
AD6
hsusb1_data1
Dedicated for external transceiver Bidirectional data bus
IO
AG12
AD4
AC6
hsusb1_data2
Dedicated for external transceiver Bidirectional data bus
IO
AH12
AD3
AC7
hsusb1_data3
Dedicated for external transceiver Bidirectional data bus
IO
AH14
AD2
AD9
hsusb1_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE11
Y3
AC5
hsusb1_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AH9
AB1
AD2
hsusb1_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AF13
AE3
AC8
hsusb1_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE13
AA3
AD8
hsusb1_tll_clk
Dedicated for external transceiver 60-MHz clock input to PHY
O
AE10
AB3
AD3
hsusb1_tll_stp
Dedicated for external transceiver Stop signal
I
AF10
AB2
AC1
hsusb1_tll_dir
Dedicated for external transceiver data direction control from
PHY
O
AF9
AA4
AC4
hsusb1_tll_nxt
Dedicated for external transceiver Next signal from PHY
O
AG9
V2
AD5
hsusb1_tll_data0
Dedicated for external transceiver Bidirectional data bus
IO
AF11
AC3
AD6
hsusb1_tll_data1
Dedicated for external transceiver Bidirectional data bus
IO
AG12
AD4
AC6
hsusb1_tll_data2
Dedicated for external transceiver Bidirectional data bus
IO
AH12
AD3
AC7
hsusb1_tll_data3
Dedicated for external transceiver Bidirectional data bus
IO
AH14
AD2
AD9
hsusb1_tll_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE11
Y3
AC5
hsusb1_tll_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AH9
AB1
AD2
hsusb1_tll_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AF13
AE3
AC8
hsusb1_tll_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE13
AA3
AD8
hsusb2_data7
DESCRIPTION
HSUSB2_TLL
HSUSB1
HSUSB1_TLL
104
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
2.5.4
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Removable Media Interfaces
Table 2-18. Removable Media Interfaces – MMC/SDIO Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1
)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
M23
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)
mmc1_clk
MMC/SD Output Clock
O
N28
N19
mmc1_cmd
MMC/SD command signal
IO
M27
L18
L23
mmc1_dat0
MMC/SD Card Data bit 0 / SPI Serial Input
IO
N27
M19
M22
mmc1_dat1
MMC/SD Card Data bit 1
IO
N26
M18
M21
mmc1_dat2
MMC/SD Card Data bit 2
IO
N25
K18
M20
mmc1_dat3
MMC/SD Card Data bit 3
IO
P28
N20
N23
mmc1_dat4
MMC/SD Card Data bit 4
IO
P27
M20
N22
mmc1_dat5
MMC/SD Card Data bit 5
IO
P26
P17
N21
mmc1_dat6
MMC/SD Card Data bit 6
IO
R27
P18
N20
mmc1_dat7
MMC/SD Card Data bit 7
IO
R25
P19
P24
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)
mmc2_clk
MMC/SD Output Clock
O
AE2
W10
Y1
mmc2_dir_dat0
Direction control for DAT0 signal case an external
transceiver used
O
AE4
V10
AB2
mmc2_dir_dat1
Direction control for DAT1 and DAT3 signals case an
external transceiver used
O
AH3
M3
AA2
mmc2_dir_dat2
Direction control for DAT2 signal case an external
transceiver used
O
AF19
E4
AC17
mmc2_dir_dat3
Direction control for DAT4, DAT5, DAT6, and DAT7
signals case an external transceiver used
O
AE21
G3
AB16
mmc2_clkin
MMC/SD input Clock
I
AE3
K3
AA1
mmc2_dat0
MMC/SD Card Data bit 0
IO
AH5
T10
AB3
mmc2_dat1
MMC/SD Card Data bit 1
IO
AH4
T9
Y3
mmc2_dat2
MMC/SD Card Data bit 2
IO
AG4
U10
W3
mmc2_dat3
MMC/SD Card Data bit 3
IO
AF4
U9
V3
mmc2_dat4
MMC/SD Card Data bit 4
IO
AE4 / AB3
P9 / V10
AB2 / T5
mmc2_dat5
MMC/SD Card Data bit 5
IO
AH3 / AB4
M3/P8
AA2 / R4
mmc2_dat6
MMC/SD Card Data bit 6
IO
AF3 / AA4
L3/P7
Y2 / T4
mmc2_dat7
MMC/SD Card Data bit 7
IO
AE3 / AC2
K3/R7
AA1 / T6
mmc2_dir_cmd
Direction control for CMD signal case an external
transceiver is used
O
AF3
L3
Y2
mmc2_cmd
MMC/SD command signal
IO
AG5
R10
AB5
AC1
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)
mmc3_clk
MMC/SD Output Clock
O
AB1 / AF10
R9 / AB2
mmc3_cmd
MMC/SD command signal
IO
AC3 / AE10
R8 / AB3
AD3
mmc3_dat0
MMC/SD Card Data bit 0 / SPI Serial Input
IO
AE4 / AE11
V10 / Y3
AB2 / AC5
mmc3_dat1
MMC/SD Card Data bit 1
IO
AH3 / AH9
M3/AB1
AA2 / AD2
mmc3_dat2
MMC/SD Card Data bit 2
IO
AF3 / AF13
L3/AE3
Y2 / AC8
mmc3_dat3
MMC/SD Card Data bit 3
IO
AE3 / AE13
K3/AA3
AA1 / AD8
mmc3_dat4
MMC/SD Card Data bit 4
IO
AF11
AC3
AD6
mmc3_dat5
MMC/SD Card Data bit 5
IO
AG9
V2
AD5
mmc3_dat6
MMC/SD Card Data bit 6
IO
AF9
AA4
AC4
mmc3_dat7
MMC/SD Card Data bit 7
IO
AH14
AD2
AD9
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback
TERMINAL DESCRIPTION
105
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
2.5.5
www.ti.com
Test Interfaces
Table 2-19. Test Interfaces – ETK Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
etk_ctl
ETK trace ctl
O
AE10
AB2
AD3
etk_clk
ETK trace clock
O
AF10
AB3
AC1
etk_d0
ETK data 0
O
AF11
AC3
AD6
etk_d1
ETK data 1
O
AG12
AD4
AC6
etk_d2
ETK data 2
O
AH12
AD3
AC7
etk_d3
ETK data 3
O
AE13
AA3
AD8
etk_d4
ETK data 4
O
AE11
Y3
AC5
etk_d5
ETK data 5
O
AH9
AB1
AD2
etk_d6
ETK data 6
O
AF13
AE3
AC8
etk_d7
ETK data 7
O
AH14
AD2
AD9
etk_d8
ETK data 8
O
AF9
AA4
AC4
etk_d9
ETK data 9
O
AG9
V2
AD5
etk_d10
ETK data 10
O
AE7
AE4
AC3
etk_d11
ETK data 11
O
AF7
AF6
AC9
etk_d12
ETK data 12
O
AG7
AE6
AC10
etk_d13
ETK data 13
O
AH7
AF7
AD11
etk_d14
ETK data 14
O
AG8
AF9
AC11
etk_d15
ETK data 15
O
AH8
AE9
AD12
(1)
106
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-20. Test Interfaces – JTAG Signals Description
(1)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
jtag_ntrst
Test Reset
I
AA17
U15
AB7
jtag_tck
Test Clock
I
AA13
V14
AB6
jtag_rtck
ARM Clock
Emulation
O
AA12
W13
AA7
jtag_tms_tmsc
Test Mode Select
IO
AA18
V15
AA9
jtag_tdi
Test Data Input
I
AA20
U16
AB10
jtag_tdo
Test Data Output
O
AA19
Y13
AB9
jtag_emu0
Test emulation 0
IO
AA11
Y15
AC24
jtag_emu1
Test emulation 1
IO
AA10
Y14
AD24
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Table 2-21. Test Interfaces – SDTI Signals Description
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
SUBSYSTEM
SIGNAL
MULTIPLEXING (2)
Serial clock dual edge
O
AF7 / AA11 / AG8
AF6 / Y15 / AF9
AC9 / AC24 / AC11
etk_d11 / jtag_emu0 /
etk_d14
sdti_txd0
Serial data out (System Trace
messages)
O
AG7 / AA10 / AA11
AE6 / Y14 / Y15
AC10 / AD24 /
AC24
etk_d12 / jtag_emu1 /
jtag_emu0
sdti_txd1
Serial data out (System Trace
messages)
O
AH7 / AA10
AF7 / Y14
AD11 / AD24
etk_d13 / jtag_emu1
sdti_txd2
Serial data out (System Trace
messages)
O
AG8
AF9
AC11
etk_d14
sdti_txd3
Serial data out (System Trace
messages)
O
AH8
AE9
AD12
etk_d15
SIGNAL
NAME
sdti_clk
(1)
(2)
DESCRIPTION
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
The subsystem pin multiplexing options are not described in and
Table 2-22. Test Interfaces – HWDBG Signals Description
(1)
SIGNAL NAME
DESCRIPTION
TYPE (1)
hw_dbg0
Debug signal 0
hw_dbg1
Debug signal 1
hw_dbg2
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
O
A24 / AF10
C23/AB2
AC1/A22
O
A23 / AE10
D23/AB3
AD3/E18
Debug signal 2
O
C27/ AF11
C26/AC3
AD6/J19
hw_dbg3
Debug signal 3
O
C23 / AG12
B23/AD4
AC6/H24
hw_dbg4
Debug signal 4
O
B24 / AH12
A24/AD3
AC7/G19
hw_dbg5
Debug signal 5
O
C24 / AE13
B24/AA3
AD8/F19
hw_dbg6
Debug signal 6
O
D24 / AE11
D24/Y3
AC5/G20
hw_dbg7
Debug signal 7
O
A25 / AH9
C24/AB1
AD2/B21
hw_dbg8
Debug signal 8
O
B25 / AF13
D25/AE3
AC8/F21
hw_dbg9
Debug signal 9
O
C26 / AH14
E26/AD2
AD9/G21
hw_dbg10
Debug signal 10
O
B23 / AF9
A23/AA4
AC4/F18
hw_dbg11
Debug signal 11
O
D25 / AG9
D26/V2
AD5/J20
hw_dbg12
Debug signal 12
O
D28 / AE7
G25/AE4
AC3/G22
hw_dbg13
Debug signal 13
O
D26 / AF7
K24/AF6
AC9/E22
hw_dbg14
Debug signal 14
O
E26 / AG7
G26/AE6
AC10/D24
hw_dbg15
Debug signal 15
O
F28 / AH7
H25/AF7
AD11/E23
hw_dbg16
Debug signal 16
O
F27 / AG8
H26/AF9
AC11/E24
hw_dbg17
Debug signal 17
O
G26 / AH8
J26/AE9
AD12/F23
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback
TERMINAL DESCRIPTION
107
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
2.5.6
www.ti.com
Miscellaneous
Table 2-23. Miscellaneous – GP Timer Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
gpt8_pwm_evt
PWM or event for GP
timer 8
IO
N8 / AD25 / V3
C5 / AD21/ V9
G4/ M4
gpt9_pwm_evt
PWM or event for GP
timer 9
IO
T8 / AB26 / Y2
B4 / W8 / Y24
F4 / N4
gpt10_pwm_evt
PWM or event for GP
timer 10
IO
R8 / AB25 / Y3
C4 / U8 / AA24
G5 / N3
gpt11_pwm_evt
PWM or event for GP
timer 11
IO
P8 / AA25 / Y4
B5 / V8 / AD22
F3 / M5
(1)
108
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
2.5.7
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
General-Purpose IOs
Table 2-24. General-Purpose IOs Signals Description (1)
(1)
(2)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
gpio_0
General-purpose IO 0
IO
AF26
V16
W16
gpio_1
General-purpose IO 1
IO
AF25
W15
Y13
gpio_2
General-purpose IO 2
IO
AH26
F3
AB12
gpio_3
General-purpose IO 3
IO
AG26
D3
AC16
gpio_4
General-purpose IO 4
IO
AE14
C3
AD17
gpio_5
General-purpose IO 5
IO
AF18
E3
AD18
gpio_6
General-purpose IO 6
IO
AF19
E4
AC17
gpio_7
General-purpose IO 7
IO
AE21
G3
AB16
gpio_8
General-purpose IO 8
IO
AF21
D4
AA15
gpio_9
General-purpose IO 9
IO
AF22
V12
AD23
gpio_10
General-purpose IO 10
IO
AG25
AE14
Y7
gpio_11
General-purpose IO 11
IO
AA11
Y15
AC24
gpio_12
General-purpose IO 12
IO
AF10
AB2
AC1
gpio_13
General-purpose IO 13
IO
AE10
AB3
AD3
gpio_14
General-purpose IO 14
IO
AF11
AC3
AD6
gpio_15
General-purpose IO 15
IO
AG12
AD4
AC6
gpio_16
General-purpose IO 16
IO
AH12
AD3
AC7
gpio_17
General-purpose IO 17
IO
AE13
AA3
AD8
gpio_18
General-purpose IO 18
IO
AE11
Y3
AC5
gpio_19
General-purpose IO 19
IO
AH9
AB1
AD2
gpio_20
General-purpose IO 20
IO
AF13
AE3
AC8
gpio_21
General-purpose IO 21
IO
AH14
AD2
AD9
gpio_22
General-purpose IO 22
IO
AF9
AA4
AC4
gpio_23
General-purpose IO 23
IO
AG9
V2
AD5
gpio_24
General-purpose IO 24
IO
AE7
AE4
AC3
gpio_25
General-purpose IO 25
IO
AF7
AF6
AC9
gpio_26
General-purpose IO 26
IO
AG7
AE6
AC10
gpio_27
General-purpose IO 27
IO
AH7
AF7
AD11
gpio_28
General-purpose IO 28
IO
AG8
AF9
AC11
gpio_29
General-purpose IO 29
IO
AH8
AE9
AD12
gpio_30
General-purpose IO 30
IO
AF24
AD7
Y10
gpio_31
General-purpose IO 31
IO
AA10
Y14
AD24
gpio_34
General-purpose IO 34
IO
N4
J2
K4
gpio_35
General-purpose IO 35
IO
M4
H1
K3
gpio_36
General-purpose IO 36
IO
L4
H2
K2
gpio_37
General-purpose IO 37
IO
K4
G2
J4
gpio_38
General-purpose IO 38
IO
T3
F1
J3
gpio_39
General-purpose IO 39
IO
R3
F2
J2
gpio_40
General-purpose IO 40
IO
N3
E1
J1
gpio_41
General-purpose IO 41
IO
M3
E2
H1
gpio_42
General-purpose IO 42
IO
L3
D1
H2
gpio_43
General-purpose IO 43
IO
K3
D2
G2
gpio_44
General-purpose IO 44
IO
H2
V1
R2
gpio_45
General-purpose IO 45
IO
K2
Y1
T2
gpio_46
General-purpose IO 46
IO
P1
T1
U1
gpio_47
General-purpose IO 47
IO
R1
U2
R3
NA in table stands for "Not Applicable".
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback
TERMINAL DESCRIPTION
109
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-24. General-Purpose IOs Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_48
General-purpose IO 48
IO
R2
U1
T3
gpio_49
General-purpose IO 49
IO
T2
P1
U2
gpio_50
General-purpose IO 50
IO
W1
L2
V1
gpio_51
General-purpose IO 51
IO
Y1
M2
V2
gpio_52
General-purpose IO 52
IO
H3
AD1
NA
gpio_53
General-purpose IO 53
IO
V8
A3
NA
gpio_54
General-purpose IO 54
IO
U8
B6
D2
gpio_55
General-purpose IO 55
IO
T8
B4
F4
gpio_56
General-purpose IO 56
IO
R8
C4
G5
gpio_57
General-purpose IO 57
IO
P8
B5
F3
gpio_58
General-purpose IO 58
IO
N8
C5
G4
gpio_59
General-purpose IO 59
IO
T4
N1
W2
gpio_60
General-purpose IO 60
IO
G3
K2
K5
gpio_61
General-purpose IO 61
IO
U3
J1
L1
gpio_62
General-purpose IO 62
IO
H1
AC6
E1
gpio_63
General-purpose IO 63
IO
L8
AC8
NA
gpio_64
General-purpose IO 64
IO
K8
B3
NA
gpio_65
General-purpose IO 65
IO
J8
C6
C2
gpio_66
General-purpose IO 66
IO
D28
G25
G22
gpio_67
General-purpose IO 67
IO
D26
K24
E22
gpio_68
General-purpose IO 68
IO
D27
M25
F22
gpio_69
General-purpose IO 69
IO
E27
F26
J21
gpio_70
General-purpose IO 70
IO
AG22
AE21
AC19
gpio_71
General-purpose IO 71
IO
AH22
AE22
AB19
gpio_72
General-purpose IO 72
IO
AG23
AE23
AD20
gpio_73
General-purpose IO 73
IO
AH23
AE24
AC20
gpio_74
General-purpose IO 74
IO
AG24
AD23
AD21
gpio_75
General-purpose IO 75
IO
AH24
AD24
AC21
gpio_76
General-purpose IO 76
IO
E26
G26
D24
gpio_77
General-purpose IO 77
IO
F28
H25
E23
gpio_78
General-purpose IO 78
IO
F27
H26
E24
gpio_79
General-purpose IO 79
IO
G26
J26
F23
gpio_80
General-purpose IO 80
IO
AD28
AC26
AC22
gpio_81
General-purpose IO 81
IO
AD27
AD26
AC23
gpio_82
General-purpose IO 82
IO
AB28
AA25
AB22
gpio_83
General-purpose IO 83
IO
AB27
Y25
Y22
gpio_84
General-purpose IO 84
IO
AA28
AA26
W22
gpio_85
General-purpose IO 85
IO
AA27
AB26
V22
gpio_86
General-purpose IO 86
IO
G25
L25
J22
gpio_87
General-purpose IO 87
IO
H27
L26
G23
gpio_88
General-purpose IO 88
IO
H26
M24
G24
gpio_89
General-purpose IO 89
IO
H25
M26
H23
gpio_90
General-purpose IO 90
IO
E28
F25
D23
gpio_91
General-purpose IO 91
IO
J26
N24
K22
gpio_92
General-purpose IO 92
IO
AC27
AC25
V21
gpio_93
General-purpose IO 93
IO
AC28
AB25
W21
gpio_94
General-purpose IO 94
IO
A24
C23
A22
gpio_95
General-purpose IO 95
IO
A23
D23
E18
gpio_96
General-purpose IO 96
IO
C25
C25
B22
gpio_97
General-purpose IO 97
IO
C27
C26
J19
110
TERMINAL DESCRIPTION
BALL BOTTOM
(CUS Pkg.)
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-24. General-Purpose IOs Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (2)
gpio_98
General-purpose IO 98
IO
C23
B23
H24
gpio_99
General-purpose IO 99
I
AG17
AE16
AB18
gpio_100
General-purpose IO 100
I
AH17
AE15
AC18
gpio_101
General-purpose IO 101
IO
B24
A24
G19
gpio_102
General-purpose IO 102
IO
C24
B24
F19
gpio_103
General-purpose IO 103
IO
D24
D24
G20
gpio_104
General-purpose IO 104
IO
A25
C24
B21
gpio_105
General-purpose IO 105
IO
K28
P25
L24
gpio_106
General-purpose IO 106
IO
L28
P26
K24
gpio_107
General-purpose IO 107
IO
K27
N25
J23
gpio_108
General-purpose IO 108
IO
L27
N26
K23
gpio_109
General-purpose IO 109
IO
B25
D25
F21
gpio_110
General-purpose IO 110
IO
C26
E26
G21
gpio_111
General-purpose IO 111
IO
B26
E25
C22
gpio_112
General-purpose IO 112
I
AG19
AD17
NA
gpio_113
General-purpose IO 113
I
AH19
AD16
NA
gpio_114
General-purpose IO 114
I
AG18
AE18
NA
gpio_115
General-purpose IO 115
I
AH18
AE17
NA
gpio_116
General-purpose IO 116
IO
P21
U18
V20
gpio_117
General-purpose IO 117
IO
N21
R18
T21
gpio_118
General-purpose IO 118
IO
R21
T18
V19
gpio_119
General-purpose IO 119
IO
M21
R19
R20
gpio_120
General-purpose IO 120
IO
N28 / T28
W19 / N19
M23 / R21
gpio_121
General-purpose IO 121
IO
M27 / T25
U20 / L18
L23 / R23
gpio_122
General-purpose IO 122
IO
N27 / R28
V19 / M19
M22 / P23
gpio_123
General-purpose IO 123
IO
N26
M18
M21
gpio_124
General-purpose IO 124
IO
N25 / T26
W18 / K18
M20/R22
gpio_125
General-purpose IO 125
IO
P28 / T27
V20 / N20
N23/T24
gpio_126
General-purpose IO 126
IO
D25 / P27
M20 / D26
J20 / N22
gpio_127
General-purpose IO 127
IO
P26
P17
N21
gpio_128
General-purpose IO 128
IO
R27
P18
N20
gpio_129
General-purpose IO 129
IO
R25
P19
P24
gpio_130
General-purpose IO 130
IO
AE2 / U28
Y20 / W10
Y1 / T23
gpio_131
General-purpose IO 131
IO
AG5 / U27
V18 / R10
AB5 / U24
gpio_132
General-purpose IO 132
IO
AH5
T10
AB3
gpio_133
General-purpose IO 133
IO
AH4
T9
Y3
gpio_134
General-purpose IO 134
IO
AG4
U10
W3
gpio_135
General-purpose IO 135
IO
AF4
U9
V3
gpio_136
General-purpose IO 136
IO
AE4
V10
AB2
gpio_137
General-purpose IO 137
IO
AH3
M3
AA2
gpio_138
General-purpose IO 138
IO
AF3
L3
Y2
gpio_139
General-purpose IO 139
IO
AE3
K3
AA1
gpio_140
General-purpose IO 140
IO
AF6
N3
V6
gpio_141
General-purpose IO 141
IO
AE6
P3
V5
gpio_142
General-purpose IO 142
IO
AF5
V3
W4
gpio_143
General-purpose IO 143
IO
AE5
W3
V4
gpio_144
General-purpose IO 144
IO
AB26
Y24
NA
gpio_145
General-purpose IO 145
IO
AB25
AA24
NA
gpio_146
General-purpose IO 146
IO
AA25
AD22
NA
gpio_147
General-purpose IO 147
IO
AD25
AD21
NA
Submit Documentation Feedback
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
TERMINAL DESCRIPTION
111
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-24. General-Purpose IOs Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
gpio_148
General-purpose IO 148
IO
gpio_149
General-purpose IO 149
IO
gpio_150
General-purpose IO 150
IO
gpio_151
General-purpose IO 151
gpio_152
General-purpose IO 152
gpio_153
gpio_154
112
BALL BOTTOM
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
AA8
L4
W7
AA9
R2
W6
W8
W2
AC2
IO
Y8
H3
V7
IO
AE1
V3
NA
General-purpose IO 153
IO
AD1
U4
NA
General-purpose IO 154
IO
AD2
R3
NA
gpio_155
General-purpose IO 155
IO
AC1
T3
NA
gpio_156
General-purpose IO 156
IO
Y21
U19
W19
gpio_157
General-purpose IO 157
IO
AA21
V17
AB20
gpio_158
General-purpose IO 158
IO
V21
U17
W18
gpio_159
General-purpose IO 159
IO
U21
T20
Y18
gpio_160
General-purpose IO 160
IO
T21
T19
AA18
gpio_161
General-purpose IO 161
IO
K26
P20
AA19
gpio_162
General-purpose IO 162
IO
W21
T17
V18
gpio_163
General-purpose IO 163
IO
H18
F23
A23
gpio_164
General-purpose IO 164
IO
H19
F24
B23
gpio_165
General-purpose IO 165
IO
H20
H24
B24
gpio_166
General-purpose IO 166
IO
H21
G24
C23
gpio_167
General-purpose IO 167
IO
B23
A23
F18
gpio_168
General-purpose IO 168
IO
AF15
C2
AC15
gpio_169
General-purpose IO 169
IO
U26
W20
U23
gpio_170
General-purpose IO 170
IO
J25
J23
A24
gpio_171
General-purpose IO 171
IO
AB3
P9
T5
gpio_172
General-purpose IO 172
IO
AB4
P8
R4
gpio_173
General-purpose IO 173
IO
AA4
P7
T4
gpio_174
General-purpose IO 174
IO
AC2
R7
T6
gpio_175
General-purpose IO 175
IO
AC3
R8
NA
gpio_176
General-purpose IO 176
IO
AB1
R9
NA
gpio_177
General-purpose IO 177
IO
AB2
T8
R5
gpio_178
General-purpose IO 178
IO
AA3
W7
N5
gpio_179
General-purpose IO 179
IO
Y2
W8
N4
gpio_180
General-purpose IO 180
IO
Y3
U8
N3
gpio_181
General-purpose IO 181
IO
Y4
V8
M5
gpio_182
General-purpose IO 182
IO
V3
V9
M4
gpio_183
General-purpose IO 183
IO
AE15
C1
AC14
gpio_184
General-purpose IO 184
IO
AF14
AB4
AC13
gpio_185
General-purpose IO 185
IO
AG14
AC4
AC12
gpio_186
General-purpose IO 186
IO
AE22
W11
AA6
gpio_188
General-purpose IO 188
IO
U25
W17
W24
gpio_189
General-purpose IO 189
IO
V28
Y18
V23
gpio_190
General-purpose IO 190
IO
V27
Y19
W23
gpio_191
General-purpose IO 191
IO
V26
Y17
T22
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
2.5.8
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Power Supplies
Table 2-25. Power Supplies Signals Description (1)
SIGNAL NAME
DESCRIPTION
BALL BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
vdd_mpu
ARM power domain
Y9 / W9 / T9 / R9 /
M9 / L9 / J9 / Y10 /
U10 / T10 / R10 /
N10 / M10 / L10 /
J10 / Y11 / W11 /
K11 / J11 / W12 /
K13 / Y14 / K14 /
J14 / Y15 / W15 /
J15
NA
H7/ N7/ U7/ V7/ N8/
G9/ L9/ M9/ W9/ Y9/
M10/ P10/ K11/ U11/
V11/ Y11/ G12/ D13/
U13
NA
W13/ W12/ V13/
V12/ U13/ U12/ T8/
T7/ R8/ R7/ R6/ N8/
N7/ N6/ M12/ M8/
M7/ M6/ L12/ L11/
J10/ J9/ H10/ H9/
G10/ G9/F10
vdd_core
Core power domain
AC4 / J4 / H4 / D8 /
AE9 / D9 / D15 /
Y16 / AE18 / Y18 /
W18 / K18 / J18 /
AE19 / Y19 / U19 /
T19 / N19 / M19 /
J19 / Y20 / W20 /
V20 / U20 / P20 /
N20 / K20 / J20 /
D22 / D23 / AE24 /
M25 / L25 / E25
NA
M7/ T7/ Y8/ G11/ Y12/
D15/ M17/ G18/ H20/
R20/ AC21
NA
T20/ T19/ T18/ T17/
R19/ R18/ R17/
M15/ M14/ L15/
L14/ K19/ K18/ K17/
J18/ J17/ H13/ H12/
G13/ G12/ F13/ F12
cap_vdd_wkup
Wakeup/EMU/memor
y domains, connect
capacitor
AA15
NA
K14
NA
Y12
cap_vdd_d
Decoupling capacitor
AH20
NA
AE19
NA
NA
vdds_dpll_dll
DLL IO power
domain (1.8 V):
internal connection to
PLL_VDDS, power
supply for 3PLL (1.8
V)
K15
NA
K13
NA
G18
vdda_dac
Video DAC power
plane
V25
NA
V25
NA
AB13
vssa_dac
Video DAC ground
plane
Y26
NA
V24
NA
AB15
vdds
IO power plane
AD3 / AD4 / W4 /
AF8 / AE8 / AF16 /
AE16 / AF23 /
AE23 / F25 / F26 /
AG27/ AE27/ AG20/
H28/ AG21
NA
G4/ M4/ T4/ Y4/ L7/
AC7/ D9/ AE10/ C11/
J15/ AC15/ A18/ J18/
AC18/ AD20/ E24/
L24/ T24/ W24/ AC24
NA
Y9 / W10 / W9 /
V10 / V9 / U10 /
N19 / N18 / N17 /
M19 / M18 / M17
vdds_mem
Memory IO power
plane
U1 / J1 / F1 / J2 /
F2 / R4 / B5 / A5 /
AH6 / B8 / A8 / B12
/ A12 / D16 / C16 /
B18 / A18 / B22 /
A22 / G28 / C28
AC5 / P1 / H1 / F23
/ E1 / C23 / A4 / A7
/ A10 / A15 / A18
vdds_dpll_per
Peripheral DPLLs
power rail
AA16
NA
U14
NA
U17
vdds_wkup_bg
For wakeup LDO and
VDDA (2 LDOs
SRAM and BG)
AA14
NA
W14
NA
AA13
(1)
K8 / K7 / K6 / J8 /
J7 / J6 / H15 / G16
/ G15 / F16 / F15 /
E16
NA in this table stands for "Not applicable".
Submit Documentation Feedback
TERMINAL DESCRIPTION
113
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-25. Power Supplies Signals Description (continued)
SIGNAL NAME
DESCRIPTION
BALL BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL BOTTOM
(CUS Pkg.)
AG2 / U2 / B2 /
AG3 / W3 / P3 / J3 /
E3 / A3 / P4 / E4 /
AG6 / D7 / C7 / V9 /
U9 / P9 / N9 / K9 /
W10 / V10 / P10 /
K10 / D10 / C10 /
AF12 / AE12 / Y12 /
K12 / J12 / Y13 /
W13 / J13 / D13 /
C13 / W14 / K16 /
J16 / Y17 / W17 /
K17 / J17 / W19 /
V19 / R19 / P19 /
L19 / K19 / D19 /
C19 / AF20 / AE20 /
T20 / R20 / M20 /
L20 / D21 / C22 /
AC25 / Y25 / W25 /
AC26 / R26 / L26 /
A26 / G27 / B27/
AA26/ M28/ AG16/
AH21
H2 / B18 / AC20 /
AB5 / AB14 / AB20
/ P2 / F22 / E2 /
C22 / B4 / B7 / B10
/ B15
G1/ K1/ R1/ W1/ B2/
H4/ N4/ R4/ W4/ AB5/
A6/ D7/ Y7/AE7/ A8/
G8/ D10/ G10/ L10/
N10/ Y10/ AC10/ C12/
D12/A13/ D14/ AD14/
K15/ Y16/ L17/ N17/
R17/ D18/ D20/G20/
E22/ AB22/ G23/ L23/
T23/ W23/ AF23/ B25/
K25/U25/ AD25
C1/ F1/ H2/ M2/ R2/
Y6/AA7/ Y11/ AA16/
W20/P20/ L21/ H20/
F20/ B14/A13/ A7
W15/ V16/ V15/
U16/ U15/ U14/
U11/ U9/T16/ T15/
T14/ T13/ T12/ T11/
T10/ T9/ R15/ R14/
R11/ R10/ P17/
P15/ P14/ P13/P12/
P11/ P10/ P8/ N16/
N15/ N14/ N13/
N12/ N11/ N10/ N9/
M16/ M13/ M11/
M10/ M9/ L17/ L13/
L10/ L8/ K15/ K14/
K11/ K10/ J16/ J15/
J14/ J13/ J12/
J11/H16/ H14/ H11
vss
Ground
vdds_sram
SRAM LDOs
W16
NA
U12
NA
AA12
vdds_mmc1
MMC IO power
domain for CMD,
CLK, and DAT(0..3)
K25
NA
N23
NA
N24
vdds_mmc1a
Power supply for
MMC DAT [4..7]
P25
NA
P23
NA
H8
cap_vdd_sram_m
pu
SRAM LDO
capacitance for
VDDRAM1
V4
NA
N9
NA
U8
cap_vdd_sram_co
re
SRAM LDO
capacitance for
VDDRAM2
L21
NA
K20
NA
H17
114
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
2.5.9
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
System and Miscellaneous Terminals
Table 2-26. System and Miscellaneous Signals Description
SIGNAL NAME
TYPE (1
DESCRIPTION
)
BALL
BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL
BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
BALL
BOTTOM
(CUS Pkg.)
sys_32k
32-kHz clock input
I
AE25
NA
AE20
NA
AA16
sys_xtalin
Main input clock. Oscillator input or LVCMOS at
19.2, 13, or 12 MHz.
