DATA SHEET GLZJ2.0~GLZJ56 SURFACE MOUNT ZENER DIODES VOLTAGE 2.0 to 56 Volts MINI-MELF/LL-34 500 mWatts POWER Unit : inch (mm) FEATURES • Planar Die construction • 500mW Power Dissipation • Ideally Suited for Automated Assembly Processes .063(1.6) .055(1.4)DIA. • Both normal and Pb free product are available : Normal : 80~95% Sn, 5~20% Pb Pb free: 98.5% Sn above MECHANICAL DATA .020(0.5) .012(0.3) .020(0.5) .012(0.3) • Case: Molded Glass MINI-MELF .146(3.7) .130(3.3) • Terminals: Solderable per MIL-STD-202E, Method 208 • Polarity: See Diagram Below • Approx. Weight: 0.03 grams • Mounting Position: Any • Packing information T/R - 2.5K per 7" plastic Reel T/R - 10K per 13" plastic Reel MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS P aram eter S ym bol Value U nits P TO T 500 mW Junction Tem perature TJ 175 O C S torage Tem perature R ange TS -65 to +175 O C P ow erD issipation atTam b = 25 O C Valid provided thatleads ata distance of10m m from case are keptatam bienttem perature. P aram eter Therm alR esistance Junction to A m bientA ir Forw ard Voltage atIF = 100m A S ym bol M in. Typ. M ax. U nits R thA -- -- 0.3 K /m W VF -- -- 1 V Valid provided thatleads ata distance of10m m from case are keptatam bienttem perature. STAD-SEP.14.2004 PAGE . 1 PART NUMBER C LA S S GLZJ 2.0 GLZJ 2.2 GLZJ 2.4 GLZJ 2.7 GLZJ 3.0 GLZJ 3.3 GLZJ 3.6 GLZJ 3.9 GLZJ 4.3 GLZJ 4.7 GLZJ 5.1 GLZJ 5.6 GLZJ 6.2 GLZJ 6.8 GLZJ 7.5 GLZJ 8.2 GLZJ 9.1 GZLJ 10 GLZJ 11 STAD-SEP.14.2004 V Z @ IZT M IN . V MAX. V IZ (m A ) VR (V ) IR ( U A ) MA X IZT (m A ) Z ZT (Ω) MA X IZK (m A) Z ZK (Ω) MA X 5 0.5 120 5 100 0.5 1000 5 0.7 100 5 100 0.5 1000 5 1.0 120 5 100 0.5 1000 M a r k i ng Code A 1.88 2.10 B 2.02 2.20 A 2.12 2.30 B 2.22 2.41 A 2.33 2.52 B 2.43 2.63 A 2.54 2.75 B 2.69 2.91 A 2.85 3.07 B 3.01 3.22 A 3.16 3.38 B 3.32 3.53 A 3.46 3.69 B 3.60 3.84 A 3.74 4.01 B 3.89 4.16 A 4.04 4.29 B 4.17 4.43 C 4.30 4.57 A 4.44 4.68 B 4.55 4.80 C 4.68 4.93 A 4.81 5.07 B 4.94 5.20 C 5.09 5.37 A 5.28 5.55 B 5.45 5.73 C 5.61 5.91 A 5.78 6.09 B 5.96 6.27 C 6.12 6.44 A 6.29 6.63 B 6.49 6.83 C 6.66 7.01 A 6.85 7.22 B 7.07 7.45 C 7.29 7.67 A 7.53 7.92 B 7.78 8.19 C 8.03 8.45 A 8.29 8.73 B 8.57 9.01 C 8.83 9.30 Z9C1 A 9.12 9.59 Z10A B 9.41 9.90 C 