Cirrus CDB1611A-8W 8 watt demonstration board Datasheet

CDB1611A-8W
CDB1611A-8W
8 Watt Demonstration Board
Features
General Description
• Quasi-resonant Flyback with Constant-current Output
• Rated Input Power: 7.7W
The CDB1611A-8W reference design demonstrates the
performance of the CS1611A resonant mode AC/DC
dimmable LED driver IC with a 550mA output driving
4  LEDs in series. It offers best-in-class dimmer
compatibility with leading-edge, trailing-edge, center-cut,
and digital dimmers.
• Rated Output Power: 6.4W
DIMENSIONS (OVERALL)
• Flicker-free Dimming
• Line Voltage 230VAC, ±10%
• Efficiency: 83% at 550mA for 4  LEDs in Series
• Low Component Count
Length
Width
Height
3.62  91.9mm   2.54  64.5mm   0.971  24.6mm 
For more information, see Figure 3 on page 6.
• Supports Cirrus Logic Product CS1611A
ORDERING INFORMATION
CDB1611A-8W-Z 8 Watt Reference Design
Supports CS1611A
Cirrus Logic, Inc.
http://www.cirrus.com
Copyright  Cirrus Logic, Inc. 2013
(All Rights Reserved)
SEP‘13
DS1013DB3
CDB1611A-8W
IMPORTANT SAFETY INSTRUCTIONS
Read and follow all safety instructions prior to using this demonstration board.
This Engineering Evaluation Unit or Demonstration Board must only be used for assessing IC performance in a
laboratory setting. This product is not intended for any other use or incorporation into products for sale.
This product must only be used by qualified technicians or professionals who are trained in the safety procedures
associated with the use of demonstration boards.
Risk of Electric Shock
•
The direct connection to the AC power line and the open and unprotected boards present a serious risk of electric
shock and can cause serious injury or death. Extreme caution needs to be exercised while handling this board.
•
Avoid contact with the exposed conductor or terminals of components on the board. High voltage is present on
exposed conductor and it may be present on terminals of any components directly or indirectly connected to the AC
line.
•
Dangerous voltages and/or currents may be internally generated and accessible at various points across the board.
•
Charged capacitors store high voltage, even after the circuit has been disconnected from the AC line.
•
Make sure that the power source is off before wiring any connection. Make sure that all connectors are well
connected before the power source is on.
•
Follow all laboratory safety procedures established by your employer and relevant safety regulations and guidelines,
such as the ones listed under, OSHA General Industry Regulations - Subpart S and NFPA 70E.
Suitable eye protection must be worn when working with or around demonstration boards. Always
comply with your employer’s policies regarding the use of personal protective equipment.
All components and metallic parts may be extremely hot to touch when electrically active.
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you
go to www.cirrus.com
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives
consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR
USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK
AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER
OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE,
TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, EXL Core, and the EXL Core logo design are trademarks of Cirrus Logic, Inc. All other brand and product names
in this document may be trademarks or service marks of their respective owners.
2
DS1013DB3
CDB1611A-8W
1. INTRODUCTION
The CS1611A is a 230VAC quasi-resonant flyback mode dimmable LED controller IC. The CS1611A uses a digital
control algorithm that is optimized for high efficiency and >0.9 power factor over an input voltage range (207VAC to
253VAC). The CS1611A integrates a critical conduction mode (CRM) boost converter that provides power factor
correction and dimmer compatibility with a constant output current, quasi-resonant flyback stage. An adaptive dimmer compatibility algorithm controls the boost stage and dimmer compatibility operation mode to enable flicker-free
operation to <2% output current with leading-edge, trailing-edge, and digital dimmers.
The CDB1611A-8W board is optimized to deliver low system cost in a high-efficiency, flicker-free, phase-dimmable,
solid-state lighting (SSL) solution for incandescent lamp replacement applications. The feedback loop is closed
through an integrated digital control system within the IC. The variation in switching frequency also provides a
spread-frequency spectrum, thus minimizing the conducted EMI filtering requirements. Protection algorithms such
as output open/short, current-sense resistor open/short, and overtemperature thermistors protect the system during
abnormal conditions. Details of these features are provided in the CS1610A/11A/12A/13A TRIAC Dimmable LED
Driver IC data sheet.