I
AE17
NA
AF19
NA
AD15
sys_xtalout
Output of oscillator
O
AF17
NA
AF20
NA
AD14
sys_altclk
Alternate clock source selectable for GPTIMERs
(maximum 54 MHz), USB (48 MHz), or
NTSC/PAL (54 MHz)
I
J25
NA
J23
NA
A24
sys_clkreq
Request from OMAP3515/03 device for system
clock (open source type)
IO
AF25
NA
W15
NA
Y13
sys_clkout1
Configurable output clock1
O
AG25
NA
AE14
NA
Y7
sys_clkout2
Configurable output clock2
O
AE22
NA
W11
NA
AA6
sys_boot0
Boot configuration mode bit 0
I
AH26
NA
F3
NA
AB12
sys_boot1
Boot configuration mode bit 1
I
AG26
NA
D3
NA
AC16
sys_boot2
Boot configuration mode bit 2
I
AE14
NA
C3
NA
AD17
sys_boot3
Boot configuration mode bit 3
I
AF18
NA
E3
NA
AD18
sys_boot4
Boot configuration mode bit 4
I
AF19
NA
E4
NA
AC17
sys_boot5
Boot configuration mode bit 5
I
AE21
NA
G3
NA
AB16
sys_boot6
Boot configuration mode bit 6
I
AF21
NA
D4
NA
AA15
sys_nrespwron
Power On Reset
I
AH25
NA
V13
NA
AA10
sys_nreswarm
Warm Boot Reset (open drain output)
IOD
AF24
NA
AD7
NA
Y10
sys_nirq
External FIQ input
I
AF26
NA
V16
NA
W16
sys_nvmode1
Indicates the voltage mode
O
AD26
NA
AD15
NA
Y16
sys_nvmode2
Indicates the voltage mode
O
AE26
NA
W16
NA
Y15
sys_off_mode
Indicates the voltage mode
O
AF22
NA
V12
NA
AD23
sys_ndmareq0
External DMA request 0 (system expansion).
Level (active low) or edge (falling) selectable.
I
U8
NA
B6
NA
D2
sys_ndmareq1
External DMA request 1 (system expansion).
Level (active low) or edge (falling) selectable.
I
T8 / J8
NA
B4 / C6
NA
F4 / C2
sys_ndmareq2
External DMA request 2 (system expansion).
Level (active low) or edge (falling) selectable.
I
L3 / R8
NA
D1 / C4
NA
H2 / G5
sys_ndmareq3
External DMA request 3 (system expansion).
Level (active low) or edge (falling) selectable.
I
K3 / P8
NA
D2 / B5
NA
G2 / F3
sys_secure_
indicator
MSECURE transactions indicator
O
AG9
NA
V2
NA
AD5
sys_drm_
msecure
MSECURE output
O
AF9
NA
AA4
NA
AC4
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
2.5.10 Feed-Through Balls (CBC and CBB Packages)
Feed-through pins represent a wire. That is, they do not connect to the silicon die, but rather just connect
from the bottom ball to the top ball. The purpose of these balls is to allow for different PoP packages.
Table 2-27 and Table 2-28 list the feed-through balls on the OMAP35x CBC and CBB packages,
respectively.
Table 2-27. CBC Package Feed-Through Balls
JEDEC 14x14mm, 0.65mm,
152ball
JEDEC DESCRIPTION
NC
d-vdd
NC
(1)
(1)
BALL TOP
BALL BOTTOM
FEED-THROUGH BALL
NAME
No Connect
A1
A1
pop_a1_a1
DDR Supply
J1
L1
pop_j1_l1
No Connect
AA1
AF1
pop_aa1_af1
For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
Submit Documentation Feedback
TERMINAL DESCRIPTION
115
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 2-27. CBC Package Feed-Through Balls (continued)
f-vdd
Flash Supply
N2
T2
pop_n2_t2
f-vdd
Flash Supply
T2
Y2
pop_t2_y2
NC
No Connect
W2
AE2
pop_w2_ae2
NC
No Connect
Y2
AF4
pop_y2_af4
f-vdd
Flash Supply
AA6
AF5
pop_aa6_af5
f-vdd
Flash Supply
Y7
AF8
pop_y7_af8
NC, Int
No Connect; Interrupt when
using OneNAND POP
Y9
AF10
pop_y9_af10
f-nbe0, cle0
No Connect/CLE
AA10
AF12
pop_aa10_af12
d-vdd
DDR Supply/ POP FLASH
vpp supply
AA11
AF13
pop_aa11_af13
d-tq
No Connect/ DDR die
temperature sensor
AA12
AF14
pop_aa12_af14
vss
Shared Ground
AA13
AF15
pop_aa13_af15
d-vdd
DDR Supply
Y14
AF17
pop_y14_af17
d-vddq
DDR Supply
AA14
AF16
pop_aa14_af16
d-vdd
DDR Supply
B16
A20
pop_b16_a20
vss
Shared Ground
Y17
AF21
pop_y17_af21
d-vdd
DDR Supply
AA17
AF18
pop_aa17_af18
vss
Shared Ground
Y19
AF24
pop_y19_af24
d-vddq
DDR Supply
AA19
AF22
pop_aa19_af22
NC
No Connect
A20
A25
pop_a20_a25
NC
No Connect
Y20
AE25
pop_y20_ae25
NC
No Connect
AA20
AF25
pop_aa20_af25
NC
No Connect
A21
A26
pop_a21_a26
NC
No Connect
B21
B26
pop_b21_b26
d-vdd
DDR Supply
H21
K26
pop_h21_k26
d-vdd
DDR Supply
P21
U26
pop_p21_u26
NC
No Connect
Y21
AE26
pop_y21_ae26
NC
No Connect
AA21
AF26
pop_aa21_af26
JEDEC 12x12, 0.5mm,
168ball
JEDEC DESCRIPTION
d-vdd
d-vdd
Table 2-28. CBB Package Feed-Through Balls
(1)
BALL TOP
BALL BOTTOM
FEED-THROUGH BALL
NAME
DDR Supply
A12
A15
pop_a12_a15
DDR Supply
AA23
AE28
pop_aa23_ae28
d-vdd
DDR Supply
H23
AF28
pop_h23_af28
d-vdd
DDR Supply
K1
J28
pop_k1_j28
d-vdd
DDR Supply
Y23
M1
pop_y23_m1
f-vdd
Flash Supply
AA1
AA1
pop_aa1_aa1
f-vdd
Flash Supply
AC8
AF1
pop_ac8_af1
f-vdd
Flash Supply
AC13
AH10
pop_ac13_ah10
f-vdd
Flash Supply
L1
AH15
pop_l1_ah15
f-vdd
Flash Supply
U1
N1
pop_u1_n1
f-vpp
Flash vpp supply
AC11
AH13
pop_ac11_ah13
NC, int0
No Connect/PoP OneNAND
interrupt
AB9
AG11
pop_ab9_ag11
NC, int1
No Connect/PoP OneNAND
interrupt
AC9
AH11
pop_ac9_ah11
NC
No Connect
A1
A1
pop_a1_a1
NC
No Connect
A2
A2
pop_a2_a2
NC
No Connect
A22
A27
pop_a22_a27
NC
No Connect
A23
A28
pop_a23_a28
(1)
116
For more details on the feedthrough pin connections, please refer to the PoP memory datasheet.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 2-28. CBB Package Feed-Through Balls (continued)
NC
No Connect
AB1
AG1
pop_ab1_ag1
NC
No Connect
AB2
NA
NA
NC
No Connect
AB22
NA
NA
NC
No Connect
AB23
AG28
pop_ab23_ag28
NC
No Connect
AC1
AH1
pop_ac1_ah1
NC
No Connect
AC2
AH2
pop_ac2_ah2
NC
No Connect
AC22
AH27
pop_ac22_ah27
NC
No Connect
AC23
AH28
pop_ac23_ah28
NC
No Connect
B1
B1
pop_b1_b1
NC
No Connect
B2
NA
NA
NC
No Connect
B22
NA
NA
NC
No Connect
B23
B28
pop_b23_b28
f-rst#, rp#
Flash reset
AB11
AG13
pop_ab11_ag13
d-tq
DDR temperature alert
AC14
AH16
pop_ac14_ah16
vss
Shared Ground
AA2
AA2
pop_aa2_aa2
vss
Shared Ground
U2
AF2
pop_u2_af2
vss
Shared Ground
AA22
AF27
pop_aa22_af27
vss
Shared Ground
AB8
AG10
pop_ab8_ag10
vss
Shared Ground
AB13
AG15
pop_ab13_ag15
vss
Shared Ground
B12
B15
pop_b12_b15
vss
Shared Ground
H22
J27
pop_h22_j27
vss
Shared Ground
K2
M2
pop_k2_m2
vss
Shared Ground
K22
M26
pop_k22_m26
vss
Shared Ground
L2
N2
pop_l2_n2
Submit Documentation Feedback
TERMINAL DESCRIPTION
117
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
3 ELECTRICAL CHARACTERISTICS
3.1 Power Domains
The OMAP3515/03 device integrates enhanced features that dynamically adapt energy consumption
according to application needs and performance requirements.
The OMAP3515/03 device includes an enhanced power-management scheme based on:
• Nine independent functional voltage domains on chip partitioning
• Multiple voltage domains
• Voltage scaling support
• Enhanced memory retention support
• Optimized device off mode
• Centralized management of power, reset, and clock
The external power supplies of OMAP3515/03 are:
• vdd_mpu for the ARM
• vdd_core for macros
• vdds for IO macros
• vdds_mem for memory macros
• vdds_sram for SRAM LDOs
• vdds_dpll_dll for DLL IO
• vdds_dpll_per for peripheral DPLLs
• vdds_wkup_bg for wakeup LDO and VDDA (2 LDOs: SRAM and BandGap)
• vdda_dac for video DAC
• vdds_mmc1 and vdds_mmc1a for MMC IO
• The supply voltages are detailed in Table 3-3.
Figure 3-1 illustrates the power domains:
118
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
vdd_mpu
vdds_dpll_dll
DLL/DCDL
BandGap
vdds_wkup_bg
LDO3
1.0 V/1.2 V
WKUP
cap_vdd_wkup
EMU
vdds
SRAM1
ARRAY
MPU
BCK
MEM
VDDS
MEM
DPLL_MPU
cap_vdd_sram_mpu
SRAM 1 LDO
0 V/1.0 V/1.2 V
VDDS
vdds_mem
LDO
in 1.8 V
out 1.2 V
vdd_mpu domain
vdds_sram
vpp
eFUSE
LDO
in 1.8 V
out 1.2 V
vdd_core
Core
SRAM2
ARRAY
cap_vdd_sram_core
DPLL_CORE
vdds_mmc1
vdds_mmc1a
SRAM 2 LDO
0 V/1.0 V/1.2 V
MMC1
LDO
HSDIVIDER
LDO
in 1.8 V
out 1.2 V
Periph1
tv_ref
(for capacitor)
DPLL4
vdds_dpll_per
LDO
vdda_dac
HSDIVIDER
Dual Video DAC
LDO
in 1.8 V
out 1.2 V
Periph2
DPLL5
vdd_core domain
vss
vssa_dac
OMAP Device
030-003
Figure 3-1. OMAP3515/03 Power Domains
This power domain segmentation switches off (or places in retention state) domains that are unused while
keeping others active. This implementation is based on internal switches that independently control each
power domain.
A power domain regular logic is attached to one of the device VDD supplies through a primary domain
switch. When the primary switch is open, most of the logic supply is off, resulting in a low-leakage state of
the domain. Embedded switches are implemented for all power domains except the wake-up domain. This
allows the domain to be powered off, if not being used, to give maximum power savings. For more
information, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM) [literature
number SPRUFA5].
All domain output signals at the interface between power domains are connected through isolation latch
cells. These cells ensure a proper electrical isolation between the domains and an appropriate interface
state at the domain boundaries.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
119
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
3.2 Absolute Maximum Ratings
The following table specifies the absolute maximum ratings over the operating junction temperature range
of OMAP commercial and extended temperature devices. Stresses beyond those listed under absolute
maximum ratings may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under
recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.
Notes:
• Logic functions and parameter values are not assured out of the range specified in the recommended
operating conditions.
• The OMAP3515/03 device adheres to EIA/JESD22–A114, Electrostatic Discharge (ESD) Sensitivity
Testing Human Body Model (HBM). Minimum pass level for HBM is ±1 kV.
Table 3-1. Absolute Maximum Ratings Over Operating Junction Temperature Range
MIN
MAX
UNIT
vdd_mpu
vdd_core
Supply voltage range for core macros
PARAMETER
–0.5
1.6
V
vdds
vdds_mem
Second supply voltage range for 1.8-V I/O macros
–0.5
2.25
V
vdds_mmc1
Supply voltage range for MMC1 CMD,
CLK and DAT[3:0] and for memory stick
I/Os
1.8-V mode
–0.5
2.45
V
3.0-V mode
-0.5
3.50
vdds_vdds_mm
c1a
Second supply voltage range for MMC1
DAT[7:4]
1.8-V mode
–0.5
2.45
3.0-V mode
-0.5
3.50
vdds_dpll_dll
vdds_dpll_per
Supply voltage for DLL DPLL
Supply voltage for Per DPLL
–0.5
2.10
V
vdds_sram
vdds_wkup_bg
Supply voltage for SRAM LDOs
Supply voltage for wakeup LDO and VDDA (2 LDOs SRAM and BG)
–0.5
2.25
V
VPAD
Voltage range
at PAD
Supply voltage range for 1.8-V IOs
–0.54 (1)
2.34 (1)
Supply voltage range for 3.0-V IOs
(2)
3.45 (2)
–0.63 (1)
2.73 (1)
MMC1, MS (Balls N28,
M27, N27, N26, N25,
P28)
MMC1 (Balls P27, P26,
R27, R25)
I2C1, I2C2, I2C3, I2C4 (Balls K21, J21, AF15, AE15, AF14,
AG14, AD26, AE26)
Crystal (xtalin/xtalout) (Balls AE17, AF17)
–0.5
2.71
Other balls
–0.5
vddsx (3) + 0.5
–0.5
2.43
V
vdds_MMC1a,
mmc1_dat[7-4] (CBB pkg only) (6)
500
V
Other pins
1000
vdda_dac
Supply voltage range for analog macros
VESD
ESD stress
voltage (4)
HBM (human body
model) (5)
CDM (charged device
model) (7)
IIOI
Current-pulse injection on each I/O pin (8)
Iclamp
Clamp current for an input or output
Tstg
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
120
–0.45
V
Storage temperature range
(9)
MMC1 signals (CBB pkg only)
(6)
300
Other pins
500
200
mA
–20
20
mA
–65
150
°C
For a maximum time of 30% time period.
For a maximum time of 15% time period.
Depending on ball, vddsx can be vdds_mem or vdds.
Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
JEDEC JESD22–A114F
Corresponding signals: mmc1_dat0, mmc1_dat1, mmc1_dat2, mmc1_dat3, mmc1_dat4, mmc1_dat5, mmc1_dat6, mmc1_dat7,
mmc1_clk, mmc1_cmd and vdds_mmc1 (CBB pkg only).
JEDEC JESD22–C101D
Each device is tested with I/O pin injection of 200 mA with a stress voltage of 1.5 times maximum vdd at room temperature.
These temperatures extreme do not simulate actual operating conditions but exaggerate any faults that might exist.
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
This section includes the maximum power consumption for each power domain (core, etc.). Table 3-2
summarizes the power consumption at the ball level.
Table 3-2. Estimated Maximum Power Consumption At Ball Level
PARAMETER
Signal
Description
vdd_mpu
Processors (1)
vdd_core
Core
MAX
( T = 90°C)
MAX
( T = 105°C)
UNIT
OMAP3515/03 (SmartReflex™ Enabled)
639
695
mA
OMAP3515/03 (SmartReflex™ Disabled)
808
889
mA
OMAP3515 (SmartReflex™ Enabled)
439
489
mA
OMAP3515 (SmartReflex™ Disabled)
539
609
mA
OMAP3503 (SmartReflex™ Enabled)
353
403
mA
OMAP3503(SmartReflex™ Disabled)
438
507
mA
vdda_dac
Video DAC
65
65
mA
vdss_dpll_dll
DLL + DPLL MPU, and core
25
25
mA
vdds_dpll_per
DPLL peripheral 1 and peripheral 2
15
15
mA
vdds_sram
Processors and core LDO (LDO1 and LDO2)
41
41
mA
vdds_wkup_bg
Bandgap, wakeup + LDO, EMU off
6
6
mA
vdds_mem
Standard I/Os (SDRC+GPMC)
37
37
mA
vdds
Standard I/Os (all excluding SDRC and GPMC)
63
63
mA
(2)
vdds_mmc1
MMC I/O
20
20
mA
vdds_mmc1a
Power supply for MMC IO [DAT4 – DAT7]
2
2
mA
vpp
eFuse
50
50
mA
(1)
(2)
OPP6 is only supported on high-speed grade OMAP3530 devices.
MMC card and I/O card are not included.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
121
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
3.3 Recommended Operating Conditions
All OMAP3515/03 modules are used under the operating conditions contained in Table 3-3.
Note:
To avoid significant device degradation for commercial temperature OMAP3515/OMAP3503 devices (0°C
≤ Tj ≤ 90°C), the device power-on hours (POH) must be limited to one of the following:
• 100K total POH when operating across all OPPs and keeping the time spent at OPP5-OPP6 to less
than 23K POH.
• 50K total POH when operating at OPP5 - OPP6.
• 44K total POH with no restrictions to the proportion of these POH at operating points OPP1 - OPP6.
To avoid significant device degradation for extended temperature OMAP3515A/OMAP3503A devices
(-40°C ≤ Tj ≤ 105°C), the following restrictions apply:
• OPP5 and OPP6 are not supported.*
• The total device POH must be limited to less than 50K.*
*If an extended temperature device is operated such that Tj never exceeds 90C (-40°C ≤Tj ≤ 90°C) then
the OPP POH limits for commercial devices indicated above apply.
Note: Logic functions and parameter values are not assured out of the range specified in the
recommended operating conditions.
Table 3-3. Recommended Operating Conditions
PARAMETER
DESCRIPTION
VDD1
(vdd_mpu),
SmartReflex
Disabled
OMAP processor logic supply
VDD2 (vdd_core) OMAP core logic supply (3)
SmartReflex
Disabled
vdds
MIN
NOM
MAX
UNIT
VDD1NOM (0.05*VDD1NOM)
1.35
VDD1NOM +
(0.05*VDD1NOM)
V
OPP5: Overdrive
VDD1NOM (0.05*VDD1NOM)
1.35
VDD1NOM +
(0.05*VDD1NOM)
V
OPP4: Mid-Overdrive
VDD1NOM (0.05*VDD1NOM)
1.27
VDD1NOM +
(0.05*VDD1NOM)
V
OPP3: Nominal
VDD1NOM (0.05*VDD1NOM)
1.20
VDD1NOM +
(0.05*VDD1NOM)
V
OPP2: Low-Power
VDD1NOM (0.05*VDD1NOM)
1.06
VDD1NOM +
(0.05*VDD1NOM)
V
OPP1: Ultra
Low-Power (2)
VDD1NOM (0.05*VDD1NOM)
0.985
VDD1NOM +
(0.05*VDD1NOM)
V
OPP3: Nominal
VDD2NOM (0.05*VDD2NOM)
1.15
VDD2NOM +
(0.05*VDD2NOM)
V
OPP2: Low-Power
VDD2NOM (0.05*VDD2NOM)
1.06
VDD2NOM +
(0.05*VDD2NOM)
V
OPP1: Ultra
Low-Power (2)
VDD2NOM (0.05*VDD2NOM)
0.985
VDD2NOM +
(0.05*VDD2NOM)
V
1.71
1.8
1.91
V
90
mVpp
OPP6: Overdrive
(1)
Supply voltage for I/O macros
Noise (peak-peak)
vdds_mem
Supply voltage for memory I/O macros
1.71
1.8
Noise (peak-peak)
vdds_mmc1
vdds_mmc1a
vdds_wkup_bg
(1)
(2)
(3)
122
1.89
V
90
mVpp
Supply voltage range for MMC1
CMD, CLK and DAT[3:0] and for
memory stick I/Os
1.8-V mode
1.71
1.8
1.89
V
3.0-V mode
2.7
3.0
3.3
V
Second supply voltage range for
MMC1 DAT[7:4]
1.8-V mode
1.71
1.8
1.89
V
3.0-V mode
2.7
3.0
3.3
1.71
1.8
1.89
Wakeup LDO
V
OPP6 is only supported on high-speed grade OMAP3530/25 devices.
Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
Core logic includes interconnect, graphics processor, and peripherals.
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 3-3. Recommended Operating Conditions (continued)
PARAMETER
DESCRIPTION
MIN
NOM
Noise (peak-peak)
vdda_dac
Analog supply voltage for video DAC
Noise (peak-peak)
vdds_sram
1.71
1.8
For a frequency of 0 to
100 kHz
(For a frequency < 100
kHz, decreases 20dB /
sec)
SRAM LDOs
1.71
1.8
Noise (peak-peak)
vdds_dpll_per
Peripherals DPLLs power supply
1.71
1.8
Noise (peak-peak)
vdds_dpll_dll
Supply voltage for DPLLs I/Os
1.71
1.8
Noise (peak-peak)
MAX
UNIT
50
mVpp
1.89
V
30
mVpp
1.89
V
50
mVpp
1.89
V
36
mVpp
1.89
V
30
mVpp
vpp (4)
eFuse programming
vss
Ground
0
0
0
V
vssa_dac
Dedicated ground for DAC
0
0
0
V
Ta
Operating free air temperature
range
0
–
70
°C
-40
-
85
0
–
90
-40
-
105
V
Commercial
Temperature
Extended Temperature
Tj
Operating junction temperature
(5)
Commercial
Temperature
Extended Temperature
(4)
(5)
°C
It is recommended not to connect this pin. It is just used for eFuse programming on package unit.
For proper device operation, Tj must be within the specified range.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
123
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
3.4 DC Electrical Characteristics
Table 3-4 summarizes the dc electrical characteristics.
Table 3-4. DC Electrical Characteristics
PARAMETER
MIN
NOM
MAX
UNIT
LVCMOS Pin Buffers - CBB: N28, M27, N27, N26, N25, P28,P27, P26, R27, R25/ CBC: N19, L18, M19, M18, K18, N20, M20, P17, P18,
P19/ CUS: M23, L23, M22, M21, M20, N23
VIH
High-level input voltage
VIL
Low-level input voltage
High-level output voltage (2)
VOH
vdds (1) = 1.8 V
0.65 × vdds (1)
vdds + 0.3
vdds (1) = 3.0 V
0.625 ×
vdds (1)
vdds + 0.3
vdds (1) = 1.8 V
–0.3
0.35 × vdds
vdds (1) = 3.0 V
–0.3
0.25 × vdds
vdds (1) = 1.8 V
vdds (1) – 0.2
vdds
Low-level output voltage (2)
VOL
tT
Input transition time (rise time, tR or fall time,
tF evaluated between 10% and 90% at PAD)
(1)
= 3.0 V
V
V
V
0.75 × vdds (1)
vdds (1) = 1.8 V
0.2
vdds (1) = 3.0 V
0.125 ×
vdds (1)
Normal Mode
10
High-Speed
Mode
3
V
ns
LVDS/CMOS Pin Buffers - CBB: AG19, AH19, AG18, AH18, AG17, AH17/ CBC: AE16, AE15, AD17, AE18, AD16, AE17/ CUS: AB18,
AC18
Low-Power Receiver (LP-RX)
VIL
Low-level input threshold
VIH
High-level input threshold
800
mV
Input hysteresis
25
mV
VHYS
500
mV
Ultralow-Power Receiver (ULP-RX)
VIL-ULPM
VIH
Low-level input threshold, ULPM
300
High-level input threshold
880
mV
mV
High-Speed Receiver (HS-RX)
VIDTH
Differential input high threshold
VIDTL
Differential input low threshold
–70
mV
Maximum differential input voltage
270
mV
VIDMAX
VILHS
Single-ended input low voltage
VIHHS
Single-ended input high voltage
VCMRXDC
70
mV
–40
Common-mode voltage
mV
70
460
mV
330
mV
LVDS/CMOS Pin Buffers - CBB: K28, L28, K27, L27/ CBC: P25, P26, N25, N26 / CUS: L24, K24, J23, K23
VCM
Input common mode voltage range
600
Vos
Receiver Input dc offset
–20
Vid
Receiver input differential amplitude
70
Input transition time (rise time, tR or fall time, tF evaluated
between 10% and 90% at PAD)
267
tT
900
100
1200
mV
20
mV
200
mV (3)
533
ps
LVDS/CMOS Pin Buffers - CBB: AG22, AH22, AG23, AH23, AG24, AH24/ CBC: AE21, AE22, AE23, AE24, AD23, AD24 / CUS: AC19,
AB19, AD20, AC20, AD21, AC21
High-Speed Transceiver (HS-TX)
VOHHS
HS output high voltage
|VOD|
HS transmit differential voltage
140
VCMTX
HS transmit static common mode voltage
150
360
mV
200
270
mV
200
250
mV
Low-Power Transceiver (LP-TX)
(1)
(2)
(3)
124
This global value may be overridden on a per interface basis if another value is explicitly defined for that interface (for example, I2C).
With 100 µA sink / source current at vddsxmin.
Corresponds to peak-to-peak values: minimum = 140 mVpp; nominal = 200 mVpp; maximum = 400 mVpp.
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
MIN
VOL
Thevenin output low level
–50
VOH
Thevenin output high level
1.1
VIL
Low-level input threshold
VIH
High-level input threshold
NOM
1.2
MAX
UNIT
50
mV
1.3
V
550
mV
Low-Power Receiver (LP-RX)
VHYST
Input hysteresis
880
mV
25
mV
Ultralow-Power Receiver (ULP-RX)
VIL-ULPS
VIH
Low-level input threshold, ULPM
300
High-level input threshold
880
mV
mV
subLVDS/CMOS Pin Buffers - CBB: AA27, AA28, AB27, AB28, AD27, AD28, AC28, AC27/ CBC: AC26, AD26, AA25, Y25, AA26,
AB26, AC25, AB25/ CUS: V22, W22, Y22, AB22, AC23, AC22, W21, V21
Vod
Vocm
tT
Differential voltage range @ RL = 100 Ω
100
150
Common mode voltage range
0.8
0.9
Input transition time (Vod rise time, tR or Vod fall time, tF
evaluated between 20% and 80% at PAD)
200
200
mV
1
V
500
ps
Standard LVCMOS Pin Buffers
(4)
High-level input voltage (Standard LVCMOS)
0.65 × vdds
vdds + 0.3
V
VIL (4)
Low-level input voltage (Standard LVCMOS)
- 0.3
0.35 × vdds
V
VHYS
Hysteresis voltage at an input (5)
VOH
High-level output voltage, driver enabled,
pullup or pulldown disabled
VIH
VOL
0.1
IO = IOH or
IO = –2 mA
vdds – 0.45
IO = IOH < |–2|
mA
vdds – 0.40
V
Low-level output voltage with , driver enabled, IO = IOL or
pullup or pulldown disabled
IO = 2 mA
0.45
IO = IOL < 2 mA
tT
Input transition time (rise time, tR or fall time, tF evaluated
between 10% and 90% at PAD)
II
Input current with VI = VI max
Off-state output current for output in high impedance with driver
only, driver disabled
IOZ
IZ
V
0.40
10 (1)
ns
–1
1
µA
–20
20
µA
20
µA
0
Off-state output current for output in high impedance with
driver/receiver/pullup only, driver disabled, pullup not inhibited
–100
Off-state output current for output in high impedance with
driver/receiver/pulldown only, driver disabled, pulldown not
inhibited
100
Total leakage current through the PAD connection of a
driver/receiver combination that may include a pullup or pulldown.
The driver output is disabled and the pullup or pulldown is
inhibited.
V
– 20
LVCMOS Open-Drain Pin Buffers Dedicated to I2C IOs - CBB: K21, J21, AF14, AG14, AF15, AE15, AD26, AE26/ CBC: J25, J24, C2,
C1, AB4, AC4, AD15, W16, A21, C21/ CUS: K20, K21, AC13, AC12, AC15, AC14, Y16, Y15
(4)
(5)
VIH
High level input voltage
0.7 x vdds
vdds + 0.5
V
VIL
Low level input voltage
- 0.5
0.3 x vdds
V
VOL
Low-level output voltage open-drain at 3-mA sink current
0
0.2 x vdds
V
- 10
10
µA
10
pF
II
Input current at each I/O pin with an input voltage between 0.1 x
vdds to 0.9 x vdds
CI
Capacitance for each I/O pin
VIH/VIL (Standard LVCMOS) parameters are applicable for sys_altclk input clocks.
Vhys is the magnitude of the difference between the positive-going threshold voltage VT+ and the negative-going voltage VT-.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
125
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
TOF
Output fall time from VIHmin to VILmax with a
bus capacitance CB from 10 pF to 400 pF
MIN
Fast mode
20 + 0.1CB
Standard mode
NOM
MAX
UNIT
250
ns
250
Output fall time with a capacitive load from 10 High-speed mode
pF to 100 pF at 3-mA sink current
10
40
Output fall time with a capacitive load of 400
pF at 3-mA sink current
20
80
Output fall time with a capacitive load of 40
pF (for CBUS compatibility)
20
LVCMOS Open-Drain Pin Buffers Dedicated in GPIO mode - CBB: AF15, AE15, AF14, AG14, AD26, AE26 / CBC: C2, C1, AB4, AC4,
AD15, W16, A21, C21/ CUS: AC15, AC14, AC13, AC12, Y16, Y15
126
VIH
High-level input voltage
0.7 x vdds
vdds + 0.5
V
VIL
Low-level input voltage
- 0.5
0.3 x vdds
V
VOH
High-level output voltage at 4-mA sink current
VOL
Low-level output voltage at 4-mA sink current
ELECTRICAL CHARACTERISTICS
vdds - 0.45
V
0.45
V
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
3.5 Core Voltage Decoupling
For module performance, decoupling capacitors are required to suppress the switching noise generated
by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is
close to the device because this minimizes the inductance of the circuit board wiring and interconnects.
Table 3-5 summarizes the power supplies decoupling characteristics.
Table 3-5. Core Voltage Decoupling Characteristics
MIN
TYP
MAX
UNIT
Cvdd_mpu (1)
PARAMETER
50
100
120
nF
Cvdd_core (1)
50
100
120
nF
Cvdds_sram
100
nF
Ccap_vdd_sram_mpu
0.7
1.0
1.3
µF
Ccap_vdd_sram_core
0.7
1.0
1.3
µF
Ccap_vdd_wkup
0.7
1.0
1.3
µF
Cvdds_wkup_bg
100
nF
Cvdds_dpll_dll
100
nF
Cvdds_dpll_per
100
nF
Cvdda_dac
Ccap_vdd_d
100
100
nF
200
nF
Cvdds_mmc1
100
nF
Cvdds_mmc1a
100
nF
Cvdds
100
nF
Cvdds_mem
100
nF
(1)
1 capacitor per 2 to 4 balls
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
127
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Figure 3-2 illustrates an example of power supply decoupling.
OMAP Device
vdds_sram
vdds_sram
Cvdds_sram
vdda_dac
cap_vdd_sram_mpu
vdda_dac
Cvdda_dac
vssa_dac
Video DAC
Ccap_vdd_sram_mpu
SRAM_LDO1
cap_vdd_sram_core
Ccap_vdd_sram_core
SRAM_LDO2
BG
vdds_wkup_bg
vdds_wkup_bg
Cvdds_wkup_bg
WKUP_LDO
vdds_mmc1
vdds_mmc1
cap_vdd_wkup
MMC IOs
Cvdd_wkup
Cvdds_mmc1
DPLL_MPU
vdds_dpll_dll
vdds_mem
vdds_dpll_dll
vdds_mem
vdds
Cvdds_mem
vdds
IOs and Memory
Cvdds_dpll_dll
Cvdds
DPLL_CORE
vdds_dpll_per
vdds_dpll_per
DPLL5
Cvdds_dpll_per
DPLL4
Vdd_core
vdd_mpu
vdd_mpu
vdd_core
MPU
Core
Cvdd_mpu
Cvdd_core
VSS
030-004
A.
Signals "vdds" and "vdds_mem" are combined with "vdds" on the CBC package.
B.
Signals "vdds" and "vdds_mem" are separate on the CBB and CUS packages.
Figure 3-2. Power Supply Decoupling
128
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
3.6 Power-up and Power-down
This section provides the timing requirements for the OMAP3515/03 hardware signals.
3.6.1
Power-up Sequence
The following steps give an example of power-up sequence supported by the OMAP3515/03 device.
1. vdds and vdds_mem are ramped ensuring a level on the IO domain and sys_nrespwron must be low.
At the same time, vdds_sram and vdds_wkup_bg can also be ramped.
2. Once vdds_wkup_bg rail is stabilized, vdd_core can be ramped.
3. Once vdd_core is stabilized, then vdd_mpu can be ramped.
4. vdds_dpll_dll and vdds_dpll_per rails can be ramped at any time during the above sequence.
5. sys_nrespwron can be released as soon as the vdds_pll_dll rail is stabilized, and sys_xtalin and
sys_32k clocks are stabilized.
