Qimonda HYB18TC1G160AF 1-gbit ddr2 sdram Datasheet

September 2006
HYB18T C1G 80 0 AF
HYB18T C1G 16 0 AF
1-Gbit DDR2 SDRAM
DDR2 SDRAM
RoHS Compliant
Internet Data Sheet
Rev. 1.11
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
HYB18TC1G800AF, HYB18TC1G160AF
Revision History: 2006-09, Rev. 1.11
Page
Subjects (major changes since last revision)
All
Qimonda update
All
Adapted internet edition
102
Modified AC Timing Parameters
Previous Revision: 2006-07, Rev. 1.1
Added more speedsorts:
HYB18TC1G800AF-5, HYB18TC1G800AF-3.7, HYB18TC1G800AF-3S, HYB18TC1G160AF-5,
HYB18TC1G160AF-3.7, HYB18TC1G160AF-3S
Previous Revision: 2005-07, Rev. 1.0
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-07-21
03292006-PJAE-UQLG
2
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
1
Overview
This chapter gives an overview of the 1-Gbit Double-Data-Rate-Two SDRAM product family and describes its main
characteristics.
1.1
Features
The 1-Gbit Double-data-Rate SDRAM offers the following key features:
• Off-Chip-Driver impedance adjustment (OCD) and On• 1.8 V ± 0.1 V Power Supply 1.8 V ± 0.1 V (SSTL_18)
compatible I/O
Die-Termination (ODT) for better signal quality.
• DRAM organizations with 8, 16 data in/outputs
• Auto-Precharge operation for read and write bursts
• Double Data Rate architecture: two data transfers per
• Auto-Refresh, Self-Refresh and power saving PowerDown modes
clock cycle four internal banks for concurrent operation
• Average Refresh Period 7.8 µs at a TCASE lower than
• CAS Latency: 3, 4, 5
85 °C, 3.9 µs between 85 °C and 95 °C
• Burst Length: 4 and 8
• Programmable self refresh rate via EMRS2 setting
• Differential clock inputs (CK and CK)
• DCC enabling via EMRS2 setting
• Bi-directional, differential data strobes (DQS and DQS) are
transmitted / received with data. Edge aligned with read
• Full and reduced Strength Data-Output Drivers
• 1K page size for ×8, 2K page size for ×16
data and center-aligned with write data.
• Packages: PG-TFBGA-68 for ×8 components PG-TFBGA• DLL aligns DQ and DQS transitions with clock
92 for ×16 components
• DQS can be disabled for single-ended data strobe
operation
• RoHS Compliant Products1)
• Commands entered on each positive clock edge, data and
• All Speed grades faster than DDR400 comply with
data mask are referenced to both edges of DQS
DDR2–400 timing specifications when run at a clock rate
• Data masks (DM) for write data
of 200 MHz.
• Posted CAS by programmable additive latency for better
command and data bus efficiency
A list of the performance tables for the various speeds can be found below
• Table 1 “Performance table for –3S” on Page 4
• Table 2 “Performance table for –3.7” on Page 4
• Table 3 “Performance table for –5” on Page 4
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
3
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 1
Performance table for –3S
Product Type Speed Code
–3S
Unit
Speed Grade
DDR2–667D 5–5–5
—
333
MHz
266
MHz
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
200
MHz
15
ns
15
ns
45
ns
60
ns
TABLE 2
Performance table for –3.7
Product Type Speed Code
–3.7
Unit
Speed Grade
DDR2–533C 4–4–4
—
266
MHz
266
MHz
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
200
MHz
15
ns
15
ns
45
ns
60
ns
TABLE 3
Performance table for –5
Product Type Speed Code
–5
Unit
Speed Grade
DDR2–400B 3–3–3
—
200
MHz
200
MHz
max. Clock Frequency
@CL5
@CL4
@CL3
min. RAS-CAS-Delay
min. Row Precharge Time
min. Row Active Time
min. Row Cycle Time
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
4
200
MHz
15
ns
15
ns
40
ns
55
ns
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
1.2
Description
CK falling). All I/Os are synchronized with a single ended
DQS or differential DQS-DQS pair in a source synchronous
fashion.
A 17 bit address bus for ×4 and ×8 organised components
and a 16 bit address bus for ×16 components is used to
convey row, column and bank address information in aRASCAS multiplexing style.
The DDR2 device operates with a 1.8 V ± 0.1 V power
supply. An Auto-Refresh and Self-Refresh mode is provided
along with various power-saving power-down modes.
The functionality described and the timing specifications
included in this data sheet are for the DLL Enabled mode of
operation.
The DDR2 SDRAM is available in PG-TFBGA package.
The 1-Gb DDR2 DRAM is a high-speed Double-Data-RateTwo CMOS Synchronous DRAM device containing
1,073,741,824 bits and internally configured as anoctal quadbank DRAM. The 1-Gb device is organized as either 16 Mbit
×8 I/O ×8 banks or 8 Mbit ×16 I/O ×8 banks chip. These
synchronous devices achieve high speed transfer rates
starting at 400 Mb/sec/pin for general applications. See
Table 1 to Table 3 for performance figures.
The device is designed to comply with all DDR2 DRAM key
features:
1. Posted CAS with additive latency
2. Write latency = read latency - 1
3. Normal and weak strength data-output driver
4. Off-Chip Driver (OCD) impedance adjustment
5. On-Die Termination (ODT) function
All of the control and address inputs are synchronized with a
pair of externally supplied differential clocks. Inputs are
latched at the cross point of differential clocks (CK rising and
TABLE 4
Ordering Information for RoHS compliant products
CAS-RCD-RP Latencies1)2)3)
Product Type
Org. Speed
HYB18TC1G160BF–3S
×16
DDR2–667D
5–5–5
333
PG–TFBGA–92–1
HYB18TC1G800BF–3S
×8
DDR2–667D
5–5–5
333
PG–TFBGA–68–3
HYB18TC1G160BF–3.7
×16
DDR2–533C
4–4–4
266
PG–TFBGA–92–1
HYB18TC1G800BF–3.7
×8
DDR2–533C
4–4–4
266
PG–TFBGA–68–3
HYB18TC1G160BF–5
×16
DDR2–400B
3–3–3
200
PG–TFBGA–92–1
HYB18TC1G800BF–5
×8
DDR2–400B
3–3–3
200
PG–TFBGA–68–3
1) CAS: Column Address Strobe
2) RCD: Row Column Delay
3) RP: Row Precharge
Note: For product nomenclature see Chapter 9 of this data sheet
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
5
Clock (MHz)
Package
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
2
Pin Configuration
This chapter contains the pin configuration.
2.1
Pin Configuration for TFBGA–68
The pin configuration of a DDR2 SDRAM is listed by function in Table 5. The abbreviations used in the Pin# and Buffer Type
columns are explained in Table 6 and Table 7 respectively. The pin numbering for the FBGA package is depicted in Figure 1
for ×8 components.
