TI1 CD74HC597E High-speed cmos logic 8-bit shift register with input storage Datasheet

[ /Title
(CD74
HC597
,
CD74
HCT59
7)
/Subject
(High
Speed
CMOS
CD54HC597, CD74HC597,
CD74HCT597
Data sheet acquired from Harris Semiconductor
SCHS191C
High-Speed CMOS Logic
8-Bit Shift Register with Input Storage
January 1998 - Revised October 2003
Features
Description
• Buffered Inputs
The ’HC597 and CD74HCT597 are high-speed silicon gate
CMOS devices that are pin-compatible with the LSTTL 597
devices. Each device consists of an 8-flip-flop input register
and an 8-bit parallel-in/serial-in, serial-out shift register. Each
register is controlled by its own clock. A “low” on the parallel
load input (PL) shifts parallel stored data asynchronously into
the shift register. A “low” master input (MR) clears the shift
register. Serial input data can also be synchronously shifted
through the shift register when PL is high.
• Asynchronous Parallel Load
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
• Wide Operating Temperature Range . . . -55oC to 125oC
• Balanced Propagation Delay and Transition Times
Ordering Information
• Significant Power Reduction Compared to LSTTL
Logic ICs
TEMP. RANGE (oC)
PACKAGE
CD54HC597F3A
-55 to 125
16 Ld CERDIP
CD74HC597E
-55 to 125
16 Ld PDIP
CD74HC597M
-55 to 125
16 Ld SOIC
CD74HC597MT
-55 to 125
16 Ld SOIC
CD74HC597M96
-55 to 125
16 Ld SOIC
CD74HC597NSR
-55 to 125
16 Ld SOP
CD74HCT597E
-55 to 125
16 Ld PDIP
CD74HCT597M
-55 to 125
16 Ld SOIC
CD74HCT597MT
-55 to 125
16 Ld SOIC
CD74HCT597M96
-55 to 125
16 Ld SOIC
PART NUMBER
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
NOTE: When ordering, use the entire part number. The suffixes 96
and R denote tape and reel. The suffix T denotes a small-quantity
reel of 250.
Pinout
CD54HC597
(CERDIP)
CD74HC597
(PDIP, SOIC, SOP)
CD74HCT597
(PDIP, SOIC)
TOP VIEW
D1 1
16 VCC
D2 2
15 D0
D3 3
14 DS
D4 4
13 PL
D5 5
12 STCP
D6 6
11 SHCP
D7 7
10 MR
GND 8
9 Q7
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© 2003, Texas Instruments Incorporated
1
CD54HC597, CD74HC597, CD74HCT597
Functional Diagram
DS
D0
14
15
1
D1
2
D2
PARALLEL
DATA
INPUTS
3
D3
8 F/F
STORAGE
REG.
5
4
D4
D5
6
D6
7
D7
STCP
8-BIT
SHIFT
REG.
9
Q7
12
11
SHCP
PL
13
10
MR
FUNCTION TABLE
STCP
SHCP
PL
MR
FUNCTION
↑
X
X
X
Data Loaded to Input Flip-Flops
↑
X
L
H
Data Loaded from Inputs to Shift Register
No Clock Edge
X
L
H
Data Transferred from Input Flip-Flops to Shift Register
X
X
L
L
Invalid Logic, State of Shift Register Indeterminate when
Signals Removed
X
X
H
L
Shift Register Cleared
X
↑
H
H
Shift Register Clocked Qn = Qn-1, Q0 = DS
H = High Voltage Level, L = Low Voltage Level, X = Don’t Care, ↑ = Transition from Low to High CP Level
2
CD54HC597, CD74HC597, CD74HCT597
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, IO
For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±25mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . .
67
M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . .
73
NS (SOP) Package . . . . . . . . . . . . . . . . . . . . . . . . .