The CDB1611A-8W board demonstrates the performance of the CS1611A. This reference board has been designed for an output load of 4  LEDs in series at 550mA (12.0V typical).
This document provides the schematic for the board. It includes oscilloscope screen shots that indicate various operating waveforms. Graphs are also provided that document the performance of the board in terms of Efficiency vs.
Line Voltage, Output Current vs. Line Voltage, and Output Current vs. Dim Angle for the CS1611A dimmable LED
controller IC.
Extreme caution needs to be exercised while handling this board. This board is to be used by trained professionals
only.
DS1013DB3
3
$
&+$1*('8725(9%&+$1*('5722+0
$
&+$1*('8723238/$7(
.
5
%
5
&
&(5
X)
5
0
&
8)
7(50%/.
$
$
-&0
&+$1*(5$1'572.:&+$1*(572.
&+$1*(&WRX)9
&+$1*('572.
&
$
&
(/(&
X)
.
5
&
&*
S)
9/,1.
73
5
0
*0(1'(/
-*$5=$
&
;5
X)
S)
6673
'
$
5
.
&
(/(&
X)
60%-&$
-
9287 -
+'5;B5$
%
12323
-
/
5
.
.
5
5
,1&%<'$7( '$7(
,1,7,$/5(/($6(
'
677+/$
5
0
'(6&5,37,21
$
'
;)
-
&+$1*('&)5203)723)
6.73)86(+2/'(5
)
$
%
5(9
/
/
P+
%5
+'7
&+$1*('8)22735,1772'(/(7(7+(503$'
(&2
73
95(&7
4
2. SCHEMATIC
'
677+/$
5
0
&
&(5
S)
5
2+0
5
0
8)
&
(/(&
X)
5
0
'
P+
-
9287 1:
1:
5
.
5
0
5
'
&
/
7(50%/.
5
.
4
)411&7$
5
2+0
'
5
4
67'1.=7
2+0
5
.
*
5
.
6
5
0
'
6*)
5
.
.
5
&
S)
;5
'
'
5
2+0
*
67'1. %$6)
9
73
*1'
&
;5
X)
'
60$=73
9
'
1:
'
5
2+0
4
6
%67$8;
,$&
&/$03
6*1'
6285&(
1&
1&
,3.
5
.
8
&6$)6=
'
1:
;8
27662,&16.7
6%56
4
=91)7$
73
*1'
%67287
)%$8;
9''
*'
*1'
)%6(16(
(273
)%*$,1
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
5
&
&2*
S)
.
5
5
12323
5
.
5
.
17&
.
5
.
W
5
.
5
.
&
;5
X)
127(681/(6627+(5:,6(63(&,),('
$8;,/,$5<+$5':$5($1'5(/$7(''2&80(176
-
73
*1'
*1'
-
6'$
-
6&/
-
9''
0+
0+
0+
0+
DS1013DB3
Figure 1. Schematic
3&%':*
=
$66<':*
6&+(0$7,&':*
=
=
/%/68%$66<352','$1'5(9
6&5(:3+,/,367+53+/=
6+((7
7,7/(
3$57
&'%$:=
=5(9%
'5$:1%<
-&0
'$7(
(1*,1((5
-&0
6+((7
2)
6+((7
6,=(
%
CDB1611A-8W
$//5(6,67259$/8(6$5(,12+06
CDB1611A-8W
3. BILL OF MATERIALS
Item Rev
DescripƟon
1
WIRE JUMPER BLACK 24AWG SOLID
2
DIODE RECT 400V 0.8A NPB MINIDIP
3
CAP 0.033UF ±10% 400V MTL FLM RDL
4
CAP 2.2uF ±10% 10V X7R NPb 0805
5
CAP 0.1UF ±5% 400V MTL FLM RAD
6
A CAP 3300pF ±5% 50V X7R NPb 0805
7
CAP 0.33UF ±10% 50V X7R NPb 0603
8
CAP 6.8uF ±20% 450V ELEC NPb RAD
9
CAP 100pF ±5% 50V C0G NPb 0603
10
CAP 100uF ±20% 25V EL LO ESR NPb RD
11
CAP 1000pF ±10% 2000V CER NPb RAD
12
CAP 22UF ±20% 35V ELEC RAD
13
CAP 0.0047uF 10% 500V CER NPb RAD
14
CAP 2200PF +80/-20% 2KV CER NPb RAD
15
CAP 47pF ±5% 1000V C0G NPb 1206
16
DIODE SWT 85V 215mA NPb SOT-23
17
DIODE FAST SW 75V 350mW NPb SOD123
