ADPOW APT75GT120JRDQ3 Thunderbolt igbt Datasheet

APT75GT120JRDQ3
1200V
TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
®
E
E
Thunderbolt IGBT®
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 20KHz
• Low Tail Current
• Ultra Low Leakage Current
C
G
ISOTOP ®
S
OT
22
7
"UL Recognized"
file # E145592
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT75GT120JRDQ3
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
97
I C2
Continuous Collector Current @ TC = 110°C
42
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
225
@ TC = 150°C
225A @ 1200V
Switching Safe Operating Area @ TJ = 150°C
Watts
481
Total Power Dissipation
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
RG(int)
MAX
4.5
5.5
6.5
2.7
3.2
3.7
Units
1200
(VCE = VGE, I C = 3mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
3.9
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Volts
200
2
Gate-Emitter Leakage Current (VGE = ±20V)
480
5
Intergrated Gate Resistor
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
TBD
nA
Ω
12-2005
V(BR)CES
MIN
Rev C
Characteristic / Test Conditions
052-6276
Symbol
APT75GT120JRDQ3
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
f = 1 MHz
155
Gate Charge
7.5
VGE = 15V
240
V
nC
A
VCC = 800V
65
ns
375
I C = 75A
25
RG = 1.0Ω
8045
TJ = +25°C
µJ
8845
6
2970
Inductive Switching (125°C)
50
VCC = 800V
65
Current Rise Time
VGE = 15V
Turn-off Delay Time
29
RG = 1.0Ω
44
55
ns
415
I C = 75A
Current Fall Time
Turn-on Switching Energy (Diode)
pF
225
50
5
UNIT
110
Inductive Switching (25°C)
4
MAX
15
VGE = 15V
Turn-on Delay Time
Turn-off Switching Energy
250
15V, L = 100µH,VCE = 1200V
Current Fall Time
Turn-on Switching Energy
VGE = 0V, VCE = 25V
TJ = 150°C, R G = 4.3Ω, VGE =
Turn-off Delay Time
Turn-off Switching Energy
2570
I C = 75A
Current Rise Time
Turn-on Switching Energy (Diode)
TYP
Capacitance
VCE = 600V
Turn-on Delay Time
Turn-on Switching Energy
MIN
8050
TJ = +125°C
µJ
12660
66
4215
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.26
RθJC
Junction to Case (DIODE)
.56
WT
VIsolation
Package Weight
29.2
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500
UNIT
°C/W
gm
Volts
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
052-6276
Rev C
12-2005
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
160
140
TC = 25°C
120
TC = 125°C
100
80
60
40
20
0
1
2
3
4
5
6
7
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
TJ = -55°C
160
140
120
100
80
TJ = 25°C
60
TJ = 125°C
40
20
0
0
12V
80
11V
60
40
10V
20
9V
8V
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 75A
C
T = 25°C
14
0
IC = 150A
6.0
5.0
IC = 75A
4.0
IC = 37.5A
3.0
2.0
1.0
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
IC = 150A
4
0.75
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.80
IC = 37.5A
2
1
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
0.85
IC = 75A
3
1.05
0.90
250
5
140
0.95
100
150
200
GATE CHARGE (nC)
6
1.10
1.00
50
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
7.0
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
8.0
7V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
100
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
180
13V
0
0
200
15V
120
100
80
60
40
20
0
-50 -25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
12-2005
IC, COLLECTOR CURRENT (A)
= 15V
Rev C
GE
052-6276
V
180
APT75GT120JRDQ3
140
IC, COLLECTOR CURRENT (A)
200
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
50
VGE = 15V
40
30
20
VCE = 400V
10 T = 25°C, or 125°C
J
RG = 1.0Ω
L = 100µH
0
160
tf, FALL TIME (ns)
tr, RISE TIME (ns)
100
80
60
TJ = 25 or 125°C,VGE = 15V
20
VCE = 400V
RG = 1.0Ω
L = 100µH
RG = 1.0Ω, L = 100µH, VCE = 400V
50000
TJ = 125°C
30000
20000
10000
TJ = 25°C
0
20
TJ = 25°C, VGE = 15V
V
= 400V
CE
V
= +15V
GE
R = 1.0Ω
G
8000
TJ = 125°C
6000
4000
2000
TJ = 25°C
0
160
130
100
70
40
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
160
130
100
70
40
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
J
80000
Eon2,150A
40000
Eoff,150A
Eon2,75A
20000
Eoff,75A
Eoff,37.5A
Eon2,37.5A
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
45000
= 400V
V
CE
= +15V
V
GE
T = 125°C
0
30
160
130
100
70
40
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
G
40000
60000
TJ = 125°C, VGE = 15V