9.70 10.20 D 9.94 10.44 A 10.18 10.71 B 10.50 11.05 C 10.82 11.38 5 1.0 100 5 110 0.5 1000 5 1.0 50 5 120 0.5 1000 5 1.0 20 5 120 0.5 1000 5 1.0 10 5 100 1 1000 5 1.0 5 5 100 1 1000 5 1.0 5 5 100 1 1000 Z2A0 Z2B0 Z2A2 Z2B2 Z2A4 Z2B4 Z2A7 Z2B7 Z3A0 Z3B0 Z3A3 Z3B3 Z3A6 Z3B6 Z3A9 Z3B9 Z4A3 Z4B3 Z4C3 Z4A7 5 1.0 5 5 90 1 900 Z4B7 Z4C7 Z5A1 5 1.5 5 5 80 1 800 Z5B1 Z5C1 Z5A6 5 2.5 5 5 60 1 500 Z5B6 Z5C6 Z6A2 5 3.0 5 5 60 1 300 Z6B2 Z6C2 Z6A8 5 3.5 2 5 20 0.5 150 Z6B8 Z6C8 Z7A5 5 4.0 0.5 5 20 0.5 120 Z7B5 Z7C5 Z8A2 5 5.0 0.5 5 20 0.5 120 Z8B2 Z8C2 Z9A1 5 5 6.0 7.0 0.5 0.2 5 5 25 30 0.5 0.5 120 120 Z9B1 Z10B Z10C Z10D Z11A 5 8.0 0.2 5 30 0.5 120 Z11B Z11C PAGE . 2 Part Number C LA S S GLZJ 12 GLZJ 13 GLZJ 15 GLZJ 16 GLZJ 18 GLZJ 20 GLZJ 22 GLZJ 24 GLZJ 27 GLZJ 30 GLZJ 33 GLZJ 36 GLZJ 39 V Z @ IZT M i n. V M a x. V A 11.13 11.71 B 11.44 12.03 C 11.74 12.35 A 12.11 12.75 B 12.55 13.21 C 12.99 13.66 IZ (m A ) VR (V ) IR ( u A ) MA X Iz t (mA ) Z ZT (Ω) MA X IZK (m A) Z ZK (Ω) MA X 5 9.0 0.2 5 30 0.5 110 M a r k i ng code Z12A Z12B Z12C Z13A 5 10 0.2 5 35 0.5 110 Z13B Z13C A 13.44 14.13 B 13.89 14.62 C 14.35 15.09 A 14.80 15.57 B 15.25 16.04 C 15.69 16.51 A 16.22 17.06 B 16.82 17.70 C 17.42 18.33 Z18C A 18.02 18.96 Z20A B 18.63 19.59 C 19.23 20.22 D 19.72 20.72 Z20D A 20.15 21.20 Z22A B 20.64 21.71 C 21.08 22.17 D 21.52 22.63 Z22C A 22.05 23.18 Z24A B 22.61 23.77 C 23.12 24.31 D 23.63 24.85 Z24D A 24.26 25.52 Z27A B 24.97 26.26 C 25.63 26.95 D 26.29 27.64 Z27D A 26.99 28.39 Z30A B 27.70 29.13 C 28.36 29.82 D 29.02 30.51 Z30D A 29.68 31.22 Z33A B 30.32 31.88 C 30.90 32.50 D 31.49 33.11 Z33D A 32.14 33.79 Z36A B 32.79 34.49 C 33.40 35.13 D 34.01 35.77 Z36D A 34.68 36.47 Z39A B 35.36 37.19 C 36.00 37.85 D Z15A 5 11 0.2 5 40 0.5 110 Z15B Z15C Z16A 5 12 0.2 5 40 0.5 150 Z16B Z16C Z18A 5 5 5 5 5 5 5 5 13 15 17 19 21 23 25 27 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 5 5 5 5 5 5 5 5 45 55 30 35 45 55 65 75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 150 200 200 200 250 250 250 250 5 30 0.2 5 85 0.5 250 Z18B Z20B Z20C Z22B Z22C Z24B Z24C Z27B Z27C Z30B Z30C Z33B Z33C Z36B Z36C Z39B Z39C 36.63 38.52 GLZJ 43 40.00 45.00 5 33 0.2 5 90 -- -- Z43 GLZJ 47 44.00 49.00 5 36 0.2 5 90 -- -- Z47 GLZJ 51 48.00 54.00 5 39 0.2 5 110 -- -- Z51 GLZJ 56 53.00 60.00 5 43 0.2 5 110 -- -- Z56 STAD-SEP.14.2004 Z39D PAGE . 