TABLE 5
Pin Configuration of DDR2 SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
SSTL
Clock Signal CK, Complementary Clock Signal CK
Clock Signals ×8 Organizations
J8
CK
I
K8
CK
I
SSTL
K2
CKE
I
SSTL
Clock Enable
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Control Signals ×8 Organizations
K7
RAS
I
SSTL
L7
CAS
I
SSTL
K3
WE
I
SSTL
L8
CS
I
SSTL
Chip Select
Bank Address Bus 2:0
Address Signals ×8 Organizations
L2
BA0
I
SSTL
L3
BA1
I
SSTL
L1
BA2
I
SSTL
M8
A0
I
SSTL
M3
A1
I
SSTL
M7
A2
I
SSTL
N2
A3
I
SSTL
N8
A4
I
SSTL
N3
A5
I
SSTL
N7
A6
I
SSTL
P2
A7
I
SSTL
P8
A8
I
SSTL
P3
A9
I
SSTL
M2
A10
I
SSTL
AP
I
SSTL
P7
A11
I
SSTL
R2
A12
I
SSTL
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
Address Signal 12:0, Address Signal 10/Autoprecharge
6
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
R8
A13
I
SSTL
Address Signal 13
Note: 512 Mbit ×8 and 1 Gbit ×8 components
NC
–
–
Note: 256 Mbit
Data Signal 3:0
Note: DQ[7:0] for ×8 components
Data Signals ×8 Organizations
G8
DQ0
I/O
SSTL
G2
DQ1
I/O
SSTL
H7
DQ2
I/O
SSTL
H3
DQ3
I/O
SSTL
H1
DQ4
I/O
SSTL
H9
DQ5
I/O
SSTL
F1
DQ6
I/O
SSTL
F9
DQ7
I/O
SSTL
Data Signal 7:4
Data Strobe ×8 Organizations
F7
DQS
I/O
SSTL
E8
DQS
I/O
SSTL
Data Strobe
Data Strobe ×8 Organizations
F3
RDQS
O
SSTL
E2
RDQS
O
SSTL
Read Data Strobe
Data Mask ×8 Organizations
F3
DM
I
SSTL
Data Mask
Power Supplies ×8 Organizations
VDDQ
PWR
–
I/O Driver Power Supply
VDD
E7,F2,F8,H2,H VSSQ
PWR
–
Power Supply
PWR
–
I/O Driver Power Supply
PWR
–
Power Supply
Al
–
I/O Reference Voltage
PWR
–
Power Supply
PWR
–
Power Supply
–
Not Connected
SSTL
On-Die Termination Control
E9,G1,G3,G7,
G9
E1,J9,M9,R1
8
E3,J3;N1,P9
J2
J1
J7
VSS
VREF
VDDL
VSSDL
Not Connected ×8 Organization
A1,A2,A8,A9,R NC
7,W1,W2,W8,
W9,R3
NC
Other Pins ×8 Organizations
K9
ODT
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
I
7
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 6
Abbreviations for Pin Type
Abbreviation
Description
I
Standard input-only pin. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 7
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
8
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
FIGURE 1
Pin Configuration for ×8 components, P-TFBGA-68 (top view)
1&
1&
$
1&
1&
%
&
'
9''
18
5'46
966
(
9664
'46
9''4
'4
9664
'0
5'46
)
'46
9664
'4
9''4
'4
9''4
*
9''4
'4
9''4
'4
9664
'4
+
'4
9664
'4
9''/
95()
966
-
966'/
&.
9''
&.(
:(
.
5$6
&.
2'7
%$
%$
/
&$6
&6
$$3
$
0
$
$
$
$
1
$
$
$
$
3
$
$
$
1&
5
1&
1&$
1&%$
966
9''
9''
966
7
8
9
1&
1&
:
1&
1&
0337
Notes
3. When enabled, RDQS & RDQS are used as strobe
signals during reads.
4. VDDL and VSSDL are power and ground for the DLL. They
are connected on the device from VDD, VDDQ, VSS and
VSSQ.
1. RDQS / RDQS are enabled by EMRS(1) command.
2. If RDQS / RDQS is enabled, the DM function is disabled
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
9
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
2.2
Pin Configuration for TFBGA-92
The pin configuration of a DDR2 SDRAM is listed by function in Table 8. The abbreviations used in the Pin#/Buffer Type
columns are explained in Table 9 and Table 10 respectively. The pin numbering for the FBGA package is depicted in Figure 2
for ×16 components.
TABLE 8
Pin Configuration of DDR SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
SSTL
Clock Signal CK, Complementary Clock Signal CK
Clock Signals ×16 Organization
J8
CK
I
K8
CK
I
SSTL
K2
CKE
I
SSTL
Clock Enable
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Control Signals ×16 Organization
K7
RAS
I
SSTL
L7
CAS
I
SSTL
K3
WE
I
SSTL
L8
CS
I
SSTL
Chip Select
Bank Address Bus 1:0
Address Signals ×16 Organization
L2
BA0
I
SSTL
L3
BA1
I
SSTL
L1
BA2
I
SSTL
Bank Address Bus 2
Note: 1 Gbit components and higher
NC
–
–
Note: 256 Mbit and 512 Mbit components
M8
A0
I
SSTL
Address Signal 12:0,Address Signal 10/Autoprecharge
M3
A1
I
SSTL
M7
A2
I
SSTL
N2
A3
I
SSTL
N8
A4
I
SSTL
N3
A5
I
SSTL
N7
A6
I
SSTL
P2
A7
I
SSTL
P8
A8
I
SSTL
P3
A9
I
SSTL
M2
A10
I
SSTL
AP
I
SSTL
P7
A11
I
SSTL
R2
A12
I
SSTL
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
10
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
Data Signal 15:0
Note: Bi-directional data bus. DQ[15:0] for ×16 components.
Data Signals ×16 Organization
G8
DQ0
I/O
SSTL
G2
DQ1
I/O
SSTL
H7
DQ2
I/O
SSTL
H3
DQ3
I/O
SSTL
H1
DQ4
I/O
SSTL
H9
DQ5
I/O
SSTL
F1
DQ6
I/O
SSTL
F9
DQ7
I/O
SSTL
C8
DQ8
I/O
SSTL
C2
DQ9
I/O
SSTL
D7
DQ10
I/O
SSTL
D3
DQ11
I/O
SSTL
D1
DQ12
I/O
SSTL
D9
DQ13
I/O
SSTL
B1
DQ14
I/O
SSTL
B9
DQ15
I/O
SSTL
Data Strobe ×16 Organization
B7
UDQS
I/O
SSTL
A8
UDQS
I/O
SSTL
F7
LDQS
I/O
SSTL
E8
LDQS
I/O
SSTL
Data Strobe Upper Byte
Data Strobe Lower Byte
Data Mask ×16 Organization
B3
UDM
I
SSTL
Data Mask Upper Byte
F3
LDM
I
SSTL
Data Mask Lower Byte
Power Supplies ×16 Organization
VREF
E9, G1, G3, G7, VDDQ
AI
–
I/O Reference Voltage
PWR
–
I/O Driver Power Supply
VDDL
E1, J9, M9, R1 VDD
E7, F2, F8, H2, VSSQ
PWR
–
Power Supply
PWR
–
Power Supply
PWR
–
Power Supply
PWR
–
Power Supply
PWR
–
Power Supply
–
Not Connected
SSTL
On-Die Termination Control
J2
G9
J1
H8
J7
J3,N1,P9
VSSDL
VSS
Not Connected ×16 Organization
A2, E2, L1, R3, NC
R7, R8
NC
Other Pins ×16 Organization
K9
ODT
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
I
11
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 9
Abbreviations for Pin Type
Abbreviation
Description
I
Standard input-only pin. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 10
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
12
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
FIGURE 2
Pin Configuration for ×16 components, P-TFBGA-92 (top view)
1&
1&
$
1&
1&
%
&
9''
1&
966
'
9664
8'4
6
9''4
'4
9664
8'0
(
8'4
6
9664
'4
9''4
'4
9''4
)
9''4
'4
9''4
'4
9664
'4
*
'4
9664
'4
9''
1&
966
+
9664
/'4
6
9''4
'4
9664
/'0
-
/'4
6
9664
'4
9''4
'4
9''4
.
9''4
'4
9''4
'4
9664
'4
/
'4
9664
'4
9''/ 95() 966
0
966'/ &.
9''
&.(
:(
1
5$6
&.
2'7
%$
%$
3
&$6
&6
$$
3
$
5
$
$
$
$
7
$
$
$
$
8
$
$
$
1&
9
1&
1&
%$
966
9''
9''
966
:
;
1&
1&
$$ 1&
1&
0337
Notes
2. UDM is the data mask signal for the upper byte
UDQ0~UDQ7, LDM is the data mask signal for the lower
byte LDQ0~LDQ7
1. UDQS/UDQS is data strobe for upper byte, LDQS/LDQS
is data strobe for lower byte
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
13
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
3
Functional Description
This chapter describes the functional description.