40
10000
V
= 400V
CE
V
= +15V
GE
R = 1.0Ω
100000
50
0
160
130
100
70
40
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EON2, TURN ON ENERGY LOSS (µJ)
100
10
0
SWITCHING ENERGY LOSSES (µJ)
200
60
40
12-2005
VGE =15V,TJ=125°C
70
RG = 1.0Ω, L = 100µH, VCE = 400V
120
Rev C
VGE =15V,TJ=25°C
300
160
130
100
70
40
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
052-6276
400
0
160
130
100
70
40
10
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
APT75GT120JRDQ3
500
60
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
40000
Eon2,150A
G
35000
30000
25000
20000
15000
Eon2,75A
10000
Eon2,37.5A
5000
0
Eoff,37.5A
Eoff,150A
Eoff,75A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
4,000
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
APT75GT120JRDQ3
250
1,000
500
Coes
200
150
100
50
Cres
0
100
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.25
D = 0.9
0.20
0.7
0.15
0.5
0.10
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
0.3
t1
t2
0.05
0
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
Power
(watts)
0.158
0.0436
0.0254
0.496
11.6
Case temperature. (°C)
Figure 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
5
3
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 5Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
15
25
35
45
55
65
75
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
12-2005
0.0594
Rev C
RC MODEL
052-6276
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
50
APT75GT120JRDQ3
APT60DQ120
Gate Voltage
10%
TJ = 125°C
td(on)
IC
V CC
V CE
tr
5%
Collector Current
90%
10%
A
5%
CollectorVoltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
TJ = 125°C
td(off)
CollectorVoltage
90%
tf
10%
0
Collector Current
Switching Energy
052-6276
Rev C
12-2005
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT75GN120JRDQ3
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 85°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
73
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
540
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 75A
2.8
IF = 150A
3.48
IF = 75A, TJ = 125°C
2.17
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX-
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
60
trr
Reverse Recovery Time
-
265
Qrr
Reverse Recovery Charge
-
560
-
5
-
350
ns
-
2890
nC
-
13
-
150
-
4720
-
40
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 800V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 60A, diF/dt = -200A/µs
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
ns
-
nC
Amps
D = 0.9
0.50
0.40
0.7
0.30
0.5
0.20
0.3
Note:
PDM
t1
t2
0.10
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
Junction
temp. (°C)
Power
(watts)
RC MODEL
0.148
0.006
0.238
0.0910
0.174
0.524
Case temperature. (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
12-2005
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
Rev C
0
t
0.1
052-6276
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
200
140
TJ = 175°C
120
100
TJ = 125°C
80
60
TJ = 25°C
40
TJ = -55°C
20
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
7000
T = 125°C
J
V = 800V
R
6000
120A
5000
4000
60A
3000
30A
2000
1000
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
IRRM
0
CJ, JUNCTION CAPACITANCE
(pF)
350
12-2005
50
T = 125°C
J
V = 800V
45
120A
R
40
35
30
25
60A
20
15
30A
10
5
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
90
Duty cycle = 0.5
T = 175°C
80
J
50
40
20
10
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
Rev C
100
30
0.2
052-6276
150
60
Qrr
300
250
200
150
100
50
0
30A
200
70
0.4
0.0
60A
250
0
trr
0.6
300
R
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
trr
0.8
350
0
Qrr
1.0
T = 125°C
J
V = 800V
120A
50
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
trr, REVERSE RECOVERY TIME
(ns)
160
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
180
0
APT75GT120JRDQ3
400
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT75GT120JRDQ3
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
ISOTOP® is a Registered Trademark of SGS Thomson.
Collector/Cathode
Gate
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
12-2005
3.3 (.129)
3.6 (.143)
Rev C
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
052-6276
7.8 (.307)
8.2 (.322)
Similar pages