3 1.3 VZtn – RelativeVoltageChange 500 400 300 l l 200 100 0 5 10 TK VZ =10 x 10–4/K 8 x 10–4/K 6 x 10–4/K 1.1 4 x 10–4/K 2 x 10–4/K 0 1.0 –2 x 10–4/K –4 x 10–4/K 0.9 0.8 –60 20 15 l – Lead Length ( mm ) 500 400 300 200 100 0 40 80 120 160 200 Tamb – Ambient Temperature(°C ) 95 9602 60 120 180 240 Fig. 4 Typical Change of Working Voltage vs. Junction Temperature 600 0 0 Tj – Junction Temperature (°C ) 95 9599 Fig. 1 Thermal Resistance vs. Lead Length Ptot –Total Power Dissipation ( mW) 1.2 TL=constant 0 95 9611 15 10 5 I Z=5mA 0 –5 0 10 20 30 40 50 V Z – Z-Voltage ( V ) 95 9600 Fig. 2 Total Power Dissipation vs. Ambient Temperature Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage 1000 200 CD – Diode Capacitance ( pF ) VZ –VoltageChange( mV ) V Ztn=V Zt/V Z(25°C) TK VZ –Temperature Coefficient of VZ ( 10–4 /K) RthJA –Therm.Resist.Junction/ Ambient ( K/W) Typical Characteristics (Tamb = 25 °C unless otherwise specified) Tj =25°C 100 I Z=5mA 10 150 V R=2V Tj =25°C 100 1 50 0 0 95 9598 5 10 15 20 25 V Z – Z-Voltage ( V ) Fig. 3 Typical Change of Working Voltage under Operating Conditions at Tamb=25°C STAD-SEP.14.2004 0 95 9601 5 10 15 20 25 V Z – Z-Voltage ( V ) Fig. 6 Diode Capacitance vs. Z-Voltage PAGE . 4 50 10 40 IZ – Z-Current ( mA) I F – Forward Current ( mA) 100 Tj =25°C 1 0.1 30 20 10 0.01 0 0.001 0 0.2 0.4 0.6 0.8 15 1.0 V F – Forward Voltage ( V ) 95 9605 r Z – Differential Z-Resistance ( Ω ) IZ – Z-Current ( mA) 25 Ptot=500mW Tamb=25°C 60 40 20 1000 I Z=1mA 100 0 5mA 10 10mA Tj =25°C 1 0 4 8 12 16 20 0 V Z – Z-Voltage ( V ) 95 9604 35 30 V Z – Z-Voltage ( V ) Fig. 9 Z-Current vs. Z-Voltage 100 80 20 95 9607 Fig. 7 Forward Current vs. Forward Voltage 5 10 15 20 25 V Z – Z-Voltage ( V ) 95 9606 Fig. 8 Z-Current vs. Z-Voltage Zthp –ThermalResistancefor PulseCond.(K/W) Ptot=500mW Tamb=25°C Fig. 10 Differential Z-Resistance vs. Z-Voltage 1000 tp/T=0.5 100 tp/T=0.2 Single Pulse 10 RthJA=300K/W T=Tjmax–Tamb tp/T=0.01 tp/T=0.1 tp/T=0.02 tp/T=0.05 1 10–1 95 9603 i ZM =(–VZ+(V Z2+4rzj x T/Zthp)1/2)/(2rzj) 100 101 102 tp – Pulse Length ( ms ) Fig. 11 Thermal Response STAD-SEP.14.2004 PAGE . 5