%$ %$ %$ $ $ $
$
UHJ
D
GGU
$
$
$
$
$
$
$
$
$
3'
:5
'//
70
&/
%7
%/
Z
Z
Z
Z
Z
Z
Z
$
03%7
TABLE 11
Mode Register Definition (BA[2:0] = 000B)
Field
Bits
Type1)
Description
BA2
16
reg. addr.
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA1
15
Bank Address [1]
BA1 Bank Address
0B
BA0
14
Bank Address [0]
0B
BA0 Bank Address
A13
13
Address Bus[13]
Note: A13 is not available for 256 Mbit and ×16 512 Mbit configuration
0B
A13 Address bit 13
PD
12
w
Active Power-Down Mode Select
0B
PD Fast exit
1B
PD Slow exit
WR
[11:9]
w
Write Recovery2)
Note: All other bit combinations are illegal.
001B
010B
011B
100B
101B
WR 2
WR 3
WR 4
WR 5
WR 6
DLL
8
w
DLL Reset
0B
DLL No
1B
DLL Yes
TM
7
w
Test Mode
0B
TM Normal Mode
1B
TM Vendor specific test mode
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
14
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Field
Bits
Type1)
Description
CL
[6:4]
w
CAS Latency
Note: All other bit combinations are illegal.
011B
100B
101B
110B
111B
CL 3
CL 4
CL 5
CL 6
CL 7
BT
3
w
Burst Type
0B
BT Sequential
BT Interleaved
1B
BL
[2:0]
w
Burst Length
Note: All other bit combinations are illegal.
010B BL 4
011B BL 8
1) w = write only register bits
2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and
rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement
for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN.
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
4RII 5'4
6 '46
2&'
3URJUDP
5WW
$/
5WW
',&
'//
Z
Z
Z
Z
Z
Z
Z
UHJ
D
GGU
Z
03%7
TABLE 12
Extended Mode Register Definition (BA[2:0] = 001B)
Field
Bits
Type1)
Description
BA2
16
reg. addr.
Bank Address [2]
Note: BA2 not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA1
15
Bank Address [1]
0B
BA1 Bank Address
BA0
14
Bank Address [0]
0B
BA0 Bank Address
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
15
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Field
Bits
Type1)
Description
A13
13
w
Address Bus[13]
Note: A13 is not available for 256 Mbit and ×16 512 Mbit configuration
Qoff
12
Output Disable
0B
QOff Output buffers enabled
QOff Output buffers disabled
1B
RDQS
11
Read Data Strobe Output (RDQS, RDQS)
RDQS Disable
0B
RDQS Enable
1B
DQS
10
Complement Data Strobe (DQS Output)
DQS Enable
0B
1B
DQS Disable
0B
A13 Address bit 13
OCD
[9:7]
Program
Off-Chip Driver Calibration Program
000B OCD OCD calibration mode exit, maintain setting
001B OCD Drive (1)
010B OCD Drive (0)
100B OCD Adjust mode
111B OCD OCD calibration default
AL
Additive Latency
Note: All other bit combinations are illegal.
[5:3]
000B
001B
010B
011B
100B
RTT
6,2
AL 0
AL 1
AL 2
AL 3
AL 4
Nominal Termination Resistance of ODT
Note: See Table 23 “ODT DC Electrical Characteristics” on Page 24
00B
01B
10B
11B
RTT ∞ (ODT disabled)
RTT 75 Ohm
RTT 150 Ohm
RTT 50 Ohm
DIC
1
Off-chip Driver Impedance Control
0B
DIC Full (Driver Size = 100%)
1B
DIC Reduced
DLL
0
DLL Enable
DLL Enable
0B
1B
DLL Disable
1) w = write only register bits
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
16
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
%$
%$
%$
$
$
$
$
$
$
$
$
65)
$
$
$
'&&
UHJDGGU
$
$
$
3$65
03%7
TABLE 13
EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B)
Field
Bits
Type1)
Description
BA2
16
w
Bank Address[2]
Note: BA2 is not available on 256 Mbit and 512 Mbit components
0B
BA2 Bank Address
BA
[15:14]
w
Bank Adress[15:14]
00B BA MRS
01B BA EMRS(1)
10B BA EMRS(2)
11B BA EMRS(3): Reserved
A
[13:7]
w
Address Bus[13:0]
Note: A13 is not available for 256 Mbit and ×16 512 Mbit configuration
0B
A[13:0] Address bits
A
7
w
Address Bus[7], adapted self refresh rate for TCASE > 85°C
0B
A7 disable
1B
A7 enable 2)
A
[6:4]
w
Address Bus[6:4]
0B
A[6:4] Address bits
A
3
w
Address Bus[3], Duty Cycle Correction (DCC)
A[3] DCC disabled
0B
1B
A[3] DCC enabled
Partial Self Refresh for 8 banks
A
[2:0]
w
Address Bus[2:0], Partial Array Self Refresh for 8 Banks3)
000B PASR0 Full Array
001B PASR1 Half Array (BA[2:0]=000, 001, 010 & 011)
010B PASR2 Quarter Array (BA[2:0]=000, 001)
011B PASR3 1/8 array (BA[2:0] = 000)
100B PASR4 3/4 array (BA[2:0]= 010, 011, 100, 101, 110 & 111)
101B PASR5 Half array (BA[2:0]=100, 101, 110 & 111)
110B PASR6 Quarter array (BA[2:0]= 110 & 111)
111B PASR7 1/8 array(BA[2:0]=111)
1) w = write only
2) When DRAM is operated at 85°C ≤ TCase ≤ 95°C the extended self refresh rate must be enabled by setting bit A7 to "1" before the self
refresh mode can be entered.
3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh
is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
17
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
%$ %$ %$ $ $ $
$
$
$
$
$
$
$
$
$
$
$
UHJD
GG
U
03%7
TABLE 14
EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B)
1)
Field
Bits
Type
Description
BA2
16
reg.addr
BA1
15
Bank Adress[1]
1B
BA1 Bank Address
BA0
14
Bank Adress[0]
BA0 Bank Address
1B
A
[13:0]
Bank Address[2]
Note: BA2 is not available on 256 Mbit and 512 Mbit components
0B
w
BA2 Bank Address
Address Bus[13:0]
Note: A13 is not available for 256 Mbit and ×16 512 Mbit configuration
0B
A[13:0] Address bits
1) w = write only
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
18
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 15
ODT Truth Table
Input Pin
EMRS(1) Address Bit A10
EMRS(1) Address Bit A11
×8 components
DQ[7:0]
X
DQS
X
DQS
0
X
RDQS
X
1
RDQS
0
1
DM
X
0
×16 components
DQ[7:0]
X
DQ[15:8]
X
LDQS
X
LDQS
0
UDQS
X
UDQS
0
LDM
X
UDM
X
X
X
Note: X = don’t care; 0 = bit set to low; 1 = bit set to high
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
19
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 16
Burst Length and Sequence
Burst Length
Starting Address
(A2 A1 A0)
Sequential Addressing
(decimal)
4
×00
0, 1, 2, 3
0, 1, 2, 3
×01
1, 2, 3, 0
1, 0, 3, 2
×1 0
2, 3, 0, 1
2, 3, 0, 1
×1 1
3, 0, 1, 2
3, 2, 1, 0
000
0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 3, 4, 5, 6, 7
001
1, 2, 3, 0, 5, 6, 7, 4
1, 0, 3, 2, 5, 4, 7, 6
010
2, 3, 0, 1, 6, 7, 4, 5
2, 3, 0, 1, 6, 7, 4, 5
011
3, 0, 1, 2, 7, 4, 5, 6
3, 2, 1, 0, 7, 6, 5, 4
100
4, 5, 6, 7, 0, 1, 2, 3
4, 5, 6, 7, 0, 1, 2, 3
101
5, 6, 7, 4, 1, 2, 3, 0
5, 4, 7, 6, 1, 0, 3, 2
8
110
6, 7, 4, 5, 2, 3, 0, 1
6, 7, 4, 5, 2, 3, 0, 1
111
7, 4, 5, 6, 3, 0, 1, 2
7, 6, 5, 4, 3, 2, 1, 0
Page Length = 102464 Mb × 16 organization (CA[9:0]);
Page Size = 2 KByte; Page Length = 1024
2. Order of burst access for sequential addressing is “nibblebased” and therefore different from SDR or DDR
components
Notes
1. Page Size and Length is a function of I/O
organization:256 Mb × 4 organization (CA[9:0], CA11);
Page Size = 1 KByte; Page Length = 2048128 Mb × 8
organization (CA[9:0]); Page Size = 1 KByte;
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
Interleave Addressing
(decimal)
20
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
4
Truth Tables
The truth tables in this chapter summarize the commands and there signal coding to control a standard Double-Data-Rate-Two
SDRAM.