6. During the whole sequence above, sys_nreswarm is held low by OMAP3515/03. sys_nreswarm is
released after the eFuse check has been performed; that is, after sys_nrespwron is released.
7. The other power supplies can then be turned on upon software request.
shows the power-up sequence.
Notes:
• If an external square clock is provided, it could be started after sys_nrespwron release provided it is
clean: no glitch, stable frequency, and duty cycle.
• Higher voltage can be used. OPP voltage values may change following the silicon characterization
result.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
129
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
1.8 V
vdds_wkup_bg
1.8 V
vdds_mem,vdds,
vdds_sram
ldo3 (internal)
(2)
vdd_core
(2)
vdd_mpu
1.8 V
vdds_dpll_dll
1.8 V
vdds_dpll_per
sys_32k
sys_nrespwron
sys_xtalin
EFUSE.RSTPWRON(internal)
sys_nreswarm
vdds_mmc1,vdds_mmc1a,
vdda_dac(1), vpp
030-005
Figure 3-3. Power-up Sequence
130
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
3.6.2
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Power-down Sequence
The following steps give an example of the power-down sequence supported by the OMAP3515/03
device.
1. Reset OMAP3515/03 device.
2. Stop all signals driven to OMAP3515/03 balls.
3. Option 1: Power down all domains simutaneously.
4. Option 2: If all domains cannot be powered down simultaneously, follow the below sequence:
a. Power off all complex I/O domains (vdds_mmc1, vdds_mmc1a, vdda_dac)
b. Power off all core domains (vdd_core, vdd_mpu)
c. Power off all PLL domains (vdds_dpll_dll, vdds_dpll_per)
d. Power off all SRAM LDOs (vdds_sram)
e. Power off all reference domains (vdds_wkup_bg)
f. Power off all standard I/O domains (vdds, vdds_mem)
The OMAP3515/03 device proceeds with the power-down sequence shown in Figure 3-4.
Note: Another possible power-down sequence:
• vdd_mpu shuts down before vdd_core.
• vdds_sram, vdds_wkup_bg, vdds, and vdds_mem shut down simultaneously.
• vdds_dpll_dll and vdds_dpll_per shut down anytime between all complex IO domains shut down and
vdds_sram shuts down.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
131
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
sys_nrespwron
vdds_mmc1,
vdda_dac
vdds_wkup_bg
vdd_mpu
vdd_core
vdds_mem, vdds,
vdds_sram
vdds_dpll_dll,
vdds_dpll_per
sys_32kin
sys.clk
030-006
Figure 3-4. Power-down Sequence
132
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
4 CLOCK SPECIFICATIONS
The OMAP3515/03 device has three external input clocks, a low frequency (sys_32k), a high frequency
(sys_xtalin), and an optional (sys_altclk). The OMAP3515/03 device has two configurable output clocks,
sys_clkout1 and sys_clkout2.
Figure 4-1 shows the interface to the external clock sources and clock outputs.
OMAP
sys_32k
Power IC
Alternate Clock Source Selectable (54, 48 MHz or other [up
to 59 MHz])
sys_altclk
sys_clkout1
To Peripherals (From OSC_CLK: 12, 13,16.8, 19.2, 26, or
38.4 MHz)
sys_clkout2
To Peripherals (From OSC_CLK: 12,13, 16.8, 19.2, 26, or
38.4 MHz, core_clk [DPLL, up to 332 MHz], DPLL-96 MHz
or DPLL-54 MHz outputs with a divider of 1, 2, 4, 8, or 16)
sys_xtalout
To Quartz (Oscillator output) or Unconnected
To Quartz (Oscillator input) or Square Clock
sys_xtalin
sys_clkreq
Clock Request. To Square Clock Source or from Peripherals
sys_xtalout
sys_xtalout
Oscillator
is Used
Unconnected
Oscillator
is Bypassed
sys_xtalin
sys_clkreq
GPin
sys_xtalin
sys_clkreq
Square
Clock
Source
030-007
Figure 4-1. Clock Interface
The OMAP3515/03 device operation requires the following three input clocks:
• The 32-kHz frequency is used for low frequency operation. It supplies the wake-up domain for
operation in lowest power mode (off mode). This clock is provided through the sys_32k pin.
• The system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 or 54
MHz or other clock source (up to 59 MHz).
• The system clock input (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to generate the main source clock
of the OMAP3515/03 device. It supplies the DPLLs as well as several OMAP modules. The system
clock input can be connected to either:
– A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is
used as an input (GPIN).
– A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to
request the external system clock.
The OMAP3515/03 outputs externally two clocks:
• sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be
controlled by software or externally using sys_clkreq control. When the device is in the off state, the
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the
device. The off state polarity of sys_clkout1 is programmable.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
133
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
•
www.ti.com
sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLL
output), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is
programmable. This output is active only when the core power domain is active.
For more information on the OMAP3515/03 Applications Processor clocking structure, see the Power,
Reset, and Clock management (PRCM) chapter of the OMAP35x Applications Processor TRM (literature
number SPRUFA5).
4.1 Input Clock Specifications
The clock system accepts three input clock sources:
• 32-kHz digital CMOS clock
• Crystal oscillator clock or CMOS digital clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz)
• Alternate clock (48 or 54 MHz, or other up to 59 MHz)
4.1.1
Clock Source Requirements
Table 4-1 illustrates the requirements to supply a clock to the OMAP3515/03 device.
Table 4-1. Clock Source Requirements
PAD
CLOCK FREQUENCY
sys_xtalout
sys_xtalin
sys_altclk
4.1.2
STABILITY
DUTY CYCLE
JITTER
TRANSITION
Crystal
± 25 ppm
na
na
na
12, 13, 16.8, 19.2, 26, or 38.4 MHz Square
± 50 ppm
45% to 55%
< 1%
< 3.6 ns
± 50 ppm
40% to 60%
< 1%
< 5 ns
12, 13, 16.8, or 19.2 MHz
48,54 or up to 59 MHz
External Crystal Description
To supply a 12-, 13-, 16.8-, or 19.2-MHz clock to the OMAP3515/03, an external crystal can be connected
to the sys_xtalin and sys_xtalout pins. Figure 4-2 describes the crystal implementation.
OMAP Device
sys_xtalin
sys_xtalout
Optional Rbias
Optional Rd
Cf2
Cf1
Crystal
030-008
Figure 4-2. Crystal Implementation(1)(2)(3)(4)
(1) On the PCB, the oscillator components (crystal, foot capacitors, optional Rbias and Rd) must be located close to the package. All these
components must be routed first with the lowest possible number of board vias.
(2) An optional resistor Rd can be added in series with the crystal to debug or filter the harmonics; a footprint must be reserved on the PCB
for use with 10-MHz crystals and feature low-drive levels.
(3) A 120-kΩ internal bias resistor Rbias is used. The feedback resistor Rbias provides negative feedback to the oscillator to put it in the
134
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
linear operating region; thus oscillation begins when power is applied.
(4) Cf1 and Cf2 represent the total capacitance of the PCB and components excluding the power IC and crystal. Their values in fact depend
on the crystal datasheet. In the datasheet of the crystal, the frequency is specified at a specific load capacitor value which is the
equivalent capacitor of the two capacitors Cf1 and Cf2 connected to sys_xtalin and sys_xtalout. The frequency of the oscillations
depends on the value of the capacitors (10 pF corresponds to a load capacitor of 5 pF for the crystal).
The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizes
the required electrical constraints.
Table 4-2. Crystal Electrical Characteristics
NAME
DESCRIPTION
fp
Parallel resonance crystal frequency (1)
CL
Load capacitance for crystal parallel resonance
ESR12&13
Crystal ESR (12 and 13 MHz) (1)
TYP
Crystal ESR (16.8 and 19.2 MHz)
Co
Crystal shunt capacitance
Lm
Crystal motional inductance for fp = 12 MHz
Cm
Crystal motional capacitance
DL
Crystal drive level
Rbias
Internal bias resistor
MAX
12, 13, 16.8, or 19.2
5
(1)
ESR16.8&19.2
(1)
MIN
1
5
30
120
UNIT
MHz
20
pF
80
Ω
50
Ω
7
pF
35
mH
100
fF
0.5
mW
300
kΩ
Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. If
CL = 20 pF, then both foot capacitors will be Cf1 = Cf2 = 40 pF. Parasitic capacitance from package and board must also be taken in
account.
2
ESR=Rm 1+
C0
CL
When selecting a crystal, the system design must take into account the temperature and aging
characteristics of a crystal versus the user environment and expected lifetime of the system. Table 4-3
details the switching characteristics of the oscillator and the input requirements of the 12-, 13-, 16.8-, or
19.2-MHz input clock.
Table 4-3. Base Oscillator Switching Characteristics
NAME
DESCRIPTION
fp
Oscillation frequency
tsX
Start-up time (1) (2)
(1)
(2)
MIN
TYP
12, 13, 16.8, or 19.2
8
MAX
UNIT
MHz
ms
Start-up time defined as time interval between oscillator control signal release and sys_xtalin amplitude at 50% of its final value (vdd and
vdds supplies ramped and stable). The start-up time can be performed in function of the crystal characteristics. 8-ms minimum only
when using the internal oscillator; it is programmable after reset for wake-up. At power-on reset, the time is adjustable using the pin
itself. The reset must be released when the oscillator or clock source is stable. Before the processor boots up and the oscillator is set to
bypass mode, there is a start-up time when the internal oscillator is in application mode and receives a square wave. The start-up time
in this case is about 100 µs.
For fp = 12 or 13 MHz: CL = 13.5 pF and Lm = 35 mH
For fp = 16.8 or 19.2 MHz: CL = 9 pF and Lm = 15 mH
4.1.3
Clock Squarer Input Description
A 1.8-V CMOS clock squarer is another source that can supply a 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz
clock to the OMAP3515/03. An analog clock squarer function converts a low-amplitude sinusoidal clock
into a low-jitter digital signal. It can be connected to input pin sys_xtalin (sys_xtalout unconnected).
Figure 4-3 illustrates the effective connections.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
135
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
OMAP Device
Oscillator
In Bypass Mode
sys_clkreq
sys_xtalin
sys_xtalout
Clock Squarer Source
030-010
Figure 4-3. Clock Squarer Source Connection
To connect a digital clock source, the oscillator is configured in bypass mode(1). The sys_clkreq(2) pin is an
OMAP3515/03 output which can be used to switch the clock source on or off.
1. Pin sys_xtalout is not used in this mode. It must be left unconnected.
2. Once the system is powered up, the clock squarer source or crystal oscillator source can be applied;
however, this affects the performance. The input source must be configured after power up to attain
the desired system requirements.
Table 4-4 summarizes the electrical constraints required by the clock squarer used in the fundamental
mode of operation.
Note: There is an internal pulldown resistor of 5k Ω (max.) on sys_xtalin when the oscillator is disabled.
Table 4-4. Base Oscillator Electrical Characteristics (in Bypass Mode)
NAME
DESCRIPTION
f
Frequency (1)
tsX
Start-up time
IDDQ
Current consumption on VDDS when sys_xtalin = 0 and in
power-down mode
(1)
(2)
MIN
TYP
MAX
12, 13, 16.8, 19.2, 26, or 38.4
UNIT
MHz
(2)
ms
1
µA
Measured with the load capacitance specified by the manufacturer. Parasitic capacitance from package and board must also be taken in
account.
Before the processor boots up and the oscillator is set to bypass mode, there is a start-up time when the internal oscillator is in
application mode and receives a square wave. The start-up time in this case is about 100 µs.
Table 4-5 details the input requirements of the 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz input clock.
Table 4-5. 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz Input Clock Squarer Timing Requirements
NAME
DESCRIPTION
MIN
TYP
MAX
1 / tc(xtalin)
Frequency, sys_xtalin
OCS1
tw(xtalin)
Pulse duration, sys_xtalin low or high
OCS2
tJ(xtalin)
Peak-to-peak jitter (1), sys_xtalin
OCS3
tR(xtalin)
Rise time, sys_xtalin
3.6
OCS4
tF(xtalin)
Fall time, sys_xtalin
3.6
ns
OCS5
tJ(xtalin)
Frequency stability, sys_xtalin
±25
ppm
(1)
136
12, 13, 16.8, 19.2, 26, or 38.4
UNIT
OCS0
0.45 * tc(xtalin)
0.55 * tc(xtalin)
–1%
1%
MHz
ns
ns
Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300
period samples. The sinusoidal noise is added on top of the vdds supply voltage.
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
OCS0
OCS1
OCS1
sys.xtalin
030-011
Figure 4-4. Crystal Oscillator in Bypass Mode
4.1.4
External 32-kHz CMOS Input Clock
A 32.768-kHz clock signal (often abbreviated to 32-kHz) can be supplied by an external 1.8-V CMOS
signal on pin sys_32k.
Table 4-6 summarizes the electrical constraints imposed to the clock source.
Table 4-6. 32-kHz Input Clock Source Electrical Characteristics
NAME
DESCRIPTION
f
Frequency
CI
Input capacitance
RI
Input resistance
MIN
TYP
MAX
UNIT
32.768
kHz
0.44
pF
106
0.25
GΩ
Table 4-7 details the input requirements of the 32-kHz input clock.
Table 4-7. 32-kHz Input Clock Source Timing Requirements (1)
NAME
DESCRIPTION
MIN
TYP
MAX
UNIT
CK0
1 / tc(32k)
Frequency, sys_32k
CK3
tR(32k)
Rise time, sys_32k
20
ns
CK4
tF(32k)
Fall time, sys_32k
20
ns
CK5
tJ(32k)
Frequency stability, sys_32k
±200
ppm
(1)
32.768
kHz
See Table 3-4, Electrical Characteristics, Standard LVCMOS IOs part for sys_32k VIH/VIL parameters.
CK0
CK1
CK1
sys_32k
030-012
Figure 4-5. 32-kHz CMOS Clock
4.1.5
External sys_altclk CMOS Input Clock
A 48-, 54-, or up to 59- MHz clock signal can be supplied by an external 1.8-V CMOS signal on pin
sys_altclk.
Table 4-8 summarizes the electrical constraints imposed by the clock source.
Table 4-8. 48-, 54-, or up to 59- MHz Input Clock Source Electrical Characteristics
NAME
DESCRIPTION
f
Frequency , sys_altclk
CI
Input capacitance
RI
Input resistance
MIN
TYP
MAX
48-, 54-, or up to 59- MHz
MHz
0.74
0.25
UNIT
pF
106
GΩ
Table 4-9 details the input requirements of the input clock.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
137
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 4-9. 48- or 54-MHz Input Clock Source Timing Requirements (1) (2)
NAME
DESCRIPTION
MIN
TYP
MAX
ALT0
1 / tc(altclk)
Frequency, sys_altclk
ALT1
tw(altclk)
Pulse duration, sys_altclk low or
high
0.40 * tc(altclk)
0.60 * tc(altclk)
ALT2
tJ(altclk)
Peak-to-peak jitter (1), sys_altclk
–1%
1%
ALT3
tR(altclk)
Rise time, sys_altclk
ALT4
tF(altclk)
Fall time, sys_altclk
ALT5
tJ(altclk)
Frequency stability, sys_altclk
(1)
(2)
48-, 54-, or up to 59- MHz
UNIT
MHz
10
ns
ns
10
ns
± 50
ppm
Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300
period samples. The sinusoidal noise is added on top of the vdds supply voltage.
See Table 3-4, Electrical Characteristics, for sys_altclk VIH/VIL parameters.
ALT0
ALT1
ALT1
sys_altclk
030-013
Figure 4-6. Alternate CMOS Clock
138
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
4.2 Output Clock Specifications
Two output clocks (pin sys_clkout1 and pin sys_clkout2) are available:
• sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be
controlled by software or externally using sys_clkreq control. When the device is in the off state, the
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the
device. The off state polarity of sys_clkout1 is programmable.
• sys_clkout2 can output sys_clk (12, 13, 16.8, 19.2, 26, or 38.4 MHz), CORE_CLK (core DPLL output,
332 MHz maximum), APLL-96 MHz, or APLL-54 MHz. It can be divided by 2, 4, 8, or 16 and its off
state polarity is programmable. This output is active only when the core domain is active.
Table 4-10 summarizes the sys_clkout1 output clock electrical characteristics.
Table 4-10. sys_clkout1 Output Clock Electrical Characteristics
NAME
f
DESCRIPTION
MIN
Frequency
CI
Load capacitance
(1)
(1)
TYP
MAX
UNIT
12, 13, 16.8, 19.2, 26, or 38.4
MHz
f(max) = 38.4 MHz
37
pF
f(max) = 26 MHz
50
The load capacitance is adapted to a frequency.
Table 4-11 details the sys_clkout1 output clock timing characteristics.
Table 4-11. sys_clkout1 Output Clock Switching Characteristics
NAME
DESCRIPTION
MIN
f
1 / CO0
Frequency
CO1
tw(CLKOUT1)
Pulse duration, sys_clkout1 low or high
TYP
MAX
UNIT
12, 13, 16.8, 19.2, 26, or 38.4
MHz
0.40 *
0.60 *
tc(CLKOUT1)
tc(CLKOUT1)
ns
CO2
tR(CLKOUT1)
Rise time, sys_clkout1 (1)
5.5
ns
CO3
tF(CLKOUT1)
Fall time, sys_clkout1 (1)
5.5
ns
(1)
With a load capacitance of 50 pF.
CO0
CO1
CO1
sys_clkout
030-014
Figure 4-7. sys_clkout1 System Output Clock
Table 4-12 summarizes the sys_clkout2 output clock electrical characteristics.
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics
NAME
DESCRIPTION
f
Frequency, sys_clkout2
CL
Load capacitance (1)
(1)
MIN
f(max) = 166 MHz
2
TYP
8
MAX
UNIT
322
MHz
12
pF
The load capacitance is adapted to a frequency.
Table 4-13 details the sys_clkout2 output clock timing characteristics.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
139
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 4-13. sys_clkout2 Output Clock Switching Characteristics
NAME
DESCRIPTION
MIN
f
1 / CO0
Frequency
CO1
tw(CLKOUT2)
Pulse duration, sys_clkout2 low or high
CO2
tR(CLKOUT2)
Rise time, sys_clkout2 (1)
CO3
tF(CLKOUT2)
Fall time, sys_clkout2 (1)
(1)
TYP
0.40 * tc(CLKOUT2)
MAX
UNIT
322
MHz
0.60 * tc(CLKOUT2)
ns
3.7
ns
4.3
ns
With a load capacitance of 12 pF.
CO0
CO1
CO1
sys_clkout
030-015
Figure 4-8. sys_clkout2 System Output Clock
140
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
4.3 DPLL and DLL Specifications
The OMAP3515/03 integrates seven DPLLs and a DLL. The PRM and CM drive five of them, while the
sixth (not supported) and the seventh (not supported) are controlled by the display subsystem.
The five main DPLLs are:
• DPLL1 (MPU)
• DPLL2 (not supported on OMAP3515/03 devices)
• DPLL3 (Core)
• DPLL4 (Peripherals)
• DPLL5 (Second Peripherals DPLL)
Figure 4-9 illustrates the DLL and DPLL implementation.
OMAP
vdds_dpll_dll
Power Rail
DPLL1
DPLL2
DLL
DPLL3
DPLL4
DPLL5
vdds_dpll_per
030-016
(1)
DPLL2 is not supported on OMAP3515/03 devices.
Figure 4-9. DPLL and DLL Implementation
For more information on the OMAP3530/25 Applications Processor DPLLs and clocking structure, see the
Power, Reset, and Clock management (PRCM) chapter of the OMAP35x Applications Processor TRM
(literature number SPRUFA5).
4.3.1
Digital Phase-Locked Loop (DPLL)
The DPLL provides all interface clocks and some functional clocks (such as the processor clocks) of the
OMAP3515/03 device.
DPLL1 and DPLL2 get an always-on clock used to produce the synthesized clock. They get a high-speed
bypass clock used to switch the DPLL output clock on this high-speed clock during bypass mode.
The high-speed bypass clock is an L3 divided clock (programmable by 1 or 2) that saves DPLL processor
power consumption when the processor does not need to run faster than the L3 clock speed, or optimizes
performance during frequency scaling.
Each DPLL synthesized frequency is set by programming M (multiplier) and N (divider) factors. In addition,
all DPLL outputs can be controlled by an independent divider (M2 to M6).
The clock generating DPLLs of the OMAP3515/03 device have following features:
• Independent power domain per DPLL
• Controlled by clock-manager (CM)
Submit Documentation Feedback
CLOCK SPECIFICATIONS
141
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
•
•
•
www.ti.com
Fed with always-on system clock with independent gating control per DPLL
Analog part supplied through dedicated power supply (1.8 V) and an embedded LDO to get rid of
1-MHz noise
Up to five independent output dividers for simultaneous generation of multiple clock frequencies
4.3.1.1 DPLL1 (MPU)
DPLL1 is located in the MPU subsystem and supplies all clocks of the subsystem. All MPU subsystem
clocks are internally generated in the subsystem. When the core domain is on, it can use the DPLL3
(CORE DPLL) output as a high-frequency bypass input clock.
4.3.1.2 DPLL3 (CORE)
DPLL3 supplies all interface clocks and also a few module functional clocks. It can be also source of the
emulation trace clock. It is located in the core domain area. All interface clocks and a few module
functional clocks are generated in the CM. When the core domain is on, it can be used as a bypass input
to DPLL1 and DPLL2.
4.3.1.3 DPLL4 (Peripherals)
DPLL4 generates clocks for the peripherals. It supplies five clock sources: 96-MHz functional clocks to
subsystems and peripherals, 54 MHz to TV DAC, display functional clock, camera sensor clock, and
emulation trace clock. It is located in the core domain area. All interface clocks and few module functional
clocks are generated in the CM. Its outputs to the DSS, PER, and EMU domains are propagated with
always-on clock trees.
4.3.1.4 DPLL5 (Second peripherals DPLL)
DPLL5 supplies the 120-MHz functional clock to the CM.
4.3.2
Delay-Locked Loops (DLL)
The SDRC includes analog-controlled delay technology for interfacing high-speed mobile DDR memory
components. For more information, see the SDRC-GPMC chapter of the OMAP35x Technical Reference
Manual (TRM) [literature number SPRUF98]. A DLL is a calibration module used on dynamic track of
voltage and temperature variations, as well as to compensate the silicon process dispersion.
The SDRC DLL has four modes of operation:
1. APPLICATION MODE 0: used to generate 72° delay
2. APPLICATION MODE 1: used to generate 90° delay
3. MODEMAXDELAY: used for low frequency operation where we do not have the requirement of
accurate 72° or 90° phase shift
4. IDLE MODE: a low-power state that allows the DLL to gain lock quickly on exit from this mode
142
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
4.3.3
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
DPLLs and DLL Characteristics
Several specifications characterize the seven DPLLs.
Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operating
conditions.
Table 4-14. DPLL Characteristics
NAME
PARAMETER
MIN
TYP
MAX
UNIT
vdds_dpll_per
1.71
1.8
1.89
V
vdds_dpll_dll
1.71
1.8
1.89
V
25
105
°C
COMMENTS (1)
At ball level (+5%, +10%)
TJ
Junction temperature
–40
Will not unlock after lock over this range for
slow temperature drifts
finput
Input reference frequency (2)
0.75
65
MHz
FINP
finternal
Internal reference frequency
0.75
2.1
MHz
FREQSEL3 = 0; FINT = FINP/(N+1)
7.5
21
MHz
FREQSEL3 = 1; FINT = FINP/(N+1)
foutput
CLKOUT output frequency
25
900
MHz
foutput*2
CLKOUTx2 output
frequency
50
1800
MHz
tlock
Frequency lock time (3)
71.4
200
µs
150 FINT cycles; FREQSEL3 = 0
37.1
104
µs
780 FINT cycles; FREQSEL3 = 1
166.7
466.7
µs
350 FINT cycles; FREQSEL3 = 0
46.7
130.7
µs
980 FINT cycles; FREQSEL3 = 1
4.8
13.3
µs
10 FINT cycles
plock
trelock
Phase lock time
Relock time – frequency
lock (4)
Lowcurrstby = 0; FREQSEL3 = 0
4.8
13.3
µs
19
53.3
µs
19
53.3
µs
100 FINT cycles
Lowcurrstby = 0; FREQSEL3 = 1
40 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 0
400 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 1
prelock
Relock time – Phase lock
(4)
71.4
200
µs
11.9
33.3
µs
150 FINT cycles
Lowcurrstby = 0; FREQSEL3 = 0
250 FINT cycles
Lowcurrstby = 0; FREQSEL3 = 1
95.2
266.7
µs
26.7
74.7
µs
200 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 0
560 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 1
shows the DPLL1 clock frequency ranges.
Note: The DPLL1 clock frequency ranges depend on the VDD1 (vdd_mpu) operating point.
(1)
(2)
(3)
(4)
freqsel needs to be programmed accordingly to reference clock and DPLL divider (register setting), Lowcurrstdby depends on the targeted
DPLL power state (dynamic).
Lowcurrstdby = 0 then DPLL is in normal mode
Lowcurrstdby = 1 then DPLL is in low-power mode
Input frequencies below 0.75 MHz are possible with performance penalty.
Maximum frequency for nominal conditions. Speed binning possible above fmax.
Relock time assumes typical operating conditions, 4°C maximum temperature drift (see the Functional Specification for more detailed
information).
Submit Documentation Feedback
CLOCK SPECIFICATIONS
143
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 4-15. DPLL1 Clock Frequency Ranges
Clock Signal
ARM_CLK
(1)
(2)
Description
DPLL1 output clock.
Max
Unit
OPP6 (1)
720
MHz
OPP5
600
MHz
OPP4
550
MHz
OPP3
500
MHz
OPP2
250
MHz
OPP1 (2)
125
MHz
OPP6 frequency range is only supported on high-speed grade OMAP3530/25 devices.
Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
Table 4-16 through Table 4-18 show the DPLL3 clock frequency ranges.
Note: The DPLL3 clock frequency ranges depend on the VDD2 (vdd_core) operating point and the L3
clock speed configuration.
Table 4-16. DPLL3 Clock Frequency Ranges, VDD2 OPP3
Config 1
(166 MHz)
Clock Signal
Description
Config 2
(133 MHz)
Unit
Min
Max
Min
Max
CM: CORE_CLK
Output of clock manager (CM), generated
directly from DPLL3.
-
332
-
266
MHz
CM: L3_ICLK
Output of clock manager (CM), generated
using DPLL3.
-
166
-
133
MHz
CM: L4_ICLK
Output of clock manager (CM), generated
using CM L3_ICLK and divider.
-
83
-
66.5
MHz
SGX
SGX input clock, taken from CM CORE_CLK.
-
110.67
-
88.67
MHz
SDRC
SDRC input clock, taken from CM L3_ICLK.
-
166
-
133
MHz
GPMC
GPMC input clock, taken from CM L3_ICLK.
-
83
-
66.5
MHz
Table 4-17. DPLL3 Clock Frequency Ranges, VDD2 OPP2
Config 1
(83 MHz)
Clock Signal
Description
Config 2
(100 MHz)
Unit
Min
Max
Min
Max
CM: CORE_CLK
Output of clock manager (CM), generated
directly from DPLL3.
-
166
-
200
MHz
CM: L3_ICLK
Output of clock manager (CM), generated using
DPLL3.
-
83
-
100
MHz
CM: L4_ICLK
Output of clock manager (CM), generated using
CM L3_ICLK and divider.
-
41.5
-
50
MHz
SGX
SGX input clock, taken from CM CORE_CLK.
-
55.53
-
66.67
MHz
SDRC
SDRC input clock, taken from CM L3_ICLK.
-
83
-
100
MHz
GPMC
GPMC input clock, taken from CM L3_ICLK.
-
41.5
-
50
MHz
Table 4-18. DPLL3 Clock Frequency Ranges, VDD2 OPP1 (1)
Config 1
(40 MHz)
Clock Signal
Description
Config 2
(50 MHz)
Min
Max
Min
Max
Unit
CM: CORE_CLK
Output of clock manager (CM), generated directly
from DPLL3.
-
83
-
100
MHz
CM: L3_ICLK
Output of clock manager (CM), generated using
DPLL3.
-
41.5
-
50
MHz
(1)
144
Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 4-18. DPLL3 Clock Frequency Ranges, VDD2 OPP1 (continued)
Config 1
(40 MHz)
Clock Signal
Config 2
(50 MHz)
Unit
Description
Min
Max
Min
Max
CM: L4_ICLK
Output of clock manager (CM), generated using CM
L3_ICLK and divider.
-
20.75
-
25
MHz
SGX
SGX input clock, taken from CM CORE_CLK.
-
N/A
-
N/A
MHz
SDRC
SDRC input clock, taken from CM L3_ICLK.
-
41.5
-
50
MHz
GPMC
GPMC input clock, taken from CM L3_ICLK.
-
41.5
-
25
MHz
Table 4-19 summarizes the DLL characteristics.
Table 4-19. DLL Characteristics
MIN
NOM
MAX
UNIT
Supply voltage vdds_dpll_dll
PARAMETER
1.71
1.8
1.89
V
Junction operating temperature
–40
25
105
°C
Input clock frequency
66
120
133
MHz
83
120
166
15
fF
Lock time (2)
500
Clocks
(Mode transitions through idle mode)
(1)
(2)
APPLICATION MODE 0
APPLICATION MODE 1
Input load (1)
Relock time
COMMENTS
500
ns
150
372
Clocks
IDLE to MODEMAXDELAY
1
2
µs
IDLE to APPLICATION MODE @133 MHz
1
1.5
µs
IDLE to APPLICATION MODE @166 MHz
IDLE to APPLICATION MODE 1 or 0
This parameter is design goal and is not tested on silicon.
Lock signal would go high from power down within 500 clocks. Lock signal switches to low state when the input clock is switched off
after 3 µs.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
145
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
4.3.4
www.ti.com
DPLL and DLL Noise Isolation
The DPLL and DLL require dedicated power supply pins to isolate the core analog circuit from the
switching noise generated by the core logic that can cause jitter on the clock output signal. Guard rings
are added to the cell to isolate it from substrate noise injection.
The vdd supplies are the most sensitive to noise; decoupling capacitance is recommended below the
supply rails. The maximum input noise level allowed is 30 mVPP for frequencies below 1 MHz.
Figure 4-10 illustrates an example of a noise filter.
OMAP Device
Noise Filter
vdds_dpll_dll
DPLL_MPU
DPLL2
DPLL_CORE
C
DLL
Noise Filter
vdds_dpll_per
DPLL5
C
DPLL4
030-017
(1)
DPLL2 is not supported on OMAP3515/03 devices.
Figure 4-10. DPLL and DLL Noise Filter(1)
Table 4-20 specifies the noise filter requirements.
Table 4-20. DPLL and DLL Noise Filter Requirements
NAME
MIN
Filtering capacitor
(1)
(2)
(3)
(4)
146
TYP
100
MAX
UNIT
nF
The capacitors must be inserted between power and ground as close as possible.
This circuit is provided only as an example.
The filter must be located as close as possible to the device.
No filtering required if noise is below 10 mVPP.
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
5 VIDEO DAC SPECIFICATIONS
A dual-display interface equips the OMAP3515/03 processor. This display subsystem provides the
necessary control signals to interface the memory frame buffer directly to the external displays (TV-set).
Two (one per channel) 10-bit current steering DACs are inserted between the DSS and the TV set to
generate the video analog signal. One of the video DACs also includes TV detection and power-down
mode. Figure 5-1 illustrates the OMAP3515/03 DAC architecture. For more information, see the DSS
chapter of the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98].
OMAP Device
TV DCT
DIN1[9:0]
ROUT1
tv_vfb1
TVOUT
BUFFER
Video DAC 1
tv_out1
DSS
tv_vfb2
ROUT2
DIN2[9:0]
TVOUT
TVOUT
BUFFER
BUFFER
Video DAC 2
tv_out2
vdda_dac
V_ref
vssa_dac
tv_vref
CBG
030-018
Figure 5-1. Video DAC Architecture
The following paragraphs detail the 10-bit DAC interface pinout, static and dynamic specifications, and
noise requirements. The operating conditions and absolute maximum ratings are detailed in Table 5-2 and
Table 5-4.
5.1 Interface Description
Table 5-1 summarizes the external pins of the video DAC.
Table 5-1. External Pins of 10-bit Video DAC
PIN NAME
I/O
DESCRIPTION
tv_out1
O
TV analog output composite
Submit Documentation Feedback
DAC1 video output. An external resistor is connected between this
node and tv_vfb1. The nominal value of ROUT1 is 1650 Ω. Finally,
note that this is the output node that drives the load (75 Ω).