64
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
VIH
-
-
2
1.5
-
-
1.5
4.5
3.15
-
-
3.15
-
3.15
-
V
6
4.2
-
-
4.2
-
4.2
-
V
2
-
-
0.5
-
0.5
-
0.5
V
4.5
-
-
1.35
-
1.35
-
1.35
V
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
-
1.5
-
V
HC TYPES
High Level Input
Voltage
Low Level Input
Voltage
VIL
High Level Output
Voltage
CMOS Loads
VOH
-
VIH or VIL
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
II
VCC or
GND
-
6
-
-
1.8
-
1.8
-
1.8
V
-0.02
2
1.9
-
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
-
5.9
-
5.9
-
V
-
-
-
-
-
-
-
-
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
-5.2
6
5.48
-
-
5.34
-
5.2
-
V
0.02
2
-
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
0.02
6
-
-
0.1
-
0.1
-
0.1
V
-
-
-
-
-
-
-
-
-
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
5.2
6
-
-
0.26
-
0.33
-
0.4
V
-
6
-
-
±0.1
-
±1
-
±1
µA
3
CD54HC597, CD74HC597, CD74HCT597
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
ICC
VCC or
GND
0
6
-
-
8
-
80
-
160
µA
High Level Input
Voltage
VIH
-
-
4.5 to
5.5
2
-
-
2
-
2
-
V
Low Level Input
Voltage
VIL
-
-
4.5 to
5.5
-
-
0.8
-
0.8
-
0.8
V
High Level Output
Voltage
CMOS Loads
VOH
VIH or VIL
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
±0.1
-
±1
-
±1
µA
PARAMETER
Quiescent Device
Current
HCT TYPES
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
Quiescent Device
Current
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
II
VCC and
GND
0
5.5
-
ICC
VCC or
GND
0
5.5
-
-
8
-
80
-
160
µA
∆ICC
(Note 2)
VCC
-2.1
-
4.5 to
5.5
-
100
360
-
450
-
490
µA
NOTE:
2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT
UNIT LOADS
DS
0.2
Dn
0.3
PL, MR
1.5
STCP, SHCP
1.5
NOTE: Unit Load is ∆ICC limit specified in DC Electrical Specifications
Table, e.g., 360µA max. at 25oC.
Prerequisite for Switching Specifications
25oC
PARAMETER
-40oC TO 85oC
-55oC TO 125oC
SYMBOL
VCC (V)
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
fMAX
2
6
-
-
5
-
-
4
-
-
MHz
4.5
30
-
-
25
-
-
20
-
-
MHz
6
35
-
-
29
-
-
23
-
-
MHz
HC TYPES
SHCP Frequency
4
CD54HC597, CD74HC597, CD74HCT597
Prerequisite for Switching Specifications
(Continued)
25oC
-40oC TO 85oC
-55oC TO 125oC
SYMBOL
VCC (V)
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
tW
2
80
-
-
100
-
-
120
-
-
ns
4.5
16
-
-
20
-
-
24
-
-
ns
6
14
-
-
17
-
-
20
-
-
ns
2
60
-
-
75
-
-
90
-
-
ns
4.5
12
-
-
15
-
-
18
-
-
ns
6
10
-
-
13
-
-
15
-
-
ns
2
80
-
-
100
-
-
120
-
-
ns
4.5
16
-
-
20
-
-
24
-
-
ns
6
14
-
-
17
-
-
20
-
-
ns
2
70
-
-
90
-
-
105
-
-
ns
4.5
14
-
-
18
-
-
21
-
-
ns
6
12
-
-
15
-
-
18
-
-
ns
2
100
-
-
125
-
-
150
-
-
ns
4.5
20
-
-
25
-
-
30
-
-
ns
6
17
-
-
21
-
-
26
-
-
ns
2
50
-
-
65
-
-
75
-
-
ns
4.5
10
-
-
13
-
-
15
-
-
ns
6
9
-
-
11
-
-
13
-
-
ns
2
0
-
-
0
-
-
0
-
-
ns
4.5
0
-
-
0
-
-
0
-
-
ns
6
0
-
-
0
-
-
0
-
-
ns
2
3
-
-
3
-
-
3
-
-
ns
4.5
3
-
-
3
-
-
3
-
-
ns
6
3
-
-
3
-
-
3
-
-
ns
2
3
-
-
3
-
-
3
-
-
ns
4.5
3
-
-
3
-
-
3
-
-
ns
6
3
-
-
3
-
-
3
-
-
ns
fMAX
4.5
25
-
-
20
-
-
16
-
-
MHz
SHCP Pulse Width
tW
4.5
20
-
-
25
-
-
30
-
-
ns
STCP Pulse Width
tW
4.5
13
-
-
16
-
-
20
-
-
ns
MR Pulse Width
tW
4.5
18
-
-
23
-
-
27
-
-
ns
PL Pulse Width
tW
4.5
16
-
-
20
-
-
24
-
-
ns