TABLE 17
Command Truth Table
Function
CKE
CS RAS
CAS WE BA0
BA1
BA2
A[13:11]
A10 A[9:0]
Note1)2)3)
Previous
Cycle
Current
Cycle
(Extended) Mode
Register Set
H
H
L
L
L
L
BA
OP Code
Auto-Refresh
H
H
L
L
L
H
X
X
X
X
4)
Self-Refresh Entry
H
L
L
L
L
H
X
X
X
X
4)6)
Self-Refresh Exit
L
H
H
X
X
X
X
X
X
X
4)6)7)
L
H
H
H
4)5)
Single Bank Precharge
H
H
L
L
H
L
BA
X
L
X
4)5)
Precharge all Banks
H
H
L
L
H
L
X
X
H
X
4)
Bank Activate
H
H
L
L
H
H
BA
Row Address
Write
H
H
L
H
L
L
BA
Column
L
Column
4)5)8)
Write with AutoPrecharge
H
H
L
H
L
L
BA
Column
H
Column
4)5)8)
Read
H
H
L
H
L
H
BA
Column
L
Column
4)5)8)
Read with AutoPrecharge
H
H
L
H
L
H
BA
Column
H
Column
4)5)8)
No Operation
H
X
L
H
H
H
X
X
X
X
4)
Device Deselect
H
X
H
X
X
X
X
X
X
X
4)
Power Down Entry
H
L
H
X
X
X
X
X
X
X
4)9)
L
H
H
H
Power Down Exit
L
H
H
X
X
X
X
X
X
X
4)9)
L
H
H
H
4)5)
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
2) “X” means “H or L (but a defined logic level)”.
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.
5) Bank addresses BA[2:0] determine which bank is to be operated upon. For (E)MRS BA[2:0] selects an (Extended) Mode Register.
6) VREF must be maintained during Self Refresh operation.
7) Self Refresh Exit is asynchronous.
8) Burst reads or writes at BL = 4 cannot be terminated.
9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh
requirements.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
21
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 18
Clock Enable (CKE) Truth Table for Synchronous Transitions
Current State1)
CKE
Command (N)2) 3)
RAS, CAS, WE
Action (N)2)
Note4)5)
Previous Cycle6)
(N-1)
Current Cycle6)
(N)
L
L
X
Maintain Power-Down
7)8)11)
L
H
DESELECT or NOP
Power-Down Exit
7)9)10)11)
L
L
X
Maintain Self Refresh
8)11)12)
L
H
DESELECT or NOP
Self Refresh Exit
9)12)13)14)
Bank(s) Active
H
L
DESELECT or NOP
Active Power-Down Entry
7)9)10)11)15)
All Banks Idle
H
L
DESELECT or NOP
Precharge Power-Down
Entry
9)10)11)15)
H
L
AUTOREFRESH
Self Refresh Entry
7)11)14)16)
H
H
Refer to the Command Truth Table
Power-Down
Self Refresh
Any State other
than
listed above
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
17)
Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.
Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N)
The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.
CKE must be maintained HIGH while the device is in OCD calibration mode.
Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.
The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh
requirements
“X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in
Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).
All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.
Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.
tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2xtCKE + tIH.
VREF must be maintained during Self Refresh operation.
On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read
commands may be issued only after tXSRD (200 clocks) is satisfied.
Valid commands for Self Refresh Exit are NOP and DESELCT only.
Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or
Refresh operations are in progress.
Self Refresh mode can only be entered from the All Banks Idle state.
Must be a legal command as defined in the Command Truth Table.
TABLE 19
Data Mask (DM) Truth Table
Name (Function)
DM
DQs
Note
Write Enable
L
Valid
1)
Write Inhibit
H
X
1)
1) Used to mask write data; provided coincident with the corresponding data.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
22
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
5
Operating Conditions
operating conditions and AC operating conditions. For IDD
characteristics please see Chapter 6.
This chapter lists the electrical characteristics and
distinguishes between abolute maximum ratings, DC
5.1
Absolute Maximum Ratings
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 20 at any time.
TABLE 20
Absolute Maximum Ratings
Symbol
VDD
VDDQ
VDDL
VIN, VOUT
TSTG
Parameter
Rating
Unit
Note
Min.
Max.
Voltage on VDD pin relative to VSS
–1.0
+2.3
V
1)
Voltage on VDDQ pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on VDDL pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on any pin relative to VSS
–0.5
+2.3
V
1)
°C
1)2)
Storage Temperature
–55
+100
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 21
DRAM Component Operating Temperature Range
Symbol
TOPER
Parameter
Rating
Operating Temperature
Min.
Max.
0
95
Unit
Note
°C
1)2)3)4)
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case
temperature must be maintained between 0 - 95 °C under all other specification parameters.
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
23
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
5.2
DC Characteristics
This chapter describes the DC characteristics.
TABLE 22
Recommended DC Operating Conditions (SSTL_18)
Symbol
VDD
VDDDL
VDDQ
VREF
VTT
1)
2)
3)
4)
Parameter
Rating
Unit
Note
Min.
Typ.
Max.
Supply Voltage
1.7
1.8
1.9
V
1)
Supply Voltage for DLL
1.7
1.8
1.9
V
1)
Supply Voltage for Output
1.7
1.8
1.9
V
1)
Input Reference Voltage
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
2)3)
4)
Termination Voltage
VREF – 0.04
VREF
VREF + 0.04
V
VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.
The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to
be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.
Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc)
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and
must track variations in die dc level of VREF.
TABLE 23
ODT DC Electrical Characteristics
Parameter / Condition
Symbol
Min.
Nom.
Max.
Unit
Note
Termination resistor impedance value for
EMRS(1)[A6,A2] = [0,1]; 75 Ohm
Rtt1(eff)
60
75
90
Ω
1)
Termination resistor impedance value for
EMRS(1)[A6,A2] =[1,0]; 150 Ohm
Rtt2(eff)
120
150
180
Ω
1)
Termination resistor impedance value for
EMRS(1)(A6,A2)=[1,1]; 50 Ohm
Rtt3(eff)
40
50
60
Ω
1)
2)
+ 6.00
%
1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively.
Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)).
2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 × VM / VDDQ) –
Deviation of VM with respect to VDDQ / 2
delta VM
–6.00
—
1) x 100%
TABLE 24
Input and Output Leakage Currents
Symbol
Parameter / Condition
Min.
Max.
Unit
Note
IIL
Input Leakage Current; any input 0 V < VIN < VDD
–2
+2
µA
1)
IOL
Output Leakage Current; 0 V < VOUT < VDDQ
–5
+5
µA
2)
1) All other pins not under test = 0 V
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
24
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
5.3
DC & AC Characteristics
DDR2 SDRAM pin timing are specified for either single ended
or differential mode depending on the setting of the EMRS(1)
“Enable DQS” mode bit; timing advantages of differential
mode are realized in system design. The method by which the
DDR2 SDRAM pin timing are measured is mode dependent.