18
DIODE ZENER 16V 1W NPb DO-214AC
19
DIODE ULT FAST 600V 1A NPb SMA
20
DIODE TVS 600W 300V BI 5% NPb SMB
21
DIODE SKY RECT 60V 2A NPb DO-214AC
22
DIODE RECT 30V 1A NPb SOD-323
23
DIODE RECT 400V 1A NPb SMA
24
FUSE 1A 250V TLAG NPb RAD
25
CON 2POS TERM BLK 5.08mm SPR NPb RA
26
HDR 1x1 ML .1 062 S NPb GLD
27
HDR 2x1 ML .1"CTR RA GLD
28
IND 4.7mH ±10% 17.6 OHM 350 DIA TH
29
XFMR 14.5mH ±10% 10 KHZ TH
30
XFMR 6.8mH ±10% 10 KHZ TH
31
SPCR STANDOFF 4-40 THR .875L AL NPb
32
THERM 100K OHM ±5% 0.10mA NPb 0603
33
TRAN MOSFET nCH 1.0A 600V NPb IPAK
34
TRAN MOSFET nCH 0.38A 500V NPb TO-92
35
TRAN MOSFET nCH 1A 800V NPb DPAK
36
TRAN MOSFET nCH 60V.2A NPb SOT23-3
37
RES 4.7k OHM 1/4W ±5% NPb 1206 FILM
38
RES PWR 2.0K OHM 2W ±5% NPb AXL
39
RES 0 OHM 1/10W ±5% NPb 0603 FILM
40
RES 0 OHM 1/10W ±5% NPb 0603 FILM
41
RES 47 OHM 1/10W ±1% NPb 0603
42
RES 22.1k OHM 1/10W ±1% NPb 0603
43
RES 4.70K OHM 1/10W ±1% NPb 0603
44
RES 1k OHM 2W ±5% MTL FLM NPb AXL
45
RES 0 OHM 1/4W JUMPER CF NPb AXL
46
RES 100k OHM 1/10W ±5% NPb 0603 FLM
47
RES 1M OHM 1/4W ±1% NPb 1206
48
RES 22.1 OHM 1/8W ±1% NPb 0805 FILM
49
RES 20 OHM 1/8W ±1% NPb 0805 FILM
50
RES 1k OHM 1/10W ±1% NPb 0603 FILM
51
RES 27K OHM 1/8W ±1% NPb 0805
52
RES 69.8k OHM 1/10W ±1% NPb 0603
53
RES 5.6k OHM 1/10W ±5% NPb 0603 FILM
54
RES 22.0 OHM 1/10W ±1% NPb 0603
55
RES 1M OHM 1/8W ±1% MTL NPb AXL
56
RES 14k OHM 1/10W ±1% NPB 0603 FILM
57
RES 120K OHM 1/10W ±1% NPb 0603
58
RES 47k OHM 1/10W ±5% NPb 0603 FILM
59
RES 51.0 OHM 1/10W ±1% NPb 0603
60
CON TEST PT .1" TIN PLATE WHT NPb
61
CON TEST PT .1"CTR TIN PLATE NPb BLK
62 B2 IC CRUS DIM 230V LED DRV NPb SOIC16
63
FUSE MOUNT TR5/TE5 3mm 2P NPb TH
64
SCREW 4-40X5/16" PH MACH SS NPb
65
SKT PINCH CONTACT FOR SOIC16N
Qty
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
4
1
2
1
1
1
1
1
2
6
1
2
1
1
4
1
1
1
1
1
2
1
0
1
3
2
1
2
1
2
6
1
1
1
1
1
1
1
2
1
1
2
1
2
3
1
1
1
0
Reference Designator
A1
BR1
C1
C2 C12
C3
C4
C5
C6
C7
C8
C9
C11
C13
C14
C15
D1
D2 D8 D9 D10
D3
D4 D6
D5
D7
D11
D12
F1
J1 J2
J3 J4 J5 J7 J8 J9
J6
L1 L2
L3
L4
MH1 MH2 MH3 MH4
NTC
Q1
Q2
Q3
Q4
R1 R8
R2
R3
R4
R5 R27 R35
R6 R28
R7
R9 R10
R11
R12 R34
R13 R14 R15 R16 R17 R18
R19
R20
R21
R22
R23
R24
R25
R26 R36
R29
R30
R31 R32
R33
TP1 TP2
TP3 TP4 TP5
U1
XF1
XMH1
XU1
MFG
ALPHA WIRE COMPANY
DIODES INC
PANASONIC
MURATA
Panasonic
KEMET
TDK
UNITED CHEMI-CON
KEMET
PANASONIC
MURATA
PANASONIC
MURATA
MURATA
JOHANSON DIELECTRICS
DIODES INC
DIODES INC
MICRO COMMERCIAL
ST MICROELECTRONICS
LiƩelfuse
MICRO COMMERCIAL(MCC)
DIODES INC
DIODES INC
LITTLE FUSE
WEIDMULLER
SAMTEC
SAMTEC
COILCRAFT
KUNSHAN EAGERNESS
