January 2007 HYB18T512400BF HYB18T512800BF HYB18T512160BF 512-Mbit Double-Data-Rate-Two SDRAM DDR2 SDRAM RoHS Compliant Products Internet Data Sheet R ev . 1 . 05 Internet Data Sheet HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM HYB18T512400BF, HYB18T512800BF Revision History: 2007-01, Rev. 1.05 Page Subjects (major changes since last revision) All Qimonda update All Adapted internet edition Previous Version: 2005-11, Rev. 1.04 32 added AL 5 and 6 and Rtt 50 ohms We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-07 03292006-YBYM-WG0Z 2 HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 1 Overview This chapter gives an overview of the 512-Mbit Double-Data-Rate-Two SDRAM product family and describes its main characteristics. 1.1 Features The 512-Mbit Double-Data-Rate-Two SDRAM offers the following key features: • • • • • • • • • • • 1.8 V ± 0.1 V Power Supply 1.8 V ± 0.1 V (SSTL_18) compatible I/O DRAM organizations with 4, 8 and 16 data in/outputs Double Data Rate architecture: two data transfers per clock cycle four internal banks for concurrent operation Programmable CAS Latency: 3, 4, 5 and 6 Programmable Burst Length: 4 and 8 Differential clock inputs (CK and CK) Bi-directional, differential data strobes (DQS and DQS) are transmitted / received with data. Edge aligned with read data and center-aligned with write data. DLL aligns DQ and DQS transitions with clock DQS can be disabled for single-ended data strobe operation Commands entered on each positive clock edge, data and data mask are referenced to both edges of DQS Data masks (DM) for write data • • • • • • • • • • • • • Posted CAS by programmable additive latency for better command and data bus efficiency Off-Chip-Driver impedance adjustment (OCD) and On-Die-Termination (ODT) for better signal quality. Auto-Precharge operation for read and write bursts Auto-Refresh, Self-Refresh and power saving Power-Down modes Average Refresh Period 7.8 µs at a TCASE lower than 85 °C, 3.9 µs between 85 °C and 95 °C Programmable self refresh rate via EMRS2 setting Programmable partial array refresh via EMRS2 settings DCC enabling via EMRS2 setting Full and reduced Strength Data-Output Drivers 1kB page size for ×4 & ×8, 2kB page size for ×16 Packages: P-TFBGA-60 for ×4 & ×8 components PTFBGA-84 for ×16 components RoHS Compliant Products1) All Speed grades faster than DDR400 comply with DDR400 timing specifications when run at a clock rate of 200 MHz. A list of the performance tables for the various speeds can be found below • • • • Table 1 “Performance for DDR2–800” on Page 4 Table 2 “Performance for DDR2–667” on Page 4 Table 3 “Performance for DDR2–533C” on Page 4 Table 4 “Performance for DDR2–400B” on Page 5 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Internet Data Sheet 3 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 1 Performance for DDR2–800 Product Type Speed Code –2.5F –2.5 Unit Speed Grade DDR2–800D 5–5–5 DDR2–800E 6–6–6 — @CL6 fCK6 400 400 MHz @CL5 fCK5 400 333 MHz @CL4 fCK4 266 266 MHz @CL3 fCK3 200 200 MHz 12.5 15 ns 12.5 15 ns 45 45 ns 57.5 60 ns –3S Unit max. Clock Frequency min. RAS-CAS-Delay min. Row Precharge Time min. Row Active Time min. Row Cycle Time Table 2 tRCD tRP tRAS tRC Performance for DDR2–667 Product Type Speed Code –3 Speed Grade DDR2–667C 4–4–4 max. Clock Frequency DDR2–667D 5–5–5 — @CL5 fCK5 333 333 MHz @CL4 fCK4 333 266 MHz @CL3 fCK3 200 200 MHz 12 15 ns 12 15 ns 45 45 ns 57 60 ns min. RAS-CAS-Delay min. Row Precharge Time min. Row Active Time min. Row Cycle Time Table 3 tRCD tRP tRAS tRC Performance for DDR2–533C Product Type Speed Code –3.7 Unit Speed Grade DDR2–533C 4–4–4 — 266 MHz 266 MHz 200 MHz 15 ns 15 ns 45 ns 60 ns max. Clock Frequency @CL5 @CL4 @CL3 min. RAS-CAS-Delay min. Row Precharge Time min. Row Active Time min. Row Cycle Time Internet Data Sheet fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 4 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 4 Performance for DDR2–400B Product Type Speed Code –5 Units Speed Grade DDR2–400B 3–3–3 — 200 MHz 200 MHz 200 MHz 15 ns 15 ns 40 ns 55 ns max. Clock Frequency @CL5 @CL4 @CL3 min. RAS-CAS-Delay min. Row Precharge Time min. Row Active Time min. Row Cycle Time 1.2 fCK5 fCK4 fCK3 tRCD tRP tRAS tRC Description Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a single ended DQS or differential DQS-DQS pair in a source synchronous fashion. The 512-Mb DDR2 DRAM is a high-speed DoubleData-Rate-Two CMOS DRAM device containing 536,870,912 bits and internally configured as a quadbank DRAM. The 512-Mb device is organized as either 32 Mbit × 4 I/O ×4 banks, 16 Mbit ×8 I/O × 4 banks or 8 Mbit ×16 I/O ×4 banks chip. These devices achieve high speed transfer rates starting at 400 Mb/sec/pin for general applications. See Table 1 to Table 4 for performance figures. A 16-bit address bus for ×4 and ×8 organized components and a 15-bit address bus for ×16 components is used to convey row, column and bank address information in a RAS-CAS multiplexing style. The DDR2 device operates with a 1.8 V ± 0.1 V power supply. An Auto-Refresh and Self-Refresh mode is provided along with various power-saving power-down modes. The device is designed to comply with all DDR2 DRAM key features: 1. 2. 3. 4. 5. Posted CAS with additive latency, Write latency = read latency - 1, Normal and weak strength data-output driver, Off-Chip Driver (OCD) impedance adjustment On-Die Termination (ODT) function. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The DDR2 SDRAM is available in PG-TFBGA package. All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Internet Data Sheet 5 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 5 Ordering Information for RoHS compliant products Product Type Org. Speed CAS-RCD-RP Clock Latencies1)2)3) (MHz) CAS-RCD-RP Clock Package Latencies (MHz) HYB18T512160BF-25F ×16 DDR2-800D 5-5-5 400 4-4-4 266 PG-TFBGA-84-8 HYB18T512800BF-25F ×8 DDR2-800D 5-5-5 400 4-4-4 266 PG-TFBGA-60-24 HYB18T512400BF-25F ×4 DDR2-800D 5-5-5 400 4-4-4 266 PG-TFBGA-60-24 HYB18T512160BF-2.5 ×16 DDR2-800E 6-6-6 400 5-5-5 333 PG-TFBGA-84-8 HYB18T512800BF-2.5 ×8 DDR2-800E 6-6-6 400 5-5-5 333 PG-TFBGA-60-24 HYB18T512400BF-2.5 ×4 DDR2-800E 6-6-6 400 5-5-5 333 PG-TFBGA-60-24 HYB18T512160BF-3 ×16 DDR2-667C 4-4-4 333 3-3-3 200 PG-TFBGA-84-8 HYB18T512400BF-3 ×4 DDR2-667C 4-4-4 333 3-3-3 200 PG-TFBGA-60-24 HYB18T512800BF-3 ×8 DDR2-667C 4-4-4 333 3-3-3 200 PG-TFBGA-60-24 HYB18T512160BF-3S ×16 DDR2-667D 5-5-5 333 4-4-4 266 PG-TFBGA-84-8 HYB18T512400BF-3S ×4 DDR2-667D 5-5-5 333 4-4-4 266 PG-TFBGA-60-24 HYB18T512800BF-3S ×8 DDR2-667D 5-5-5 333 4-4-4 266 PG-TFBGA-60-24 HYB18T512160BF-3.7 ×16 DDR2-533C 4-4-4 266 3-3-3 200 PG-TFBGA-84-8 HYB18T512400BF-3.7 ×4 DDR2-533C 4-4-4 266 3-3-3 200 PG-TFBGA-60-24 HYB18T512800BF-3.7 ×8 DDR2-533C 4-4-4 266 3-3-3 200 PG-TFBGA-60-24 HYB18T512160BF-5 ×16 DDR2-400B 3-3-3 200 — — PG-TFBGA-84-8 HYB18T512400BF-5 ×4 DDR2-400B 3-3-3 200 — — PG-TFBGA-60-24 HYB18T512800BF-5 ×8 DDR2-400B 3-3-3 200 — — PG-TFBGA-60-24 1) CAS: Column Address Strobe 2) RCD: Row Column Delay 3) RP: Row Precharge Note: For product nomenclature see Chapter 9 of this data sheet Internet Data Sheet 6 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 2 Pin Configuration 2.1 Pin Configuration The pin configuration of a DDR2 SDRAM is listed by function in Table 6. The abbreviations used in the Pin# and Buffer Type columns are explained in Table 7 and Table 8 respectively. The pin numbering for the FBGA package is depicted in Figure 1 for ×4, Figure 2 for ×8 and