In single ended mode, timing relationships are measured
relative to the rising or falling edges of DQS crossing at VREF.
In differential mode, these timing relationships are measured
relative to the crosspoint of DQS and its complement, DQS.
This distinction in timing methods is verified by design and
characterization but not subject to production test. In single
ended mode, the DQS (and RDQS) signals are internally
disabled and don’t care.
TABLE 25
DC & AC Logic Input Levels
Symbol
VIH(dc)
VIL(dc)
VIH(ac)
VIL(ac)
Parameter
DDR2-400, DDR2-533
DDR2-667
Unit
Min.
Max.
Min.
Max.
DC input logic high
VREF + 0.125
–0.3
VDDQ + 0.3
VREF – 0.125
VREF + 0.125
DC input low
–0.3
VDDQ + 0.3
VREF – 0.125
V
AC input logic high
VREF + 0.250
—
VREF + 0.200
—
V
AC input low
—
VREF – 0.250
—
VREF – 0.200
V
V
TABLE 26
Single-ended AC Input Test Conditions
Symbol
Condition
Value
Unit
Note
VREF
VSWING.MAX
Input reference voltage
0.5 × VDDQ
V
1)
Input signal maximum peak to peak swing
1.0
V
1)
SLEW
Input signal minimum Slew Rate
1.0
V / ns
2)3)
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to
VIL(ac).MAX for falling edges as shown in Figure 3
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative
transitions.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
25
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
FIGURE 3
Single-ended AC Input Test Conditions Diagram
9''4
9,+ DF PLQ
9,+ GF PLQ
96:,1* 0$;
95()
9,/ GF PD[
9,/ DF PD[
966
'HOWD7)
)DOOLQJ6OHZ
'HOWD75
95()9,/ DF PD[
5LVLQJ6OHZ
'HOWD7)
9,+ DF PLQ95()
'HOWD75
03(7
TABLE 27
Differential DC and AC Input and Output Logic Levels
Symbol
Parameter
Min.
Max.
Unit
Note
VIN(dc)
VID(dc)
VID(ac)
VIX(ac)
VOX(ac)
DC input signal voltage
–0.3
—
1)
DC differential input voltage
0.25
—
2)
AC differential input voltage
0.5
V
3)
AC differential cross point input voltage
0.5 × VDDQ – 0.175
V
4)
AC differential cross point output voltage
0.5 × VDDQ – 0.125
VDDQ + 0.3
VDDQ + 0.6
VDDQ + 0.6
0.5 × VDDQ + 0.175
0.5 × VDDQ + 0.125
V
5)
1)
2)
3)
4)
VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.
VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc).
VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac).
The value of VIX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)
indicates the voltage at which differential input signals must cross.
5) The value of VOX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac)
indicates the voltage at which differential input signals must cross.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
26
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
FIGURE 4
Differential DC and AC Input and Output Logic Levels Diagram
VDDQ
VTR
Crossing Point
VID
VIX or VOX
VCP
VSSQ
SSTL18_3
5.4
Output Buffer Characteristics
This chapter describes the Output Buffer Characteristics.
TABLE 28
SSTL_18 Output DC Current Drive
Symbol
IOH
IOL
Parameter
SSTL_18
Output Minimum Source DC Current
–13.4
Unit
Note
mA
1)2)
2)3)
Output Minimum Sink DC Current
13.4
mA
1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV.
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN.
plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement.
3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.
TABLE 29
SSTL_18 Output AC Test Conditions
Symbol
Parameter
SSTL_18
Unit
Note
VOH
VOL
VOTR
Minimum Required Output Pull-up
VTT + 0.603
VTT – 0.603
0.5 × VDDQ
V
1)
V
1)
Maximum Required Output Pull-down
Output Timing Measurement Reference Level
V
1) SSTL_18 test load for VOH and VOL is different from the referenced load. The SSTL_18 test load has a 20 Ohm series resistor additionally
to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25
Ohm termination resistor (13.4 mA x 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum
requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA x 45 Ohm = 603 mV).
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
27
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 30
OCD Default Characteristics
Symbol
Description
Min.
Nominal
—
Output Impedance
—
Pull-up / Pull down mismatch
0
—
—
Output Impedance step size
for OCD calibration
0
—
Max.
Unit
Note
Ohms
1)2)
4
Ohms
1)2)3)
1.5
Ohms
4)
1)5)6)7)8)
Output Slew Rate
1.5
—
5.0
V / ns
1) Absolute Specifications (TOPER; VDD = 1.8 V ± 0.1 V; VDDQ = 1.8 V ± 0.1 V), altering OCD from default state no longer requires DRAM to
SOUT
2)
3)
4)
5)
6)
7)
8)
meet timing, voltage and slew rate specifications on I/O’s.
Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than 23.4
ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V;
VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV.
Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.
This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the
DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal
conditions.
Slew Rates according to VIL(ac) to VIH(ac).
The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC.
This is verified by design and characterization but not subject to production test.
Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS
specification.
DRAM output Slew Rate specification applies to 400 and 533 speed bins.
5.5
Input / Output Capacitance
TABLE 31
Input / Output Capacitance
DDR2-400 & DDR2-533
DDR2-667
Min.
Max.
Min.
Max.
Input capacitance, CK and CK
1.0
2.0
1.0
2.0
pF
CDCK
Input capacitance delta, CK and CK
—
0.25
—
0.25
pF
CI
Input capacitance, all other input-only pins
1.0
2.0
1.0
2.0
pF
CDI
Input capacitance delta, all other input-only pins
—
0.25
—
0.25
pF
CIO
Input/output capacitance,
DQ, DM, DQS, DQS, RDQS, RDQS
2.5
4.0
2.5
3.5
pF
CDIO
Input/output capacitance delta,
DQ, DM, DQS, DQS, RDQS, RDQS
—
0.5
—
0.5
pF
Symbol
CCK
Parameter
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
28
Unit
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
5.6
Overshoot and Undershoot Specification
TABLE 32
AC Overshoot / Undershoot Specification for Address and Control Pins
Parameter
DDR2-400
DDR2-533
DD2-667
Unit
Maximum peak amplitude allowed for overshoot area
0.9
0.9
0.9
V
Maximum peak amplitude allowed for undershoot area
0.9
0.9
0.9
V
Maximum overshoot area above VDD
1.33
1.00
0.80
V.ns
Maximum undershoot area below VSS
1.33
1.00
0.80
V.ns
FIGURE 5
AC Overshoot / Undershoot Diagram for Address and Control Pins
9ROWV 9
0D[LP
XP$PSOLWXGH
2YH
UVK
RRW$UH
D
9''
966
0D[LP
XP$PSOLWXGH
7LP
H QV Rev. 1.11, 2006-09
03292006-PJAE-UQLG
29
8QGHUV KRRW$
UH
D
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 33
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins
Parameter
DDR2-400
DDR2-533
DD2-667
Unit
Maximum peak amplitude allowed for overshoot area
0.9
0.9
0.9
V
Maximum peak amplitude allowed for undershoot area
0.9
0.9
0.9
V
Maximum overshoot area above VDDQ
0.38
0.28
0.23
V.ns
Maximum undershoot area below VSSQ
0.38
0.28
0.23
V.ns
FIGURE 6
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins
9ROWV 9 0D[LP
XP$PSOLWXGH
2YH
UVK
RRW$UH
D
9''
4
966
4
0D[LP
XP$PSOLWXGH
7LP
H QV Rev. 1.11, 2006-09
03292006-PJAE-UQLG
30
8QGHUV KRRW$
UH
D
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
6
Currents Specifications and Conditions
Table 34, general timing conditions used are listed in
Table 35. At the end of this chapter the on-die-termination
currents are defined.