VIDEO DAC SPECIFICATIONS
147
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 5-1. External Pins of 10-bit Video DAC (continued)
PIN NAME
I/O
DESCRIPTION
tv_out2
O
TV analog output S-VIDEO
DAC2 video output. An external resistor is connected between this
node and tv_vfb2. The nominal value of ROUT2 is 1650 Ω. Finally,
note that this is the output node that drives the load (75 Ω).
tv_vref
I
Reference output voltage from internal
bandgap
A decoupling capacitor (CBG) needs to be connected for optimum
performance.
tv_vfb1
O
Amplifier feedback node
Amplifier feedback node. An external resistor is connected between
this node and tv_out1. The nominal value of ROUT1 is 1650 Ω (1%).
tv_vfb2
O
Amplifier feedback node
Amplifier feedback node. An external resistor is connected between
this node and tv_out2. The nominal value of ROUT2 is 1650 Ω (1%).
148
VIDEO DAC SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
5.2 Electrical Specifications Over Recommended Operating Conditions
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 Ω, RLOAD = 75 Ω, unless otherwise noted)
Table 5-2. DAC – Static Electrical Specification
PARAMETER
R
CONDITIONS/ASSUMPTIONS
MIN
Resolution
TYP
MAX
UNIT
10
Bits
DC ACCURACY
INL (1)
Integral nonlinearity
–1
1
LSB
DNL (2)
Differential nonlinearity
–1
1
LSB
ANALOG OUTPUT
RLOAD = 75 Ω
-
Full-scale output voltage
-
Output offset voltage
0,7
-
Output offset voltage drift
-
Gain error
–17
RVOUT
Output impedance
67.5
0.525
0.88
1
V
50
mV
20
mV/°C
19
% FS
75
82.5
Ω
0.55
0.575
V
REFERENCE
VREF
Reference voltage range
-
Reference noise density
RSET
Full-scale current adjust resistor
PSRR
Reference PSRR (3) (Up to 6 MHz)
100-kHz reference noise
bandwidth
129
3700
4000
4200
Ω
40
dB
POWER CONSUMPTION
Ivdda-up
Analog Supply Current (4)
2 channels, no load
8
mA
-
Analog supply driving a 75-Ω load
(RMS)
2 channels
50
mA
Lasts less than 1 ns
60
mA
Measured at fCLK = 54 MHz, fOUT
= 2 MHz sine wave, vdd = 1.3 V
2
mA
Ivdda-up (peak) Peak analog supply current:
Ivdd-up
Digital supply current
(5)
Peak digital supply current (6)
Lasts less than 1 ns
2.5
mA
Ivdda-down
Analog power at power-down
T = 30°C, vdda = 1.8 V
1.5
mA
Ivdd-down
Digital power at power-down
T = 30°C, vdd = 1.3 V
1
mA
Ivdd-up
(1)
(2)
(3)
(4)
(5)
(6)
(peak)
The INL is measured at the output of the DAC (accessible at an external pin during bypass mode).
The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode).
Assuming a capacitor of 0.1 µF at the tv_ref node.
The analog supply current Ivdda is directly proportional to the full-scale output current IFS and is insensitive to fCLK
The digital supply current IVDD is dependent on the digital input waveform, the DAC update rate fCLK, and the digital supply VDD.
The peak digital supply current occurs at full-scale transition for duration less than 1 ns.
Submit Documentation Feedback
VIDEO DAC SPECIFICATIONS
149
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 Ω, RLOAD = 75 Ω, unless otherwise noted)
Table 5-3. Video DAC – Dynamic Electrical Specification
PARAMETER
fCLK (1)
CONDITIONS/ASSUMPTIONS
MIN
TYP
MAX
Equal to input clock frequency
Clock jitter
rms clock jitter required in order to assure
10-bit accuracy
Attenuation at 5.1 MHz
Corner frequency for signal
0.1
Attenuation at 54 MHz (1)
Image frequency
25
tST
Output settling time
Time from the start of the output transition to
output within ± 1 LSB of final value.
85
ns
tRout
Output rise time
Measured from 10% to 90% of full-scale
transition
25
ns
tFout
Output fall time
Measured from 10% to 90% of full-scale
transition
25
ns
BW
Signal bandwidth
6
MHz
Differential gain
(2)
Within bandwidth
40
ps
0.5
1.5
dB
30
33
dB
fCLK = 54 MHz, fOUT = 1 MHz
1
deg.
45
dB
(3)
SNR
Signal-to-noise ratio
1 kHz to 6 MHz bandwidth
fCLK = 54 MHz, fOUT = 1 MHz
55
PSRR
Power supply rejection ratio
Up to 6 MHz
20 (4)
Crosstalk
Between the two video
channels
(1)
(2)
(3)
(4)
150
MHz
1.5%
Differential phase (2)
SFDR
54
UNIT
Output update rate
–50
dB
dB
–40
dB
For internal input clock information, For more information, see the DSS chapter of the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling.
The SNR value is for dc coupling. Note that there is a 6-dB degradation for ac coupling.
The PSSR value is for dc coupling. Note that there is a 10-dB degradation for ac coupling.
VIDEO DAC SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
5.3 Analog Supply (vdda_dac) Noise Requirements
In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet the
noise requirements stated in this section.
The DAC Power Supply Rejection Ratio is defined as the relative variation of the full-scale output current
divided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per volt of
DI OUT
I OUTFS
VAC
100 ×
supply variation as shown in the following equation:
PSRRDAC =
% FSR
V
Depending on frequency, the PSRR is defined in Table 5-4.
Table 5-4. Video DAC – Power Supply Rejection Ratio
Supply Noise Frequency
PSRR % FSR/V
0 to 100 kHz
1
> 100 kHz
The rejection decreases 20 dB/dec.
Example: at 1 MHz the PSRR is 10% of FSR/V
A graphic representation is shown in Figure 5-2.
PSRR (% FSR/V)
First pole of
DAC output load
10
1
f
100 kHz 1 MHz
030-019
Figure 5-2. Video DAC – Power Supply Rejection Ratio
To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirements
translate to the following limits on vdda_dac (for the Video DAC).
The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-5:
Table 5-5. Video DAC – Maximum Peak-to-Peak Noise on vdda_dac
Tone Frequency
Maximum Peak-to-Peak Noise on vdda_dac
0 to 100 kHz
< 30 mVpp
> 100 kHz
Decreases 20 dB/dec.
Example: at 1 MHz the maximum is 3 mVpp
The maximum noise spectral density (white noise) is defined in Table 5-6:
Table 5-6. Video DAC – Maximum Noise Spectral Density
Supply Noise Bandwidth
Maximum Supply Noise Density
0 to 100 kHz
< 20 µV / √Hz
> 100 kHz
Decreases 20 dB/dec.
Example: at 1 MHz the maximum noise density is 2 µ / √Hz
Submit Documentation Feedback
VIDEO DAC SPECIFICATIONS
151
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended to
have vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.4, External
Component Value Choice).
5.4 External Component Value Choice
The full-scale output voltage VOUTMAX is regulated by the reference amplifier, and is set by an internal
resistor RSET. IOUTMAX can be expressed as:
IOUTMAX = IREF /8 * (63 + 15/16)
Where:
VREF = 0.55V
IREF = VREF/ (2* RSET)
The output current IOUT appearing at DAC output is a function of both the input code and IOUTMAX and can
be expressed as:
IOUT = (DAC_CODE/1023) * IOUTMAX
Where:
DAC_CODE = 0 to 1023 is the DAC input code in decimal.
The output voltage is:
VOUT = IOUT *N* RCABLE
Where:
(N = amplifier gain = 21)
RCABLE = 75 Ω (cable typical impedance)
The TV-out buffer requires a per channel external resistors: ROUT1/2. The equation below can be used to
select different resistor values (if necessary):
ROUT = (N+1) RCABLE = 1650 Ω
Recommended parameter values are:
Table 5-7. Video DAC – Recommended External Components Values
Recommended Value
UNIT
CBG
100
nF
ROUT1/2
1650
Ω
In order to limit the reference noise bandwidth and to suppress transients on VREF, it is necessary to
connect a large decoupling capacitor BG) between the tv_vref and vssa_dac pins.
152
VIDEO DAC SPECIFICATIONS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
6.1 Timing Test Conditions
All timing requirements and switching characteristics are valid over the recommended operating conditions
of Table 3-3, unless otherwise specified.
6.2 Interface Clock Specifications
6.2.1
Interface Clock Terminology
The Interface clock is used at the system level to sequence the data and/or control transfers accordingly
with the interface protocol.
6.2.2
Interface Clock Frequency
The two interface clock characteristics are:
• The maximum clock frequency
• The maximum operating frequency
The interface clock frequency documented in this document is the maximum clock frequency, which
corresponds to the maximum frequency programmable on this output clock. This frequency defines the
maximum limit supported by the OMAP3515/03 IC and doesn’t take into account any system consideration
(PCB, peripherals).
The system designer will have to consider these system considerations and OMAP3515/03 IC timings
characteristics as well, to define properly the maximum operating frequency, which corresponds to the
maximum frequency supported to transfer the data on this interface.
6.2.3
Clock Jitter Specifications
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this
document is the time difference between the typical cycle period and the actual cycle period affected by
noise sources on the clock. The cycle (or period) jitter terminology identifies this type of jitter.
Cycle (or Period) Jitter
Tn-1
Tn
Tn+1
Max. Cycle Jitter = Max (Ti)
Min. Cycle Jitter = Min (Ti)
Jitter Standard Deviation (or rms Jitter) = Standard Deviation (Ti)
030-020
Figure 6-1. Cycle (or Period) Jitter
6.2.4
Clock Duty Cycle Error
The duty cycle error is the ratio between either the high-level pulse duration or the low-level pulse duration
and the cycle time of a clock signal.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
153
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
6.3 Timing Parameters
The timing parameter symbols used in the timing requirement and switching characteristic tables are
created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other
related terminologies have been abbreviated as follows:
Table 6-1. Timing Parameters
LOWERCASE SUBSCRIPTS
154
Symbols
Parameter
c
Cycle time (period)
d
Delay time
dis
Disable time
en
Enable time
h
Hold time
su
Setup time
START
Start bit
t
Transition time
v
Valid time
w
Pulse duration (width)
X
Unknown, changing, or don’t care level
H
High
L
Low
V
Valid
IV
Invalid
AE
Active Edge
FE
First Edge
LE
Last Edge
Z
High impedance
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6.4 External Memory Interfaces
The OMAP3515/03 processor includes the following external memory interfaces:
• General-purpose memory controller (GPMC)
• SDRAM controller (SDRC)
6.4.1
General-Purpose Memory Controller (GPMC)
The GPMC is the OMAP3515/03 unified memory controller used to interface external memory devices
such as:
• Asynchronous SRAM-like memories and ASIC devices
• Asynchronous page mode and synchronous burst NOR flash
• NAND flash
6.4.1.1 GPMC/NOR Flash Interface Synchronous Timing
Table 6-3 and Table 6-4 assume testing over the recommended operating conditions (see Figure 6-2
through Figure 6-5) and electrical characteristic conditions.
Table 6-2. GPMC/NOR Flash Synchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
15.94
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-3. GPMC/NOR Flash Interface Timing Requirements – Synchronous Mode (1)
NO.
PARAMETER
OPP3
MIN
OPP1 (2)
OPP2
MAX
MIN
MAX
MIN
UNIT
MAX
F12
tsu(DV-CLKH)
Setup time, read gpmc_d[15:0]
valid before gpmc_clk high
1.9
1.9
3.2
ns
F13
th(CLKH-DV)
Hold time, read gpmc_d[15:0]
valid after gpmc_clk high
1.9
1.9
1.9
ns
F21
tsu(WAITV-CLKH)
Setup time, gpmc_waitx (3) valid
before gpmc_clk high
1.9
1.9
3.2
ns
F22
th(CLKH-WAITV)
Hold Time, gpmc_waitx (3) valid
after gpmc_clk high
2.5
2.5
2.5
ns
(1)
(2)
(3)
For VDD2 (vdd_core) OPP voltages, see Table 3-3, Recommended Operating Conditions.
Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see the OMAP35x
Technical Reference Manual (literature number ).
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
F0
tc(CLK)
Cycle time(15), output
clock gpmc_clk period
10
F1
tw(CLKH)
Typical pulse duration,
output clock gpmc_clk
high
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
ns
F1
tw(CLKL)
Typical pulse duration,
output clock gpmc_clk low
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
ns
tdc(CLK)
Duty cycle error, output
clk gpmc_clk
–500
500
–602
602
–1250
1250
ps
Submit Documentation Feedback
12.05
25
ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
155
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode (continued)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
tj(CLK)
Jitter standard
deviation(16), output clock
gpmc_clk
33.3
33.3
33.3
ps
tR(CLK)
Rise time, output clock
gpmc_clk
1.6
2
2
ns
tF(CLK)
Fall time, output clock
gpmc_clk
1.6
2
2
ns
tR(DO)
Rise time, output data
2
2
2
ns
tF(DO)
Fall time, output data
2
ns
F2
td(CLKH-nCSV)
Delay time, gpmc_clk
rising edge to
gpmc_ncsx(11) transition
F(6) – 1.9
F(6) + 3.3
F(6) – 1.8
F(6) + 4.1
F(6) – 2.6
F(6) + 4.9
ns
F3
td(CLKH-nCSIV)
Delay time, gpmc_clk
rising edge to
gpmc_ncsx(11) invalid
E(5) – 1.9
E(5) + 3.3
E(5) – 1.8
E(5) + 4.1
E(5) – 2.6
E(5) + 4.9
ns
F4
td(ADDV-CLK)
Delay time, address bus
valid to gpmc_clk first
edge
B(2) – 4.1
B(2) + 2.1
B(2) – 4.1
B(2) + 2.1
B(2) – 4.9
B(2) + 2.6
ns
F5
td(CLKH-ADDIV)
Delay time, gpmc_clk
rising edge to
gpmc_a[16:1] invalid
F6
td(nBEV-CLK)
Delay time,
gpmc_nbe0_cle,
gpmc_nbe1 valid to
gpmc_clk first edge
B(2) – 1.1
B(2) + 2.1
B(2) – 0.9
B(2) + 1.9
B(2) – 2.6
B(2) + 2.6
ns
F7
td(CLKH-nBEIV)
Delay time, gpmc_clk
rising edge to
gpmc_nbe0_cle,
gpmc_nbe1 invalid
D(4) – 2.1
D(4) + 1.1
D(4) – 1.9
D(4) + 0.9
D(4) – 2.6
D(4) + 2.6
ns
F8
td(CLKH-nADV)
Delay time, gpmc_clk
rising edge to
gpmc_nadv_ale transition
G(7) – 1.9
G(7) + 4.1
G(7) – 2.1
G(7) + 4.1
G(7) – 2.6
G(7) + 4.9
ns
F9
td(CLKH-nADVIV)
Delay time, gpmc_clk
rising edge to
gpmc_nadv_ale invalid
D(4) – 1.9
D(4) + 4.1
D(4) – 2.1
D(4) + 4.1
D(4) – 2.6
D(4) + 4.9
ns
F10
td(CLKH-nOE)
Delay time, gpmc_clk
rising edge to gpmc_noe
transition
H(8) – 2.1
H(8) + 2.1
H(8) – 2.1
H(8) + 2.1
H(8) – 2.6
H(8) + 4.9
ns
F11
td(CLKH-nOEIV)
Delay time, gpcm rising
edge to gpmc_noe invalid
E(5) – 2.1
E(5) + 2.1
E(5) – 2.1
E(5) + 2.1
E(5) – 2.6
E(5) + 4.9
ns
F14
td(CLKH-nWE)
Delay time, gpmc_clk
rising edge to gpmc_nwe
transition
I(9) – 1.9
I(9) + 4.1
I(9) – 2.1
I(9) + 4.1
I(9) – 2.6
I(9) + 4.9
ns
F15
td(CLKH-Data)
Delay time, gpmc_clk
rising edge to data bus
transition
J(10) – 2.1
J(10) + 1.1
J(10) – 1.9
J(10) + 0.9
J(10) – 2.6
J(10) + 2.6
ns
F17
td(CLKH-nBE)
Delay time, gpmc_clk
rising edge to
gpmc_nbex_cle transition
J(10) – 2.1
J(10) + 1.1
J(10) – 1.9
J(10) + 0.9
J(10) – 2.6
J(10) + 2.6
ns
F18
tW(nCSV)
Pulse duration,
gpmc_ncsx(11)
low
F19
F20
156
tW(nBEV)
tW(nADVV)
–2.1
2
–2.1
–2.6
ns
Read
A(1)
A(1)
A(1)
ns
Write
(1)
(1)
A(1)
ns
C(3)
C(3)
C(3)
ns
(3)
(3)
(3)
ns
(13)
Pulse duration, Read
gpmc_nbe0_cle,
Write
gpmc_nbe1 low
Pulse duration,
gpmc_nadv_ale
low
2
A
C
(13)
A
C
(13)
C
Read
K
K
K
ns
Write
K(13)
K(13)
K(13)
ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode (continued)
NO.
PARAMETER
1.15 V
1.0 V
0.9 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
H(8) – 2.1
H(8) + 4.1
H(8) – 2.1
H(8) + 4.1
H(8) – 2.6
F23
td(CLKH-IODIR)
Delay time, gpmc_clk
rising edge to gpmc_io_dir
high (IN direction)
H(8) + 4.9
ns
F24
td(CLKH-IODIV)
Delay time, gpmc_clk
M(17) – 2.1 M(17) + 4.1 M(17) – 2.1 M(17) + 4.1 M(17) – 2.6 M(17) + 4.9
rising edge to gpmc_io_dir
low (OUT direction)
ns
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
with n being the page burst access number.
(2) B = ClkActivationTime * GPMC_FCLK
(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: C = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: C = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n being the
page burst access number.
(4) For single read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: D = (WrCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(5) For single read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: E = (CSWrOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(6) For nCS falling edge (CS activated):
– Case GpmcFCLKDivider = 0:
– F = 0.5 * CSExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime
are even)
– F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime – ClkActivationTime) is a multiple of 3)
– F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3)
– F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)
(7) For ADV falling edge (ADV activated):
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and
ADVOnTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and
ADVRdOffTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
ADVWrOffTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
157
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)
(8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):
– Case GpmcFCLKDivider = 0:
– H = 0.5 * OEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime
are even)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime – ClkActivationTime) is a multiple of 3)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3)
– H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3)
For OE rising edge (OE deactivated):
– GpmcFCLKDivider = 0:
– H = 0.5 * OEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– H = 0.5 * OEExtraDelay * GPMC_FC if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are
even)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime – ClkActivationTime) is a multiple of 3)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3)
– H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3)
(9) For WE falling edge (WE activated):
– Case GpmcFCLKDivider = 0:
– I = 0.5 * WEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime
are even)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime – ClkActivationTime) is a multiple of 3)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3)
– I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3)
For WE rising edge (WE deactivated):
– Case GpmcFCLKDivider = 0:
– I = 0.5 * WEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime
are even)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime – ClkActivationTime) is a multiple of 3)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3)
– I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3)
(10) J = GPMC_FCLK period
(11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(12) P = gpmc_clk period
(13) For read: K = (ADVRdOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For write: K = (ADVWrOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(14) GPMC_FCLK is General-Purpose Memory Controller internal functional clock.
(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the I/F module by setting the
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.
(16) The jitter probability density can be approximated by a Gaussian function.
(17) M = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x Technical
Reference Manual (TRM) [literature number SPRUF98].
158
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
F1
F1
F0
gpmc_clk
F2
F3
F18
gpmc_ncsx
F4
gpmc_a[10:1]
Valid Address
F6
F7
F19
gpmc_nbe0_cle
F19
gpmc_nbe1
F6
F8
F8
F20
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
F13
F12
D0
gpmc_d[15:0]
gpmc_waitx
F23
gpmc_io_dir
OUT
F24
IN
OUT
030-021
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-2. GPMC/NOR Flash – Synchronous Single Read – (GpmcFCLKDivider = 0)
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
159
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
Valid Address
gpmc_a[10:1]
F6
F7
gpmc_nbe0_cle
F7
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
F13
F13
F12
D0
gpmc_d[15:0]
F21
F12
D1
D2
D3
F22
gpmc_waitx
F24
F23
gpmc_io_dir
OUT
IN
OUT
030-022
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-3. GPMC/NOR Flash – Synchronous Burst Read – 4x16-bit (GpmcFCLKDivider = 0)
160
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
gpmc_a[10:1]
Valid Address
F17
F6
F17
F17
gpmc_nbe0_cle
F17
F17
F17
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F14
F14
gpmc_nwe
F15
gpmc_d[15:0]
D0
D1
F15
D2
F15
D3
gpmc_waitx
gpmc_io_dir
OUT
030-023
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-4. GPMC/NOR Flash – Synchronous Burst Write – (GpmcFCLKDivider = 0)
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
161
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
F1
F0
F1
gpmc_clk
F2
F3
gpmc_ncsx
F6
F7
gpmc_nbe0_cle
Valid
F6
F7
gpmc_nbe1
Valid
F4
gpmc_a[26:17]
Address (MSB)
F12
F4
gpmc_a[16:1]_d[15:0]
F13
F5
Address (LSB)
F8
D0
D1
F12
D2
F8
D3
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
gpmc_waitx
F24
F23
gpmc_io_dir
OUT
IN
OUT
030-024
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-5. GPMC/Multiplexed NOR Flash – Synchronous Burst Read
162
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
Address (MSB)
gpmc_a[26:17]
F17
F6
F17
F17
gpmc_nbe0_cle
F17
F17
F17
gpmc_nbe1
F6
F8
F8
F9
gpmc_nadv_ale
F14
F14
gpmc_nwe
F15
Address (LSB)
gpmc_d[15:0]
D0
D1
F15
F15
D2
D3
gpmc_waitx
OUT
gpmc_io_dir
030-025
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-6. GPMC/Multiplexed NOR Flash – Synchronous Burst Write
6.4.1.2 GPMC/NOR Flash Interface Asynchronous Timing
Table 6-7 and Table 6-8 assume testing over the recommended operating conditions (see Figure 6-7
through Figure 6-12) and electrical characteristic conditions.
Table 6-5. GPMC/NOR Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
15.94
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (1) (2)
NO.
PARAMETER
1.15 V
MIN
FI1
Maximum output data generation delay from internal
functional clock
FI2
Maximum input data capture delay by internal
functional clock
FI3
Maximum device select generation delay from internal
functional clock
(1)
(2)
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
6.5
9.1
13.7
ns
4
5.6
8.1
ns
6.5
9.1
13.7
ns
The internal parameters table must be used to calculate Data Access Time stored in the corresponding CS register bit field.
Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
163
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (continued)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
FI4
Maximum address generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI5
Maximum address valid generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI6
Maximum byte enable generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI7
Maximum output enable generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI8
Maximum write enable generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI9
Maximum functional clock skew
100
170
200
ps
Table 6-7. GPMC/NOR Flash Interface Timing Requirements – Asynchronous Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
FA5 (1)
tacc(DAT)
Data maximum access
time
H (2)
H (2)
H (2)
GPMC_FCLK cycles
FA20 (3)
tacc1-pgmode(DAT) Page mode successive
data maximum access
time
P (4)
P (4)
P (4)
GPMC_FCLK cycles
FA21 (5)
tacc2-pgmode(DAT) Page mode first data
maximum access time
H (2)
H (2)
H (2)
GPMC_FCLK cycles
(1)
(2)
(3)
(4)
(5)
The FA5 parameter illustrates the amount of time required to internally sample input Data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data is internally sampled by active functional clock
edge. FA5 value must be stored inside the AccessTime register bit field.
H = AccessTime * (TimeParaGranularity + 1)
The FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of
GPMC functional clock cycles. After each access to input Page Data, next input Page Data is internally sampled by active functional
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
P = PageBurstAccessTime * (TimeParaGranularity + 1)
The FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data is internally sampled by
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode
NO.
PARAMETER
1.15 V
MIN
FA0
FA1
FA3
FA4
164
1.0 V
MAX
0.9 V
MIN
MAX
UNIT
MIN
MAX
tR(DO)
Rise time, output data
2.0
2.0
2.0
ns
tF(DO)
Fall time, output data
2.0
2.0
2.0
ns
tW(nBEV)
Pulse duration, Read
gpmc_nbe0_cl
Write
e, gpmc_nbe1
valid time
N(12)
N(12)
N(12)
ns
(12)
(12)
(12)
ns
Pulse duration, Read
gpmc_ncsx(13)
Write
v low
A(1)
A(1)
A(1)
(1)
(1)
(1)
tW(nCSV)
td(nCSV-nADVIV)
td(nCSV-nOEIV)
Delay time,
gpmc_ncsx(13)
valid to
gpmc_nadv_al
e invalid
Read
Write
Delay time,
gpmc_ncsx(13) valid to
gpmc_noe invalid
(Single read)
N
N
A
(2)
B
(2)
B
– 0.2
– 0.2
C(3) – 0.2
N
A
(2)
B
(2)
B
+ 2.0
+ 2.0
C(3) + 2.0
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
(2)
B
(2)
B
– 0.2
– 0.2
C(3) – 0.2
ns
A
(2)
B
(2)
B
+ 2.6
+ 2.6
C(3) + 2.6
(2)
B
(2)
B
– 0.2
– 0.2
C(3) – 0.2
ns
(2)
+ 3.7
ns
(2)
+ 3.7
ns
C(3) + 3.7
ns
B
B
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode (continued)
NO.
PARAMETER
1.15 V
1.0 V
0.9 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
FA9
td(AV-nCSV)
Delay time, address
bus valid to
gpmc_ncsx(13) valid
J(9) – 0.2
J(9) + 2.0
J(9) – 0.2
J(9) + 2.6
J(9) – 0.2
J(9) + 3.7
ns
FA10
td(nBEV-nCSV)
Delay time,
gpmc_nbe0_cle,
gpmc_nbe1 valid to
gpmc_ncsx(13) valid
J(9) – 0.2
J(9) + 2.0
J(9) – 0.2
J(9) + 2.6
J(9) – 0.2
J(9) + 3.7
ns
FA12
td(nCSV-nADVV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_nadv_ale valid
K(10) – 0.2
K(10) + 2.0
K(10) – 0.2
K(10) + 2.6
K(10) – 0.2
K(10) + 3.7
ns
FA13
td(nCSV-nOEV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_noe valid
L(11) – 0.2
L(11) + 2.0
L(11) – 0.2
L(11) + 2.6
L(11) – 0.2
L(11) + 3.7
ns
FA14
td(nCSV-IODIR)
Delay time,
gpmc_ncsx(13) valid to
gpmc_io_dir high
L(11) – 0.2
L(11) + 2.0
L(11) – 0.2
L(11) + 2.6
L(11) – 0.2
L(11) + 3.7
ns
FA15
td(nCSV-IODIR)
Delay time,
gpmc_ncsx(13) valid to
gpmc_io_dir low
M(14) – 0.2
M(14) + 2.0
M(14) – 0.2
M(14) + 2.6
M(14) – 0.2
M(14) + 3.7
ns
FA16
tw(AIV)
Address invalid
duration between 2
successive R/W
accesses
FA18
td(nCSV-nOEIV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_noe invalid
(Burst read)
FA20
tw(AV)
Pulse duration, address
valid – 2nd, 3rd, and
4th accesses
FA25
td(nCSV-nWEV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_nwe valid
E(5) – 0.2
E(5) + 2.0
E(5) – 0.2
E(5) + 2.6
E(5) – 0.2
E(5) + 3.7
ns
FA27
td(nCSV-nWEIV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_nwe invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
F(6) – 0.2
F(6) + 3.7
ns
FA28
td(nWEV-DV)
Delay time, gpmc_ new
valid to data bus valid
3.7
ns
FA29
td(DV-nCSV)
Delay time, data bus
valid to gpmc_ncsx(13)
valid
J(9) + 3.7
ns
FA37
td(nOEV-AIV)
Delay time, gpmc_noe
valid to
gpmc_a[16:1]_d[15:0]
address phase end
3.7
ns
G(7)
I(8) – 0.2
G(7)
I(8) + 2.0
I(8) – 0.2
D(4)
I(8) + 2.6
I(8) – 0.2
D(4)
2.0
J(9) – 0.2
G(7)
J(9) + 2.0
2.0
I(8) + 3.7
D(4)
2.6
J(9) – 0.2
ns
J(9) + 2.6
2.6
J(9) – 0.2
ns
ns
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n
being the page burst access number
(2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK
(5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(7) G = Cycle2CycleDelay * GPMC_FCLK
(8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) *
GPMC_FCLK
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
165
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK
(10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLK
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x Technical
Reference Manual (TRM) [literature number SPRUF98].
GPMC_FCLK
gpmc_clk
FA5
FA1
gpmc_ncsx
FA9
Valid Address
gpmc_a[10:1]
FA0
FA10
gpmc_nbe0_cle
Valid
gpmc_nbe1
Valid
FA0
FA10
FA3
FA12
gpmc_nadv_ale
FA4
FA13
gpmc_noe
gpmc_d[15:0]
Data IN 0
Data IN 0
gpmc_waitx
FA14
gpmc_io_dir
OUT
FA15
IN
OUT
030-026
Figure 6-7. GPMC/NOR Flash – Asynchronous Read – Single Word Timing(1)(2)(3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
166
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
GPMC_FCLK
gpmc_clk
FA5
FA5
FA1
FA1
gpmc_ncsx
FA16
FA9
FA9
gpmc_a[10:1]
Address 0
Address 1
FA0
FA0
FA10
FA10
gpmc_nbe0_cle
Valid
FA0
FA0
gpmc_nbe1
Valid
Valid
Valid
FA10
FA10
FA3
FA3
FA12
FA12
gpmc_nadv_ale
FA4
FA4
FA13
FA13
gpmc_noe
gpmc_d[15:0]
Data Upper
gpmc_waitx
FA15
gpmc_io_dir
FA14
OUT
FA15
IN
FA14
OUT
IN
030-027
Figure 6-8. GPMC/NOR Flash – Asynchronous Read – 32-bit Timing
(1)(2)(3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
167
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
GPMC_FCLK
gpmc_clk
FA21
FA20
FA20
FA20
FA1
gpmc_ncsx
FA9
Add0
gpmc_a[10:1]
Add1
Add2
Add3
D0
D1
D2
Add4
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA12
gpmc_nadv_ale
FA18
FA13
gpmc_noe
gpmc_d[15:0]
D3
D3
gpmc_waitx
FA15
gpmc_io_dir
OUT
FA14
IN
OUT
030-028
Figure 6-9. GPMC/NOR Flash – Asynchronous Read – Page Mode 4x16-bit Timing(1)(2)(3)(4)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by
active functional clock edge. FA21 value must be stored inside AccessTime register bit field.
(3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC
functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge
after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input
page data). FA20 value must be stored in PageBurstAccessTime register bit field.
(4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
168
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
Valid Address
gpmc_a[10:1]
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA3
FA12
gpmc_nadv_ale
FA27
FA25
gpmc_nwe
FA29
gpmc_d[15:0]
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
030-029
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-10. GPMC/NOR Flash – Asynchronous Write – Single Word Timing
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
169
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
GPMC_FCLK
gpmc_clk
FA1
FA5
gpmc_ncsx
FA9
gpmc_a[26:17]
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
Valid
FA0
FA10
gpmc_nbe1
Valid
FA3
FA12
gpmc_nadv_ale
FA4
FA13
gpmc_noe
FA29
gpmc_a[16:1]_d[15:0]
FA37
Address (LSB)
FA14
gpmc_io_dir
OUT
Data IN
Data IN
FA15
OUT
IN
gpmc_waitx
030-030
Figure 6-11. GPMC/Multiplexed NOR Flash – Asynchronous Read – Single Word Timing
(1)(2)(3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
170
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
gpmc_a[26:17]
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
FA3
FA12
gpmc_nadv_ale
FA27
FA25
gpmc_nwe
FA29
gpmc_a[16:1]_d[15:0]
FA28
Valid Address (LSB)
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
030-031
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-12. GPMC/Multiplexed NOR Flash – Asynchronous Write – Single Word Timing
6.4.1.3 GPMC/NAND Flash Interface Timing
Table 6-10 through Table 6-12 assume testing over the recommended operating conditions (see
Figure 6-13 through Figure 6-16) and electrical characteristic conditions.
Table 6-9. GPMC/NAND Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
15.94
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters (1) (2)
NO.
PARAMETER
1.15 V
MIN
GNFI1
Maximum output data generation delay from
internal functional clock
GNFI2
Maximum input data capture delay by internal
functional clock
(1)
(2)
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
6.5
9.1
13.7
ns
4
5.6
8.1
ns
Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
171
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters (continued)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
GNFI3
Maximum device select generation delay from
internal functional clock
6.5
9.1
13.7
ns
GNFI4
Maximum address latch enable generation delay
from internal functional clock
6.5
9.1
13.7
ns
GNFI5
Maximum command latch enable generation
delay from internal functional clock
6.5
9.1
13.7
ns
GNFI6
Maximum output enable generation delay from
internal functional clock
6.5
9.1
13.7
ns
GNFI7
Maximum write enable generation delay from
internal functional clock
6.5
9.1
13.7
ns
GNFI8
Maximum functional clock skew
100
170
200
ps
Table 6-11. GPMC/NAND Flash Interface Timing Requirements
NO.