Figure 3 for ×16. Table 6 Ball#/Pin# Pin Configuration of DDR2 SDRAM Name Pin Type Buffer Type Function Clock Signals ×4/×8 organizations E8 CK I SSTL Clock Signal CK, Complementary Clock Signal CK F8 CK I SSTL F2 CKE I SSTL Clock Enable Clock Signals ×16 organization J8 CK I SSTL Clock Signal CK, Complementary Clock Signal CK K8 CK I SSTL Note: See functional description in x4/x8 organization K2 CKE I SSTL Clock Enable Note: See functional description in x4/x8 organization Control Signals ×4/×8 organizations F7 RAS I SSTL G7 CAS I SSTL F3 WE I SSTL G8 CS I SSTL Chip Select Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Control Signals ×16 organization K7 RAS I SSTL L7 CAS I SSTL K3 WE I SSTL L8 CS I SSTL Chip Select Address Signals ×4/×8 organizations G2 BA0 I SSTL G3 BA1 I SSTL Internet Data Sheet Bank Address Bus 1:0 7 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 6 Pin Configuration of DDR2 SDRAM Ball#/Pin# Name Pin Type Buffer Type Function H8 A0 I SSTL Address Signal 12:0, Address Signal 10/Autoprecharge H3 A1 I SSTL H7 A2 I SSTL J2 A3 I SSTL J8 A4 I SSTL J3 A5 I SSTL J7 A6 I SSTL K2 A7 I SSTL K8 A8 I SSTL K3 A9 I SSTL H2 A10 I SSTL AP I SSTL K7 A11 I SSTL L2 A12 I SSTL L8 A13 I SSTL NC – – Address Signal 13 Note: x4/x8 512 Mbit components Note: and x16 512 Mbit components Address Signals ×16 organization L2 BA0 I SSTL L3 BA1 I SSTL L1 NC – – M8 A0 I SSTL M3 A1 I SSTL M7 A2 I SSTL N2 A3 I SSTL N8 A4 I SSTL N3 A5 I SSTL N7 A6 I SSTL P2 A7 I SSTL P8 A8 I SSTL P3 A9 I SSTL M2 A10 I SSTL AP I SSTL P7 A11 I SSTL R2 A12 I SSTL Bank Address Bus 1:0 Address Signal 12:0, Address Signal 10/Autoprecharge Data Signals ×4 organizations C8 DQ0 I/O SSTL C2 DQ1 I/O SSTL D7 DQ2 I/O SSTL D3 DQ3 I/O SSTL Internet Data Sheet Data Signal 3:0 8 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 6 Ball#/Pin# Pin Configuration of DDR2 SDRAM Name Pin Type Buffer Type Function Data Signal 7:0 Data Signals ×8 organization C8 DQ0 I/O SSTL C2 DQ1 I/O SSTL D7 DQ2 I/O SSTL D3 DQ3 I/O SSTL D1 DQ4 I/O SSTL D9 DQ5 I/O SSTL B1 DQ6 I/O SSTL B9 DQ7 I/O SSTL Data Signals ×16 organization G8 DQ0 I/O SSTL G2 DQ1 I/O SSTL H7 DQ2 I/O SSTL H3 DQ3 I/O SSTL H1 DQ4 I/O SSTL H9 DQ5 I/O SSTL F1 DQ6 I/O SSTL F9 DQ7 I/O SSTL C8 DQ8 I/O SSTL C2 DQ9 I/O SSTL D7 DQ10 I/O SSTL D3 DQ11 I/O SSTL D1 DQ12 I/O SSTL D9 DQ13 I/O SSTL B1 DQ14 I/O SSTL B9 DQ15 I/O SSTL Data Signal 15:0 Data Strobe ×4/×8 organisations B7 DQS I/O SSTL A8 DQS I/O SSTL Data Strobe Data Strobe ×8 organisations B3 RDQS O SSTL A2 RDQS O SSTL Read Data Strobe Data Strobe ×16 organization B7 UDQS I/O SSTL A8 UDQS I/O SSTL F7 LDQS I/O SSTL E8 LDQS I/O SSTL Data Strobe Upper Byte Data Strobe Lower Byte Data Mask ×4/×8 organizations B3 DM I SSTL Data Mask Data Mask ×16 organization Internet Data Sheet 9 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 6 Pin Configuration of DDR2 SDRAM Ball#/Pin# Name Pin Type Buffer Type Function B3 UDM I SSTL Data Mask Upper/Lower Byte F3 LDM I SSTL Power Supplies ×4/×8/×16 organizations A9,C1,C3,C7, C9 VDDQ PWR – I/O Driver Power Supply A1 VDD PWR – Power Supply A7,B2,B8,D2, D8 VSSQ PWR – I/O Driver Power Supply A3,E3 VSS PWR – Power Supply Power Supplies ×4/×8 organizations E2 VREF AI – I/O Reference Voltage E1 VDDL PWR – Power Supply E9,H9,L1 VDD PWR – Power Supply E7 VSSDL PWR – Power Supply J1,K9 VSS PWR – Power Supply Power Supplies ×16 organization J2 VREF AI – I/O Reference Voltage E9, G1, G3, G7, G9 VDDQ PWR – I/O Driver Power Supply J1 VDDL PWR – Power Supply E1, J9, M9, R1 VDD PWR – Power Supply E7, F2, F8, H2, VSSQ H8 PWR – I/O Driver Power Supply J7 VSSDL PWR – Power Supply J3,N1,P9 VSS PWR – Power Supply – Not Connected – Not Connected – Not Connected SSTL On-Die Termination Control SSTL On-Die Termination Control Not Connected ×4 organizations A2, B1, B9, D1, D9, G1, L3,L7, L8 NC NC Not Connected ×8 organization G1, L3,L7, L8 NC NC Not Connected ×16 organization A2, E2, L1, R3, NC R7, R8 NC Other Pins ×4/×8 organizations F9 ODT I Other Pins ×16 organization K9 ODT Internet Data Sheet I 10 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 7 Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected Table 8 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Internet Data Sheet 11 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM ! 6331 $13 6$$1 $- " $13 6331 .# $1 6$$1 # 6$$1 $1 6$$1 .# 6331 $1 $ $1 6331 .# 6$$, 62%& 633 % 633$, #+ 6$$ #+% 7% & 2!3 #+ /$4 "! "! ' #!3 #3 !!0 ! ( ! ! ! ! * ! ! ! ! + ! ! ! .# , .# .# ! 6$$ .# 633 .# 6331 6$$1 .# 633 6$$ 6$$ 633 -004 Figure 1 Pin Configuration for ×4 components, PG-TFBGA-60-24 Notes 2. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit 1. VDDL and VSSDL are power and ground for the DLL.They are isolated on the device from VDD, VDDQ, VSS, and VSSQ Internet Data Sheet 12 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 6$$ .# 2$13 633 $1 6331 6$$1 ! 6331 $13 6$$1 $- 2$13 " $13 6331 $1 $1 6$$1 # 6$$1 $1 6$$1 $1 6331 $1 $ $1 6331 $1 6$$, 62%& 633 % 633$, #+ 6$$ #+% 7% & 2!3 #+ /$4 "! "! ' #!3 #3 !!0 ! ( ! ! ! ! * ! ! ! ! + ! ! ! .# , .# .# ! .# 633 6$$ 6$$ 633 -004 Figure 2 Pin Configuration for ×8 components, PG-TFBGA-60-24 4. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. 5. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit. Notes 1. RDQS / RDQS are enabled by EMRS(1) command. 2. If RDQS / RDQS is enabled, the DM function is disabled 3. When enabled, RDQS & RDQS are used as strobe signals during reads. Internet Data Sheet 13 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM ! 6331 5$13 6$$1 5$- " 5$13 6331 $1 $1 6$$1 # 6$$1 $1 6$$1 $1 6331 $1 $ $1 6331 $1 6$$ .# 633 % 6331 ,$13 6$$1 $1 6331 ,$- & ,$13 6331 $1 6$$1 $1 6$$1 ' 6$$1 $1 6$$1 $1 6331 $1 ( $1 6331 $1 6$$, 62%& 633 * 633$, #+ 6$$ #+% 7% + 2!3 #+ /$4 "! "! , #!3 #3 !!0 ! - ! ! ! ! . ! ! ! ! 0 ! ! ! .# 2 .# .# 6$$ .# 633 $1 6331 6$$1 .# 633 6$$ 6$$ 633 -004 Figure 3 Pin Configuration for ×16 components, PG-TFBGA-84-8 Notes 2. LDM is the data mask signal for DQ[7:0], UDM is the data mask signal for DQ[15:8] 3. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. 1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is data strobe for DQ[7:0] Internet Data Sheet 14 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 2.2 512 Mbit DDR2 Addressing Table 9 512-Mbit DDR2 Addressing Configuration 128Mb x 41) Bank Address Number of Banks 64Mb x 8 32Mb x 16 Note BA[1:0] BA[1:0] BA[1:0] — 4 4 4 — Auto-Precharge A10 / AP A10 / AP A10 / AP — Row Address A[13:0] A[13:0] A[12:0] — Column Address A11, A[9:0] A[9:0] A[9:0] — Number of Column Address Bits 11 10 10 2) Number of I/Os 4 8 16 — Page Size [Bytes] 1024 (1K) 1024 (1K) 2048(2K) 3) 1) Refered to as ’org’ 2) Refered to as ’colbits’ 3) PageSize = 2colbits × org/8 [Bytes] Internet Data Sheet 15 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 3 Functional Description "! "! "! ! ! 0$ W REG ADDR ! ! ! ! ! ! ! ! ! ! ! 72 $,, 4- #, "4 ", W W W W W W ! -0"4 Table 10 Mode Register Definition (BA[2:0] = 000B) Field Bits Type1) Description BA2 16 reg. addr. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA2, Bank Address BA1 15 Bank Address [1] 0B BA1, Bank Address BA0 14 Bank Address [0] 0B BA0, Bank Address A13 13 Address Bus[13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B PD 12 w WR [11:9] w A13, Address bit 13 Active Power-Down Mode Select 0B PD, Fast exit 1B PD, Slow exit Write Recovery2) Note: All other bit combinations are illegal. 