For Double-Data-Rate-Two SDRAMs described in this data
sheet the maximum IDD values are listed in Table 36. The
measurement conditions for IDD characteristics are listed in
TABLE 34
IDD Measurement Conditions
Parameter
Symbol
Note
Operating Current - One bank Active - Precharge
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands.
Address and control inputs are switching; Databus inputs are switching.
IDD0
1)2)3)4)5)6)
Operating Current - One bank Active - Read - Precharge
IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL =
CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are
switching; Databus inputs are switching.
IDD1
1)2)3)4)5)6)
Precharge Power-Down Current
IDD2P
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs
are floating.
1)2)3)4)5)6)
Precharge Standby Current
IDD2N
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching,
Data bus inputs are switching.
1)2)3)4)5)6)
Precharge Quiet Standby Current
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable,
Data bus inputs are floating.
IDD2Q
1)2)3)4)5)6)
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus
inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit).
IDD3P(0)
1)2)3)4)5)6)
Active Power-Down Current
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus
inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);
IDD3P(1)
1)2)3)4)5)6)
Active Standby Current
IDD3N
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid
commands. Address inputs are switching; Data Bus inputs are switching;
1)2)3)4)5)6)
Operating Current
IDD4R
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS
= tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching; IOUT = 0 mA.
1)2)3)4)5)6)
Operating Current
IDD4W
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS
= tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are
switching; Data Bus inputs are switching;
1)2)3)4)5)6)
Burst Refresh Current
IDD5B
tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid
commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5)6)
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
31
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Parameter
Distributed Refresh Current
tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between
valid commands, Other control and address inputs are switching, Data bus inputs are switching.
Symbol
Note
IDD5D
1)2)3)4)5)6)
Self-Refresh Current
IDD6
CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data
bus inputs are floating.
Operating Bank Interleave Read Current
IDD7
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK =
tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); tFAW = tFAW(IDD); CKE is HIGH, CS is HIGH between valid
commands. Address bus inputs are stable during deselects; Data bus is switching.
2. Timing pattern for x4 and x8 components: DDR2-400: A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4
A5 RA5 A6 RA6 A7 RA7 (16 clocks) DDR2-533: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4
A5 RA5 A6 RA6 A7 RA7 D D (20 clocks) Timing pattern for x16 components: DDR2-400: A0 RA0
A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D (20 clocks) DDR2-533: A0
RA0 A1 RA1 A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D (26 clocks)
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
2) IDD specifications are tested after the device is properly initialized.
3) IDD parameter are specified with ODT disabled.
4)
5)
6)
7)
1)2)3)4)5)6)
1)2)3)4)5)6)7)
Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.
Definitions for IDD: see Table 35
Timing parameter minimum and maximum values for IDD current measurements are defined in Table 46.
A = Activate, RA = Read with Auto-Precharge, D=DESELECT
TABLE 35
Definition for IDD
Parameter
Description
LOW
defined as VIN ≤ VIL(ac).MAX
HIGH
defined as VIN ≥ VIH(ac).MIN
STABLE
defined as inputs are stable at a HIGH or LOW level
FLOATING
defined as inputs are VREF = VDDQ / 2
SWITCHING
defined as: Inputs are changing between high and low every other clock (once per two clocks) for address
and control signals, and inputs changing between high and low every other data transfer(once per clock)
for DQ signals not including mask or strobes
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
32
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 36
IDD Specification for HYB18TC1G[80/16]0AF
Symbol
–3S
–3.7
-5
DDR2–667D
DDR2–533C
DDR2 - 400B
IDD0
81
75
90
IDD1
100
109
95
IDD2N
IDD2P
IDD2Q
IDD3N
IDD3P
60
29
7
7
7
mA
39
23
28
mA
65
50
40
mA
22
14
18
mA
1)
9
6
9
mA
2)
IDD4R
200
145
115
mA
×8
240
175
140
mA
×16
IDD4W
200
140
110
mA
×8
260
195
155
mA
×16
200
185
180
mA
10
10
10
mA
8
8
8
mA
242
230
205
mA
×8
313
300
265
mA
×16
IDD5B
IDD5D
IDD6
IDD7
Unit
Note
70
mA
×8
80
75
mA
×16
85
80
mA
×8
90
mA
×16
35
mA
1) MRS(12)=0
2) MRS(12)=1
3) For IDD5D and IDD6: 0 ≤ TCASE ≤ 85 °C
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
33
3)
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
7
Timing Characteristics
This chapter contains speed grade definition, AC timing parameter and ODT tables.
7.1
Speed Grade Definitions
All Speed grades faster than DDR2-DDR400B comply with DDR2-DDR400B timing specifications (tCK = 5ns with tRAS = 40ns).
List of Speed Grade Definition tables:
• Table 37 “Speed Grade Definition Speed Bins for DDR2–667D” on Page 34
• Table 38 “Speed Grade Definition Speed Bins for DDR2–533C” on Page 35
• Table 39 “Speed Grade Definition Speed Bins for DDR2–400B” on Page 36
TABLE 37
Speed Grade Definition Speed Bins for DDR2–667D
Speed Grade
DDR2–667D
IFX Sort Name
–3S
CAS-RCD-RP latencies
5–5–5
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” .
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
34
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 38
Speed Grade Definition Speed Bins for DDR2–533C
Speed Grade
DDR2–533C
IFX Sort Name
–3.7
CAS-RCD-RP latencies
4–4–4
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements”.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS / DQS,
RDQS / RDQS is defined.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
35
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 39
Speed Grade Definition Speed Bins for DDR2–400B
Speed Grade
DDR2–400B
IFX Sort Name
–5
CAS-RCD-RP latencies
3–3–3
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
40
70000
ns
1)2)3)4)5)
55
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0).
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 × tREFI.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
36
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
7.2
AC Timing Parameters
List of Timing Parameters Tables.
• Table 40 “Timing Parameter by Speed Grade - DDR2–667” on Page 37
• Table 41 “Timing Parameter by Speed Grade - DDR2–533” on Page 42
• Table 42 “Timing Parameter by Speed Grade - DDR2-400” on Page 44
TABLE 40
Timing Parameter by Speed Grade - DDR2–667
Parameter
Symbol
DDR2–667
Unit
Note
1)2)3)4)5)6)7)
Min.
Max.
–450
+450
ps
8)
–400
+400
ps
8)
0.48
0.52
9)10)
0.48
0.52
tCK.AVG
tCK.AVG
3000
8000
ps
100
—
ps
11)12)13)
175
—
ps
12)13)14)
0.6
—
0.35
—
tCK.AVG
tCK.AVG
—
ps
8)15)
tAC.MIN
2 × tAC.MIN
tAC.MAX
tAC.MAX
tAC.MAX
ps
8)15)
ps
8)15)
—
240
ps
16)
Min(tCH.ABS,
tCL.ABS)
—
ps
17)
—
340
ps
18)
DQ/DQS output hold time from DQS
tQHS
tQH
tHP – tQHS
—
ps
19)
Write command to DQS associated clock edges
WL
RL–1
tAC
DQS output access time from CK / CK
tDQSCK
Average clock high pulse width
tCH.AVG
Average clock low pulse width
tCL.AVG
Average clock period
tCK.AVG
DQ and DM input setup time
tDS.BASE
DQ and DM input hold time
tDH.BASE
Control & address input pulse width for each input tIPW
DQ and DM input pulse width for each input
tDIPW
Data-out high-impedance time from CK / CK
tHZ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
DQ low impedance time from CK/CK
tLZ.DQ
DQS-DQ skew for DQS & associated DQ signals tDQSQ
CK half pulse width
tHP
DQ output access time from CK / CK
DQ hold skew factor
DQS latching rising transition to associated clock tDQSS
edges
DQS input high pulse width
DQS input low pulse width
DQS falling edge to CK setup time
DQS falling edge hold time from CK
Write postamble
Write preamble
Address and control input setup time
Address and control input hold time
Read preamble
Read postamble
Active to precharge command
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
tDQSH
tDQSL
tDSS
tDSH
tWPST
tWPRE
tLS.BASE
tLH.BASE
tRPRE
tRPST
tRAS
37
9)10)
nCK
20)
– 0.25
+ 0.25
tCK.AVG
0.35
—
0.35
—
0.2
—
0.2
—
0.4
0.6
0.35
—
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
200
—
ps
21)22)
275
—
ps
22)23)
0.9
1.1
24)25)
0.4
0.6
tCK.AVG
tCK.AVG
45
70000
ns
27)
20)
20)
24)26)
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Parameter
Symbol
DDR2–667
Unit
Note
1)2)3)4)5)6)7)
Min.