STCP to SHCP Setup
Time
tSU
4.5
24
-
-
30
-
-
36
-
-
ns
PARAMETER
SHCP Pulse Width
STCP Pulse Width
MR Pulse Width
PL Pulse Width
STCP to SHCP Setup
Time
DS to SHCP Setup Time
Dn to STCP Setup Time
STCP to SHCP Setup
Time
DS to SHCP Hold Time
Dn to STCP Hold Time
MR to SHCP Removal
Time
tW
tW
tW
tSU
tSU
tH
tH
tREM
HCT TYPES
SHCP Frequency
5
CD54HC597, CD74HC597, CD74HCT597
Prerequisite for Switching Specifications
(Continued)
25oC
-40oC TO 85oC
-55oC TO 125oC
PARAMETER
SYMBOL
VCC (V)
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
DS to SHCP Setup Time
Dn to STCP Setup Time
tH
4.5
10
-
-
13
-
-
15
-
-
ns
STCP to SHCP Hold Time
tH
4.5
0
-
-
0
-
-
0
-
-
ns
DS to SHCP Hold Time
Dn to STCP Hold Time
tH
4.5
3
-
-
3
-
-
3
-
-
ns
MR to SHCP Removal
Time
tREM
4.5
10
-
-
13
-
-
15
-
-
ns
Switching Specifications Input tr, tf = 6ns
PARAMETER
HC TYPES
Propagation Delay
STCP to Q7
MR to Q7
Output Transition Time
Input Capacitance
Power Dissipation
Capacitance, (Notes 3, 4)
-40oC to 85oC -55oC to 125oC
SYMBOL
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
tPLH, tPHL
CL = 50pF
2
-
-
175
-
220
-
265
ns
SHCP to Q7
PL to Q7
25oC
TEST
CONDITIONS
tPLH, tPHL
tPLH, tPHL
tPLH, tPHL
tTLH, tTHL
4.5
-
-
35
-
44
-
53
ns
CL =15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
6
-
-
30
-
37
-
45
ns
CL = 50pF
2
-
-
200
-
250
-
300
ns
4.5
-
-
40
-
50
-
60
ns
CL =15pF
5
-
17
-
-
-
-
-
ns
CL = 50pF
6
-
-
34
-
43
-
51
ns
CL = 50pF
2
-
-
240
-
300
-
360
ns
4.5
-
-
48
-
60
-
72
ns
CL =15pF
5
-
20
-
-
-
-
-
ns
CL = 50pF
6
-
-
41
-
51
-
61
ns
CL = 50pF
2
-
-
175
-
220
-
265
ns
4.5
-
-
35
-
44
-
53
ns
CL =15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
6
-
-
30
-
37
-
45
ns
CL = 50pF
2
-
-
75
-
95
-
110
ns
4.5
-
-
15
-
19
-
22
ns
6
-
-
13
-
16
-
19
ns
CI
CL = 50pF
-
-
-
10
-
10
-
10
pF
CPD
-
5
-
13.5
-
-
-
-
-
pF
HCT
Propagation Delay
tPLH, tPHL
SHCP to Q7
PL to Q7
STCP to Q7
tPLH, tPHL
tPLH, tPHL
CL = 50pF
4.5
-
-
38
-
48
-
57
ns
CL = 15pF
5
-
16
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
48
72
ns
CL = 15pF
5
-
20
-
-
ns
CL = 50pF
4.5
-
-
56
CL = 15pF
5
-
23
-
6
60
-
-
-
70
-
-
-
84
ns
-
ns
CD54HC597, CD74HC597, CD74HCT597
Switching Specifications Input tr, tf = 6ns
PARAMETER
MR to Q7
Output Transition Time
Input Capacitance
Power Dissipation
Capacitance, (Notes 3, 4)
(Continued)
25oC
-40oC to 85oC -55oC to 125oC
SYMBOL
TEST
CONDITIONS
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
tPLH, tPHL
CL = 50pF
4.5
-
-
44
-
55
-
66
ns
CL = 15pF
5
-
18
-
-
-
-
-
ns
tTLH, tTHL
CL = 50pF
4.5
-
-
15
-
19
-
22
ns
CI
CL = 50pF
-
-
-
10
-
10
-
10
pF
CPD
-
5
-
18.5
-
-
-
-
-
pF
NOTES:
3. CPD is used to determine the dynamic power consumption, per package.
4. PD = CPD VCC2 fi + Σ (CL VCC2 fo) where: fi = Input Frequency, fo = Output Frequency, CL = Output Load Capacitance, VCC = Supply
Voltage.
Test Circuits and Waveforms
tfCL
trCL
CLOCK
tWL + tWH =
90%
10%
I
fCL
CLOCK
50%
50%
tfCL = 6ns
2.7V
1.3V
0.3V
0.3V
GND
1.3V
1.3V
GND
tWH
tWL
tWH
tWL
I
fCL
3V
VCC
50%
10%
tWL + tWH =
trCL = 6ns
NOTE: Outputs should be switching from 10% VCC to 90% VCC in
accordance with device truth table. For fMAX, input duty cycle = 50%.