001B 010B 011B 100B 101B WR, 2 WR, 3 WR, 4 WR, 5 WR, 6 DLL 8 w DLL Reset 0B DLL, No 1B DLL, Yes TM 7 w Test Mode 0B TM, Normal Mode 1B TM, Vendor specific test mode CL [6:4] w CAS Latency Note: All other bit combinations are illegal. 010B 011B 100B 101B 110B Internet Data Sheet CL, 2 CL, 3 CL, 4 CL, 5 CL, 6 16 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 10 Mode Register Definition (BA[2:0] = 000B) Field Bits Type1) Description BT 3 w Burst Type 0B BT, Sequential 1B BT, Interleaved BL [2:0] w Burst Length Note: All other bit combinations are illegal. 010B BL, 4 011B BL, 8 1) w = write only register bits 2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN. "! "! "! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 1OFF 2$13 $13 /#$ 0ROGRAM 2TT !, 2TT $)# $,, W W W W W W W REG ADDR W -0"4 Table 11 Extended Mode Register Definition (BA[2:0] = 001B) Field Bits Type1) Description BA2 16 reg. addr. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA2, Bank Address BA1 15 Bank Address [1] 0B BA1, Bank Address BA0 14 Bank Address [0] 0B BA0, Bank Address Internet Data Sheet 17 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 11 Extended Mode Register Definition (BA[2:0] = 001B) Field Bits Type1) Description A13 13 w Address Bus[13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A13, Address bit 13 Qoff 12 Output Disable 0B QOff, Output buffers enabled 1B QOff, Output buffers disabled RDQS 11 Read Data Strobe Output (RDQS, RDQS) 0B RDQS, Disable 1B RDQS, Enable DQS 10 Complement Data Strobe (DQS Output) 0B DQS, Enable 1B DQS, Disable OCD [9:7] Program Off-Chip Driver Calibration Program 000B OCD, OCD calibration mode exit, maintain setting 001B OCD, Drive (1) 010B OCD, Drive (0) 100B OCD, Adjust mode 111B OCD, OCD calibration default AL Additive Latency [5:3] Note: All other bit combinations are illegal. 000B 001B 010B 011B 100B 101B AL, 0 AL, 1 AL, 2 AL, 3 AL, 4 AL, 5 RTT 2,6 Nominal Termination Resistance of ODT 00B RTT, ∞ (ODT disabled) 01B RTT, 75 Ohm 10B RTT, 150 Ohm 11B RTT, 50 Ohm2) DIC 1 Off-chip Driver Impedance Control 0B DIC, Full (Driver Size = 100%) 1B DIC, Reduced DLL 0 DLL Enable 0B DLL, Enable 1B DLL, Disable 1) w = write only register bits 2) optional for DDR2-400/533 & 667 Internet Data Sheet 18 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM %$ %$ %$ $ $ $ $ $ $ $ 65) $ $ $ $ $ '&& UHJDGGU Table 12 $ $ 3$65 03%7 EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) Field Bits Type1) Description BA2 16 w Bank Address[2] Note: BA2 is not available on 256Mbit and 512Mbit components 0B BA2, Bank Address BA [15:14] w Bank Adress[15:14] 00B BA, MRS 01B BA, EMRS(1) 10B BA, EMRS(2) 11B BA, EMRS(3): Reserved A [13:8] Address Bus[13:8] w Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A[13:8], Address bits A 7 w Address Bus[7], adapted self refresh rate for TCase > 85°C 0B A7, disable 1B A7, enable 2) A [6:4] w Address Bus[6:4] 0B A[6:4], Address bits A 3 w Address Bus[3], Duty Cycle Correction (DCC) 0B A[3], DCC disabled 1B A[3], DCC enabled Partial Self Refresh for 4 banks A [2:0] w Address Bus[2:0], Partial Array Self Refresh for 4 Banks3) 000B PASR0, Full Array 001B PASR1, Half Array (BA[1:0]=00, 01) 010B PASR2, Quarter Array (BA[1:0]=00) 011B PASR3, Not defined 100B PASR4, 3/4 array (BA[1:0]=01, 10, 11) 101B PASR5, Half array (BA[1:0]=10, 11) 110B PASR6, Quarter array (BA[1:0]=11) 111B PASR7, Not defined 1) w = write only 2) When DRAM is operated at 85°C ≤ TCase ≤ 95°C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self refresh mode can be entered. 3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued Internet Data Sheet 19 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM "! "! "! ! ! ! ! ! ! ! ! ! ! ! ! ! ! REG ADDR -0"4 Table 13 EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B) Field Bits Type1) Description BA2 16 reg.addr Bank Address[2] Note: BA2 is not available on 256Mbit and 512Mbit components 0B BA2, Bank Address BA1 15 Bank Adress[1] 1B BA1, Bank Address BA0 14 Bank Adress[0] 1B BA0, Bank Address A [13:0] w Address Bus[13:0] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A[13:0], Address bits 1) w = write only Internet Data Sheet 20 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM ODT Truth Tables organisations (×4, ×8 and ×16). To activate termination of any of these pins, the ODT function has to be enabled in the EMRS(1) by address bits A6 and A2. The ODT Truth Table shows which of the input pins are terminated depending on the state of address bit A10 and A11 in the EMRS(1) for all three device Table 14 ODT Truth Table Input Pin EMRS(1) Address Bit A10 EMRS(1) Address Bit A11 x4 components DQ[3:0] X DQS X DQS 0 DM X X x8 components DQ[7:0] X DQS X DQS 0 X RDQS X 1 RDQS 0 1 DM X 0 x16 components DQ[7:0] X DQ[15:8] X LDQS X LDQS 0 UDQS X UDQS 0 LDM X UDM X X X Note: X = don’t care; 0 = bit set to low; 1 = bit set to high Internet Data Sheet 21 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 15 Burst Length and Sequence Burst Length Starting Address (A2 A1 A0) Sequential Addressing (decimal) 4 x00 0, 1, 2, 3 0, 1, 2, 3 x01 1, 2, 3, 0 1, 0, 3, 2 x10 2, 3, 0, 1 2, 3, 0, 1 x11 3, 0, 1, 2 3, 2, 1, 0 000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 001 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 010 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 011 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 8 100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 101 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 110 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 111 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 KByte; Page Length = 1024 32Mb x 16 organization (CA[9:0]); Page Size = 2 KByte; Page Length = 1024 2. Order of burst access for sequential addressing is “nibble-based” and therefore different from SDR or DDR components Notes 1. Page Size and Length is a function of I/O organization: 128Mb x 4 organization (CA[9:0], CA11); Page Size = 1 KByte; Page Length = 2048 64Mb x 8 organization (CA[9:0]); Page Size = 1 Internet Data Sheet Interleave Addressing (decimal) 22 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 4 Truth Tables Table 16 Command Truth Table Function CKE Previous Cycle CS RAS CAS WE BA0 A[13:11] A10 A[9:0] BA1 Current Cycle Note1)2)3) 4)5) (Extended) Mode Register Set H H L L L L BA OP Code Auto-Refresh H H L L L H X X X X — Self-Refresh Entry H L L L L H X X X X 6) Self-Refresh Exit L H H X X X X X X X 7) L H H H Single Bank Precharge H H L L H L BA X L X — Precharge all Banks H H L L H L X X H X — Bank Activate H H L L H H BA Row Address Write H H L H L L BA Column L Column Write with AutoPrecharge H H L H L L BA Column H Column — Read H H L H L H BA Column L Column — Read with AutoPrecharge H H L H L H BA Column H Column — No Operation H X L H H H X X X X Device Deselect H X H X X X X X X X Power Down Entry H L H X X X X X X X 9) L H H H Power Down Exit L H H X X X X X X X — L H H H — 8) — 1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. 2) “X” means “H or L (but a defined logic level)”. 3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock. 5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register. 6) VREF must be maintained during Self Refresh operation. 7) Self Refresh Exit is asynchronous. 8) Burst reads or writes at BL = 4 cannot be terminated. 