Max.
Active to active command period for 1KB page
size products
tRRD
7.5
—
ns
27)
Active to active command period for 2KB page
size products
tRRD
10
—
ns
27)
Four Activate Window for 1KB page size products tFAW
37.5
—
ns
27)
Four Activate Window for 2KB page size products tFAW
50
—
ns
27)
tCCD
Write recovery time
tWR
Auto-Precharge write recovery + precharge time tDAL
Internal write to read command delay
tWTR
Internal Read to Precharge command delay
tRTP
Exit self-refresh to a non-read command
tXSNR
Exit self-refresh to read command
tXSRD
Exit precharge power-down to any valid
tXP
2
—
nCK
15
—
ns
27)
WR + tnRP
—
nCK
28)29)
7.5
—
ns
27)30)
7.5
—
ns
27)
tRFC +10
—
ns
27)
200
—
nCK
2
—
nCK
tXARD
tXARDS
2
—
nCK
7 – AL
—
nCK
CKE minimum pulse width ( high and low pulse
width)
tCKE
3
—
nCK
ODT turn-on delay
tAOND
tAON
tAONPD
2
2
nCK
tAC.MIN
tAC.MIN + 2
tAC.MAX + 0.7
2 × tCK.AVG +
tAC.MAX + 1
ns
tAOFD
tAOF
tAOFPD
2.5
2.5
nCK
tAC.MIN
tAC.MIN + 2
tAC.MAX + 0.6
ns
2.5 × tCK.AVG + ns
tAC.MAX + 1
tANPD
tAXPD
tMRD
tMOD
tOIT
tDELAY
3
—
nCK
8
—
nCK
2
—
nCK
0
12
ns
28)
0
12
ns
28)
tLS + tCK .AVG + —
tLH
ns
CAS to CAS command delay
command (other than NOP or Deselect)
Exit power down to read command
Exit active power-down mode to read command
(slow exit, lower power)
ODT turn-on
ODT turn-on (Power down mode)
ODT turn-off delay
ODT turn-off
ODT turn-off (Power down mode)
ODT to power down entry latency
ODT to power down exit latency
Mode register set command cycle time
MRS command to ODT update delay
OCD drive mode output delay
Minimum time clocks remain ON after CKE
asynchronously drops LOW
1) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 4)5)6)7)
31)
8)32)
ns
33)34)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
38
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
6) The output timing reference voltage level is VTT.
7) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
9) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
10) These parameters are specified per their average values, however it is understood that the relationship between the average timing and
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations).
11) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Differential input waveform timing - tDS and tDS.
12) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
13) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Differential input waveform timing - tDS and tDS.
15) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
17) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
18) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
19) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the
max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
20) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
21) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Differential input waveform timing - tlS and tlH.
22) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Differential input waveform timing - tlS and tlH.
24) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Method for calculating transitions and endpoint shows a method to calculate these points when the device
is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement
points are not critical as long as the calculation is consistent.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
39
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
25) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
26) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
27) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
28) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
29) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
30) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
31) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
32) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND.
33) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD.
34) When the device is operated with input clock jitter, this parameter needs to be derated by {–tJIT.DUTY.MAX – tERR(6-10PER).MAX} and {–tJIT.DUTY.MIN
– tERR(6-10PER).MIN } of the actual input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter
into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272 ps, tERR(6- 10PER).MAX = + 293 ps, tJIT.DUTY.MIN = – 106 ps and tJIT.DUTY.MAX = + 94 ps,
then tAOF.MIN(DERATED) = tAOF.MIN + {– tJIT.DUTY.MAX – tERR(6-10PER).MAX} = – 450 ps + {– 94 ps – 293 ps} = – 837 ps and tAOF.MAX(DERATED) = tAOF.MAX
+ {– tJIT.DUTY.MIN – tERR(6-10PER).MIN} = 1050 ps + {106 ps + 272 ps} = + 1428 ps. (Caution on the MIN/MAX usage!)
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
40
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
FIGURE 7
Method for calculating transitions and endpoint
VOH - x mV
VTT + 2x mV
VOH - 2x mV
VTT + x mV
tLZ
tHZ
tRPRE begin point
tRPST end point
VOL + 2x mV
VTT - x mV
VOL + x mV
VTT - 2x mV
T1 T2
T1 T2
tHZ,tRPST end point = 2*T1-T2
tLZ,tRPRE begin point = 2*T1-T2
FIGURE 8
Differential input waveform timing - tDS and tDS
'46
'46
W'+
W'6
W'6
W'+
9''4
9,+ DF PL
Q
9,+ GF PL
Q
95() GF 9,/ GF PD
[
[
9,/ DF PD
966
FIGURE 9
Differential input waveform timing - tlS and tlH
CK
CK
tIS
tIH
tIS
tIH
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
VSS
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
41
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
TABLE 41
Timing Parameter by Speed Grade - DDR2–533
Parameter
Symbol
DDR2–533
Unit
Note
1)2)3)4)5)6)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–500
+500
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
—
ns
8)
DQ and DM input hold time (differential data
strobe)
tDH(base)
225
—
ps
9)
–25
—
ps
10)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
0.35
—
tCK
–450
+450
ps
0.35
—
tCK
—
300
ps
tDQSS
tDS(base)
– 0.25
+ 0.25
tCK
100
—
ps
10)
–25
—
ps
10)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
37.5
—
ns
50
—
ns
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
Write command to 1st DQS latching transition
DQ and DM input setup time (differential data
strobe)
DQ and DM input setup time (single ended data tDS1(base)
strobe)
DQS falling edge hold time from CK (write
cycle)
Four Activate Window period
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
tFAW
tHP
tHZ
tIH(base)
tIPW
MIN. (tCL, tCH)
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
42
7)17)
10)
12)
11)
—
tAC.MAX
ps
12)
375
—
ps
10)
0.6
—
tCK
250
—
ps
10)
2 × tAC.MIN
ps
13)
tAC.MIN
tAC.MAX
tAC.MAX
ps
13)
2
—
tCK
0
12
ns
tHP –tQHS
—
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Parameter
Symbol
DDR2–533
Unit
Note
1)2)3)4)5)6)
Data hold skew factor
Average periodic refresh Interval
tQHS
tREFI
Min.
Max.
—
400
ps
—
7.8
µs
13)14)
—
3.9
µs
15)17)
16)
Auto-Refresh to Active/Auto-Refresh
command period
tRFC
127.5
—
ns
Precharge-All (4 banks) command period
tRP
tRP
tRPRE
tRPST
tRRD
tRP + 1tCK
15 + 1tCK
—
ns
—
ns
0.9
1.1
13)
0.40
0.60
tCK
tCK
7.5
—
ns
13)17)
10
—
ns
15)19)
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25 x tCK
—
0.40
0.60
tCK
tCK
15
—
ns
Write recovery time for write with AutoPrecharge
WR
tWR/tCK
—
tCK
19)
Internal Write to Read command delay
tWTR
tXARD
7.5
—
ns
20)
2
—
tCK
21)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
21)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
tCK
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
13)
18)
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 4)5)6)7)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS,
input reference level is the crosspoint when in differential strobe mode.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
9) For timing definition, refer to the Component data sheet.