PARAMETER
1.15 V
MIN
GNF12 (1) tacc(DAT)
(1)
(2)
1.0 V
MAX
MIN
J (2)
Data maximum access time
0.9 V
MAX
MIN
UNIT
MAX
J (2)
J (2)
GPMC_FCLK
cycles
The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
J = AccessTime * (TimeParaGranularity + 1)
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
tR(DO)
Rise time, output
data
2.0
2.0
2.0
ns
tF(DO)
Fall time, output
data
2.0
2.0
2.0
ns
GNF0
tw(nWEV)
Pulse duration,
gpmc_nwe valid
time
GNF1
td(nCSV-nWEV)
Delay time,
gpmc_ncsx(13)
valid to
gpmc_nwe valid
B(2) – 0.2
B(2) + 2.0
B(2) – 0.2
B(2) + 2.6
B(2) – 0.2
B(2) + 3.7
ns
GNF2
tw(CLEH-nWEV)
Delay time,
gpmc_nbe0_cle
high to gpmc_nwe
valid
C(3) – 0.2
C(3) + 2.0
C(3) – 0.2
C(3) + 2.6
C(3) – 0.2
C(3) + 3.7
ns
GNF3
tw(nWEV-DV)
Delay time,
gpmc_d[15:0]
valid to
gpmc_nwe valid
D(4) – 0.2
D(4) + 2.0
D(4) – 0.2
D(4) + 2.6
D(4) – 0.2
D(4) + 3.7
ns
GNF4
tw(nWEIV-DIV)
Delay time,
gpmc_nwe invalid
to gpmc_d[15:0]
invalid
E(5) – 0.2
E(5) + 2.0
E(5) – 0.2
E(5) + 2.6
E(5) – 0.2
E(5) + 3.7
ns
GNF5
tw(nWEIV-CLEIV)
Delay time,
gpmc_nwe invalid
to
gpmc_nbe0_cle
invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
F(6) – 0.2
F(6) + 3.7
ns
172
A(1)
A(1)
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
A(1)
ns
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics (continued)
NO.
PARAMETER
1.15 V
1.0 V
0.9 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
GNF6
tw(nWEIV-nCSIV)
Delay time,
gpmc_nwe invalid
to gpmc_ncsx(13)
invalid
G(7) – 0.2
G(7) + 2.0
G(7) – 0.2
G(7) + 2.6
G(7) – 0.2
G(7) + 3.7
ns
GNF7
tw(ALEH-nWEV)
Delay time,
gpmc_nadv_ale
High to
gpmc_nwe valid
C(3) – 0.2
C(3) + 2.0
C(3) – 0.2
C(3) + 2.6
C(3) – 0.2
C(3) + 3.7
ns
GNF8
tw(nWEIV-ALEIV)
Delay time,
gpmc_nwe invalid
to
gpmc_nadv_ale
invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
F(6) – 0.2
F(6) + 3.7
ns
GNF9
tc(nWE)
Cycle time, Write
cycle time
GNF10
td(nCSV-nOEV)
Delay time,
gpmc_ncsx(13)
valid to gpmc_noe
valid
GNF13
tw(nOEV)
Pulse duration,
gpmc_noe valid
time
K(10)
K(10)
K(10)
ns
GNF14
tc(nOE)
Cycle time, Read
cycle time
L(11)
L(11)
L(11)
ns
GNF15
tw(nOEIV-nCSIV)
Delay time,
gpmc_noe invalid
to gpmc_ncsx(13)
invalid
H(8)
I(9) – 0.2
H(8)
I(9) + 2.0
M(12) – 0.2
M(12) + 2.0
I(9) – 0.2
H(8)
I(9) + 2.6
M(12) – 0.2
M(12) + 2.6
I(9) – 0.2
ns
I(9) + 3.7
M(12) – 0.2
M(12) + 3.7
ns
ns
(1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK
(5) E = ((WrCycleTime – WEOffTime) * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay ) * GPMC_FCLK
(6) F = ((ADVWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay )) * GPMC_FCLK
(7) G = ((CSWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay )) * GPMC_FCLK
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(12) M = ((CSRdOffTime – OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay )) * GPMC_FCLK
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
173
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
GPMC_FCLK
GNF1
GNF6
GNF2
GNF5
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF0
gpmc_nwe
GNF3
GNF4
Command
gpmc_a[16:1]_d[15:0]
030-032
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-13. GPMC/NAND Flash – Command Latch Cycle Timing
GPMC_FCLK
GNF1
GNF6
GNF7
GNF8
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]_d[15:0]
GNF4
Address
030-033
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-14. GPMC/NAND Flash – Address Latch Cycle Timing
174
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
GPMC_FCLK
GNF12
GNF10
GNF15
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
GNF14
GNF13
gpmc_noe
gpmc_a[16:1]_d[15:0]
DATA
gpmc_waitx
030-034
Figure 6-15. GPMC/NAND Flash – Data Read Cycle Timing
(1)(2)(3)
(1) The GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data is internally sampled by active functional clock
edge. The GNF12 value must be stored inside AccessTime register bit field.
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
(3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 ,1, 2, or 3.
GPMC_FCLK
GNF1
GNF6
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]_d[15:0]
GNF4
DATA
030-035
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 or 1.
Figure 6-16. GPMC/NAND Flash – Data Write Cycle Timing
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
175
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6.4.2
www.ti.com
SDRAM Controller Subsystem (SDRC)
The SDRAM controller subsystem (SDRC) module provides connectivity between the OMAP35x
Applications Processor and external DRAM memory components. The SDRC module only supports
low-power double-data-rate (LPDDR) SDRAM devices. Memory devices can be interfaced to the SDRC
using a stacked-memory approach or through the printed circuit board (PCB). The stacked-memory
approach uses the package on package interface pins (available on CBB & CBC package).
6.4.2.1 SDRAM Controller Subsystem Device-Specific Information
The approach to specifying interface timing for the SDRC memory bus is different than on other interfaces
such as the general-purpose memory controller (GPMC) and the multi-channel buffered serial ports
(McBSPs). For these other interfaces the device timing was specified in terms of data manual
specifications and I/O buffer information specification (IBIS) models.
For the SDRC memory bus, the approach is to specify compatible memory devices and provide the
printed circuit board (PCB) solution and guidelines directly to the user. Texas Instruments (TI) has
performed the simulation and system characterization to ensure all interface timings in this solution are
met.
6.4.2.2 LPDDR Interface
The LPDDR interface is balled out on the bottom side of all OMAP35x packages and on the top side of
OMAP35x POP packages. The LPDDR interface on the top of the POP package has been designed for
compatibility any POP LPDDR device with a matching footprint and compliance with the JEDEC
LPDDR-266 specification.
This section provides the timing specification for the bottom-side LPDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory
system without the need for a complex timing closure process. For more information regarding guidelines
for using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing
Specification Application Report (literature number SPRAAV0).
6.4.2.2.1 LPDDR Interface Schematic
Figure 6-17 and Figure 6-18 show the LPDDR interface schematics for a LPDDR memory system. The 1
x16 LPDDR system schematic is identical to Figure 6-17 except that the high word LPDDR device is
deleted.
176
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
LPDDR
OMAP35x
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
T
DQ7
LDM
LDQS
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1
T
T
T
T
T
T
LPDDR
sdrc_d16
T
DQ0
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
T
DQ7
LDM
LDQS
DQ8
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
T
sdrc_a14
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
DQ15
UDM
UDQS
DQ15
UDM
UDQS
BA0
BA1
A0
BA0
BA1
A0
A14
CS
A14
CS
CAS
RAS
WE
CKE
CAS
RAS
WE
CKE
CK
CK
CK
CK
N/C
T
T
T
T
N/C
T
T
Figure 6-17. OMAP35x LPDDR High Level Schematic (x16 memories)
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
177
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
OMAP35x
LPDDR
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
T
DQ7
DM0
DQS0
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1
T
T
DQ15
DM1
DQS1
sdrc_d16
T
DQ16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
T
DQ23
DM2
DQS2
DQ24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
T
sdrc_a14
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
T
T
T
DQ31
DM3
DQS3
BA0
BA1
A0
A14
CS
T
N/C
T
CAS
RAS
WE
CKE
T
T
T
N/C
T
CK
CK
T
Figure 6-18. OMAP35x LPDDR High Level Schematic (x32 memory)
6.4.2.2.2 Compatible JEDEC LPDDR Devices
Table 6-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.
Generally, the LPDDR interface is compatible with x16 and x32 LPDDR266 and LPDDR333 speed grade
LPDDR devices.
Table 6-13. Compatible JEDEC LPDDR Devices
NO.
PARAMETER
MIN
1
JEDEC LPDDR Device Speed
Grade
LPDDR-266
2
JEDEC LPDDR Device Bit Width
16
32
Bits
3
JEDEC LPDDR Device Count
1
2
Devices
4
JEDEC LPDDR Device Ball
Count
60
90
Balls
(1)
(2)
178
MAX
UNIT
NOTES
See Note
(1)
See Note
(2)
Higher LPDDR speed grades are supported due to inherent JEDEC LPDDR backwards compatibility.
1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memory
system.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6.4.2.2.3 PCB Stackup
The minimum stackup required for routing the OMAP35x is a six layer stack as shown in Table 6-14.
Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the size
of the PCB footprint.
Table 6-14. OMAP35x Minimum PCB Stack Up
LAYER
TYPE
DESCRIPTION
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Table 6-15. PCB Stack Up Specifications
NO.
PARAMETER
MIN
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under LPDDR routing region
2
4
Number of ground plane cuts allowed within LPDDR routing region
5
Number of ground reference planes required for each LPDDR routing 1
layer
6
Number of layers between LPDDR routing layer and reference ground 0
plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
9
PCB BGA escape via pad size
18
Mils
10
PCB BGA escape via hole size
8
Mils
11
Device BGA Pad Size
See Note (1)
12
LPDDR Device BGA Pad Size
See Note (2)
13
Single Ended Impedance, ZO
50
14
Impedance Control
Z-5
(1)
(2)
(3)
TYP
MAX
UNIT
NOTES
0
1
0
Z
75
Ω
Z+5
Ω
See Note (3)
Please see the Flip Chip Ball Grid Array Package Reference Guide (literature number SPRU811) for device BGA pad size.
Please see the LPDDR device manufacturer documentation for the LPDDR device BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
6.4.2.3 Placement
Figure 6-19 shows the required placement for the OMAP35x device as well as the LPDDR devices. The
dimensions for Figure 6-19 are defined in Table 6-16. The placement does not restrict the side of the PCB
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace
lengths and allow for proper routing space. For 1x16 and 1x32 LPDDR memory systems, the second
LPDDR device is omitted from the placement.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
179
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
X
Y
OFFSET
LPDDR
Device
Y
Y
OFFSET
LPDDR
Controller
A1
OMAP
A1
Recommended LPDDR Device
Orientation
Figure 6-19. OMAP35x and LPDDR Device Placement
Table 6-16. Placement Specifications
NO.
1
(1)
(2)
(3)
(4)
(5)
PARAMETER
MIN
X
MAX
UNIT
1440
Mils
2
Y
1030
Mils
3
Y Offset
525
Mils
4
LPDDR Keepout Region
5
Clearance from non-LPDDR signal to LPDDR
Keepout Region
NOTES
See Notes (1),
See Notes
(2)
(1) (2)
,
See Notes (1), (2), (3)
See Note (4)
4
w
See Note (5)
See Figure 6-17 for dimension definitions.
Measurements from center of device to center of LPDDR device.
For 16 bit memory systems it is recommended that Y Offset be as small as possible.
LPDDR keepout region to encompass entire LPDDR routing area.
Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.
6.4.2.4 LPDDR Keep Out Region
The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDR
keep out region is defined for this purpose and is shown in Figure 6-20. The size of this region varies with
the placement and LPDDR routing. Additional clearances required for the keep out region are shown in
Table 6-16.
180
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
LPDDR Controller
A1
LPDDR Device
A1
Region should encompass all LPDDR circuitry and varies depending
on placement. Non-LPDDR signals should not be routed on the
LPDDR signal layers within the LPDDR keep out region. Non-LPDDR
signals may be routed in the region provided they are routed on
layers separated from LPDDR signal layers by a ground layer. No
breaks should be allowed in the reference ground layers in this
region. In addition, the 1.8 V power plane should cover the entire keep
out region.
Figure 6-20. LPDDR Keepout Region
6.4.2.5 Net Classes
Table 6-17 lists the clock net classes for the LPDDR interface. Table 6-18 lists the signal net classes, and
associated clock net classes, for the signals in the LPDDR interface. These net classes are used for the
termination and routing rules that follow.
Table 6-17. Clock Net Class Definitions
CLOCK NET CLASS
OMAP PIN NAMES
CK
sdrc_clk/sdrc_nclk
DQS0
sdrc_dqs0
DQS1
sdrc_dqs1
DQS2
sdrc_dqs2
DQS3
sdrc_dqs3
Table 6-18. Signal Net Class Definitions
CLOCK NET CLASS
ASSOCIATED CLOCK NET CLASS
OMAP PIN NAMES
ADDR_CTRL
CK
sdrc_ba, sdrc_a, sdrc_ncs0, sdrc_ncas,
sdrc_nras, sdrc_nwe, sdrc_cke0
DQ0
DQS0
sdrc_d, sdrc_dm0
DQ1
DQS1
sdrc_d, sdrc_dm1
DQ2
DQS2
sdrc_d, sdrc_dm2
DQ3
DQS3
sdrc_d, sdrc_dm3
6.4.2.6 LPDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-19 shows the specifications for the series terminators.
Table 6-19. LPDDR Signal Terminations
NO.
PARAMETER
MIN
1
CK Net Class
0
(1)
TYP
MAX
UNIT
NOTES
10
Ω
See Note (1)
Only series termination is permitted, parallel or SST specifically disallowed.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
181
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-19. LPDDR Signal Terminations (continued)
NO.
PARAMETER
MIN
TYP
MAX
UNIT
NOTES
2
ADDR_CTRL Net Class
0
22
Zo
Ω
See Notes (1), (2), (3)
3
Data Byte Net Classes
(DQS0-DQS3, DQ0-DQ3)
0
22
Zo
Ω
See Notes (1), (2), (3)
(2)
(3)
Terminator values larger than typical only recommended to address EMI issues.
Termination value should be uniform across net class.
6.4.2.7 LPDDR CK and ADDR_CTRL Routing
Figure 6-21 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
T
C
A
LPDDR
Controller
B
A1
OMAP
A1
Figure 6-21. CK and ADDR_CTRL Routing and Topology
Table 6-20. CK and ADDR_CTRL Routing Specification
NO.
PARAMETER
1
Center to Center CK-CK spacing
MIN
TYP
MAX
2w
UNIT
NOTES
2
CK A to B/A to C Skew Length Mismatch
25
Mils
See Note (1)
3
CK B to C Skew Length Mismatch
25
Mils
4
Center to Center CK to other
LPDDR trace spacing
4w
5
CK/ADDR_CTRL nominal trace length
CACLM-50
6
See Note (2)
See Note (3)
CACLM+50
Mils
ADDR_CTRL to CK Skew Length Mismatch
100
Mils
7
ADDR_CTRL to ADDR_CTRL
Skew Length Mismatch
100
Mils
8
Center to Center ADDR_CTRL to other
LPDDR trace 4w spacing
4w
See Note (2)
9
Center to Center ADDR_CTRL to other
ADDR_CTRL 3w trace spacing
3w
See Note (2)
10
ADDR_CTRL A to B/A to C Skew Length
Mismatch
100
Mils
11
ADDR_CTRL B to C Skew Length Mismatch
100
Mils
(1)
(2)
(3)
182
CACLM
See Note (1)
Series terminator, if used, should be located closest to device.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Figure 6-22 shows the topology and routing for the DQS and DQ net classes; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
T
E0
T
E1
LPDDR
Controller
A1
OMAP
T
A1
E2
T
E3
Figure 6-22. DQS and DQ Routing and Topology
Table 6-21. DQS and DQ Routing Specification (1)
NO.
PARAMETER
2
DQS E Skew Length Mismatch
3
Center to Center DQS to other LPDDR
trace spacing
4w
4
DQS/DQ nominal trace length
DQLM - 50
5
6
7
Center to Center DQ to other LPDDR
trace spacing
4w
See Note (2)
8
Center to Center DQ to other DQ trace
spacing
3w
See Note (2), (4)
9
DQ E Skew Length Mismatch
(1)
(2)
(3)
(4)
MIN
TYP
MAX
UNIT
25
Mils
NOTES
See Note (2)
DQLM
DQLM + 50
Mils
DQ to DQS Skew Length Mismatch
100
Mils
DQ to DQ Skew Length Mismatch
100
Mils
100
See Note (3)
Mils
Series terminator, if used, should be located closest to LPDDR.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
DQLM is the longest Manhattan distance of the DQS and DQ net classes.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
183
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
6.5 Video Interfaces
6.5.1
Camera Interface
The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV,
or JPEG image sensor modules to the OMAP3515/03 device for video-preview, video-record, and
still-image-capture applications. The camera subsystem supports up to two simultaneous pixel flows but
only one of them can use the video processing hardware:
• PARALLEL: the parallel interface data must go through the video processing hardware.
6.5.1.1 Parallel Camera Interface Timing
The parallel camera interface is a 12-bit interface which can be used in two modes:
1. SYNC mode: progressive and interlaced image sensor modules for 8-, 10-, 11-, and 12-bit data. The
pixel clock can be up to 75 MHz in 12-bit mode. The pixel clock can be up to 130 MHz in 8-bit packed
mode.
2. ITU mode provides an ITU-R BT 656 compatible data stream with progressive image sensor modules
only in 8- and 10-bit configurations. The pixel clock can be up to 75 MHz.
6.5.1.1.1 SYNC Normal Mode
6.5.1.1.1.1 12-Bit SYNC Normal – Progressive Mode
Table 6-23 and Table 6-24 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-23).
Table 6-22. ISP Timing Conditions – 12-Bit SYNC Normal – Progressive Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
Output load capacitance
8.6
pF
Output Condition
CLOAD
Table 6-23. ISP Timing Requirements – 12-Bit SYNC Normal – Progressive Mode (1)
NO.
PARAMETER
1.15 V
MIN
ISP17
tc(pclk)
Cycle time (2), cam_pclk period
1.0 V
MAX
13.3
MIN
22.2
(3)
ISP18
tW(pclkH)
Typical pulse duration, cam_pclk high
0.5*P
ISP18
tW(pclkL)
Typical pulse duration, cam_pclk low
0.5*P (3)
tdc(pclk)
Duty cycle error, cam_pclk
ns
0.5*P (3)
ns
0.5*P
ps
200
ps
tj(pclk)
Cycle jitter
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk rising
edge
1.82
3.25
ns
ISP20
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.82
3.25
ns
ISP21
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.82
3.25
ns
ISP22
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.82
3.25
ns
ISP23
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.82
3.25
ns
184
133
1111
ISP19
(1)
(2)
(3)
(4)
, cam_pclk
ns
(3)
667
(4)
UNIT
MAX
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_pclk period in ns
Maximum cycle jitter supported by cam_pclk input clock.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-23. ISP Timing Requirements – 12-Bit SYNC Normal – Progressive Mode (continued)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
ISP24
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.82
3.25
ns
ISP25
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.82
3.25
ns
ISP26
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge
1.82
3.25
ns
Table 6-24. ISP Switching Characteristics – 12-Bit SYNC Normal – Progressive Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
ISP15
tc(xclk)
Cycle time (1), cam_xclk period
ISP16
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO (2)
0.5*PO (2)
ns
ISP16
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
0.5*PO (2)
ns
tdc(xclk)
Duty cycle error, cam_xclk
231
231
ps
tj(xclk)
Jitter standard deviation (3), cam_xclk
33
33
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
(1)
(2)
(3)
4.6
4.6
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98]
PO = cam_xclk period in ns
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
185
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
ISP16
ISP15
ISP16
cam_xclki
ISP17
ISP18
ISP18
cam_pclk
ISP19
ISP20
ISP21
ISP22
cam_vs
cam_hs
ISP23
cam_d[11:0]
D(0)
D(n-3)
D(n-2)
ISP24
D(n-1)
D(0)
D(1)
D(n-1)
ISP25
ISP26
cam_wen
cam_fld
030-056
(1)(2)(3)(4)(5)(6)(7)(8)
Figure 6-23. ISP – 12-Bit SYNC Normal – Progressive Mode
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the
signal length can be set.
(2) The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data.
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be
grounded.
(4) However, it is possible to shift the data to 0, 2, or 4 data internal lanes.
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode, and cam_d[11:0] in 12-bit mode.
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and
cam_wen signals are asserted.
(8) In cam_xclki; I is equal to a or b.
6.5.1.1.1.2 8-bit Packed SYNC – Progressive Mode
Table 6-26 and Table 6-27 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-24).
Table 6-25. ISP Timing Conditions – 8-bit Packed SYNC – Progressive Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.5
ns
tF
Input signal fall time
2.5
ns
Output Conditions
186
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-25. ISP Timing Conditions – 8-bit Packed SYNC – Progressive Mode (continued)
TIMING CONDITION PARAMETER
CLOAD
VALUE
UNIT
8.6
pF
Output load capacitance
Table 6-26. ISP Timing Requirements – 8-bit Packed SYNC – Progressive Mode (1)
NO.
PARAMETER
1.15 V
MIN
ISP3
tc(pclk)
Cycle time (2), cam_pclk period
1.0 V
MAX
MIN
7.7
UNIT
MAX
15.4
(3)
ISP4
tW(pclkH)
Typical pulse duration, cam_pclk high
0.5*P
ISP4
tW(pclkL)
Typical pulse duration, cam_pclk low
0.5*P (3)
tdc(pclk)
Duty cycle error, cam_pclk
ns
(3)
ns
0.5*P (3)
ns
0.5*P
385
(4)
83
ps
167
ps
tj(pclk)
Cycle jitter
ISP5
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk
rising edge
1.08
2.27
ns
ISP6
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.08
2.27
ns
ISP7
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP8
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.08
2.27
ns
ISP9
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP10
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.08
2.27
ns
ISP11
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.08
2.27
ns
ISP12
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge
1.08
2.27
ns
(1)
(2)
(3)
(4)
, cam_pclk
769
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_pclk period in ns.
Maximum cycle jitter supported by cam_pclk input clock.
Table 6-27. ISP Switching Characteristics – 8-bit packed SYNC – Progressive Mode
NO.
PARAMETER
1.15 V
MIN
ISP1
tc(xclk)
Cycle time (1), cam_xclk period
1.0 V
MAX
4.6
MIN
UNIT
MAX
4.6
(2)
ns
ISP2
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO
ISP2
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
tdc(xclk)
Duty cycle error, cam_xclk
231
231
ps
tj(xclk)
Jitter standard deviation (3), cam_xclk
67
67
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
(1)
(2)
(3)
0.5*PO
(2)
ns
0.5*PO (2)
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
187
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
ISP1
www.ti.com
ISP2
ISP2
cam_xclki
ISP4
ISP3
ISP4
cam_pclk
ISP5
ISP6
ISP7
ISP8
cam_vs
cam_hs
ISP9
cam_d[7:0]
D(0)
D(n-3)
D(n-2)
ISP10
D(n-1)
D(0)
D(1)
D(n-1)
ISP12
ISP11
cam_wen
cam_fld
030-059
(1)(2)(3)(4)(5)
Figure 6-24. ISP – 8-bit Packed SYNC – Progressive Mode
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The polarity of
cam_fld is programmable.
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer
a YCbCr data stream or compressed stream to memory at very high speed.
(5) In cam_xclki; I is equal to a or b.
6.5.1.1.1.3 12-Bit SYNC Normal – Interlaced Mode
Table 6-29 and Table 6-30 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-25).
Table 6-28. ISP Timing Conditions – 12-Bit SYNC Normal – Interlaced Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
Output Conditions
188
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-28. ISP Timing Conditions – 12-Bit SYNC Normal – Interlaced Mode (continued)
TIMING CONDITION PARAMETER
CLOAD
VALUE
UNIT
8.6
pF
Output load capacitance
Table 6-29. ISP Timing Requirements – 12-Bit SYNC Normal – Interlaced Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
MIN
ISP17
tc(pclk)
Cycle time (2), cam_pclk period
MAX
13.3
UNIT
MIN
MAX
22.2
(3)
ISP18
tW(pclkH)
Typical pulse duration, cam_pclk high
0.5*P
ISP18
tW(pclkL)
Typical pulse duration, cam_pclk low
0.5*P (3)
tdc(pclk)
Duty cycle error, cam_pclk
ns
0.5*P
(3)
ns
0.5*P (3)
667
(4)
133
ps
200
ps
tj(pclk)
Cycle jitter
ISP19
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk
rising edge
1.82
3.25
ns
ISP20
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.82
3.25
ns
ISP21
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.82
3.25
ns
ISP22
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.82
3.25
ns
ISP23
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.82
3.25
ns
ISP24
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.82
3.25
ns
ISP25
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.82
3.25
ns
ISP26
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising
edge
1.82
3.25
ns
ISP27
tsu(dV-fldH)
Setup time, cam_fld valid before cam_pclk rising
edge
1.82
3.25
ns
ISP28
th(pclkH-fldV)
Hold time, cam_fld valid after cam_pclk rising edge
1.82
3.25
ns
(1)
(2)
(3)
(4)
, cam_pclk
ns
1111
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_lclk period in ns.
Maximum cycle jitter supported by cam_pclk input clock.
Table 6-30. ISP Switching Characteristics – 12-Bit SYNC Normal – Interlaced Mode
NO.
PARAMETER
1.15 V
MIN
ISP15
tc(xclk)
Cycle time (1), cam_xclk period
1.0 V
MAX
4.6
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO
ISP16
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
tdc(xclk)
Duty cycle error, cam_xclk
(1)
(2)
(3)
, cam_xclk
UNIT
MAX
4.6
(2)
ISP16
(3)
MIN
ns
0.5*PO (2)
ns
0.5*PO
231
ns
(2)
231
ps
tj(xclk)
Jitter standard deviation
33
33
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
189
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
ISP16
ISP15
ISP16
cam_xclki
ISP18
ISP17
ISP18
cam_pclk
ISP20
ISP19
FRAME(0)
cam_vs
FRAME(0)
ISP21
L(0)
cam_hs
ISP22
L(n-1)
L(0)
ISP23
cam_d[11:0]
D(0)
D(n-3)
D(n-2)
D(n-1)
D(0)
D(1)
ISP24
D(2)
ISP25
D(n-1)
ISP26
cam_wen
ISP28
ISP27
cam_fld
PAIR
IMPAIR
030-057
(1)(2)(3)(4)(5)(6)(7)(8)
Figure 6-25. ISP – 12-Bit SYNC Normal – Interlaced Mode
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the
signal length can be set.
(2) The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data.
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be
grounded.
(4) It is possible to shift the data to 0, 2, or 4 data internal lanes.
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode, and cam_d[11:0] in 12-bit mode.
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and
cam_wen signals are asserted.
(8) In cam_xclki; I is equal to a or b.
6.5.1.1.1.4 8-bit Packed SYNC – Interlaced Mode
Table 6-32 and Table 6-33 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-26).
190
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-31. ISP Timing Conditions – 8-bit Packed SYNC – Interlaced Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.5
ns
tF
Input signal fall time
2.5
ns
Output load capacitance
8.6
pF
Output Conditions
CLOAD
Table 6-32. ISP Timing Requirements – 8-bit Packed SYNC – Interlaced Mode (1)
NO.
PARAMETER
1.15 V
MIN
ISP3
tc(pclk)
Cycle time (2), cam_pclk period
ISP4
tW(pclkH)
Typical pulse duration, cam_pclk high
ISP4
1.0 V
MAX
7.7
MIN
UNIT
MAX
15.4
ns
0.5*P (3)
0.5*P (3)
(3)
(3)
tW(pclkL)
Typical pulse duration, cam_pclk low
tdc(pclk)
Duty cycle error, cam_pclk
385
769
ps
tj(pclk)
Cycle jitter (4), cam_pclk
83
167
ps
ISP5
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk
rising edge
1.08
2.27
ns
ISP6
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.08
2.27
ns
ISP7
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP8
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.08
2.27
ns
ISP9
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP10
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.08
2.27
ns
ISP11
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.08
2.27
ns
ISP12
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge
1.08
2.27
ns
ISP13
tsu(dV-fldH)
Setup time, cam_fld valid before cam_pclk rising
edge
1.08
2.27
ns
ISP14
th(pclkH-fldV)
Hold time, cam_fld valid after cam_pclk rising edge
1.08
2.27
ns
(1)
(2)
(3)
(4)
0.5*P
0.5*P
ns
ns
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_lclk period in ns.
Maximum cycle jitter supported by cam_pclk input clock.
Table 6-33. ISP Switching Characteristics – 8-bit Packed SYNC – Interlaced Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
ISP16
tc(xclk)
Cycle time (1), cam_xclk period
ISP2
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO (2)
0.5*PO (2)
ns
ISP2
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
0.5*PO (2)
ns
tdc(xclk)
Duty cycle error, cam_xclk
(1)
(2)
(3)
(3)
, cam_xclk
4.6
4.6
231
ns
231
ps
tj(xclk)
Jitter standard deviation
67
67
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
191
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
ISP2
ISP1
ISP2
cam_xclki
ISP4
ISP3
ISP4
cam_pclk
ISP6
ISP5
cam_vs
FRAME(0)
FRAME(0)
ISP7
cam_hs
L(0)
ISP8
L(n-1)
L(0)
ISP10
ISP9
cam_d[7:0]
D(0)
D(n-3)
D(n-2)
D(n-1)
D(0)
D(1)
D(2)
ISP11
D(n-1)
ISP12
cam_wen
ISP14
ISP13
cam_fld
PAIR
IMPAIR
030-060
Figure 6-26. ISP – 8-bit Packed SYNC – Interlaced Mode(1)(2)(3)(4)(5)
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted.
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer
a YCbCr data stream or compressed stream to memory at very high speed.
(5) In cam_xclki; I is equal to a or b.
6.5.1.1.2 ITU Mode
Table 6-35 and Table 6-36 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-27).
Table 6-34. ISP Timing Conditions – ITU Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
2.7
ns
Input Conditions
tR
192
Input signal rise time
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-34. ISP Timing Conditions – ITU Mode (continued)
TIMING CONDITION PARAMETER
tF
VALUE
UNIT
Input signal fall time
2.7
ns
Output load capacitance
8.6
pF
Output Conditions
CLOAD
Table 6-35. ISP Timing Requirements – ITU Mode (1)
NO.
PARAMETER
1.15 V
MIN
ISP17
tc(pclk)
Cycle time (2), cam_pclk period
ISP18
tW(pclkH)
Typical pulse duration, cam_pclk high
ISP18
1.0 V
MAX
13.3
MIN
UNIT
MAX
22.2
ns
0.5*P (3)
0.5*P (3)
ns
(3)
(3)
ns
tW(pclkL)
Typical pulse duration, cam_pclk low
tdc(pclk)
Duty cycle error, cam_pclk
667
1111
ps
tj(pclk)
Cycle jitter (4), cam_pclk
133
200
ps
ISP23
tsu(dV-pclkH)
Setup time, cam_d[9:0] valid before cam_pclk
rising edge
1.82
3.25
ns
ISP24
th(pclkH-dV)
Hold time, cam_d[9:0] valid after cam_pclk rising
edge
1.82
3.25
ns
(1)
(2)
(3)
(4)
0.5*P
0.5*P
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_lclk period in ns.
Maximum cycle jitter supported by cam_lclk input clock.
Table 6-36. ISP Switching Characteristics – ITU Mode
NO.
PARAMETER
1.15 V
MIN
ISP15
tc(xclk)
Cycle time (1), cam_xclk period
1.0 V
MAX
4.6
MIN
UNIT
MAX
4.6
(2)
ns
(2)
ns
0.5*PO (2)
ns
ISP16
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO
ISP16
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
tdc(xclk)
Duty cycle error, cam_xclk
231
231
ps
tj(xclk)
Jitter standard deviation (3), cam_xclk
33
33
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
(1)
(2)
(3)
0.5*PO
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
193
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
ISP16
ISP15
ISP16
cam_xclki
ISP17
ISP18
ISP18
cam_pclk
ISP23
cam_d[9:0]
SOF
D (0)
ISP24
D(n-1)
EOF
SOF
D(0)
D(n-1)
EOF
030-058
(1)(2)
Figure 6-27. ISP – ITU Mode
(1) The unused lines must be grounded and the data bus must be connected to the lower data lines. It is possible to shift the data to 0, 2, or
4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in 10-bit
mode.