9) The Power Down Mode does not perform any refresh operations. Internet Data Sheet 23 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 17 Clock Enable (CKE) Truth Table for Synchronous Transitions Current State1) CKE Previous Cycle6) Current Cycle (N) (N-1) Power-Down Command (N)2)3) Action (N) RAS, CAS, WE, CS Note4)5) 7)8) L L X L H DESELECT or NOP Power-Down Exit 9)10)11) L L X 12) L H DESELECT or NOP Self Refresh Exit 13)14) Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 15) All Banks Idle H L DESELECT or NOP Precharge Power-Down Entry — H L AUTOREFRESH 16) Any State other H than listed above H Refer to the Command Truth Table Self Refresh Maintain Power-Down Maintain Self Refresh Self Refresh Entry 17) 1) 2) 3) 4) 5) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N. Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. CKE must be maintained HIGH while the device is in OCD calibration mode. Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 6) CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. 7) The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh requirements 8) “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)). 9) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. 10) Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. 11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2×tCKE + tIH. 12) VREF must be maintained during Self Refresh operation. 13) On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read commands may be issued only after tXSRD (200 clocks) is satisfied. 14) Valid commands for Self Refresh Exit are NOP and DESELCT only. 15) Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or Refresh operations are in progress. 16) Self Refresh mode can only be entered from the All Banks Idle state. 17) Must be a legal command as defined in the Command Truth Table. Table 18 Data Mask (DM) Truth Table Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X — 1) Used to mask write data; provided coincident with the corresponding data. Internet Data Sheet 24 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 5 Electrical Characteristics 5.1 Absolute Maximum Ratings Table 19 Absolute Maximum Ratings Symbol Parameter Rating Unit Note VDD VDDQ VDDL VIN, VOUT TSTG Voltage on VDD pin relative to VSS –1.0 to +2.3 V 1) Voltage on VDDQ pin relative to VSS –0.5 to +2.3 V — Voltage on VDDL pin relative to VSS –0.5 to +2.3 V — Voltage on any pin relative to VSS –0.5 to +2.3 V — °C 2) Storage Temperature –55 to +100 1) When VDD and VDDQ and VDDL are less than 500mV; Vref may be equal to or less than 300mV. 2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values maycause irreversible damage to the integrated circuit. Table 20 DRAM Component Operating Temperature Range Symbol Parameter TOPER Operating Temperature Rating 0 to 95 Unit Note °C 1)2)3)4) 1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters. 3) Above 85 °C case temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs. 4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50% Internet Data Sheet 25 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 5.2 DC Characteristics Table 21 Recommended DC Operating Conditions (SSTL_18) Symbol Parameter Rating Min. Typ. Max. VDD VDDDL VDDQ VREF VTT Supply Voltage 1.7 1.8 Supply Voltage for DLL 1.7 Supply Voltage for Output 1.7 1) 2) 3) 4) Input Reference Voltage 0.49 × VDDQ Unit Note 1.9 V 1) 1.8 1.9 V — 1.8 1.9 V — V 2)3) 0.5 × VDDQ 0.51 × VDDQ 4) Termination Voltage VREF – 0.04 VREF VREF + 0.04 V VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ. Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in die dc level of VREF. Table 22 ODT DC Electrical Characteristics Parameter / Condition Symbol Min. Nom. Max. Unit Note Termination resistor impedance value for EMRS(1)[A6,A2] = [0,1]; 75 Ohm Rtt1(eff) 60 75 90 Ω 1) Termination resistor impedance value for EMRS(1)[A6,A2] =[1,0]; 150 Ohm Rtt2(eff) 120 150 180 Ω — Termination resistor impedance value for EMRS(1)(A6,A2)=[1,1]; 50 Ohm Rtt3(eff) 40 50 60 Ω — Deviation of VM with respect to VDDQ / 2 delta VM –6.00 — + 6.00 % 2) 1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively. Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)). 2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) – 1) x 100% Table 23 Input and Output Leakage Currents Symbol Parameter / Condition IIL IOL Min. Max. Unit Note Input Leakage Current; any input 0 V < VIN < VDD –2 +2 µA 1) Output Leakage Current; 0 V < VOUT < VDDQ –5 +5 µA 2) 1) All other pins not under test = 0 V 2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off Internet Data Sheet 26 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 5.3 DC & AC Characteristics relative to the rising or falling edges of DQS crossing at DDR2 SDRAM pin timing are specified for either single ended or differential mode depending on the setting of the EMRS(1) “Enable DQS” mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timing are measured is mode dependent. In single ended mode, timing relationships are measured Table 24 Symbol VIH(dc) VIL(dc) VIH(ac) VIL(ac) Table 25 Symbol VIH(dc) VIL(dc) VIH(ac) VIL(ac) Table 26 Symbol VREF VSWING.MAX VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is verified by design and characterization but not subject to production test. In single ended mode, the DQS (and RDQS) signals are internally disabled and don’t care. DC & AC Logic Input Levels for DDR2-667 and DDR2-800 Parameter DDR2-667, DDR2-800 Units Min. Max. DC input logic high VREF + 0.125 V DC input low –0.3 VDDQ + 0.3 VREF – 0.125 AC input logic high VREF + 0.200 — V AC input low — VREF – 0.200 V V DC & AC Logic Input Levels for DDR2-533 and DDR2-400 Parameter DDR2-533, DDR2-400 Units Min. Max. DC input logic high VREF + 0.125 DC input low –0.3 VDDQ + 0.3 VREF - 0.125 V AC input logic high VREF + 0.250 — V AC input low — VREF - 0.250 V V Single-ended AC Input Test Conditions Condition Value Unit Note Input reference voltage 0.5 x VDDQ V 1) Input signal maximum peak to peak swing 1.0 V — 2)3) 1.0 V / ns 1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to VIL(ac).MAX for falling edges as shown in Figure 4 3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) SLEW Input signal minimum Slew Rate on the negative transitions. Internet Data Sheet 27 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 9''4 9,+ DF PLQ 9,+ GF PLQ 96:,1* 0$; 95() 9,/ GF PD[ 9,/ DF PD[ 966 'HOWD7) )DOOLQJ6OHZ 'HOWD75 95()9,/ DF PD[ 5LVLQJ6OHZ 'HOWD7) 9,+ DF PLQ95() 'HOWD75 03(7 Figure 4 Single-ended AC Input Test Conditions Diagram Table 27 Differential DC and AC Input and Output Logic Levels Symbol Parameter Min. VIN(dc) VID(dc) VID(ac) VIX(ac) DC input signal voltage –0.3 DC differential input voltage 0.25 AC differential input voltage 0.5 AC differential cross point input voltage VOX(ac) AC differential cross point output voltage Max. Unit Note — 1) — 2) V 3) 0.5 × VDDQ – 0.175 VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 0.5 × VDDQ + 0.175 V 4) 0.5 × VDDQ – 0.125 0.5 × VDDQ + 0.125 V 5) VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc. VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc). VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac). The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac) indicates the voltage at which differential input signals must cross. 5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac) indicates the voltage at which differential input signals must cross. 