KUNSHAN EAGERNESS
KEYSTONE
MURATA
ST MICROELECTRONICS
FAIRCHILD
ST MICROELECTRONICS
DIODES INC
DALE
VISHAY
DALE
DALE
PANASONIC
DALE
PANASONIC
VISHAY
STACKPOLE
DALE
DALE
DALE
DALE
DALE
PANASONIC
DALE
DALE
PANASONIC
STACKPOLE
DALE
PANASONIC
DALE
PANASONIC
KEYSTONE
KEYSTONE
CIRRUS LOGIC
LiƩelfuse
BUILDING FASTENERS
ENPLAS
MFG P/N
3050/1 BK005
HD04-T
ECQE4333KF
GRM21BR71E225KA73L
ECQE4104JF
C0805C332J5RAC
C1608X7R1H334K
EKXG451ELL6R8MJ20S
C0603C101J5GAC
EEUFM1E101
DEBB33D102KA2B
EEA-GA1V220H
DESD32H472KN7A
DEBE33D222ZA2B
102R18N470JV4E
BAS116-7-F
1N4148W-7-F
SMAZ16-TP
STTH1L06A
SMBJ300CA
SS26-TP
SBR130S3-7
S1G-13-F
39211000440
1716020000
TSW-101-07-G-S
TSW-102-08-G-S-RA
RFB0807-472L
RM06-CL01
RM05-CL01
1809
NCP18WF104J03RB
STD1NK60-1
FQN1N50CTA
STD1NK80ZT4
ZVN4106FTA
CRCW12064K70JNEA
PR02000202001JR500
NP-CRCW06030000Z0EA
CRCW06030000Z0EA
ERJ3EKF47R0V
CRCW060322K1FKEA
ERJ3EKF4701V
PR02000201001JR500
CD14ZT0R00
CRCW0603100KJNEA
CRCW12061M00FKEA
CRCW080522R1FKEA
CRCW080520R0FKEA
CRCW06031K00FKEA
ERJ6ENF2702V
CRCW060369K8FKEA
CRCW06035K60JNEA
ERJ3EKF22R0V
RNF18FTD1M00
CRCW060314K0FKEA
ERJ3EKF1203V
CRCW060347K0JNEA
ERJ3EKF51R0V
5002
5001
CS1611A-FSZ/B2
56000001319
PMSSS 440 0031 PH
OTS-16-1.27-03
Figure 2. Bill of Materials
DS1013DB3
5
6
4. BOARD LAYOUT
CDB1611A-8W
DS1013DB3
Figure 3. PCB Dimensions
DS1013DB3
7
CDB1611A-8W
Figure 4. Top Silkscreen
8
CDB1611A-8W
DS1013DB3
Figure 5. Top Routing
DS1013DB3
9
CDB1611A-8W
Figure 6. Bottom Routing
CDB1611A-8W
5. DIMMER COMPATIBILITY
PAR 16 Lamp with a CS1611A (230V/50Hz)
Date
Power Factor1,5
9/5/2013
0.907
(Y/N) 2,5
Y
Vendor
Cirrus Logic
IEC-61000-3-2 Compliant
Input Voltage
230V/50Hz
EN55015 Compliant (Y/N)
Y
Form Factor
PAR 16
Nominal Input Power (W)1,5
7.55
Model #
CRD1611A-8W
Maximum Input Power
(W)1,5
8.8
1,3
IC
CS1611A
Output Voltage (V)
Topology
Boost/Flyback
Output Current (mA)1,3
Isolation (Y/N)
Y
Output Current Ripple  120Hz (mA)
Efficiency (%)
82.1
Output Power (W)1,5
Dimmer 6
Manufacture
Type
11.43
542
1,4
0
6.195
Flicker Free
Steady-State
Monotonic
Dimming
Max Iout (%)
Min Iout (%)
# of lamps
# of lamps
# of lamps
# of lamps
1
5
10
1
5
10
1
5
10
1
5
10
Berker 286110
Universal
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
2.0
2.0
2.0
Bull 500W
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Busch 2247U
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Busch 6513U-102
Trailing Edge
Y
Y
Y
Y
Y
Y
99.8
99.8
1.8
1.8
1.8
Busch 6519U
Trailing Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Busch 6591U-101
Universal
Y
Y
Y
Y
Y
Y
100.0 98.3
96.3
1.8
1.8
1.8
Chint New7-6305