NOTE: Outputs should be switching from 10% VCC to 90% VCC in
accordance with device truth table. For fMAX, input duty cycle = 50%.
FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND
PULSE WIDTH
FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND
PULSE WIDTH
tr = 6ns
tf = 6ns
90%
50%
10%
INPUT
GND
tTLH
GND
tTHL
90%
50%
10%
INVERTING
OUTPUT
3V
2.7V
1.3V
0.3V
INPUT
tTHL
tPHL
tf = 6ns
tr = 6ns
VCC
tTLH
90%
1.3V
10%
INVERTING
OUTPUT
tPHL
tPLH
FIGURE 3. HC TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
tPLH
FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
7
CD54HC597, CD74HC597, CD74HCT597
Test Circuits and Waveforms
trCL
tfCL
trCL
CLOCK
INPUT
(Continued)
VCC
90%
GND
tH(H)
GND
tH(H)
VCC
DATA
INPUT
50%
tH(L)
3V
1.3V
1.3V
1.3V
GND
tSU(H)
tSU(H)
tSU(L)
tTLH
90%
OUTPUT
tTHL
90%
50%
10%
tTLH
90%
1.3V
OUTPUT
tREM
3V
SET, RESET
OR PRESET
GND
tTHL
1.3V
10%
FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME,
AND PROPAGATION DELAY TIMES FOR EDGE
TRIGGERED SEQUENTIAL LOGIC CIRCUITS
tPHL
1.3V
GND
IC
CL
50pF
GND
90%
tPLH
50%
IC
tSU(L)
tPHL
tPLH
tREM
VCC
SET, RESET
OR PRESET
1.3V
0.3V
tH(L)
DATA
INPUT
3V
2.7V
CLOCK
INPUT
50%
10%
tfCL
CL
50pF
FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME,
AND PROPAGATION DELAY TIMES FOR EDGE
TRIGGERED SEQUENTIAL LOGIC CIRCUITS
8
CD54HC597, CD74HC597, CD74HCT597
Timing Diagram
SHIFT CLOCK
SHCP
SERIAL DATE
DS
MASTER RESET
MR
PARALLEL LOAD
PL
STORAGE CLOCK
STCP
PARALLEL
DATA
INPUTS
D0
H
L
L
D1
L
L
L
D2
H
L
L
D3
L
L
L
D4
H
L
H
D5
H
L
H
D6
L
L
L
D7
H
H
H
Q7
L
L
H
L
H
H
L
H
L
H
L
H
L
L
L
H
L
H
H
RESET
SHIFT
REGISTER
SERIAL
SHIFT
SERIAL
SHIFT
LOAD
FLIP-FLOPS
PARALLEL LOAD
SHIFT REGISTER
LOAD
FLIP-FLOPS
9
SERIAL
SHIFT
PARALLEL LOAD
SHIFT REGISTER
SERIAL
SHIFT
PARALLEL LOAD FLIP-FLOPS
AND SHIFT REGISTER
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
5962-8681701EA
ACTIVE
CDIP
J
16
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-8681701EA
CD54HC597F3A
CD54HC597F3A
ACTIVE
CDIP
J
16
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-8681701EA
CD54HC597F3A
CD74HC597E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-55 to 125
CD74HC597E
CD74HC597EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-55 to 125
CD74HC597E
CD74HC597M
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC597M
CD74HC597M96
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC597M
CD74HC597M96E4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC597M
CD74HC597M96G4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC597M
CD74HC597MG4
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC597M
CD74HC597MT
ACTIVE
SOIC
D
16
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC597M
CD74HC597NSR
ACTIVE
SO
NS
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC597M
CD74HCT597E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-55 to 125
CD74HCT597E
CD74HCT597M
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT597M
CD74HCT597M96
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT597M
CD74HCT597M96G4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT597M
CD74HCT597MG4
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT597M
CD74HCT597MT
ACTIVE
SOIC
D
16
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT597M
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF CD54HC597, CD74HC597 :
• Catalog: CD74HC597
• Military: CD54HC597
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Military - QML certified for Military and Defense Applications
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
CD74HC597M96
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
CD74HC597NSR
SO
NS
16
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
CD74HCT597M96
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HC597M96
SOIC
D
16
2500
333.2
345.9
28.6
CD74HC597NSR
SO
NS
16
2000
367.0
367.0
38.0
CD74HCT597M96
SOIC
D
16
2500
333.2
345.9
28.6
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
Similar pages