(2) The parallel camera in ITU mode supports progressive camera modules.
194
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
6.5.2
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Display Subsystem (DSS)
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or
internal (SRAM) memory on an LCD panel or a TV set. The DSS integrates a display controller, a remote
frame buffer module (RFBI), and a TV-out module. It can be used in two configurations:
• LCD display in:
– Bypass mode (RFBI module bypassed)
– RFBI mode (through RFBI module)
• TV display (not discussed in this document because of its analog IO signals)
The two displays can be active at the same time.
NOTE
For more information, see Display Subsystem / Display Subsystem Functional Description
section of the OMAP35x Technical Reference Manual (TRM) [literature number
SPRUF98.
6.5.2.1 LCD Display in Bypass Mode
Two types of LCD panel are supported:
• Thin film transistor (TFT) or active matrix technology
• Supertwisted nematic (STN) or passive matrix technology
Both configurations are discussed in the following paragraphs.
6.5.2.1.1 LCD Display in TFT Mode
6.5.2.1.1.1 LCD Display in TFT Mode – HDTV Application
Table 6-37 assumes testing over the recommended operating conditions (see Figure 6-28).
Table 6-37. LCD Display Switching Characteristics in TFT Mode – HDTV Application(3)(4)
NO.
PARAMETER
OPP3
OPP2
UNIT
MIN
MAX
MIN
MAX
DL0
td(PCLKA-HSYNCT)
Delay time, dss_pclk active edge to dss_hsync
transition
–4.2
4.2
–4.7
4.7
ns
DL1
td(PCLKA-VSYNCT)
Delay time, dss_pclk active edge to dss_vsync
transition
–4.2
4.2
–4.7
4.7
ns
DL2
td(PCLKA-ACBIASA) Delay time, dss_pclk active edge to
dss_acbias active level
–4.2
4.2
–4.7
4.7
ns
DL3
td(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data
bus valid
–4.2
4.2
–4.7
4.7
ns
DL4
tc(PCLK)
Cycle time(2), dss_pclk
DL5
tw(PCLK)
13.468
Pulse duration, dss_pclk low or high
0.45*P
(1)
15.152
0.55*P
(1)
0.45*P
(1)
ns
(1)
0.55*P
ns
(1) P = dss_pclk period.
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) The capacitive load is equivalent to 25 pF at 1.15 V and 30 pF at 1.0 V.
(4) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
195
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
DL5
DL4
dss_pclk
DL1
dss_vsync
DL0
dss_hsync
DL2
dss_acbias
DL3
dss_data[23:0]
030-061
(1)(2)(3)(4)
Figure 6-28. LCD Display in TFT Mode – HDTV Application
(1)
(2)
(3)
(4)
The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
The pixel clock frequency is programmable.
All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.
For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
6.5.2.1.2 LCD Display in STN Mode
Table 6-38 assumes testing over the recommended operating conditions (see Figure 6-29).
Table 6-38. LCD Display Switching Characteristics in STN Mode(3)(4)(5)
NO.
PARAMETER
DL3
td(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data
bus valid
DL4
tc(PCLK)
Cycle time(2), dss_pclk
DL5
tw(PCLK)
Pulse duration, dss_pclk low or high
OPP3
OPP2
UNIT
MIN
MAX
MIN
MAX
–6.9
6.9
–6.9
6.9
22.727
0.45*P
(1)
ns
22.727
0.55*P
(1)
(1)
0.45*P
ns
(1)
0.55*P
ns
(1) P = dss_pclk period.
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.
(4) The capacitive load is equivalent to 40 pF.
(5) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
196
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
DL5
DL4
dss_pclk
dss_vsync
dss_hsync
dss_acbias
DL3
dss_data[23:0]
030-062
(1)(2)(3)(4)(5)
Figure 6-29. LCD Display in STN Mode
(1)
(2)
(3)
(4)
(5)
The pixel data bus depends on the use 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.
dss_vsync width must be programmed to be as small as possible.
The pixel clock frequency is programmable.
For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
6.5.2.2 LCD Display in RFBI Mode
Table 6-40 and Table 6-41 assume testing over the recommended operating conditions (see Figure 6-30
through Figure 6-32).
Table 6-39. LCD Timing Conditions – RFBI Mode
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Input Conditions
tR
Input signal rise time
15
ns
tF
Input signal fall time
15
ns
30
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-40. LCD Display Timing Requirements in RFBI Mode
NO.
PARAMETER
OPP3
MIN
MAX
OPP2
MIN
MAX
OPP1(1)
MIN
UNIT
MAX
DR0
tsu(DAV-RDH)
Setup time, rfbi_da[15:0] valid to rfbi_rd
high
7.0
9.0
ns
DR1
th(RDH-DAIV)
Hold time, rfbi_rd high to rfbi_da[15:0]
invalid
5.0
5.0
ns
td(Data
rfbi_da[15:0] are sampled at the end off
the access time
sampled)
N(2)
N(2)
ns
(1) Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
(2) N = (AccessTime) * (TimeParaGranularity + 1) * L4CLK
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
197
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-41. LCD Display Switching Characteristics in RFBI Mode
PARAMETER
OPP3
MIN
tw(rfbi_wrH)
Pulse duration, rfbi_wr high
OPP1(1)
OPP2
MAX
MIN
MAX
MIN
UNIT
MAX
A(2)
A(2)
ns
(3)
tw(rfbi_wrL)
Pulse duration, rfbi_wr low
B
B(3)
ns
td(rfbi_a0-rfbi_wrL)
Delay time, rfbi_a0 transition to rfbi_wr
low
C(4)
C(4)
ns
td(rfbi_wrH-rfbi_a0)
Delay time, rfbi_wr high to rfbi_a0
transition
D(5)
D(5)
ns
td(rfbi_csx-rfbi_wrL)
Delay time, rfbi_csx(15) low to rfbi_wr low
E(6)
E(6)
ns
(7)
(7)
(15)
td(rfbi_wrH-rfbi_csxH)
Delay time, rfbi_wr high to rfbi_csx
high
F
F
ns
td(dataV)
rfbi_da[15:0] valid
G(8)
G(8)
ns
td(rfbi_a0H-rfbi_rdL)
Delay time, rfbi_a0 high to rfbi_rd low
H(9)
H(9)
ns
(10)
(10)
ns
td(rfbi_rdlH-rfbi_a0)
Delay time, rfbi_rd high to rfbi_a0
transition
I
I
tw(rfbi_rdH)
Pulse duration, rfbi_rd high
J(11)
J(11)
ns
(12)
(12)
tw(rfbi_rdL)
Pulse duration, rfbi_rd low
K
K
ns
td(rfbi_rdL-rfbi_csxL)
Delay time, rfbi_rd low to rfbi_csx(15) low
L(13)
L(13)
ns
td(rfbi_rdH-rfbi_csxH)
Delay time, rfbi_rd high to rfbi_csx(15)
high
M(14)
M(14)
ns
tR(rfbi_wr)
Rise time, rfbi_wr
10
10
ns
tF(rfbi_wr)
Fall time, rfbi_wr
10
10
ns
tR(rfbi_a0)
Rise time, rfbi_a0
10
10
ns
tF(rfbi_a0)
Fall time, rfbi_a0
10
10
ns
tR(rfbi_csx)
Rise time, rfbi_csx(15)
10
10
ns
tF(rfbi_csx)
Fall time, rfbi_csx(15)
10
10
ns
tR(rfbi_da[15:0])
Rise time, rfbi_da[15:0]
10
10
ns
tF(rfbi_da[15:0])
Fall time, rfbi_da[15:0]
10
10
ns
tR(rfbi_rd)
Rise time, rfbi_rd
10
10
ns
tF(rfbi_rd)
Fall time, rfbi_rd
10
10
ns
(1)
(2)
(3)
(4)
(5)
Cannot boot in OPP1. If OPP1 is desired, boot in higher OPP then switch to OPP1.
A = (WECycleTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
B = (WEOffTime – WEOntime) * (TimeParaGranularity + 1) * L4CLK
C = WEOnTime * (TimeParaGranularity + 1) * L4CLK
D = (WECycleTime + CSPulseWidth – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
if mode Write to Read or Read to Write is enabled
(6) E = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(7) F = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(8) G = (WECycleTime) * (TimeParaGranularity + 1) * L4CLK
(9) H = (REOnTime) * (TimeParaGranularity + 1) * L4CLK
(10) I = (RECycleTime + CSPulseWidth – REOffTime) * (TimeParaGranularity + 1) * L4CLK
if mode Write to Read or Read to Write is enabled
(11) J = (RECycleTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(12) K = (REOffTime – REOntime) * (TimeParaGranularity + 1) * L4CLK
(13) L = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(14) M = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(15) In rfbi_csx, x stands for 0 or 1.
198
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
CsPulseWidth
WeCycleTime
WeCycleTime
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
rfbi_csx
WeOffTime
WeOffTime
WeOnTime
WeOnTime
rfbi_wr
rfbi_da[15:0]
DATA1
DATA0
rfbi_rd
034-002
Figure 6-30. LCD Display in RFBI Mode – Command / Data Write Mode(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
AccessTime
AccessTime
ReCycleTime
ReCycleTime
CsPulseWidth
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
ReOffTime
ReOffTime
rfbi_csx
ReOnTime
ReOnTime
rfbi_rd
DR1
DR0
rfbi_da[15:0]
DATA0
DATA1
rfbi_wr
034-003
Figure 6-31. LCD Display in RFBI Mode – Data Read Mode(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
199
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
WeCycleTime
ReCycleTime
AccessTime
WeCycleTime
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
CsOffTime
CsOnTime
rfbi_csx
WeOffTime
WeOffTime
WeOnTime
WeOnTime
rfbi_wr
ReOffTime
ReOnTime
rfbi_rd
CsPulseWidth
rfbi_da[15:0]
WRITE
READ
CsPulseWidth
WRITE
034-004
Figure 6-32. LCD Display in RFBI Mode – Command / Data Write-to-Read and Read-to-Write Timing
Modes(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
200
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6.6 Serial Communications Interfaces
6.6.1
Multichannel Buffered Serial Port (McBSP) Timing
There are five McBSP modules called McBSP1 through McBSP5. McBSP provides a full-duplex, direct
serial interface between the OMAP3515/03 device and other devices in a system such as other
application devices or codecs. It can accommodate a wide range of peripherals and clocked
frame-oriented protocols (I2S, PCM, and TDM) due to its high level of versatility.
The McBSP1-5 modules may support two types of data transfer at the system level:
• The full-cycle mode, for which one clock period is used to transfer the data, generated on one edge
and captured on the same edge (one clock period later).
• The half-cycle mode, for which one half clock period is used to transfer the data, generated on one
edge and captured on the opposite edge (one half clock period later). Note that a new data is
generated only every clock period, which secures the required hold time.
The interface clock (CLKX/CLKR) activation edge (data/frame sync capture and generation) has to be
configured accordingly with the external peripheral (activation edge capability) and the type of data
transfer required at the system level.
The OMAP3515/03 McBSP1-5 timing characteristics are described for both rising and falling activation
edges. McBSP1 supports:
• 6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins.
• 4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are
internally looped back via software configuration, respectively, to the clkr and fsr internal signals for
data receive.
McBSP2, 3, 4, and 5 support only the 4-pin mode.
The following sections describe the timing characteristics for applications in normal mode (that is,
OMAP3515/03 McBSPx connected to one peripheral) and TDM applications in multipoint mode.
6.6.1.1 McBSP in Normal Mode
Table 6-42. McBSP Timing Conditions—Normal Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
10
pF
Output Conditions
CLOAD
Table 6-43. McBSP Output Clock Pulse Duration
NO.
PARAMETER
OPP3
MIN
OPP2
MAX
MIN
UNIT
MAX
Inputs and Outputs
McBSP1 tc(CLK)
Cycle time, mcbsp1_clkx / mcbsp1_clkr (multiplexing mode
0)
20.83
41.67
ns
McBSP2 tc(CLK)
Cycle time, mcbsp2_clkx (multiplexing mode 0)
20.83
41.67
ns
McBSP3 tc(CLK)
Cycle time,
mcbsp3_clkx
IO set 1 (multiplexing mode 0)
31.25
62.50
ns
IO set 2 (multiplexing mode 1)
20.83
41.67
IO set 3 (multiplexing mode 2)
20.83
41.67
IO set 1 (multiplexing mode 0)
20.83
41.67
IO set 2 (multiplexing mode 2)
31.25
62.50
31.25
62.50
McBSP4 tc(CLK)
McBSP5 tc(CLK)
Cycle time,
mcbsp4_clkx
Cycle time, mcbsp5_clkx (multiplexing mode 1)
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
ns
ns
201
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-43. McBSP Output Clock Pulse Duration (continued)
NO.
PARAMETER
OPP3
MIN
OPP2
MAX
MIN
UNIT
MAX
Outputs
tw(CLKH)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high(2)
(2)
tw(CLKL)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low
tdc(CLK)
Duty cycle error, mcbsp1_clkr / mcbspx_clkx(2)
0.5*P(1)
0.5*P(1)
ns
(1)
0.5*P(1)
ns
0.5*P
–0.75
0.75
–0.75
0.75
ns
(1) P = mcbsp1_clkr / mcbspx_clkx clock period.
(2) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
6.6.1.1.1 Receive Timing with Rising Edge as Activation Edge
Table 6-44 through Table 6-49 assume testing over the recommended operating conditions (see
Figure 6-33 through Figure 6-34).
Table 6-44. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
B3
tsu(DRV-CLKAE)
B4
th(CLKAE-DRV)
MAX
1.0 V
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before mcbsp1_clkr /
mcbspx_clkx active edge
Master
3.5
7.7
ns
Slave
3.7
7.9
ns
Hold time, mcbspx_dr valid after mcbsp1_clkr /
mcbspx_clkx active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
tsu(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr /
mcbspx_clkx active edge
3.7
7.9
ns
B6
th(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr /
mcbspx_clkx active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-45. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Receive
Mode (1)
NO.
B2
(1)
PARAMETER
td(CLKAE-FSV)
1.15 V
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr /
mcbspx_fsx valid
1.0 V
MIN
MAX
MIN
MAX
0.7
14.8
0.7
29.6
UNIT
ns
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-46. McBSP4 (Set #1) Timing Requirements – Rising Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
B3
B4
tsu(DRV-CLKXAE)
th(CLKXAE-DRV)
1.0 V
MAX
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
2.7
7.7
ns
Slave
3.7
7.9
ns
Hold time, mcbspx_dr valid after mcbspx_clkx
active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE)
Setup time mcbspx_fsx valid before mcbspx_clkx active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold Time mcbspx_fsx valid after mcbspx_clkx active edge
0.5
0.5
ns
(1)
202
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-48 and Table 6-49
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-47. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Receive Mode (1)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
(1)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
16.6
0.7
33.1
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-48 and Table 6-49
Table 6-48. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
B3
tsu(DRV-CLKXAE)
B4
th(CLKXAE-DRV)
B5
B6
(1)
1.0 V
MAX
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
5.6
12
ns
Slave
5.8
12.2
ns
Hold time, mcbspx_dr valid after mcbspx_clkx
active edge
Master
1
1
ns
Slave
0.4
0.4
ns
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx active edge
5.8
12.2
ns
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active edge
0.5
0.5
ns
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-46 and Table 6-47.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Table 6-49. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Receive
Mode (1)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
22.2
0.7
44.4
ns
mcbspx_clkr
B2
B2
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-068
Figure 6-33. McBSP Rising Edge Receive Timing in Master Mode
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-069
Figure 6-34. McBSP Rising Edge Receive Timing in Slave Mode
(1)
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-46 and Table 6-47.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
203
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
6.6.1.1.2 Transmit Timing with Rising Edge as Activation Edge
Table 6-50 through Table 6-55 assume testing over the recommended operating conditions (see
Figure 6-35 and Figure 6-36).
Table 6-50. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-51. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Transmit
Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
14.8
0.7
29.6
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
14.8
0.6
29.6
ns
Slave
0.6
14.8
0.6
29.6
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-52. McBSP4 (Set #1) Timing Requirements – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54.
Table 6-53. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to
mcbspx_fsx valid
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge
to mcbspx_dx valid
(1)
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
16.6
0.7
33.1
ns
Master
0.6
16.6
0.6
33.1
ns
Slave
0.6
17.3
0.6
33.1
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54.
Table 6-54. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
B5
(1)
204
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.8
MAX
1.0 V
MIN
12.2
UNIT
MAX
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-54.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-54. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Transmit Mode
(continued)
NO.
PARAMETER
1.15 V
MIN
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
1.0 V
MAX
0.5
MIN
UNIT
MAX
0.5
ns
Table 6-55. McBSP 3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Transmit
Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
22.2
0.7
44.4
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
22.2
0.6
44.4
ns
Slave
0.6
22.2
0.6
44.4
ns
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-070
Figure 6-35. McBSP Rising Edge Transmit Timing in Master Mode
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-071
Figure 6-36. McBSP Rising Edge Transmit Timing in Slave Mode
(1)
In mcbspx, x identifies the McBSP number: 3, 4 or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
6.6.1.1.3 Receive Timing with Falling Edge as Activation Edge
Table 6-56 through Table 6-61 assume testing over the recommended operating conditions (see
Figure 6-37 and Figure 6-38).
Table 6-56. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
B3
tsu(DRV-CLKAE)
1.0 V
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before
mcbsp1_clkr / mcbspx_clkx active edge
Master
3.5
7.7
ns
Slave
3.7
7.9
ns
Master
1
1
ns
Slave
0.4
0.4
ns
3.7
7.9
ns
B4
th(CLKAE-DRV)
Hold time, mcbspx_dr valid after
mcbsp1_clkr / mcbspx_clkx active edge
B5
tsu(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before
mcbsp1_clkr /mcbspx_clkx active edge
(1)
MAX
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
205
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-56. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Receive Mode
(continued)
NO.
PARAMETER
1.15 V
MIN
B6
th(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after
mcbsp1_clkr /mcbspx_clkx active edge
1.0 V
MAX
0.5
MIN
UNIT
MAX
0.5
ns
Table 6-57. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Receive
Mode (1)
NO.
B2
(1)
PARAMETER
td(CLKAE-FSV)
1.15 V
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to
mcbsp1_fsr / mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
14.8
0.7
29.6
ns
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-58. McBSP4 (Set #1) Timing Requirements – Falling Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
B3
tsu(DRV-CLKXAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
2.7
7.7
ns
Slave
3.7
7.9
ns
B4
th(CLKXAE-DRV)
Hold time, mcbspx_dr valid after
mcbspx_clkx active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE)
Setup time mcbspx_fsx valid before mcbspx_clkx active
edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-60
Table 6-59. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Receive Mode (1)
NO.
B2
(1)
PARAMETER
td(CLKXAE-FSXV)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
16.6
0.7
33.1
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-60
Table 6-60. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
B3
tsu(DRV-CLKXAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
5.6
12
ns
Slave
5.8
12.2
ns
B4
th(CLKXAE-DRV)
Hold time, mcbspx_dr valid after mcbspx_clkx
active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx active
edge
5.8
12.2
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
206
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-61. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Receive
Mode (1)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
(1)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
22.2
0.7
44.4
ns
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
mcbspx_clkr
B2
B2
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-072
Figure 6-37. McBSP Falling Edge Receive Timing in Master Mode
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-073
Figure 6-38. McBSP Falling Edge Receive Timing in Slave Mode
6.6.1.1.4 Transmit Timing with Falling Edge as Activation Edge
Table 6-62 through Table 6-67 assume testing over the recommended operating conditions (see
Figure 6-39 and Figure 6-40).
Table 6-62. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx
active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-63. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Transmit
Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
14.8
0.7
29.6
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
14.8
0.6
29.6
ns
Slave
0.6
14.8
0.6
29.6
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
207
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-64. McBSP4 (Set #1) Timing Requirements – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before
mcbspx_clkx active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx
active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-66.
Table 6-65. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
16.6
0.7
33.1
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
16.6
0.6
33.1
ns
Slave
0.6
17.3
0.6
33.1
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-66.
Table 6-66. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.8
12.2
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx
active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-66. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Table 6-67. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Transmit
Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
0.7
22.2
0.7
44.4
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
22.2
0.6
44.4
ns
Slave
0.6
22.2
0.6
44.4
ns
(1)
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-66. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-074
Figure 6-39. McBSP Falling Edge Transmit Timing in Master Mode
208
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-075
Figure 6-40. McBSP Falling Edge Transmit Timing in Slave Mode
6.6.1.2 McBSP in TDM—Multipoint Mode (McBSP3)
For TDM application in multipoint mode, OMAP3515/03 is considered as a slave. Table 6-69 and
Table 6-70 assume testing over the operating conditions and electrical characteristic conditions described
below.
Table 6-68. McBSP3 Timing Conditions—TDM in Multipoint Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
MIN
MAX
Input Conditions
tR
Input signal rising time
1.0
8.5
ns
tF
Input signal falling time
1.0
8.5
ns
40
pF
Output Conditions
CLOAD
Output Load Capacitance
Table 6-69. McBSP3 Timing Requirements—TDM in Multipoint Mode (1)
NO.
PARAMETER
1.15 V
MIN
tW(CLKH)
Cycle Time, mcbsp3_clkx
tW(CLKH)
Typical Pulse duration, mcbsp3_clkx high
MAX
162.8
tW(CLKL)
Typical Pulse duration, mcbsp3_clkx low
tdc(CLK)
Duty cycle error, mcbsp3_clkx
B3 (3)
tsu(DRV-CLKAE)
Setup time, mcbsp3_dr valid before
mcbsp3_clkx active edge
B4 (3)
th(CLKAE-DRV)
Hold time, mcbsp3_dr valid after mcbsp3_clkx
active edge
B5 (3)
tsu(FSV-CLKAE)
Setup time, mcbsp3_fsx valid before
mcbsp3_clkx active edge
B6 (3)
th(CLKAE-FSV)
Hold time, mcbsp3_fsx valid after
mcbsp3_clkx active edge
(1)
(2)
(3)
1.0 V
MIN
UNIT
MAX
162.8
ns
0.5*P (2)
0.5*P (2)
(2)
(2)
0.5*P
–8.14
0.5*P
8.14
–8.14
ns
ns
8.14
ns
9
9
ns
2.4
2.4
ns
9
9
ns
2.4
2.4
ns
For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
P = mcbsp3_clkx period in ns
See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.
Table 6-70. McBSP3 Switching Characteristics—TDM in Multipoint Mode (1)
NO.
B8 (2)
(1)
(2)
PARAMETER
td(CLKXAE-DXV)
1.15 V
Delay time, mcbsp3_clkx active edge to
mcbsp3_dx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.6
16.8
0.6
29.6
ns
For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
209
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6.6.2
www.ti.com
Multichannel Serial Port Interface (McSPI) Timing
The multichannel SPI is a master/slave synchronous serial bus. The McSPI1 module supports up to four
peripherals and the others (McSPI2, McSPI3, and McSPI4) support up to two peripherals. The following
timings are applicable to the different configurations of McSPI in master/slave mode for any McSPI and
any channel (n).
6.6.2.1 McSPI in Slave Mode
Table 6-71 and Table 6-72 assume testing over the recommended operating conditions (see Figure 6-41).
Table 6-71. McSPI Interface Timing Requirements – Slave Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
1/SS 1/tc(CLK)
0
1.0 V
MAX
Frequency, mcspix_clk
MIN
UNIT
MAX
24
12
MHz
-200
200
ps
0.45*P (4)
0.55*P (4)
ns
tj(CLK)
Cycle jitter (3), mcspix_clk
SS1
tw(CLK)
Pulse duration, mcspix_clk high or low
SS2
tsu(SIMOV-CLKAE)
Setup time, mcspix_simo valid before mcspix_clk
active edge
4.2
9.5
ns
SS3
th(SIMOV-CLKAE)
Hold time, mcspix_simo valid after mcspix_clk active
edge
4.6
9.9
ns
SS4
tsu(CS0V-CLKFE)
Setup time, mcspix_cs0 valid before mcspix_clk first
edge
13.8
28.6
ns
SS5
th(CS0I-CLKLE)
Hold time, mcspix_cs0 invalid after mcspix_clk last
edge
13.8
28.6
ns
(1)
(2)
(3)
(4)
-200
200
0.45*P (4) 0.55*P (4)
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspix, x is equal to 1, 2, 3, or 4.
Maximum cycle jitter supported by mcspix_clk input clock.
P = mcspix_clk clock period
Table 6-72. McSPI Interface Switching Requirements (1) (2) (3) (4)
NO.
PARAMETER
SS6
td(CLKAE-SOMIV)
Delay time, mcspix_clk active edge to mcspix_somi
shifted
SS7
td(CS0AE-SOMIV)
Delay time, mcspix_cs0 active edge to Modes 0 and 2
mcspix_somi shifted
(1)
(2)
(3)
(4)
210
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
1.8
15.9
3.2
31.7
ns
31.7
ns
15.9
The capacitive load is equivalent to 20 pF.
In mcspix, x is equal to 1, 2, 3, or 4.
The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable.
This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and
capture input data.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Mode 0 & 2
mcspix_cs0(EPOL=1)
SS0
SS4
SS5
SS1
mcspix_clk(POL=0)
SS0
SS1
mcspix_clk(POL=1)
SS2
SS3
Bit n-1
mcspix_simo
Bit n-2
SS7
Bit n-4
Bit 0
SS6
Bit n-1
mcspix_somi
Bit n-3
Bit n-2
Bit n-3
Bit n-4
Bit 0
Mode 1 & 3
mcspix_cs0(EPOL=1)
SS0
SS1
mcspix_clk(POL=0)
SS0
SS1
SS4
SS5
mcspix_clk(POL=1)
SS3
SS2
Bit n-1
mcspix_simo
Bit n-2
Bit n-3
Bit 1
Bit 0
SS6
Bit n-1
mcspix_somi
Bit n-2
Bit n-3
Bit 1
Bit 0
030-076
Figure 6-41. McSPI Interface – Transmit and Receive in Slave Mode(1)(2)
(1) The active clock edge (rising or falling) on which mcspi_somi is driven and mcspi_simo data is latched is software configurable with the
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL In mcspix, x is equal to 1, 2, 3, or 4.
6.6.2.2 McSPI in Master Mode
Table 6-73 and Table 6-74 assume testing over the recommended operating conditions (see Figure 6-42).
Table 6-73. McSPI1, 2, and 4 Interface Timing Requirements – Master Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE)
Setup time, mcspix_somi valid before mcspix_clk
active edge
1.1
1.5
ns
SM3
th(SOMIV-CLKAE)
Hold time, mcspix_somi valid after mcspix_clk active
edge
1.9
2.8
ns
(1)
(2)
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
211
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-74. McSPI1, 2, and 4 Interface Switching Characteristics – Master Mode (1) (2) (3)
NO.
PARAMETER
1/SM0 1/tc(CLK)
1.15 V
SM1
tw(CLK)
Pulse duration, mcspix_clk high or low
SM4
td(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to mcspix_simo
shifted
SM5
td(CSnA-CLKFE)
Delay time, mcspix_csi active to
mcspix_clk first edge
(1)
(2)
(3)
(4)
(5)
(6)
(7)
-200
td(CLKLE-CSnI)
td(CSnAE-SIMOV)
Delay time, mcspix_clk last edge to
mcspix_csi inactive
Delay time, mcspix_csi active edge to
mcspix_simo shifted
UNIT
MIN
MAX
24
MHz
200
-200
200
ps
0.45*P (5)
0.55*P (5)
0.45*P (
0.55*P (5)
ns
–2.1
5
–2.1
11.3
ns
48
Cycle jitter (4), mcspix_clk
SM7
MAX
Frequency, mcspix_clk
tj(CLK)
SM6
1.0 V
MIN
5)
Modes 1
and 3
A (6) – 3.1
A (6) –
4.4
ns
Modes 0
and 2
B (7) – 3.1
B (7) –
4.4
ns
Modes 1
and 3
B (7) – 3.1
B (7) –
4.4
ns
Modes 0
and 2
A (6) – 3.1
A (6) –
4.4
ns
Modes 0
and 2
5.0
11.3
ns
Timings are given for a maximum load capacitance of 20 pF for spix_csn signals, 30 pF for spix_clk and spix_simo signals with x = 1 or
2, and 20 pF for spi4_clk and spi4_simo signals.
In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable.
Maximum cycle jitter supported by mcspix_clk input clock.
P = mcspix_clk clock period
Case P = 20.8 ns, A = (TCS+0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a
bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual
(TRM) [literature number SPRUF98].
B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x
Technical Reference Manual (TRM) [literature number SPRUF98].
Table 6-75 and Table 6-76 assume testing over the recommended operating conditions (see Figure 6-42).
Table 6-75. McSPI 3 Interface Timing Requirements – Master Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE)
Setup time, mcspi3_somi valid before
mcspi3_clk active edge
1.5
4.3
ns
SM3
th(SOMIV-CLKAE)
Hold time, mcspi3_somi valid after mcspi3_clk
active edge
2.8
5.9
ns
(1)
(2)
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched is all software configurable.
Table 6-76. McSPI3 Interface Switching Requirements – Master Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1/SM 1/tc(CLK)
0
tj(CLK)
(1)
(2)
(3)
(4)
212
Frequency, mcspix_clk
Cycle jitter (4), mcspix_clk
1.0 V
MAX
MIN
24
-200
200
-200
UNIT
MAX
12
MHz
200
ps
The capacitive load is equivalent to 20 pF.
In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched is all software configurable.
This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and
capture input data.
Maximum cycle jitter supported by mcspix_clk input clock.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-76. McSPI3 Interface Switching Requirements – Master Mode (continued)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
SM1
tw(CLK)
Pulse duration, mcspix_clk high or low
0.45*P (5)
0.55*P (5)
0.45*P (5)
0.55*P (5)
ns
SM4
td(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to
mcspix_simo shifted
–2.1
11.3
–5.3
23.6
ns
SM5
td(CSnA-CLKFE)
Delay time, mcspix_csi active Modes 1
to mcspix_clk first edge
and 3
–4.4 + A (6)
–10.1 + A (6)
ns
Modes 0
and 2
–4.4 + B (7)
–10.1 + B (7)
ns
Modes 1
and 3
B – 4.4 (7)
B – 10.1 (7)
ns
Modes 0
and 2
A (6) – 4.4
A (6) – 10.1
ns
SM6
SM7
(5)
(6)
(7)
td(CLK-CSn)
td(CSnAE-SIMOV)
Delay time, mcspix_clk last
edge to mcspix_csi inactive
Delay time, mcspix_csi active Modes 0
edge to mcspix_simo shifted and 2
11.3
23.6
ns
P = mcspi3_clk clock period
Case P = 20.8 ns, A = (TCS + 0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a bit
field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual
(TRM) [literature number SPRUF98].
B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x
Technical Reference Manual (TRM) [literature number SPRUF98].
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
213
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Mode 0 & 2
mcspix_csn(EPOL=1)
SM0
SM1
SM5
SM6
mcspix_clk(POL=0)
SM0
SM1
mcspix_clk(POL=1)
SM4
SM7
Bit n-1
mcspix_simo
Bit n-2
Bit n-3
Bit n-4
Bit 0
SM2
SM3
Bit n-1
mcspix_somi
Bit n-2
Bit n-3
Bit 0
Bit n-4
Mode 1 & 3
mcspix_csn(EPOL=1)
SM0
SM1
mcspix_clk(POL=0)
SM0
SM1
SM5
SM6
mcspix_clk(POL=1)
SM4
mcspix_simo
Bit n-1
Bit n-2
Bit n-3
Bit 1
Bit 0
SM2
SM3
mcspix_somi
Bit n-1
Bit n-2
Bit n-3
Bit 1
Bit 0
030-077
Figure 6-42. McSPI Interface – Transmit and Receive in Master Mode(1)(2)(3)
(1) The active clock edge (rising or falling) on which mcspix_simo is driven and mcspi_somi data is latched is software configurable with the
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL.
(3) In mcspix, x is equal to 1. In mcspix_csn, n is equal to 0, 1, 2, or 3.
214
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
6.6.3
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Multiport Full-Speed Universal Serial Bus (USB) Interface
The OMAP3515/03 processor provides three USB ports working in full- and low-speed data transactions
(up to 12Mbit/s).
Connected to either a serial link controller (TLL modes) or a serial PHY (PHY interface modes) it supports:
• 6-pin (Tx: Dat/Se0 or Tx: Dp/Dm) unidirectional mode
• 4-pin bidirectional mode
• 3-pin bidirectional mode
6.6.3.1 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional Standard 6-pin Mode
Table 6-78 and Table 6-79 assume testing over the recommended operating conditions (see Figure 6-43).