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 99.8 100.0
1.8
2.0
1.8
Chisen
Trailing Edge
Y
N
N
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Chisen 350W
Leading Edge
Y
N
Y
Y
N
N
100.0 100.0 100.0
1.8
2.0
1.8
Clipsal 32E450UDM
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 99.8
99.8
1.8
1.8
1.8
Clipsal EV51RD400
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
CLSEN QSY626W
Leading Edge
Y
N
N
Y
Y
Y
100.0 100.0 100.0
2.0
3.1
3.5
Cshyh 150W
Leading Edge
Y
Y
N
Y
Y
Y
100.0 100.0 100.0
2.6
4.1
4.2
Dbang
Leading Edge
Y
Y
N
Y
N
Y
100.0 100.0 100.0
2.0
2.8
2.0
Futina 250W
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
3.7
3.7
3.7
Gira 118400
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
2.0
2.0
2.0
HPM 1000L
Leading Edge
Y
Y
Y
Y
Y
Y
74.0
74.5
74.2
1.8
1.8
1.8
HPM 250L
Leading Edge
Y
Y
Y
Y
Y
Y
73.4
74.0
74.2
1.8
1.8
1.8
HPM 250LWE
Leading Edge
Y
Y
Y
Y
Y
Y
86.9
86.9
87.3
1.8
1.8
1.8
HPM 250T
Trailing Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
HPM 400T
Trailing Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
HPM 700L
Leading Edge
Y
Y
Y
Y
Y
Y
86.2
1.8
1.8
1.8
10
99.8
85.2
85.2
DS1013DB3
CDB1611A-8W
Dimmer 6
Manufacture
Type
Flicker Free
Steady-State
Monotonic
Dimming
Max Iout (%)
Min Iout (%)
# of lamps
# of lamps
# of lamps
# of lamps
1
5
10
1
5
10
1
5
10
1
5
10
HPM LN250T
Trailing Edge
Y
Y
Y
Y
Y
N
97.4
95.4 100.0
1.8
1.8
1.8
HPM LN400L
Leading Edge
Y
Y
Y
Y
Y
Y
76.9
76.8
86.7
1.8
1.8
1.8
HPM XL1000T
Trailing Edge
Y
Y
Y
Y
Y
Y
100.0 99.1
97.8
1.8
1.8
1.8
HPM XL250T
Trailing Edge
Y
Y
Y
Y
Y
Y
96.5
94.5
93.5
1.8
1.8
1.8
HPM XL700L
Leading Edge
Y
Y
Y
Y
Y
Y
83.0
83.0
82.5
1.8
1.8
1.8
KOPP 8078
Trailing Edge
Y
Y
N
Y
Y
N
100.0 100.0
-
1.8
1.8
-
Leiben 450W
Leading Edge
N
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Lonon NB50.0TG
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Lutron LLSI-502
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Lutron LLSM-502
Leading Edge
Y
Y
Y
Y
Y
Y
88.6
89.3
1.8
1.8
1.8
Merten 5725
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Merten 5771
Trailing Edge
Y
Y
Y
Y
Y
Y
87.5
81.0
1.8
1.8
1.8
MK 52471SL
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
2.0
1.8
1.8
N&L 28985
Trailing Edge
Y
Y
N
Y
Y
N
95.0
1.8
1.8
-
Opus 852.390
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
2.2
2.0
2.0
Opus 852.392
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
3.1
3.1
3.1
Siemens 5GT0200
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
T&J K211-1KM2
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
2.0
1.8
1.8
T&J K211-M2
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