1) 2) 3) 4) 6$$1 642 #ROSSING 0OINT 6)$ 6)8 OR 6/8 6#0 6331 Figure 5 Differential DC and AC Input and Output Logic Levels Diagram Internet Data Sheet 28 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 5.4 Output Buffer Characteristics Table 28 SSTL_18 Output DC Current Drive Symbol Parameter SSTL_18 Unit Note IOH IOL Output Minimum Source DC Current –13.4 mA 1)2) 3) Output Minimum Sink DC Current 13.4 mA 1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV. 2) The values of IOH(dc) and IOL(dc) are based on the conditions given in and . They are used to test drive current capability to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement. 3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV. Table 29 SSTL_18 Output AC Test Conditions Symbol Parameter SSTL_18 Unit Note VOH VOL VOTR Minimum Required Output Pull-up VTT + 0.603 VTT – 0.603 0.5 × VDDQ V 1) V — Maximum Required Output Pull-down Output Timing Measurement Reference Level V — 1) SSTL_18 test load for VOH and VOL is different from the referenced load. The SSTL_18 test load has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV). Table 30 OCD Default Characteristics Symbol Description Min. Nominal Max. Unit Note Ohms 1)2) — Output Impedance — — Pull-up / Pull down mismatch 0 — 4 Ohms 3) — Output Impedance step size for OCD calibration 0 — 1.5 Ohms 4) 1.5 — 5.0 V / ns 5)6)7) SOUT Output Slew Rate 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V 2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV. 3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage. 4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal conditions. 5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC. This is verified by design and characterization but not subject to production test. 6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS specification. 7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins. Internet Data Sheet 29 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 5.5 Input / Output Capacitance Table 31 Input / Output Capacitance Symbol Parameter Min. Max. Unit CCK Input capacitance, CK and CK 1.0 2.0 pF CDCK Input capacitance delta, CK and CK — 0.25 pF CI Input capacitance, all other input-only pins 1.0 1.75 pF CDI Input capacitance delta, all other input-only pins — 0.25 pF CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 3.5 pF CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 pF Internet Data Sheet 30 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 5.6 Overshoot and Undershoot Specification Table 32 AC Overshoot / Undershoot Specification for Address and Control Pins Parameter DDR2–400 DDR2–533 DDR2–667 DDR2–800 Unit Maximum peak amplitude allowed for overshoot area 0.9 0.9 0.9 0.9 V Maximum peak amplitude allowed for undershoot area 0.9 0.9 0.9 0.9 V Maximum overshoot area above VDD 1.33 1.00 0.80 0.80 V.ns Maximum undershoot area below VSS 1.33 1.00 0.80 0.80 V.ns 0D[LPXP$PSOLWXGH 9ROWV 9 2YHUVKRRW$UHD 9'' 966 8QGHUVKRRW$UHD 0D[LPXP$PSOLWXGH 7LPH QV 03(7 Figure 6 AC Overshoot / Undershoot Diagram for Address and Control Pins Table 33 AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins Parameter DDR2–400 DDR2–533 DDR2–667 DDR2–800 Unit Maximum peak amplitude allowed for overshoot area 0.9 0.9 0.9 0.9 V Maximum peak amplitude allowed for undershoot area 0.9 0.9 0.9 0.9 V Maximum overshoot area above VDDQ 0.38 0.28 0.23 0.23 V.ns Maximum undershoot area below VSSQ 0.38 0.28 0.23 0.23 V.ns Internet Data Sheet 31 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 0D[LPXP$PSOLWXGH 9ROWV 9 2YHUVKRRW$UHD 9''4 9664 8QGHUVKRRW$UHD 0D[LPXP$PSOLWXGH 7LPH QV 03(7 Figure 7 AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins Internet Data Sheet 32 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 6 Specifications and Conditions Table 34 IDD Measurement Conditions Parameter Symbol Note Operating Current - One bank Active - Precharge tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. IDD0 1)2)3)4) 5)6) Operating Current - One bank Active - Read - Precharge IDD1 IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. Precharge Power-Down Current IDD2P All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are floating. Precharge Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching, Data bus inputs are switching. IDD2N Precharge Quiet Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data bus inputs are floating. IDD2Q Active Power-Down Current IDD3P(0) All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit). Active Power-Down Current IDD3P(1) All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit); Active Standby Current IDD3N All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; Operating Current IDD4R Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA. Operating Current IDD4W Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; Burst Refresh Current IDD5B tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. Distributed Refresh Current IDD5D tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. Internet Data Sheet 33 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 34 IDD Measurement Conditions Parameter Symbol Note Self-Refresh Current IDD6 CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus inputs are floating. Operating Bank Interleave Read Current IDD7 1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs are stable during deselects; Data bus is switching. 2. Timing pattern: 7) DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks) DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks) DDR2-667-444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D (19 clocks) DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks) DDR2-800-555: A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D(22 clocks) DDR2-800-666: A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D D(23 clocks) 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V 2) IDD specifications are tested after the device is properly initialized. 3) IDD parameter are specified with ODT disabled. 4) 5) 6) 7) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS. Definitions for IDD: see Table 35 Timing parameter minimum and maximum values for IDD current measurements are defined in chapter 7.. A = Activate, RA = Read with Auto-Precharge, D=DESELECT Table 35 Definition for IDD Parameter Description LOW defined as VIN ≤ VIL(ac).MAX HIGH defined as VIN ≥ VIH(ac).MIN STABLE defined as inputs are stable at a HIGH or LOW level FLOATING defined as inputs are VREF = VDDQ / 2 SWITCHING defined as: Inputs are changing between high and low every other clock (once per two clocks) for address and control signals, and inputs changing between high and low every other clock (once per clock) for DQ signals not including mask or strobes Internet Data Sheet 34 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM IDDSpecification for HYB18T512xxxBF Table 36 –2.5F –2.5 –3 –3S –3.7 –5 Unit Note DDR2-800D DDR2-800E DDR2-667C DDR2-667D DDR2-533C DDR2-400B Symbol Max. Max. Max. Max. Max. Max. IDD0 84 80 75 71 65 61 mA ×4/×8 105 100 95 90 80 75 mA ×16 100 95 90 85 75 70 mA ×4/×8 120 115 105 100 90 83 mA ×16 IDD1 IDD2P IDD2N IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 7 7 7 7 7 7 mA — 51 51 45 45 38 34 mA — 45 45 40 40 35 32 mA — 39 39 33 33 28 24 mA 1) 9 9 9 9 9 9 mA 2) 60 60 50 50 43 39 mA — 155 155 130 130 110 95 mA ×4/×8 180 180 155 155 130 115 mA ×16 155 155 130 130 110 95 mA ×4/×8 200 200 170 170 145 130 mA ×16 145 145 140 140 130 125 mA — 9 9 9 9 9 9 mA 3) 7 7 7 7 7 7 mA — 170 160 160 152 145 141 mA ×4/×8 265 255 252 240 230 220 mA ×16 1) MRS(12)=0 2) MRS(12)=1 3) 0° ≤ TCASE ≤ 85°C. Internet Data Sheet 35 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 7 Timing Characteristics This chapter contains speed grade definition, AC timing parameter and ODT tables. 