Table 6-77. Low-/Full-Speed USB Timing Conditions – Unidirectional Standard 6-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-78. Low-/Full-Speed USB Timing Requirements – Unidirectional Standard 6-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSU1
td(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm low together during
transition
14.0
14.0
ns
FSU2
td(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm high together during
transition
8.0
8.0
ns
FSU3
td(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0
(mmx_rxdp and mmx_rxdm low together)
14.0
14.0
ns
FSU4
td(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1
(mmx_rxdp and mmx_rxdm high together)
8.0
8.0
ns
Table 6-79. Low-/Full-Speed USB Switching Characteristics – Unidirectional Standard 6-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSU5
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU6
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU7
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 transition
1.5
ns
FSU8
td(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n high
81.8
81.8
ns
FSU9
td(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n high
81.8
81.8
ns
tR(do)
Rise time, mmx_txen_n
4.0
4.0
ns
tF(do)
Fall time, mmx_txen_n
4.0
4.0
ns
tR(do)
Rise time, mmx_txdat
4.0
4.0
ns
tF(do)
Fall time, mmx_txdat
4.0
4.0
ns
tR(do)
Rise time, mmx_txse0
4.0
4.0
ns
tF(do)
Fall time, mmx_txse0
4.0
4.0
ns
Submit Documentation Feedback
1.5
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
215
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Transmit
mmx_txen_n
FSU5
Receive
FSU8
mmx_txdat
FSU6
FSU7
FSU9
mmx_txse0
FSU1
FSU2
FSU1
FSU2
FSU3
FSU4
mmx_rxdp
mmx_rxdm
mmx_rxrcv
030-080
In mmx, x is equal to 0, 1, or 2.
Figure 6-43. Low-/Full-Speed USB – Unidirectional Standard 6-pin Mode
6.6.3.2 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 4-pin Mode
Table 6-81 and Table 6-82 assume testing over the recommended operating conditions (see Figure 6-44).
Table 6-80. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 4-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-81. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 4-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSU10
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together
during transition
14.0
14.0
ns
FSU11
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 high together
during transition
8.0
8.0
ns
FSU12
td(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0
(mmx_txdat and mmx_txse0 low together)
14.0
14.0
ns
FSU13
td(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1
(mmx_txdat and mmx_txse0 high together)
8.0
8.0
ns
Table 6-82. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSU14
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU15
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU16
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
ns
FSU17
td(DATV-TXENH)
Delay time, mmx_txdat invalid before mmx_txen_n
high
216
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
1.5
81.8
81.8
ns
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-82. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode
(continued)
NO.
PARAMETER
1.15 V
MIN
FSU18
1.0 V
MAX
81.8
MIN
UNIT
MAX
td(SE0V-TXENH)
Delay time, mmx_txse0 invalid before mmx_txen_n
high
81.8
tR(txen)
Rise time, mmx_txen_n
4.0
4.0
ns
tF(txen)
Fall time, mmx_txen_n
4.0
4.0
ns
tR(dat)
Rise time, mmx_txdat
4.0
4.0
ns
tF(dat)
Fall time, mmx_txdat
4.0
4.0
ns
tR(se0)
Rise time, mmx_txse0
4.0
4.0
ns
tF(se0)
Fall time, mmx_txse0
4.0
4.0
ns
Transmit
mmx_txen_n
FSU14
ns
FSU17
Receive
FSU10
FSU11
FSU18
FSU10
FSU11
FSU12
FSU13
mmx_txdat
FSU15
FSU16
mmx_txse0
mmx_rxrcv
030-081
In mmx, x is equal to 0, 1, or 2.
Figure 6-44. Low-/Full-Speed USB – Bidirectional Standard 4-pin Mode
6.6.3.3 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 3-pin Mode
Table 6-84 and Table 6-85 assume testing over the recommended operating conditions below (see
Figure 6-45).
Table 6-83. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 3-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-84. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 3-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSU19
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together
during transition
14.0
14.0
ns
FSU20
td(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high
together during transition
8.0
8.0
ns
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
217
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-85. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 3-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSU21
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU22
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU23
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
ns
FSU24
td(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n
high
81.8
81.8
ns
FSU25
td(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n
high
81.8
81.8
ns
tR(do)
Rise time, mmx_txen_n
4.0
4.0
ns
tF(do)
Fall time, mmx_txen_n
4.0
4.0
ns
tR(do)
Rise time, mmx_txdat
4.0
4.0
ns
tF(do)
Fall time, mmx_txdat
4.0
4.0
ns
tR(do)
Rise time, mmx_txse0
4.0
4.0
ns
tF(do)
Fall time, mmx_txse0
4.0
4.0
ns
1.5
Transmit
mmx_txen_n
FSU21
Receive
FSU24
FSU19
FSU20
FSU25
FSU19
FSU20
mmx_txdat
FSU22
FSU23
mmx_txse0
030-082
In mmx, x is equal to 0, 1, or 2.
Figure 6-45. Low-/Full-Speed USB – Bidirectional Standard 3-pin Mode
6.6.3.4 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional TLL 6-pin Mode
Table 6-87 and Table 6-88 assume testing over the recommended operating conditions (see Figure 6-46).
Table 6-86. Low-/Full-Speed USB Timing Conditions – Unidirectional TLL 6-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
15
pF
Output Conditions
CLOAD
Table 6-87. Low-/Full-Speed USB Timing Requirements – Unidirectional TLL 6-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSUT1
td(SE0,DAT)
Time duration, mmx_txse0 and mmx_txdat low
together during transition
14
14
ns
FSUT2
td(SE0,DAT)
Time duration, mmx_txse0 and mmx_txdat high
together during transition
8
8
ns
218
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-88. Low-/Full-Speed USB Switching Characteristics – Unidirectional TLL 6-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSUT3
td(TXENH-DPV)
Delay time, mmx_txen_n high to mmx_rxdp valid
81.8
84.8
81.8
84.8
ns
FSUT4
td(TXENH-DMV)
Delay time, mmx_txen_n high to mmx_rxdm valid
81.8
84.8
81.8
84.8
ns
FSUT5
td(DPI-TXENL)
Delay time, mmx_rxdp invalid mmx_txen_n low
81.8
FSUT6
td(DMI-TXENL)
Delay time, mmx_rxdm invalid mmx_txen_n low
81.8
FSUT7
ts(DP-DM)
Skew between mmx_rxdp and mmx_rxdm
transition
1.5
1.5
ns
FSUT8
ts(DP,DM-RCV)
Skew between mmx_rxdp, mmx_rxdm, and
mmx_rxrcv transition
1.5
1.5
ns
tR(rxrcv)
Rise time, mmx_rxrcv
4
4
ns
tF(rxrcv)
Fall time, mmx_rxrcv
4
4
ns
tR(dp)
Rise time, mmx_rxdp
4
4
ns
tF(dp)
Fall time, mmx_rxdp
4
4
ns
tR(dm)
Rise time, mmx_rxdm
4
4
ns
tF(dm)
Fall time, mmx_rxdm
4
4
ns
mmx_txen_n
81.8
ns
81.8
Transmit
ns
Receive
FSUT1
FSUT2
FSUT1
FSUT2
mmx_txdat
mmx_txse0
FSUT3
FSUT5
mmx_rxdp
FSUT4
FSUT7
FSUT6
mmx_rxdm
FSUT8
mmx_rxrcv
030-083
In mmx, x is equal to 0, 1, or 2.
Figure 6-46. Low-/Full-Speed USB – Unidirectional TLL 6-pin Mode
6.6.3.5 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 4-pin Mode
Table 6-90 and Table 6-91 assume testing over the recommended operating conditions (see Figure 6-47).
Table 6-89. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 4-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
15
pF
Output Conditions
CLOAD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
219
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-90. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 4-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSUT9
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low
together during transition
14
14
ns
FSUT10
td(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high
together during transition
8
8
ns
Table 6-91. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 4-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSUT11
td(TXENL-DATV)
Delay time, mmx_txen_n active to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSUT12
td(TXENL-SE0V)
Delay time, mmx_txen_n active to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSUT13
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
1.5
ns
FSUT14
ts(DP,DM-RCV)
Skew between mmx_rxdp, mmx_rxdm, and
mmx_rxrcv transition
1.5
1.5
ns
FSUT15
td(DATI-TXENL)
Delay time, mmx_txse0 invalid to mmx_txen_n Low
81.8
81.8
FSUT16
td(SE0I-TXENL)
Delay time, mmx_txdat invalid to mmx_txen_n Low
81.8
81.8
tR(rcv)
Rise time, mmx_rxrcv
4
4
ns
tF(rcv)
Fall time, mmx_rxrcv
4
4
ns
tR(dat)
Rise time, mmx_txdat
4
4
ns
tF(dat)
Fall time, mmx_txdat
4
4
ns
tR(se0)
Rise time, mmx_txse0
4
4
ns
tF(se0)
Fall time, mmx_txse0
4
4
ns
mmx_txen_n
ns
Receive
Transmit
FSUT11
ns
FSUT15
FSUT9
FSUT10
FSUT16
FSUT9
FSUT10
mmx_txdat
FSUT12
FSUT13
mmx_txse0
FSUT14
mmx_rxrcv
030-084
In mmx, x is equal to 0, 1, or 2.
Figure 6-47. Low-/Full-Speed USB – Bidirectional TLL 4-pin Mode
6.6.3.6 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 3-pin Mode
Table 6-93 and Table 6-94 assume testing over the recommended operating conditions (see Figure 6-48).
Table 6-92. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 3-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
220
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-92. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 3-pin Mode (continued)
TIMING CONDITION PARAMETER
VALUE
UNIT
15
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-93. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 3-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSUT17
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low
together during transition
14
14
ns
FSUT18
td(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high
together during transition
8
8
ns
Table 6-94. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 3-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSUT19
td(TXENH-DATV)
Delay time, mmx_txen_n high to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSUT20
td(TXENH-SE0V)
Delay time, mmx_txen_n high to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSUT21
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
ns
FSUT22
td(DATI-TXENL)
Delay time, mmx_txdat invalid mmx_txen_n low
81.8
81.8
ns
FSUT23
td(SE0I-TXENL)
Delay time, mmx_txse0 invalid mmx_txen_n low
81.8
81.8
ns
tR(dat)
Rise time, mmx_txdat
4
4
ns
tF(dat)
Fall time, mmx_txdat
4
4
ns
tR(se0)
Rise time, mmx_txse0
4
4
ns
tF(se0)
Fall time, mmx_txse0
4
4
ns
tR(do)
Rise time, mmx_txse0
4
4
ns
tF(do)
Fall time, mmx_txse0
4
4
ns
mmx_txen_n
1.5
Receive
Transmit
FSUT19
FSUT22
FSUT17
FSUT18
FSUT23
FSUT17
FSUT18
mmx_txdat
FSUT20
FSUT21
mmx_txse0
030-085
In mmx, x is equal to 0, 1, or 2.
Figure 6-48. Low-/Full-Speed USB – Bidirectional TLL 3-pin Mode
6.6.4
Multiport High-Speed Universal Serial Bus (USB) Timing
In addition to the full-speed USB controller, a high-speed (HS) USB OTG controller is instantiated inside
OMAP3515/03. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2, and 3.
• Port 0:
– 12-bit slave mode (SDR)
• Port 1 and port 2:
– 12-bit master mode (SDR)
– 12-bit TLL master mode (SDR)
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
221
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
•
www.ti.com
– 8-bit TLL master mode (DDR)
Port 3:
– 12-bit TLL master mode (SDR)
– 8-bit TLL master mode (DDR)
6.6.4.1 High-Speed Universal Serial Bus (USB) on Port 0 – 12-bit Slave Mode
Table 6-96 and Table 6-97 assume testing over the recommended operating conditions (see Figure 6-49).
Table 6-95. High-Speed USB Timing Conditions – 12-bit Slave Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tr
Input Signal Rising Time
2.00
ns
tf
Input Signal Falling Time
2.00
ns
Output Load Capacitance
3.50
pF
Output Conditions
Cload
Table 6-96. High-Speed USB Timing Requirements – 12-bit Slave Mode (1)
NO.
PARAMETER
1.15 V
MIN
UNIT
MAX
fp(CLK)
hsusb0_clk clock frequency (2) (3)
60.03
MHz
tj(CLK)
Cycle Jitter (3), hsusb0_clk
500.00
ps
ts(DIRV-CLKH)
Setup time, hsusb0_dir valid before hsusb0_clk rising edge
6.7
ns
ts(NXTV-CLKH)
Setup time, hsusb0_nxt valid before hsusb0_clk rising edge
6.7
ns
th(CLKH-DIRIV)
Hold time, hsusb0_dir valid after hsusb0_clk rising edge
0.0
ns
th(CLKH-NXT/IV)
Hold time, hsusb0_nxt valid after hsusb0_clk rising edge
0.0
ns
HSU5
ts(DATAV-CLKH)
Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge
6.7
ns
HSU6
th(CLKH-DATIV)
Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge
0.0
ns
HSU0
HSU3
HSU4
(1)
(2)
(3)
The timing requirements are assured for the cycle jitter error condition specified.
Related with the input maximum frequency supported by the I/F module.
Maximum cycle jitter supported by clk input clock.
Table 6-97. High-Speed USB Switching Characteristics – 12-bit Slave Mode
NO.
PARAMETER
1.15 V
MIN
HSU1
HSU2
222
UNIT
MAX
td(clkL-STPV)
Delay time, hsusb0_clk high to output usb0_stp valid
td(clkL-STPIV)
Delay time, hsusb0_clk high to output usb0_stp invalid
td(clkL-DV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid
td(clkL-DIV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid
tr(do)
Rising time, output signals
2.0
ns
tf(do)
Falling time, output signals
2.0
ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
9.0
0.5
ns
ns
9.0
0.5
ns
ns
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
HSU0
hsusb0_clk
HSU1
HSU1
hsusb0_stp
HSU3
HSU4
hsusb0_dir_&_nxt
HSU5
HSU2
hsusb0_data[7:0]
HSU2
Data_OUT
HSU6
Data_IN
030-086
Figure 6-49. High-Speed USB – 12-bit Slave Mode
6.6.4.2 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 – 12-bit Master Mode
Table 6-99 and Table 6-100 assume testing over the recommended operating conditions (see
Figure 6-50).
Table 6-98. High-Speed USB Timing Conditions – 12-bit Master Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
3
pF
Input Conditions
Output Conditions
CLOAD
Table 6-99. High-Speed USB Timing Requirements – 12-bit Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
HSU3
UNIT
MAX
ts(DIRV-CLKH)
Setup time, hsusbx_dir valid before hsusbx_clk rising edge
9.3
ns
ts(NXTV-CLKH)
Setup time, hsusbx_nxt valid before hsusbx_clk rising edge
9.3
ns
th(CLKH-DIRIV)
Hold time, hsusbx_dir valid after hsusbx_clk rising edge
0.2
ns
th(CLKH-NXT/IV)
Hold time, hsusbx_nxt valid after hsusbx_clk rising edge
0.2
ns
HSU5
ts(DATAV-CLKH)
Setup time, hsusbx_data[0:7] valid before hsusbx_clk rising edge
9.3
ns
HSU6
th(CLKH-DATIV)
Hold time, hsusbx_data[0:7] valid after hsusbx_clk rising edge
0.2
ns
HSU4
(1)
In hsusbx, x is equal to 1 or 2.
Table 6-100. High-Speed USB Switching Characteristics – 12-bit Master Mode (1)
N O.
PARAMETER
1.15 V
MIN
HSU0
HSU1
HSU2
(1)
(2)
UNIT
MAX
fp(CLK)
hsusbx_clk clock frequency
60
MHz
tj(CLK)
Jitter standard deviation (2), hsusbx_clk
200
ps
td(clkL-STPV)
Delay time, hsusbx_clk high to output hsusbx_stp valid
13
ns
td(clkL-STPIV)
Delay time, hsusbx_clk high to output hsusbx_stp invalid
td(clkL-DV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] valid
td(clkL-DIV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] invalid
2
ns
13
2
ns
ns
In hsusbx, x is equal to 1 or 2.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
223
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-100. High-Speed USB Switching Characteristics – 12-bit Master Mode (continued)
N O.
PARAMETER
1.15 V
MIN
UNIT
MAX
tR(do)
Rise time, output signals
2
ns
tF(do)
Fall time, output signals
2
ns
HSU0
hsusbx_clk
HSU1
HSU1
hsusbx_stp
HSU3
HSU4
hsusbx_dir_&_nxt
HSU5
HSU2
HSU2
HSU6
Data_OUT
hsusbx_data[7:0]
Data_IN
030-087
In hsusbx, x is equal to 1 or 2.
Figure 6-50. High-Speed USB – 12-bit Master Mode
6.6.4.3 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 12-bit TLL Master Mode
Table 6-102 and Table 6-103 assume testing over the recommended operating conditions (see
Figure 6-51).
Table 6-101. High-Speed USB Timing Conditions – 12-bit TLL Master Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
3
pF
Output Conditions
CLOAD
Table 6-102. High-Speed USB Timing Requirements – 12-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
UNIT
MAX
HSU2
ts(STPV-CLKH)
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge
6
ns
HSU3
ts(CLKH-STPIV)
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge
0
ns
HSU4
ts(DATAV-CLKH)
Setup time, hsusbx_tll_data[7:0] valid before hsusbx_tll_clk rising edge
6
ns
HSU5
th(CLKH-DATIV)
Hold time, hsusbx_tll_data[7:0] valid after hsusbx_tll_clk rising edge
0
ns
(1)
In hsusbx, x is equal to 1, 2, or 3.
Table 6-103. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
HSU0
(1)
224
fp(CLK)
hsusbx_tll_clk clock frequency
UNIT
MAX
60
MHz
In hsusbx, x is equal to 1, 2, or 3.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-103. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode (continued)
NO.
PARAMETER
1.15 V
MIN
HSU6
HSU7
(2)
UNIT
MAX
tj(CLK)
Jitter standard deviation (2), hsusbx_tll_clk
td(CLKL-DIRV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid
td(CLKL-DIRIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid
td(CLKL-NXTV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid
td(CLKL-NXTIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid
td(CLKL-DV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] valid
td(CLKL-DIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] invalid
tR(do)
Rise time, output signals
2
ns
tF(do)
Fall time, output signals
2
ns
200
ps
9
ns
0
ns
9
ns
0
ns
9
ns
0
ns
The jitter probability density can be approximated by a Gaussian function.
HSU0
hsusbx_tll_clk
HSU3
HSU2
hsusbx_tll_stp
HSU6
HSU6
hsusbx_tll_dir_&_nxt
HSU4
HSU7
HSU5
hsusbx_tll_data[7:0]
HSU7
Data_IN
Data_OUT
030-088
In hsusbx, x is equal to 1, 2, or 3.
Figure 6-51. High-Speed USB – 12-bit TLL Master Mode
6.6.4.4 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 8-bit TLL Master Mode
Table 6-105 and Table 6-106 assume testing over the recommended operating conditions (see
Figure 6-52).
Table 6-104. High-Speed USB Timing Conditions – 8-bit TLL Master Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
3
pF
Output Conditions
CLOAD
Table 6-105. High-Speed USB Timing Requirements – 8-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
UNIT
MAX
HSU2
ts(STPV-CLKH)
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge
6
ns
HSU3
ts(CLKH-STPIV)
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge
0
ns
HSU4
ts(DATAV-CLKH)
Setup time, hsusbx_tll_data[3:0] valid before hsusbx_tll_clk rising edge
3
ns
(1)
In hsusbx, x is equal to 1, 2, or 3.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
225
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-105. High-Speed USB Timing Requirements – 8-bit TLL Master Mode (continued)
NO.
PARAMETER
1.15 V
UNIT
MIN
HSU5
th(CLKH-DATIV)
Hold time, hsusbx_tll_data[3:0] valid after hsusbx_tll_clk rising edge
MAX
–0.8
ns
Table 6-106. High-Speed USB Switching Characteristics – 8-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
HSU0
UNIT
MAX
fp(CLK)
hsusbx_tll_clk clock frequency
60
MHz
tj(CLK)
Jitter standard deviation (2), hsusbx_tll_clk
200
ps
HSU1
tj(CLK)
Duty cycle, hsusbx_tll_clk pulse duration (low and high)
HSU6
td(CLKL-DIRV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid
td(CLKL-DIRIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid
td(CLKL-NXTV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid
47.6%
52.4%
9
0
ns
ns
9
td(CLKL-NXTIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid
HSU7
td(CLKL-DV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] valid
HSU8
td(CLKL-DIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] invalid
tR(do)
Rise time, output signals
2
ns
tF(do)
Fall time, output signals
2
ns
(1)
(2)
0
ns
ns
4
0
ns
ns
In hsusbx, x is equal to 1, 2, or 3.
The jitter probability density can be approximated by a Gaussian function.
HSU0
HSU1
HSU1
hsusbx_tll_clk
HSU3
HSU2
hsusbx_tll_stp
HSU6
HSU6
hsusbx_tll_dir_&_nxt
HSU5
HSU4
hsusbx_tll_data[3:0]
Data_IN
HSU5
HSU4
Data_IN_(n+1)
HSU8
HSU7
Data_IN_(n+2)
HSU7
Data_OUT
Data_OUT_(n+1)
030-089
In hsusbx, x is equal to 1, 2, or 3.
Figure 6-52. High-Speed USB – 8-bit TLL Master Mode
226
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
6.6.5
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
I2C Interface
The multimaster I2C peripheral provides an interface between two or more devices via an I2C serial bus.
The I2C controller supports the multimaster mode which allows more than one device capable of
controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can
operate as either transmitter or receiver, according to the function of the device. In addition to being a
transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when
performing data transfers. This data transfer is carried out via two serial bidirectional wires:
• An SDA data line
• An SCL clock line
The following sections illustrate the data transfer is in master or slave configuration with 7-bit addressing
format. The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode
(up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s) .
6.6.5.1 I2C Standard/Fast-Speed Mode
Table 6-107. I2C Standard/Fast-Speed Mode Timings
PARAMETER (1)
NO.
Standard Mode
MIN
MAX
Fast Mode
MIN
100
UNIT
MAX
fSCL
Clock Frequency, i2cX_scl
I1
tw(SCLH)
Pulse Duration, i2cX_scl high
4
0.6
µs
I2
tw(SCLL)
Pulse Duration, i2cX_scl low
4.7
1.3
µs
I3
tsu(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl active level
250
100 (2)
(3)
ns
µs
th(SCLH–SDAV)
Hold time, i2cX_sda valid after i2cX_scl active level
0
tsu(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low (for a
START (5) condition or a repeated START condition)
4.7
0.6
µs
I6
th(SCLH–SDAH)
Hold time, i2cX_sda low level after i2cX_scl high level
(STOP condition)
4
0.6
µs
I7
th(SCLH–RSTART)
Hold time, i2cX_sda low level after i2cX_scl high level (for
a repeated START condition)
4
0.6
µs
I8
tw(SDAH)
Pulse duration, i2cX_sda high between STOP and START
conditions
4.7
1.3
µs
tR(SCL)
Rise time, i2cX_scl
1000
300
ns
tF(SCL)
Fall time, i2cX_scl
300
300
ns
tR(SDA)
Rise time, i2cX_sda
1000
300
ns
tF(SDA)
Fall time, i2cX_sda
300
300
ns
CB
Capacitive load for each bus line
60 (6)
60 (6)
pF
(4)
(5)
(6)
0.9
(4)
I5
(3)
0
(3)
kHz
I4
(1)
(2)
3.45
(4)
400
In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) ≥ 250 ns must then be
met. This is automatically the case if the device does not stretch the low period of the i2cx_scl. If such a device does stretch the low
period of the i2cx_scl, it must output the next data bit to the i2cx_sda line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns (according
to the standard-mode I2C-bus specification) before the i2cx_scl line is released.
The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to
bridge the undefined region of the falling edge of i2cx_scl.
The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl signal.
After this time, the first clock is generated.
Maximum reference load for i2c4_scl and i2c4_sda is CB = 15 pF.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
227
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
START REPEAT
START
START
STOP
i2cX_sda
I2
I6
I1
I5
I3
I4
I8
I6
I7
i2cX_scl
030-093
Figure 6-53. I2C – Standard/Fast Mode
228
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6.6.5.2 I2C High-Speed Mode
Table 6-108. I2C HighSpeed Mode Timings (1) (2)
NO.
PARAMETER
CB = 100 pF MAX
MIN
I1
fSCL
Clock frequency, i2cX_scl
tw(SCLH)
Pulse duration, i2cX_scl high
MAX
CB = 400 pF MAX
MIN
3.4
60 (3)
MAX
1.7
MHz
120 (3)
µs
(3)
µs
I2
tw(SCLL)
Pulse duration, i2cX_scl low
I3
tsu(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl
active level
10
I4
th(SCLH–SDAV)
Hold time, i2cX_sda valid after i2cX_scl active
level
0 (2)
I5
tsu(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low
(for a START (4) condition or a repeated START
condition)
160
160
µs
I6
th(SCLH–SDAH)
Hold time, i2cX_sda low level after i2cX_scl high
level (STOP condition)
160
160
µs
I7
th(SCLH–RSTART)
Hold time, i2cX_sda low level after i2cX_scl high
level (for a repeated START condition)
160
160
ns
tR(SCL)
Rise time, i2cX_scl
40
80
ns
tR(SCL)
Rise time, i2cX_scl after a repeated START
condition and after a bit acknowledge
80
160
ns
tF(SCL)
Fall time, i2cX_scl
40
80
ns
tR(SDA)
Rise time, i2cX_sda
80
160
ns
tF(SDA)
Fall time, i2cX_sda
80
160
ns
CB
(1)
(2)
(3)
(4)
(5)
160
(3)
UNIT
320
10
0 (2)
70
Capacitive load for each bus line
60
(5)
ns
150
µs
pF
In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to
bridge the undefined region of the falling edge of i2cx_scl.
HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(SCLL) > 2 × tw(SCLH).
After this time, the first clock is generated.
Maximum reference load for i2c4_scl and i2c4_sda is CB = 15 pF.
START REPEAT
STOP
i2cX_sda
I5
I6
I1
I2
I3
I4
I7
i2cX_scl
030-094
Figure 6-54. I2C – High-Speed Mode(1)(2)(3)
(1) HS-mode master devices generate a serial clock signal with a high-to-low ratio of 1 to 2. tw(SCLL) > 2 x tw(SCLH).
(2) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
(3) After this time, the first clock is generated.
Table 6-109. Correspondence Standard vs. TI Timing References
STANDARD-I2C
TI-OMAP
S/F Mode
HS Mode
fSCL
FSCL
FSCLH
I1
tw(SCLH)
THIGH
THIGH
I2
tw(SCLL)
TLOW
TLOW
I3
tsu(SDAV-SCLH)
TSU;DAT
TSU;DAT
I4
th(SCLH-SDAV)
TSU;DAT
TSU;DAT
I5
tsu(SDAL-SCLH)
TSU;STA
TSU;STA
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
229
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-109. Correspondence Standard vs. TI Timing References (continued)
STANDARD-I2C
TI-OMAP
6.6.6
S/F Mode
HS Mode
I6
th(SCLH-SDAH)
THD;STA
THD;STA
I7
th(SCLH-RSTART)
TSU;STO
TSU;STO
I8
tw(SDAH)
TBUF
HDQ / 1-Wire Interfaces
This module is intended to work with both the HDQ and the 1-Wire protocols. The protocols use a single
wire to communicate between the master and the slave. The protocols employ an asynchronous return to
1 mechanism where, after any command, the line is pulled high.
6.6.6.1 HDQ Protocol
Table 6-110 and Table 6-111 assume testing over the recommended operating conditions (see
Figure 6-55 through Figure 6-58).
Table 6-110. HDQ Timing Requirements
PARAMETER
DESCRIPTION
MIN
tCYCD
Bit window
253
tHW1
Reads 1
tHW0
Reads 0
tRSPS
Command to host respond time (1)
(1)
MAX
UNIT
µs
68
180
Defined by software.
Table 6-111. HDQ Switching Characteristics
PARAMETER
DESCRIPTION
tB
Break timing
MIN
TYP
193
tBR
Break recovery
63
tCYCH
Bit window
253
tDW1
Sends1 (write)
1.3
tDW0
Sends0 (write)
101
tB
MAX
UNIT
µs
tBR
HDQ
030-095
Figure 6-55. HDQ Break (Reset) Timing
tCYCH
tHW0
tHW1
HDQ
030-096
Figure 6-56. HDQ Read Bit Timing (Data)
230
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
tCYCD
tDW0
tDW1
HDQ
030-097
Figure 6-57. HDQ Write Bit Timing (Command/Address or Data)
Command _byte_written
Data_byte_received
0_(LSB )
Break
1
tRSPS
6
1
7_(MSB)
0_(LSB)
6
HDQ
030-098
Figure 6-58. HDQ Communication Timing
6.6.6.2 1-Wire Protocol
Table 6-112 and Table 6-113 assume testing over the recommended operating conditions (see
Figure 6-59 through Figure 6-61).
Table 6-112. 1-Wire Timing Requirements
PARAMETER
DESCRIPTION
tPDH
Presence pulse delay high
tPDL
Presence pulse delay low
tRDV + tREL
Read bit-zero time
MIN
MAX
UNIT
68
µs
68 – tPDH
102
Table 6-113. 1-Wire Switching Characteristics
PARAMETER
DESCRIPTION
tRSTL
Reset time low
MIN
TYP
484
tRSTH
Reset time high
484
tSLOT
Write bit cycle time
102
tLOW1
Write bit-one time
1.3
tLOW0
Write bit-zero time
101
tREC
Recovery time
134
tLOWR
Read bit strobe time
13
MAX
UNIT
µs
tRSTH
1-WIRE
tRTSL
tPDH
tPDL
030-099
Figure 6-59. 1-Wire Break (Reset) Timing
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
231
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
tSLOT_and_ tREC
tRDV_and_ tREL
tLOWR
1-WIRE
030-100
Figure 6-60. 1-Wire Read Bit Timing (Data)
tSLOT_and_tREC
tLOW0
1-WIRE
tLOW1
030-101
Figure 6-61. 1-Wire Write Bit Timing (Command/Address or Data)
6.6.7
UART IrDA Interface
The IrDA module can operate in three different modes:
• Slow infrared (SIR) (≤115.2 Kbits/s)
• Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)
• Fast infrared (FIR) (4 Mbits/s)
For more information about this interface, see the UART/IrDA chapter in the OMAP35x Technical
Reference Manual (TRM) [literature number SPRUF98].
Pulse duration
90%
90%
50%
50%
10%
10%
tr
tf
030-118
Figure 6-62. UART IrDA Pulse Parameters
6.6.7.1 IrDA—Receive Mode
Table 6-114. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
MIN
NOMINAL
MAX
UNIT
SIR
232
2.4 Kbit/s
1.41
78.1
88.55
µs
9.6 Kbit/s
1.41
19.5
22.13
µs
19.2 Kbit/s
1.41
9.75
11.07
µs
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-114. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode
(continued)
SIGNALING RATE
ELECTRICAL PULSE DURATION
UNIT
MIN
NOMINAL
MAX
38.4 Kbit/s
1.41
4.87
5.96
µs
57.6 Kbit/s
1.41
3.25
4.34
µs
115.2 Kbit/s
1.41
1.62
2.23
µs
416
518.8
ns
208
258.4
ns
MIR
0.576 Mbit/s
297.2
1.152 Mbit/s
149.6
FIR
4.0 Mbit/s (Single pulse)
67
125
164
ns
4.0 Mbit/s (Double pulse)
190
250
289
ns
Table 6-115. UART IrDA—Rise and Fall Time—Receive
Mode
PARAMETER
MAX
UNIT
tR
Rising time,
uart3_rx_irrx
200
ns
tF
Falling time,
uart3_rx_irrx
200
ns
6.6.7.2 IrDA—Transmit Mode
Table 6-116. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
MIN
NOMINAL
UNIT
MAX
SIR
2.4 Kbit/s
78.1
78.1
78.1
µs
9.6 Kbit/s
19.5
19.5
19.5
µs
19.2 Kbit/s
9.75
9.75
9.75
µs
38.4 Kbit/s
4.87
4.87
4.87
µs
57.6 Kbit/s
3.25
3.25
3.25
µs
115.2 Kbit/s
1.62
1.62
1.62
µs
416
419
ns
208
211
ns
MIR
0.576 Mbit/s
414
1.152 Mbit/s
206
FIR
4.0 Mbit/s (Single pulse)
123
125
128
ns
4.0 Mbit/s (Double pulse)
248
250
253
ns
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
233
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
6.7 Removable Media Interfaces
6.7.1
High-Speed Multimedia Memory Card (MMC) and Secure Digital IO Card (SDIO) Timing
The MMC/SDIO host controller provides an interface to high-speed and standard MMC, SD memory
cards, or SDIO cards. The application interface is responsible for managing transaction semantics. The
MMC/SDIO host controller deals with MMC/SDIO protocol at transmission level, packing data, adding
CRC, start/end bit, and checking for syntactical correctness.