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
43
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
14) 0 °C≤ TCASE ≤ 85 °C
15) 85 °C < TCASE ≤ 95 °C
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 4 “Ordering Information for RoHS compliant
products” on Page 5.
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
19) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
TABLE 42
Timing Parameter by Speed Grade - DDR2-400
Parameter
Symbol
DDR2–400
Unit
Note
1)2)3)4)5)6)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–600
+600
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
—
ns
8)
DQ and DM input hold time (differential data
strobe)
tDH(base)
275
—
ps
9)
–25
—
ps
10)
0.35
—
tCK
–500
+500
ps
0.35
—
tCK
—
350
ps
– 0.25
+ 0.25
tCK
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
Write command to 1st DQS latching transition tDQSS
7)21)
10)
DQ and DM input setup time (differential data
strobe)
tDS(base)
150
—
ps
10)
DQ and DM input setup time (single ended
data strobe)
tDS1(base)
–25
—
ps
10)
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
44
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Parameter
Symbol
DDR2–400
Unit
Note
1)2)3)4)5)6)
Min.
Max.
tDSH
0.2
—
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
37.5
—
ns
50
—
ns
DQS falling edge hold time from CK (write
cycle)
Four Activate Window period
Clock half period
tFAW
tHP
tHZ
tIH(base)
tIPW
tCK
12)
11)
MIN. (tCL, tCH)
—
tAC.MAX
ps
12)
475
—
ps
10)
0.6
—
tCK
350
—
ps
10)
2 × tAC.MIN
ps
13)
tAC.MIN
tAC.MAX
tAC.MAX
ps
13)
2
—
tCK
0
12
ns
tHP –tQHS
—
—
—
450
ps
—
7.8
µs
13)14)
—
3.9
µs
15)17)
127.5
—
ns
16)
tRP + 1tCK
15 + 1tCK
—
ns
—
ns
0.9
1.1
13)
0.40
0.60
tCK
tCK
7.5
—
ns
13)17)
10
—
ns
15)19)
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25 × tCK
—
0.40
0.60
tCK
tCK
15
—
ns
Write recovery time for write with AutoPrecharge
WR
tWR/tCK
—
tCK
19)
Internal Write to Read command delay
tWTR
tXARD
10
—
ns
20)
2
—
tCK
21)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
21)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Average periodic refresh Interval
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
tQHS
tREFI
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Exit power down to any valid command
(other than NOP or Deselect)
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
tRP
tRP
tRPRE
tRPST
tRRD
45
13)
18)
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Parameter
Symbol
DDR2–400
Unit
Note
1)2)3)4)5)6)
Exit Self-Refresh to non-Read command
Exit Self-Refresh to Read command
tXSNR
tXSRD
Min.
Max.
tRFC +10
—
ns
200
—
tCK
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 4)5)6)7)
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS,
input reference level is the crosspoint when in differential strobe mode.
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
6) The output timing reference voltage level is VTT.
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
9) For timing definition, refer to the Component data sheet.
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
14) 0 °C≤ TCASE ≤ 85 °C
15) 85 °C < TCASE ≤ 95 °C
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
17) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 4 “Ordering Information for RoHS compliant
products” on Page 5.
18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
19) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
46
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
7.3
ODT AC Electrical Characteristics
This chapter describes the ODT AC electrical characteristics.
TABLE 43
ODT AC Characteristics and Operating Conditions for DDR2-667
Symbol
Parameter / Condition
Values
Min.
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Unit
Note
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MAX + 0.7 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
tCK
tCK
1)
ns
2)
ns
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measure from tAOND.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD.
TABLE 44
ODT AC Characteristics and Operating Conditions for DDR2-533/DDR2-400
Symbol
Parameter / Condition
Values
Min.
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Unit
Note
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MAX + 1 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
tCK
tCK
1)
ns
2)
ns
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measure from tAOND.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD.
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
47
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
8
Package Dimensions
The 1-Gbit DDR2 SDRAM is sold in two different packages depending on the number of I/Os.
FIGURE 10
Package Outline PG-TFBGA-68
[ $
[ 0
$;
%
0$
;
&
0
,1
0
$;
&
¡ “ [
¡ 0 $ %
&
¡ 0
'X PP
\ S DGVZLWKRXWEDOO
0LGGOHR IS DFN D JHVH GJHV
3D FN DJHR ULHQWD WLR QPD UN$
%DGX QLWPD UNLQJ %8
0 'LHV RUWILGXFLDO
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
48
3/$1(
& 6($7 ,1*
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
FIGURE 11
Package Pinout P-TFBGA-92 (top view)
[ $
[ 0
$
;
%
0
$;
&
0
$;
0
,1
&
¡“ [
¡ 0 $ %
&
¡ 0
'
XPP
\ SDGVZLWK RXWE DOO
0
LGGOHR ISDFN DJHVHGJHV
3
D F N D JHRULHQWDWLRQPD UN$
%
DGXQLWPD UNLQJ %80
'
LHV RUWILGXFLDO
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
49
*3
/$1(
& 6($7 ,1
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
9
Product Nomenclature
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.
TABLE 45
Nomenclature Fields and Examples
Example for
DDR2 DRAM
Field Number
1
2
3
4
5
6
HYB
18
TC
1GC
16
7
8
9
10
0
A
C
–3.7
11
TABLE 46
DDR2 Memory Components
Field
Description
Values
Coding
1
QIMONDA
Component Prefix
HYB
Constant
2
Interface Voltage [V]
18
SSTL_18
3
DRAM Technology, consumer variant
TC
DDR2
4
Component Density [Mbit]
256
256 M
512
512 M
1G
1 Gb
40
x4
5+6
Number of I/Os
7
Product Variations
8
Die Revision
80
x8
16
x16
0 .. 9
look up table
A
First
B
Second
FBGA, lead-containing
9
Package,
Lead-Free Status
C
F
FBGA, lead-free
10
Speed Grade
–2.5
DDR2–800 6–6–6
–3
DDR2–667 4–4–4
–3S
DDR2–667 5–5–5
–3.7
DDR2–533 4–4–4
–5
DDR2–400 3–3–3
11
N/A for Components
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
50
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Pin Configuration for ×8 components, P-TFBGA-68 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Configuration for ×16 components, P-TFBGA-92 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . 30
Method for calculating transitions and endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Differential input waveform timing - tDS and tDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Differential input waveform timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Package Outline PG-TFBGA-68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Package Pinout P-TFBGA-92 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
51
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Performance table for –3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance table for –3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Performance table for –5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Ordering Information for RoHS compliant products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Extended Mode Register Definition (BA[2:0] = 001B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Differential DC and AC Input and Output Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . 30
IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
IDD Specification for HYB18TC1G[80/16]0AF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Speed Grade Definition Speed Bins for DDR2–667D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Speed Grade Definition Speed Bins for DDR2–533C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Speed Grade Definition Speed Bins for DDR2–400B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Timing Parameter by Speed Grade - DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Timing Parameter by Speed Grade - DDR2–533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Timing Parameter by Speed Grade - DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ODT AC Characteristics and Operating Conditions for DDR2-667. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ODT AC Characteristics and Operating Conditions for DDR2-533/DDR2-400. . . . . . . . . . . . . . . . . . . . . . . . . 47
Nomenclature Fields and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
52
Internet Data Sheet
HYB18TC1G[80/16]0AF
1-Gbit DDR2 SDRAM
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
2.1
2.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration for TFBGA–68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration for TFBGA-92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5
5.1
5.2
5.3
5.4
5.5
5.6
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Currents Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7
7.1
7.2
7.3
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9
Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
23
23
24
25
27
28
29
34
34
37
47
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Rev. 1.11, 2006-09
03292006-PJAE-UQLG
53
Internet Data Sheet
Edition 2006-09
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2006.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com
Similar pages