TCL LM2
Leading Edge
Y
Y
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
TNC Z26-M12
Leading Edge
N
N
Y
Y
Y
Y
100.0 100.0 100.0
1.8
1.8
1.8
Wuyun W13-C162
Trailing Edge
Y
Y
N
Y
Y
N
100.0 100.0
1.8
1.8
-
Notes:
1.
89.7
83.0
92.1
-
-
Tested at nominal input voltage, nominal input frequency and without a dimmer after soaking for 15 minutes
2.
Compliant with IEC 61000-3-2 Class C < 25W
3.
Average
4.
Peak-to-peak
5.
Measured with Chroma 66202 Power Analyzer
6.
This document includes trademarks, trade names, brands, logos, product names and/or product identifiers of companies other
than Cirrus Logic, Inc. All such trademarks, trade names, brands, logos, product names, and product identifiers are for
identification purposes only and are the property of their respective owners, who are not affiliated with Cirrus Logic. Please visit
the respective sites of those owners to obtain a listing or understanding of their trademark rights. This document also includes
results from testing performed by Cirrus Logic for its own purposes and for which there are currently no industry standards. While
this testing was applied objectively, its results may include at least some degree of subjectivity. The testing or test results should
not be interpreted as any comment on the overall quality or suitability of any tested products.
DS1013DB3
11
CDB1611A-8W
6. INDUCTOR CONSTRUCTION
The CDB1611A-8W includes a critical conduction mode (CRM) boost converter that provides power factor correction
and dimmer compatibility with a constant output current, quasi-resonant flyback stage. The following sections describe the boost and flyback inductors installed on the CDB1611A-8W.
6.1
Boost Inductor
The CS1611A uses an adaptive dimmer compatibility algorithm to control the boost inductor stage, which guarantees dimmer compatibility operation plus enables flicker-free operation with leading-edge, trailing-edge, and digital
dimmers (dimmers with an integrated power supply). The boost auxiliary winding is used for zero-current detection
(ZCD) and supplies power to the CS1611A.
2
400T
#37AWG
(0.12mm)
Primary
1
5
22T
#37 AWG
(0.12 mm)
Auxillary
4
Figure 7. Boost Inductor Schematic
6.1.1
Electrical Specifications
Characteristics conditions:
• Operating temperature range: -25 °C to +120 °C (including coil heat)
Parameter
Condition
Symbol
Min
Typ
Max
Unit
LP
6.12
6.8
7.48
mH
Boost Inductor
Primary Inductance
(Note 1)
fresonant =10kHz, 0.3V at 20°C
Primary DC Resistance
(Note 1)
tDCR =20°C
12
15
18

Auxiliary DC Resistance
(Note 2)
tDCR =20°C
0.84
1.05
1.26

Notes:
12
1.