There are three MMC interfaces on the OMAP3515/03:
• MMC/SD/SDIO Interface 1:
– 1.8 V/3 V support
– 8 bits
• MMC/SD/SDIO Interface 2:
– 1.8 V support
– 8 bits
– 4 bits with external transceiver allowing to support 3 V peripherals. Transceiver direction control
signals are multiplexed with the upper four data bits.
• MMC/SD/SDIO Interface 3:
– 1.8 V support
– 8 bits
6.7.1.1 MMC/SD/SDIO in SD Identification Mode
Table 6-118 and Table 6-119 assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-117. MMC/SD/SDIO Timing Conditions – SD Identification Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
Output load capacitance
40
pF
SD Identification Mode
Input Conditions
Output Conditions
CLOAD
Table 6-118. MMC/SD/SDIO Timing Requirements – SD Identification Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
SD Identification Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after
mmc1_clk rising clock edge
1249.2
1249.2
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after
mmc1_clk rising clock edge
1249.2
1249.2
ns
MMC/SD/SDIO Interface 2
(1)
(2)
(3)
234
Timing parameters are referred to output clock specified in Table 6-119.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-119.
Corresponding figures showing timing parameters are common with other interface modes. (See SD and HS SD modes).
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-118. MMC/SD/SDIO Timing Requirements – SD Identification Mode (continued)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before
mmc2_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after
mmc2_clk rising clock edge
1249.2
1249.2
ns
MMC/SD/SDIO Interface 3
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before
mmc3_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after
mmc3_clk rising clock edge
1249.2
1249.2
ns
Table 6-119. MMC/SD/SDIO Switching Characteristics – SD Identification Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
SD Identification Mode
1/
1/tc(clk)
(HSSD1/SD1
)
Frequency (2), mmcx_ clk
(3)
HSSD2/SD2
tW(clkH)
Typical pulse duration, output clk high
X (4)*PO (5)
X (4)*PO (5)
ns
HSSD2/SD2
tW(clkL)
Typical pulse duration, output clk low
Y (6)*PO (5)
Y (6)*PO (5)
ns
tdc(clk)
Duty cycle error, output clk
125
125
ns
tj(clk)
Jitter standard deviation (7), output clk
200
200
ps
0.4
0.4
MHz
MMC/SD/SDIO Interface 1 (1.8 V IO)
HSSD5/SD5
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
2492.7
ns
6.3
2492.7
6.3
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD5/SD5
tc(clk)
Rise time, output clk
10
0
ns
tW(clkH)
Fall time, output clk
10
0
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
10
6.3
2492.7
6.3
10
ns
2492.7
ns
MMC/SD/SDIO Interface 2
HSSD5/SD5
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
10
6.3
2492.7
6.3
10
ns
2492.7
ns
10
ns
MMC/SD/SDIO Interface 3
tc(clk)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Rise time, output clk
10
Corresponding figures showing timing parameters are common with other interface modes (see SD and HS SD modes).
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-120.
PO = output clk period in ns.
The Y parameter is defined as shown in Table 6-121.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
235
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-119. MMC/SD/SDIO Switching Characteristics – SD Identification Mode (continued)
NO.
PARAMETER
1.15 V
MIN
HSSD5/SD5
1.0 V
MAX
MIN
UNIT
MAX
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
2492.7
ns
6.3
2492.7
6.3
Table 6-120. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Table 6-121. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
6.7.1.2 MMC/SD/SDIO in High-Speed MMC Mode
Table 6-123 and Table 6-124 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-63 and Figure 6-64).
Table 6-122. MMC/SD/SDIO Timing Conditions – High-Speed MMC Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
High-Speed MMC Mode
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
3
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Table 6-123. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode (1) (2) (3) (4)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed MMC Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
(1)
(2)
(3)
(4)
236
Timing parameters are referred to output clock specified in Table 6-124.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-124.
Corresponding figures showing timing parameters are common with Standard MMC mode (See Figure 6-63 and Figure 6-64)
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-123. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode (continued)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
MMC/SD/SDIO Interface 1 (3.0 V IO)
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
2.3
1.9
ns
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
2.3
1.9
ns
MMC/SD/SDIO Interface 2
MMC/SD/SDIO Interface 3
Table 6-124. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode (1)
N O.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed MMC Mode
1/MMC
1
1/tc(clk)
Frequency (2), mmcx_ clk
MMC2
tW(clkH)
Typical pulse duration, output clk high
MMC2
(3)
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation
48
X (4)*PO (5)
Y
(6)
*PO
(7)
, output clk
24
X (4)*PO (5)
(5)
MHz
ns
Y (6)*PO (5)
ns
1041.7
2083.3
ps
200
200
ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC5
(1)
(2)
(3)
(4)
(5)
(6)
(7)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
34.5
ns
3.7
14.1
4.1
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-125.
PO = output clk period in ns.
The Y parameter is defined as shown in Table 6-126.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
237
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-124. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode (continued)
N O.
PARAMETER
MMC6
td(CLKOH-DATx)
1.15 V
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
1.0 V
UNIT
MIN
MAX
MIN
MAX
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
3.7
14.1
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
3.7
14.1
3
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
3.7
16.5
4.1
36.9
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
3.7
14.1
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
3.7
14.1
4.1
34.5
ns
Table 6-125. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Table 6-126. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
6.7.1.3 MMC/SD/SDIO in Standard MMC Mode and MMC Identification Mode
Table 6-128 and Table 6-129 assume testing over the recommended operating conditions and electrical
characteristic conditions.
238
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-127. MMC/SD/SDIO Timing Conditions – Standard MMC Mode and MMC Identification Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Standard MMC Mode and MMC Identification Mode
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
239
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-128. MMC/SD/SDIO Timing Requirements – Standard MMC Mode and MMC Identification
Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
Standard MMC Mode and MMC Identification Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
8.9
8.9
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
8.9
8.9
ns
MMC/SD/SDIO Interface 2
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before
mmc2_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before
mmc2_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
8.9
8.9
ns
MMC/SD/SDIO Interface 3
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before
mmc3_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before
mmc3_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
8.9
8.9
ns
(1)
(2)
Timing parameters are referred to output clock specified in Table 6-129.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-129.
Table 6-129. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification
Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
MMC Identification Mode
1/MMC
1
1/tc(clk)
Frequency (1), mmcx_ clk
MMC2
tW(clkH)
Typical pulse duration, output clk high
(1)
(2)
(3)
(4)
240
(2)
0.4
X (3)*PO (4)
0.4
X (3)*PO (4)
MHz
ns
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-130.
PO = output clk period in ns.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-129. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification
Mode (continued)
NO.
PARAMETER
1.15 V
MIN
MMC2
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation
1.0 V
MAX
Y*PO (4)
(5)
, output clk
MIN
UNIT
MAX
Y*PO (4)
ns
125
125
ns
200
200
ps
19.2
9.6
MHz
Standard MMC Mode
1/MMC
1
1/tc(clk)
Frequency (1), mmcx_ clk
MMC2
tW(clkH)
Typical pulse duration, output clk high
MMC2
(2)
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
X (3)*PO (4)
Y*PO
(5)
Jitter standard deviation , output clk
X (3)*PO (4)
(4)
ns
Y*PO (4)
ns
2604.2
5208.3
ps
200
200
ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
4.3
47.8
4.3
99.9
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
4.3
47.8
4.3
99.9
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
4.3
47.8
4.3
99.9
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
4.3
47.8
4.3
99.9
ns
(5)
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
241
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-130. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Table 6-131. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
MMC1
MMC2
mmcx_clk
MMC3
MMC4
mmcx_cmd
MMC7
MMC8
mmcx_dat[3:0]
030-104
In mmcx, x is equal to 1, 2, or 3.
Figure 6-63. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Receive
MMC1
MMC2
mmcx_clk
MMC5
MMC5
mmcx_cmd
MMC6
MMC6
mmcx_dat[3:0]
030-105
In mmcx, x is equal to 1, 2, or 3.
Figure 6-64. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Transmit
6.7.1.4 MMC/SD/SDIO in High-Speed SD Mode
Table 6-133 and Table 6-134 assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-132. MMC/SD/SDIO Timing Conditions – High-Speed SD Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
High-Speed SD Mode
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
3
ns
Output load capacitance
40
pF
Output Conditions
CLOAD
242
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-133. MMC/SD/SDIO Timing Requirements – High-Speed SD Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed SD Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC/SD/SDIO Interface 2
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before
mmc2_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before
mmc2_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
2.3
1.9
ns
MMC/SD/SDIO Interface 3
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before
mmc3_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before
mmc3_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
2.3
1.9
ns
(1)
(2)
(3)
Timing Parameters are referred to output clock specified in Table 6-134.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-134.
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-134. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed SD Mode
1/HSSD 1/tc(clk)
1
Frequency (1), mmcx_ clk
HSSD2
Typical pulse duration, output clk high
(1)
(2)
(3)
(4)
tW(clkH)
(2)
48
X (3)*PO (4)
24
X (3)*PO (4)
ns
ns
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-135.
PO = output clk period in ns.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
243
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-134. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode (continued)
NO.
PARAMETER
1.15 V
MIN
HSSD2
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation (6), output clk
1.0 V
MAX
Y (5)*PO (4)
MIN
UNIT
MAX
Y (5)*PO (4)
ns
1041.7
2083.3
ps
200
200
ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
3.7
14.1
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
3.7
14.1
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
3.7
14.1
3
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
3.7
14.1
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
3.7
14.1
4.1
34.5
ns
(5)
(6)
The Y parameter is defined as shown in Table 6-136.
The jitter probability density can be approximated by a Gaussian function.
Table 6-135. X Parameters
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
244
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-136. Y Parameters
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
HSSD1
HSSD2
mmcx_clk
HSSD3
HSSD4
mmcx_cmd
HSSD7
HSSD8
mmcx_dat[3:0]
030-106
In mmcx, x is equal to 1, 2, or 3.
Figure 6-65. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Receive
HSSD1
HSSD2
mmcx_clk
HSSD5
HSSD5
mmcx_cmd
HSSD6
HSSD6
mmcx_dat[3:0]
030-107
In mmcx, x is equal to 1, 2, or 3.
Figure 6-66. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Transmit
6.7.1.5 MMC/SD/SDIO in Standard SD Mode
Table 6-138 and Table 6-139 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-67).
Table 6-137. MMC/SD/SDIO Timing Conditions – Standard SD Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Standard SD Mode
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
Output load capacitance
40
pF
Output Conditions
CLOAD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
245
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-138. MMC/SD/SDIO Timing Requirements – Standard SD Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
Standard SD Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
19.4
19.2
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
19.4
19.2
ns
MMC/SD/SDIO Interface 2
SD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
19.4
19.2
ns
MMC/SD/SDIO Interface 3
SD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
19.4
19.2
ns
(1)
(2)
(3)
Timing parameters are referred to output clock specified in Table 6-139.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-139.
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-139. MMC/SD/SDIO Switching Characteristics – Standard SD Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
Standard SD Mode
(1)
, mmcx_clk (2)
1/SD 1/tc(clk)
1
Frequency
SD2
Typical pulse duration, output clk high
(1)
(2)
(3)
(4)
246
tW(clkH)
24
X (3)*PO (4)
12
X (3)*PO (4)
MHz
ns
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-140.
PO = output clk period in ns.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-139. MMC/SD/SDIO Switching Characteristics – Standard SD Mode (continued)
NO.
PARAMETER
1.15 V
MIN
SD2
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation (6), output clk
1.0 V
MAX
Y (5)*PO (4)
MIN
UNIT
MAX
Y (5)*PO (4)
ns
2083.3
4166.7
ps
200
200
ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
6.1
35.5
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
6.1
35.5
6.3
77
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
6.1
35.5
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
6.1
35.5
6.3
77
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
6.1
35.5
10
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
6.1
35.5
6.3
77
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
6.1
35.5
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
6.1
35.5
6.3
77
ns
(5)
(6)
The Y parameter is defined as shown in Table 6-141.
The jitter probability density can be approximated by a Gaussian function.
Table 6-140. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
247
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-141. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
SD1
SD2
mmcx_clk
SD3
SD4
mmcx_cmd
SD7
SD8
mmcx_dat[3:0]
030-108
In mmcx, x is equal to 1, 2, or 3.
Figure 6-67. MMC/SD/SDIO – Standard SD Mode – Data/Command Receive
SD1
SD2
mmcx_clk
SD5
SD5
mmcx_cmd
SD6
SD6
mmcx_dat[3:0]
030-109
In mmcx, x is equal to 1, 2, or 3.
Figure 6-68. MMC/SD/SDIO – Standard SD Mode – Data/Command Transmit
248
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
6.8 Test Interfaces
The emulation and trace interfaces allow tracing activities of the following CPUs:
• ARM1136JF-STM through an Embedded Trace Macro-cell (ETM11) dedicated to enable real-time
trace of the ARM subsystem operations and a Serial Debug Trace Interface (SDTI)
All processors can be emulated via JTAG ports.
6.8.1
Embedded Trace Macro Interface (ETM)
Table 6-142 assumes testing over the recommended operating conditions (see Figure 6-69).
Table 6-142. Embedded Trace Macro Interface Switching Characteristics (1)
NO.
PARAMETER
1.15 V
MIN
f
1/tc(CLK)
Frequency, etk_clk
UNIT
MAX
166
(2)
ETM0
tc(CLK)
Cycle time
ETM1
tW(CLK)
Clock pulse width, etk_clk
2.7
ETM2
td(CLK-CTL)
Delay time, etk_clk clock edge to etk_ctl transition
–0.5
0.5
ns
ETM3
td(CLK-D)
Delay time, etk_clk clock high to etk_d[15:0] transition
–0.5
0.5
ns
(1)
(2)
, etk_clk
MHz
6
ns
ns
The capacitive load is equivalent to 25 pF.
Cycle time is given by considering a jitter of 5%.
ETM0
ETM1
etk_clk
ETM2
ETM2
etk_ctl
ETM3
ETM3
etk_d[15:0]
030-110
Figure 6-69. Embedded Trace Macro Interface
6.8.2
System Debug Trace Interface (SDTI)
The system debug trace interface (SDTI) module provides real-time software tracing functionality to the
OMAP3515/03 device.
The trace interface has four trace data pins and a trace clock pin.
This interface is a dual-edge interface: the data are available on rising and falling edges of sdti_clk but can
be also configured in single edge mode where data are available on falling edge of sdti_clk.
Serial interface operates in clock stop regime: serial clock is not free running, when there is no trace data
there is no trace clock.
6.8.2.1 System Debug Trace Interface in Dual-Edge Mode
Table 6-144 assumes testing over the recommended operating conditions and electrical characteristic
conditions (see Figure 6-70).
Table 6-143. System Debug Trace Interface Timing Conditions – Dual-Edge Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
25
pF
Output Conditions
CLOAD
Submit Documentation Feedback
Output load capacitance
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
249
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-144. System Debug Trace Interface Switching Characteristics – Dual-Edge Mode
NO.
PARAMETER
1.15 V
MIN
SD1
tc(CLK)
Cycle time, sdti_clk period
SD2
tw(CLK)
Typical pulse duration, sdti_clk high or low
tdc(CLK)
Duty cycle error, sdti_clk
tR(CLK)
Rise time, sdti_clk
tF(CLK)
Fall time, sdti_clk
td(CLK-TxD)
Delay time, sdti_clk
transition to sdti_txd[3:0]
transition
SD3
(1)
1.0 V
MAX
MIN
29
UNIT
MAX
29
0.5*P (1)
–1.2
ns
0.5*P (1)
1.2
–1.2
ns
1.2
ns
5
5
ns
5
5
ns
ns
Multiplexing mode on etk pins
2.3
10.9
2.3
10.9
Multiplexing mode on
jtag_emu pins
2.3
13.9
2.3
13.9
tR(CLK)
Rise time, sdti_txd[3:0]
5
5
ns
tF(CLK)
Fall time, sdti_txd[3:0]
5
5
ns
P = sdti_clk clock period
SD1
SD2
sdti_clk
SD3
sdti_txd[3:0]
Header
Header
SD3
Ad[7:4]
Ad[3:0] Da[15:12] Da[11:8]
Da[7:4]
Da[3:0]
030-111
Figure 6-70. System Debug Trace Interface – Dual-Edge Mode
6.8.2.2 System Debug Trace Interface in Single-Edge Mode
Table 6-146 assumes testing over the recommended operating conditions and electrical characteristic
conditions (see Figure 6-71).
Table 6-145. System Debug Trace Interface Timing Conditions – Single-Edge Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
25
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-146. System Debug Trace Interface Switching Characteristics – Single-Edge Mode
NO.
PARAMETER
1.15 V
MIN
SD1
SD2
SD3
(1)
250
tc(CLK)
Cycle time, sdti_clk period
1.0 V
MAX
29
tw(CLK)
Typical pulse duration, sdti_clk high or low
tdc(CLK)
Duty cycle error, sdti_clk
tR(CLK)
Rise time, sdti_clk
tF(CLK)
Fall time, sdti_clk
td(CLK-TxD)
Delay time, sdti_clk
transition to sdti_txd[3:0]
transition
MIN
UNIT
MAX
29
0.5*P
–1.2
(1)
ns
0.5*P
1.2
–1.2
5
5
(1)
ns
1.2
ns
5
ns
5
ns
Multiplexing mode on etk pins
2.3
26.5
2.3
26.5
ns
Multiplexing mode on jtag_emu
pins
2.3
33.2
2.3
33.2
tR(CLK)
Rise time, sdti_txd[3:0]
5
5
ns
tF(CLK)
Fall time, sdti_txd[3:0]
5
5
ns
P = sdti_clk clock period.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
SD1
SD2
sdti_clk
SD3
sdti_txd[3:0]
Header
SD3
Header
Ad[7:4]
Ad[3:0]
Da[15:12]
Da[11:8]
Da[7:4]
Da[3:0]
030-112
Figure 6-71. System Debug Trace Interface – Single-Edge Mode
6.8.3
JTAG Interfaces
OMAP3515/03 JTAG TAP controller handles standard IEEE JTAG interfaces. The following sections
define the timing requirements for several tools used to test the OMAP3515/03 processors as:
• Free running clock tool, like XDS560 and XDS510 tools
• Adaptive clock tool, like RealView® ICE tool and Lauterbach™ tool
6.8.3.1 JTAG – Free Running Clock Mode
Table 6-148 and Table 6-149 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-72).
Table 6-147. JTAG Timing Conditions – Free Running Clock Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
5
ns
tF
Input signal fall time
5
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Table 6-148. JTAG Timing Requirements – Free Running Clock Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
MIN
JT4
tc(tck)
Cycle time (2), jtag_tck period
MAX
25
tw(tckL)
Typical pulse duration, jtag_tck low
0.5*P
JT6
tw(tckH)
Typical pulse duration, jtag_tck high
0.5*P (3)
tdc(tck)
Duty cycle error, jtag_tck
, jtag_tck
UNIT
MAX
33
(3)
JT5
(4)
MIN
ns
0.5*P
(3)
ns
0.5*P (3)
ns
–1250
1250
–1667
1667
ps
–1250
1250
–1667
1667
ps
tj(tck)
Cycle jitter
JT7
tsu(tdiV-rtckH)
Setup time, jtag_tdi valid before jtag_rtck high
1.8
1.8
ns
JT8
th(tdiV-rtckH)
Hold time, jtag_tdi valid after jtag_rtck high
0.7
1
ns
JT9
tsu(tmsV-rtckH)
Setup time, jtag_tms valid before jtag_rtck high
1.8
1.8
ns
JT10 th(tmsV-rtckH)
Hold time, jtag_tms valid after jtag_rtck high
0.7
1
ns
JT12 tsu(emuxV-rtckH)
Setup time, jtag_emux (5) valid before jtag_rtck
high
14.6
19.8
ns
JT13 th(emuxV-rtckH)
Hold time,jtag_emux (5) valid after jtag_rtck high
2
2.7
ns
(1)
(2)
(3)
(4)
(5)
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the JTAG module.
P = jtag _tck period in ns.
Maximum cycle jitter supported by jtag _tck input clock.
x = 0 to 1
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
251
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Table 6-149. JTAG Switching Characteristics – Free Running Clock Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
JT1
tc(rtck)
Cycle time (1), jtag_rtck period
JT2
tw(rtckL)
Typical pulse duration, jtag_rtck low
0.5*PO (2)
0.5*PO (2)
ns
JT3
tw(rtckH)
Typical pulse duration, jtag_rtck high
0.5*PO (2)
0.5*PO (2)
ns
tdc(rtck)
Duty cycle error, jtag_rtck
tj(rtck)
Jitter standard deviation (3), jtag_rtck
tR(rtck)
tF(rtck)
JT11 td(rtckL-tdoV)
33
–1250
1667
ps
33.3
33.3
ps
Rise time, jtag_rtck
4
4
ns
Fall time, jtag_rtck
4
4
ns
Delay time, jtag_rtck low to jtag_tdo valid
–1667
7.9
ns
Rise time, jtag_tdo
4
4
ns
tF(tdo)
Fall time, jtag_tdo
4
4
ns
Delay time, jtag_rtck high to ,jtag_emux
(4)
–5.8
1250
ns
tR(tdo)
JT14 td(rtckH-emuxV)
(1)
(2)
(3)
(4)
25
valid
2.7
5.8
–7.9
20.4
ns
tR(emux)
Rise time, jtag_emux (4)
15.1
6
2.7
6
ns
tF(emux)
Fall time, jtag_emux (4)
6
6
ns
Related with the jtag_rtck maximum frequency.
PO = jtag _rtck period in ns.
The jitter probability density can be approximated by a Gaussian function.
x = 0 to 1
JT4
JT5
JT6
jtag_tck
JT1
JT2
JT3
jtag_rtck
JT7
JT8
JT9
JT10
jtag_tdi
jtag_tms
JT12
JT13
jtag_emux(IN)
JT11
jtag_tdo
JT14
jtag_emux(OUT)
030-113
In jtag_emux, x is equal to 0 to 1.
Figure 6-72. JTAG Interface Timing – Free Running Clock Mode
6.8.3.2 JTAG – Adaptive Clock Mode
Table 6-151 and Table 6-152 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-73):
Table 6-150. JTAG Timing Conditions – Adaptive Clock Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
5
ns
Input Conditions
tR
252
Input signal rise time
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
Table 6-150. JTAG Timing Conditions – Adaptive Clock Mode (continued)
TIMING CONDITION PARAMETER
tF
VALUE
UNIT
Input signal fall time
5
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Table 6-151. JTAG Timing Requirements – Adaptive Clock Mode (1)
NO.
PARAMETER
1.15 V
MIN
JA4
tc(tck)
Cycle time (2), jtag_tck period
JA5
tw(tckL)
Typical pulse duration, jtag_tck low
JA6
1.0 V
MAX
50
MIN
UNIT
MAX
50
ns
0.5*P (3)
0.5*P (3)
ns
(3)
(3)
ns
tw(tckH)
Typical pulse duration, jtag_tck high
tdc(lclk)
Duty cycle error, jtag_tck
–2500
2500
–2500
2500
ps
tj(lclk)
Cycle jitter (4), jtag_tck
–1500
1500
–1500
1500
ps
JA7
tsu(tdiV-tckH)
Setup time, jtag_tdi valid before jtag_tck high
13.8
13.8
ns
JA8
th(tdiV-tckH)
Hold time, jtag_tdi valid after jtag_tck high
13.8
13.8
ns
JA9
tsu(tmsV-tckH)
Setup time, jtag_tms valid before jtag_tck high
13.8
13.8
ns
JA10
th(tmsV-tckH)
Hold time, jtag_tms valid after jtag_tck high
13.8
13.8
ns
(1)
(2)
(3)
(4)
0.5*P
0.5*P
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the JTAG module.
P = jtag _tck period in ns.
Maximum cycle jitter supported by jtag _tck input clock.
Table 6-152. JTAG Switching Characteristics – Adaptive Clock Mode
NO.
PARAMETER
1.15 V
MIN
JA1
tc(rtck)
Cycle time (1), jtag_rtck period
1.0 V
MAX
50
tw(rtckL)
Typical pulse duration, jtag_rtck low
0.5*PO
JA3
tw(rtckH)
Typical pulse duration, jtag_rtck high
0.5*PO (2)
tdc(rtck)
Duty cycle error, jtag_rtck
(1)
(2)
(3)
UNIT
MAX
50
(2)
JA2
JA11
MIN
–2500
(3)
, jtag_rtck
ns
(2)
ns
0.5*PO (2)
ns
0.5*PO
2500
–2500
2500
ps
tj(rtck)
Jitter standard deviation
33.3
33.3
ps
tR(rtck)
Rise time, jtag_rtck
4
4
ns
tF(rtck)
Fall time, jtag_rtck
4
4
ns
td(rtckL-tdoV)
Delay time, jtag_rtck low to jtag_tdo valid
14.6
ns
tR(tdo)
Rise time, jtag_tdo,
4
4
ns
tF(tdo)
Fall time, jtag_tdo
4
4
ns
–14.6
14.6
–14.6
Related with the jtag _rtck maximum frequency programmable.
PO = jtag _rtck period in ns.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
253
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
JA4
JA5
JA6
jtag_tck
JA7
JA8
JA9
JA10
jtag_tdi
jtag_tms
JA1
JA2
JA3
jtag_rtck
JA11
jtag_tdo
030-114
Figure 6-73. JTAG Interface Timing – Adaptive Clock Mode
254
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
7 PACKAGE CHARACTERISTICS
7.1 Package Thermal Resistance
Table 7-1 provides the thermal resistance characteristics for the recommended package types used on the
OMAP3515/03 Applications Processor.
Table 7-1. OMAP3515/03 Thermal Resistance Characteristics (1)
(2)
Package
Power (W) (3)
RθJA(°C/W)
RθJB(°C/W)
OMAP3515/03
(CBB Pkg.)
0.92871
24.46
10.94
OMAP35 15/03
(CBC Pkg.)
0.92871
21.89
6.23
(5)
2S2P (6)
OMAP35 15/03
(CUS Pkg.)
0.92871
23.69
8.1
2.31
2S2P (6)
(1)
(2)
(3)
(4)
(5)
(6)
RθJC(°C/W) (4)
Board Type
(5)
2S2P (6)
RθJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W
This table provides simulation data and may not represent actual use-case values.
RθJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W
RθJC (Theta-JC) = Thermal Resistance Junction-to-Case, °C/W
These numbers are based on simulation results and don’t necessarily represent the wattage that the part will take in actual use.
It is recommended to dissipate the heat to the board instead of attempting to remove it from the top of the chip; therefore, top-side heat
sinks should not be used for package.
Not applicable if the POP package has a memory package on top; no heat sink can be used.
The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount Package
Thermal Measurements).
7.2 Device Support
7.2.1
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
OMAP processors and support tools. Each OMAP device has one of three prefixes: X, P, or null (no
prefix). Texas Instruments recommends two of three possible prefix designators for its support tools:
TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering
prototypes (TMDX) through fully qualified production devices/tools (TMDS).
Device development evolutionary flow:
X
Experimental device that is not necessarily representative of the final device’s electrical
specifications and may not use production assembly flow. (TMX definition)
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet
final electrical specifications. (TMP definition)
null
Production version of the silicon die that is fully qualified. (TMS definition)
Support tool development evolutionary flow:
TMDX
Development support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
“Developmental product is intended for internal evaluation purposes.”
Production devices and TMDS development-support tools have been characterized fully, and the quality
and reliability of the device have been demonstrated fully. TI’s standard warranty applies.
Submit Documentation Feedback
PACKAGE CHARACTERISTICS
255
OMAP3515/03 Applications Processor
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
www.ti.com
Predictions show that prototype devices (X or P), have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
For additional description of the device nomenclature markings, see the OMAP35x Applications Processor
Silicon Errata (literature number SPRZ278).
X
OMAP3530
D
CBB
( ) ( )( )
blank = 600 MHz Cortex - A8
72 = 720 MHz Cortex - A8
PREFIX
X = Experimental Device
P = Prototype Device
blank= Production Device
blank = Tray
R
= Tape and Reel
blank = 0° C to 90° C (commercial temperature)
A
= -40° C to 105° C (extended temperature)
DEVICE
SILICON REVISION
A.
PACKAGE TYPE
CBB = 515 pin s-PBGA
CBC = 515 pin s-PBGA
CUS = 423 pin s-PBGA
For more information on the silicon revision, please see the OMAP3530/25/15/03 Applications Processor Silicon
Errata (literature number SPRZ278).
Figure 7-1. Device Nomenclature(A)
7.2.2
Documentation Support
7.2.2.1 Related Documentation from Texas Instruments
The following documents describe the OMAP3515/03 Applications Processor. Copies of these documents
are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at
www.ti.com.
The current documentation that describes the OMAP3515/03 Applications Processor, related peripherals,
and other technical collateral, is available in the product folder at: www.ti.com.
SPRUF98
OMAP35x Technical Reference Manual. Collection of documents providing detailed
information on the OMAP3 architecture including power, reset, and clock control, interrupts,
memory map, and switch fabric interconnect. Detailed information on the microprocessor unit
(MPU) subsystem, the image, video, and audio (IVA2.2) subsystem, as well a functional
description of the peripherals supported on OMAP35x devices is also included.
SPRU889
High-Speed DSP Systems Design Reference Guide. Provides recommendations for
meeting the many challenges of high-speed DSP system design. These recommendations
include information about DSP audio, video, and communications systems for the C5000 and
C6000 DSP platforms.
7.2.2.2 Related Documentation from Other Sources
The following documents are related to the OMAP3515/03 Applications Processor. Copies of these
documents can be obtained directly from the internet or from your Texas Instruments representative.
CortexTM-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8
processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. Please
see the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278) to determine the
revision of the Cortex-A8 core used on your device.
256
PACKAGE CHARACTERISTICS
Submit Documentation Feedback
OMAP3515/03 Applications Processor
www.ti.com
SPRS505F – FEBRUARY 2008 – REVISED SEPTEMBER 2009
ARM Core CortexTM-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different
revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. Please
see the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278) to determine the
revision of the Cortex-A8 core used on your device.
Submit Documentation Feedback
PACKAGE CHARACTERISTICS
257
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
OMAP3503DCBB
OBSOLETE POP-FCBGA
OMAP3503DCBBA
OMAP3503DCBC
OMAP3503DCBCA
Pins
Package Qty
Eco Plan
(2)
Green (RoHS
& no Sb/Br)
Lead/
Ball Finish
SNAGCU
MSL Peak Temp
(3)
(Requires Login)
CBB
515
OBSOLETE POP-FCBGA
CBB
515
TBD
Call TI
OBSOLETE POP-FCBGA
CBC
515
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OBSOLETE POP-FCBGA
CBC
515
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3503DCUS
OBSOLETE
FCBGA
CUS
423
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
OMAP3503DCUS72
OBSOLETE
FCBGA
CUS
423
TBD
Call TI
OMAP3503DCUSA
OBSOLETE
FCBGA
CUS
423
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
OMAP3503ECBB
ACTIVE
POP-FCBGA
CBB
515
168
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3503ECBBA
ACTIVE
POP-FCBGA
CBB
515
168
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3503ECBC
ACTIVE
POP-FCBGA
CBC
515
119
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3503ECBCA
ACTIVE
POP-FCBGA
CBC
515
119
TBD
Call TI
OMAP3503ECUS
ACTIVE
FCBGA
CUS
423
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
OMAP3503ECUS72
ACTIVE
FCBGA
CUS
423
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
OMAP3503ECUSA
ACTIVE
FCBGA
CUS
423
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
Level-3-260C-168 HR
Call TI
Call TI
Call TI
OMAP3515DCBB
OBSOLETE POP-FCBGA
CBB
515
TBD
Call TI
OMAP3515DCBBA
OBSOLETE POP-FCBGA
CBB
515
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3515DCBC
OBSOLETE POP-FCBGA
CBC
515
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3515DCBCA
OBSOLETE POP-FCBGA
CBC
515
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OBSOLETE
CUS
423
TBD
Call TI
OMAP3515DCUS
FCBGA
Addendum-Page 1
Samples
Call TI
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
12-Sep-2012
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
OMAP3515DCUS72
OBSOLETE
FCBGA
CUS
423
TBD
Call TI
Call TI
OMAP3515DCUSA
OBSOLETE
FCBGA
CUS
423
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
OMAP3515ECBB
ACTIVE
POP-FCBGA
CBB
515
168
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3515ECBBA
ACTIVE
POP-FCBGA
CBB
515
168
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
OMAP3515ECBC
ACTIVE
POP-FCBGA
CBC
515
119
TBD
Call TI
Call TI
OMAP3515ECBCA
ACTIVE
POP-FCBGA
CBC
515
119
TBD
Call TI
Call TI
OMAP3515ECUS
ACTIVE
FCBGA
CUS
423
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
OMAP3515ECUS72
ACTIVE
FCBGA
CUS
423
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
OMAP3515ECUSA
ACTIVE
FCBGA
CUS
423
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-4-260C-72 HR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2012
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 3
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Similar pages