7.1 Speed Grade Definitions All Speed grades faster than DDR2-DDR400B comply with DDR2-DDR400B timing specifications(tCK = 5ns with tRAS = 40ns). List of Speed Grade Definition tables: • • • • Table 37 “Speed Grade Definition Speed Bins DDR2–800” on Page 36 Table 38 “Speed Grade Definition Speed Bins for DDR2–667” on Page 37 Table 39 “Speed Grade Definition Speed Bins for DDR2–533C” on Page 37 Table 40 “Speed Grade Definition Speed Bins for DDR2–400B” on Page 38 Table 37 Speed Grade Definition Speed Bins DDR2–800 Speed Grade DDR2–800D DDR2–800E IFX Sort Name –2.5F –2.5 CAS-RCD-RP latencies 5–5–5 6–6–6 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 @ CL = 6 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. — tCK tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 ns 3.75 8 3.75 8 ns — 2.5 8 3 8 ns — 2.5 8 2.5 8 ns — 1)2)3)4) 45 70000 45 70000 ns 5) 57.5 — 60 — ns — 12.5 — 15 — ns — 12.5 — 15 — ns — 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Internet Data Sheet 36 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 38 Speed Grade Definition Speed Bins for DDR2–667 Speed Grade DDR2–667 DDR2–667 IFX Sort Name –3 –3S CAS-RCD-RP latencies 4–4–4 5–5–5 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 ns 1)2)3)4) 3 8 3.75 8 ns — 3 8 3 8 ns — 45 70000 45 70000 ns 5) 57 — 60 — ns — 12 — 15 — ns — 12 — 15 — ns — 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Table 39 Speed Grade Definition Speed Bins for DDR2–533C Speed Grade DDR2–533 IFX Sort Name –3.7 CAS-RCD-RP latencies 4–4–4 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 3.75 8 ns — 3.75 8 ns — 45 70000 ns 5) 60 — ns — 15 — ns — 15 — ns — 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Internet Data Sheet 37 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 40 Speed Grade Definition Speed Bins for DDR2–400B Speed Grade DDR2–400 IFX Sort Name –5 CAS-RCD-RP latencies 3–3–3 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 ns 1)2)3)4) 5 8 ns — 5 8 ns — 40 70000 ns 5) 55 — ns — 15 — ns — 15 — ns — 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Internet Data Sheet 38 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 7.2 AC Timing Parameters List of Timing Parameters Tables. • • • • Table 41 “Timing Parameter by Speed Grade - DDR2–800” on Page 39 Table 42 “Timing Parameter by Speed Grade - DDR2–667” on Page 41 Table 43 “Timing Parameter by Speed Grade - DDR2-533” on Page 44 Table 44 “Timing Parameter by Speed Grade - DDR2-400” on Page 47 Table 41 Timing Parameter by Speed Grade - DDR2–800 Parameter Symbol DDR2–800 Min. tAC CAS A to CAS B command period tCCD CK, CK high-level width tCH CKE minimum high and low pulse width tCKE CK, CK low-level width tCL Auto-Precharge write recovery + precharge tDAL DQ output access time from CK / CK Unit Note1)2)3)4)5) 6) Max. –400 +400 ps — 2 — — 0.45 0.55 3 — 0.45 0.55 — tCK tCK tCK tCK tCK tIS + tCK + tIH –– ns 8) WR + tRP — — — 7) time Minimum time clocks remain ON after CKE tDELAY asynchronously drops LOW DQ and DM input hold time (differential data strobe) tDH(base) 125 –– ps — DQ and DM input hold time (single ended data strobe) tDH1(base) –– — ps — 0.35 — tCK — –350 +350 ps — 0.35 — tCK — — 200 ps 9) DQ and DM input pulse width (each input) tDIPW DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) tDQSCK tDQSL,H DQS-DQ skew (for DQS & associated DQ tDQSQ signals) Write command to 1st DQS latching transition tDQSS – 0.25 + 0.25 tCK — DQ and DM input setup time (differential data strobe) tDS(base) 50 — ps — DQ and DM input setup time (single ended tDS1(base) data strobe) –– — ps — DQS falling edge hold time from CK (write tDSH cycle) 0.2 — tCK — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK — Clock half period tHP tHZ MIN. (tCL, tCH) — 10) — tAC.MAX ps 11) tIH(base) tIPW 250 — ps — 0.6 — tCK — Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Internet Data Sheet 39 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 41 Timing Parameter by Speed Grade - DDR2–800 (cont’d) Parameter Symbol DDR2–800 Min. Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS tREFI Unit Note1)2)3)4)5) 6) Max. 175 — ps — 2 × tAC.MIN ps — tAC.MIN tAC.MAX tAC.MAX ps — 2 — tCK — 0 12 ns — tHP–tQHS — — — — 300 ps — — 7.8 µs 12)13) 3.9 µs 14) — Auto-Refresh to Active/Auto-Refresh command period tRFC 105 — ns 15) Precharge-All (4 banks) command period tRP tRPRE tRPST tRRD tRP — ns 16) 0.9 1.1 — 0.40 0.60 tCK tCK 7.5 — ns 17) — ns — 7.5 — ns — 0.35 x tCK — Read preamble Read postamble Active bank A to Active bank B command period Internal Read to Precharge command delay 10 tRTP tWPRE Write postamble tWPST Write recovery time for write without Auto- tWR Write preamble — 0.40 0.60 tCK tCK 15 — ns — — 18) Precharge Write recovery time for write with AutoPrecharge WR tWR/tCK — tCK 19) Internal Write to Read command delay tWTR tXARD 7.5 — ns 20) 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 8 – AL — tCK — Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK — Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns — 200 — tCK — Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command 1) VDDQ = 1.8V ± 0.1V; VDD = 1.8V ± 0.1 V. See notes 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. Internet Data Sheet 40 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during power-down, a specific procedure is required. 9) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 10) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 11) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 12) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 13) 0 °C≤ TCASE ≤ 85 °C 14) 85 °C < TCASE ≤ 95 °C 15) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 16) tRP(A) for a Precharge-All command for an 8 bank device is equal to tRP + 1tCK, where tRP are the values for a single bank precharge. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Table 42 Timing Parameter by Speed Grade - DDR2–667 Parameter Symbol DDR2–667 Min. DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time Minimum time clocks remain ON after CKE asynchronously drops LOW 6) Max. –450 +450 ps — 2 — — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK tDELAY tIS + tCK + tIH — ns 8) 175 –– ps — –– — ps — 0.35 — tCK — –400 +400 ps — 0.35 — tCK — tDH1(base) tDIPW DQS output access time from CK / CK tDQSCK DQS input low (high) pulse width (write cycle) tDQSL,H DQ and DM input pulse width (each input) Internet Data Sheet Note1)2)3)4)5) tAC tCCD tCH tCKE tCL tDAL DQ and DM input hold time (differential data tDH(base) strobe) DQ and DM input hold time (single ended data strobe) Unit 41 — — — 7) Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 42 Timing Parameter by Speed Grade - DDR2–667 (cont’d) Parameter Symbol DDR2–667 Unit Min. Max. Note1)2)3)4)5) 6) DQS-DQ skew (for DQS & associated DQ signals) tDQSQ — 240 ps 9) Write command to 1st DQS latching transition tDQSS – 0.25 + 0.25 tCK — 100 — ps — DQ and DM input setup time (differential data tDS(base) strobe) DQ and DM input setup time (single ended data strobe) tDS1(base) –– — ps — DQS falling edge hold time from CK (write cycle) tDSH 0.2 — tCK — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK — — 10) tHP Data-out high-impedance time from CK / CK tHZ Address and control input hold time tIH(base) Address and control input pulse width tIPW MIN. (tCL, tCH) Clock half period — tAC.MAX ps 11) 275 — ps — 0.6 — tCK — 200 — ps — 2 × tAC.MIN ps — tAC.MIN tAC.MAX tAC.MAX ps — 2 — tCK — 0 12 ns — tHPQ – tQHS — — — — 340 ps — — 7.8 µs 12)13) 