2.
Measured across pins 1 and 2
Measured across pins 5 and 4
DS1013DB3
CDB1611A-8W
6.2
Flyback Transformer
The flyback transformer stage is a quasi-resonant peak current-regulated DC-DC converter capable of delivering
the highest possible efficiency with constant current output while minimizing line frequency ripple. The auxiliary winding is used for zero-current detection and overvoltage protection.
4
113T
#36 AWG
(0.13 mm)
Primary 5
67 T
# 36AWG
(0.13mm)
B
10T
#27AWG
(0.35mm)
Secondary
A
3
2
10 T
# 36AWG
(0.13mm)
Auxiliary
1
Figure 8. Flyback Transformer Schematic
6.2.1
Electrical Specifications
Characteristics conditions:
• Operating temperature range: -25 °C to +120 °C (including coil heat)
Parameter
Condition
Symbol
Min
Typ
Max
Unit
Flyback Transformer
Electrical Strength
(Note 3)
foperate=50/60Hz
-
4K
-
VRMS
Primary Inductance
(Note 4)
fresonant=10kHz, 0.3V at 20°C
LP
13.05
14.5
15.95
mH
Primary Leakage Inductance
(Note 4)
fresonant=10kHz, 0.3V at 20°C
LK
-
106
-
H
Primary DC Resistance
(Note 4)
tDCR =20°C
5.25
7.0
8.75

Secondary DC Resistance
(Note 5)
tDCR =20°C
-
120
-
m
Auxiliary DC Resistance
(Note 6)
tDCR =20°C
-
400
-
m
Notes:
3.
4.
5.
6.
Time = 2s
Measured across pins 3 and 4
Measured across pins B and A
Measured across pins 2 and 1
DS1013DB3
13
CDB1611A-8W
7. PERFORMANCE PLOTS
0.6
Output Current (A)
0.5
0.4
0.3
0.2
0.1
0
20
40
60
80
100
120
140
160
180
Dim Angle (°)
Figure 9. Typical Output Current vs. Dim Angle
10
9
Input Power (W)
8
7
6
5
4
3
2
1
0
20
40
60
80
100
120
140
160
180
Dim Angle (°)
Figure 10. Typical Input Power vs. Dim Angle
14
DS1013DB3
CDB1611A-8W
1.0
Output Current (A)
0.8
0.6
0.4
0.2
0.0
200
210
220
230
240
250
260
Line Voltage (V)
Figure 11. Output Current vs. Line Voltage, 207VAC to 253VAC
90%
85%
Efficiency (%)
80%
75%
70%
65%
60%
200
210
220
230
240
250
260
Line Voltage (V)
Figure 12. Typical Efficiency vs. Line Voltage, 207VAC to 253VAC
DS1013DB3
15
CDB1611A-8W
1.00
0.95
Power Factor
0.90
0.85
0.80
0.75
0.70
0.65
0.60
200
210
220
230
240
250
260
Line Voltage (V)
Figure 13. Power Factor vs. Line Voltage, 207VAC to 253VAC
16
DS1013DB3
CDB1611A-8W
Figure 14. No-dimmer Mode, Startup, 230VAC
Figure 15. No-dimmer Mode, Steady-state, 230VAC
DS1013DB3
17
CDB1611A-8W
Figure 16. Boost FET Q1 Waveform
Figure 17. Flyback FET Q3 Waveform
18
DS1013DB3
CDB1611A-8W
Figure 18. ILED at Maximum Dim Angle, Turn-on Waveforms
Figure 19. ILED at Medium Dim Angle, Turn-on Waveforms
DS1013DB3
19
CDB1611A-8W
Figure 20. ILED at Minimum Dim Angle, Turn-on Waveforms
20
DS1013DB3
CDB1611A-8W
8. REVISION HISTORY
Revision
Date
Changes
DB1
FEB 2013
Initial release
DB2
MAR 2013
Context clarification
DB3
SEP 2013
PCBA revision B content clarification
DS1013DB3
21
Similar pages