3.9 µs 14) (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH tQHS tREFI — Auto-Refresh to Active/Auto-Refresh command period tRFC 105 — ns 15) Precharge-All (4 banks) command period tRP tRPRE tRPST tRRD tRP — ns 16) 0.9 1.1 — 0.40 0.60 tCK tCK 7.5 — ns 17) 10 — ns — 7.5 — ns — tWPRE tWPST tWR 0.35 x tCK — Write recovery time for write with AutoPrecharge Internal Write to Read command delay Read preamble Read postamble Active bank A to Active bank B command period Internal Read to Precharge command delay tRTP Write preamble Write postamble Write recovery time for write without AutoPrecharge Internet Data Sheet — 0.40 0.60 tCK tCK 15 — ns — WR tWR/tCK — tCK 19) tWTR 7.5 — ns 20) 42 — 18) Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 42 Timing Parameter by Speed Grade - DDR2–667 (cont’d) Parameter Symbol DDR2–667 Min. Unit Note1)2)3)4)5) 6) Max. Exit power down to any valid command (other than NOP or Deselect) tXARD 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 7 – AL — tCK — Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK — Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns — 200 — tCK — Exit Self-Refresh to Read command 1) VDDQ = 1.8V ± 0.1V; VDD = 1.8V ± 0.1 V. See notes 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during power-down, a specific procedure is required. 9) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 10) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 11) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 12) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 13) 0 °C≤ TCASE ≤ 85 °C 14) 85 °C < TCASE ≤ 95 °C 15) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 16) tRP(A) for a Precharge-All command for an 8 bank device is equal to tRP + 1tCK, where tRP are the values for a single bank precharge. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Internet Data Sheet 43 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 43 Timing Parameter by Speed Grade - DDR2-533 Parameter Symbol DDR2–533 Min. DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time tAC tCCD tCH tCKE tCL tDAL Minimum time clocks remain ON after CKE tDELAY asynchronously drops LOW Unit Note1)2)3)4) 5)6) Max. –500 +500 ps — 2 — — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK tIS + tCK + tIH –– ns 8) — — — 7) DQ and DM input hold time (differential data strobe) tDH(base) 225 –– ps — DQ and DM input hold time (single ended data strobe) tDH1(base) –25 — ps — 0.35 — tCK — –450 +450 ps — 0.35 — tCK — — 300 ps 9) DQ and DM input pulse width (each input) tDIPW DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) tDQSCK tDQSL,H DQS-DQ skew (for DQS & associated DQ tDQSQ signals) Write command to 1st DQS latching transition tDQSS – 0.25 + 0.25 tCK — DQ and DM input setup time (differential data strobe) tDS(base) 100 — ps — DQ and DM input setup time (single ended tDS1(base) data strobe) –25 — ps — DQS falling edge hold time from CK (write tDSH cycle) 0.2 — tCK — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK — Clock half period tHP tHZ MIN. (tCL, tCH) — 10) — tAC.MAX ps 11) tIH(base) tIPW 375 — ps — 0.6 — tCK — 250 — ps — 2 × tAC.MIN tAC.MAX tAC.MAX ps — tAC.MIN ps — 2 — tCK — 0 12 ns — tHP –tQHS — — — Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Internet Data Sheet tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT tQH 44 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 43 Timing Parameter by Speed Grade - DDR2-533 (cont’d) Parameter Data hold skew factor Average periodic refresh Interval Symbol DDR2–533 tQHS tREFI Unit Note1)2)3)4) 5)6) Min. Max. — 400 ps — — 7.8 µs 12)13) 3.9 µs 14) — Auto-Refresh to Active/Auto-Refresh command period tRFC 105 — ns 15) Precharge-All (4 banks) command period tRP tRPRE tRPST tRRD tRP — ns 16) 0.9 1.1 0.60 tCK tCK — 0.40 7.5 — ns 17) — ns — 7.5 — ns — 0.25 x tCK — Read preamble Read postamble Active bank A to Active bank B command period Internal Read to Precharge command delay 10 tRTP tWPRE Write postamble tWPST Write recovery time for write without Auto- tWR Write preamble — 0.40 0.60 tCK tCK 15 — ns — — 18) Precharge Write recovery time for write with AutoPrecharge WR tWR/tCK — tCK 19) Internal Write to Read command delay tWTR tXARD 7.5 — ns 20) 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK — Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK — Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns — 200 — tCK — Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command 1) VDDQ = 1.8V ± 0.1V; VDD = 1.8V ± 0.1 V. See notes 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during power-down, a specific procedure is required. 9) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 10) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Internet Data Sheet 45 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 11) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 12) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 13) 0 °C≤ TCASE ≤ 85 °C 14) 85 °C < TCASE ≤ 95 °C 15) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 16) tRP(A) for a Precharge-All command for an 8 bank device is equal to tRP + 1tCK, where tRP are the values for a single bank precharge. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Internet Data Sheet 46 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 44 Timing Parameter by Speed Grade - DDR2-400 Parameter Symbol DDR2–400 Min. DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time tAC tCCD tCH tCKE tCL tDAL Minimum time clocks remain ON after CKE tDELAY asynchronously drops LOW Unit Note1)2)3)4)5) 6) Max. –600 +600 ps — 2 — — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK tIS + tCK + tIH –– ns 8) — — — 7) DQ and DM input hold time (differential data strobe) tDH(base) 275 –– ps — DQ and DM input hold time (single ended data strobe) tDH1(base) –25 — ps — 0.35 — tCK — –500 +500 ps — 0.35 — tCK — — 350 ps 9) DQ and DM input pulse width (each input) tDIPW DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) tDQSCK tDQSL,H DQS-DQ skew (for DQS & associated DQ tDQSQ signals) Write command to 1st DQS latching transition tDQSS – 0.25 + 0.25 tCK — DQ and DM input setup time (differential data strobe) tDS(base) 150 — ps — DQ and DM input setup time (single ended tDS1(base) data strobe) –25 — ps — DQS falling edge hold time from CK (write tDSH cycle) 0.2 — tCK — DQS falling edge to CK setup time (write cycle) tDSS 0.2 — tCK Clock half period tHP tHZ MIN. (tCL, tCH) — tIH(base) tIPW Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Internet Data Sheet tIS(base) tLZ(DQ) — 10) tAC.MAX ps 11) 475 — ps — 0.6 — tCK — 350 — ps — 2× tAC.MAX ps — tAC.MAX ps — tAC.MIN tAC.MIN tLZ(DQS) tMRD tOIT tQH 47 2 — tCK — 0 12 ns — tHP –tQHS — — — Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table 44 Timing Parameter by Speed Grade - DDR2-400 Parameter Data hold skew factor Average periodic refresh Interval Symbol DDR2–400 tQHS tREFI tRFC tRP Read preamble tRPRE Read postamble tRPST Active bank A to Active bank B command tRRD Precharge-All (4 banks) command period period Internal Read to Precharge command delay tWPRE Write postamble tWPST Write recovery time for write without Auto- tWR Write preamble 6) Max. — 450 ps — — 7.8 µs 12)13) 3.9 µs 14) 105 — ns 15) tRP — ns 16) 0.9 1.1 0.60 tCK tCK — 0.40 7.5 — ns 17) — ns — 7.5 — ns — 0.25 x tCK — — 0.40 0.60 tCK tCK 15 — ns 10 tRTP Note1)2)3)4)5) Min. — Auto-Refresh to Active/Auto-Refresh command period Unit — 18) Precharge Write recovery time for write with AutoPrecharge WR tWR/tCK — tCK 19) Internal Write to Read command delay tWTR tXARD 10 — ns 20) 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — tCK — Exit precharge power-down to any valid command (other than NOP or Deselect) tXP 2 — tCK — Exit Self-Refresh to non-Read command tXSNR tXSRD tRFC +10 — ns — 200 — tCK — Exit power down to any valid command (other than NOP or Deselect) Exit Self-Refresh to Read command 1) VDDQ = 1.8V ± 0.1V; VDD = 1.8V ± 0.1 V. See notes 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during power-down, a specific procedure is required. 9) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 10) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). Internet Data Sheet 48 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 11) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 12) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 13) 0 °C≤ TCASE ≤ 85 °C 14) 85 °C < TCASE ≤ 95 °C 15) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 16) tRP(A) for a Precharge-All command for an 8 bank device is equal to tRP + 1tCK, where tRP are the values for a single bank precharge. 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Internet Data Sheet 49 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 7.3 ODT AC Electrical Characteristics Table 45 ODT AC Electrical Characteristics and Operating Conditions for DDR2-667 Symbol Parameter / Condition Values Unit Note Min. Max. tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD ODT turn-on delay 2 2 tCK — ODT turn-on ns 1) ODT turn-on (Power-Down Modes) tAC.MIN tAC.MAX + 0.7 ns tAC.MIN + 2 ns 2 tCK + tAC.MAX + 1 ns ns — ODT turn-off delay 2.5 tCK — 2.5 tAC.MIN tAC.MAX + 0.6 ns ns ODT turn-off (Power-Down Modes) tAC.MIN + 2 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT to Power Down Mode Entry Latency 3 — tCK ODT Power Down Exit Latency 8 — tCK ODT turn-off 2) — — — 1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measure from tAOND. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Table 46 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD ODT AC Electrical Characteristics and Operating Conditions for DDR2-533 and DDR2-400 Parameter / Condition Values Unit Note Min. Max. ODT turn-on delay 2 2 tCK — ODT turn-on ns 1) ODT turn-on (Power-Down Modes) tAC.MIN tAC.MAX + 1 ns tAC.MIN + 2 ns 2 tCK + tAC.MAX + 1 ns ns — ODT turn-off delay 2.5 tCK — 2.5 tAC.MIN tAC.MAX + 0.6 ns ns ODT turn-off (Power-Down Modes) tAC.MIN + 2 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT to Power Down Mode Entry Latency 3 — tCK ODT Power Down Exit Latency 8 — tCK ODT turn-off 2) — — — 1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measure from tAOND. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Internet Data Sheet 50 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 8 Package Dimensions X ! X -!8 " -!8 # -!8 Figure 8 -). # X ! " # - # 3%!4).' 0,!.% $UMMY PADS WITHOUT BALL -IDDLE OF PACKAGES EDGES 0ACKAGE ORIENTATION MARK ! "AD UNIT MARKING "5$IE SORT FIDUCIAL Package Pinout PG-TFBGA-60 Internet Data Sheet 51 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM X ! X -!8 " -!8 # Figure 9 -). -!8 # X ! " # - # 3%!4).' 0,!.% $UMMY PADS WITHOUT BALL -IDDLE OF PACKAGES EDGES 0ACKAGE ORIENTATION MARK ! "AD UNIT MARKING "5$IE SORT FIDUCIAL Package Outline P-TFBGA-84 Internet Data Sheet 52 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM 9 Product Nomenclature For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter. Table 47 Nomenclature Fields and Examples Example for Field Number 1 DDR2 DRAM HYB 2 3 4 5 18 T 512 16 6 7 8 9 10 0 A C –3.7 Table 48 DDR2 Memory Components Field Description Values Coding 1 QIMONDA Component Prefix HYB Constant 2 Interface Voltage [V] 18 SSTL_18 3 DRAM Technology T DDR2 4 Component Density [Mbit] 5+6 Number of I/Os 256 256 M 512 512 M 1G 1 Gb 40 ×4 80 ×8 160 ×16 7 Product Variations 0 .. 9 look up table 8 Die Revision A First B Second 9 Package, Lead-Free Status C FBGA, lead-containing F FBGA, lead-free 10 Speed Grade –3 DDR2–667 4–4–4 –3S DDR2–667 5–5–5 –3.7 DDR2–533 4–4–4 –5 DDR2–400 3–3–3 11 11 N/A for Components Internet Data Sheet 53 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Pin Configuration for ×4 components, PG-TFBGA-60-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration for ×8 components, PG-TFBGA-60-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration for ×16 components, PG-TFBGA-84-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . Package Pinout PG-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline P-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internet Data Sheet 54 12 13 14 28 28 31 32 51 52 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Performance for DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Performance for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Performance for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Performance for DDR2–400B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ordering Information for RoHS compliant products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 512-Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Mode Register Definition (BA[2:0] = 000B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . 19 EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . 20 ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DC & AC Logic Input Levels for DDR2-667 and DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DC & AC Logic Input Levels for DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Differential DC and AC Input and Output Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SSTL_18 Output DC Current Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 OCD Default Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . 31 AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . 31 IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 IDDSpecification for HYB18T512xxxBF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Speed Grade Definition Speed Bins DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Speed Grade Definition Speed Bins for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Speed Grade Definition Speed Bins for DDR2–533C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Speed Grade Definition Speed Bins for DDR2–400B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Timing Parameter by Speed Grade - DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Timing Parameter by Speed Grade - DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Timing Parameter by Speed Grade - DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ODT AC Electrical Characteristics and Operating Conditions for DDR2-667 . . . . . . . . . . . . . . . . 50 ODT AC Electrical Characteristics and Operating Conditions for DDR2-533 and DDR2-400 . . . . 50 Nomenclature Fields and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Internet Data Sheet 55 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z HYB18T512xxxBF–[2.5…5] 512-Mbit Double-Data-Rate-Two SDRAM Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 512 Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 5.1 5.2 5.3 5.4 5.5 5.6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7 7.1 7.2 7.3 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9 Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Internet Data Sheet 56 25 25 26 27 29 30 31 36 36 39 50 Rev. 1.05, 2007-01 03292006-YBYM-WG0Z Internet Data Sheet Edition 2007-01 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com