PD - 97320A IRF6797MPbF IRF6797MTRPbF HEXFET® Power MOSFET plus Schottky Diode Typical values (unless otherwise specified) RoHs Compliant Containing No Lead and Bromide VDSS VGS RDS(on) RDS(on) l Integrated Monolithic Schottky Diode 25V max ±20V max 1.1mΩ@ 10V 1.8mΩ@ 4.5V l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) l Ultra Low Package Inductance 45nC 13nC 6.2nC 38nC 38nC 1.8V l Optimized for High Frequency Switching l Ideal for CPU Core DC-DC Converters l Optimized for Sync. FET socket of Sync. Buck Converter l Low Conduction and Switching Losses l Compatible with existing Surface Mount Techniques l 100% Rg tested DirectFET ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) l SQ SX ST MQ MT MX MP Description The IRF6797MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6797MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6797MPbF has been optimized for parameters that are critical in synchronous buck converter’s Sync FET sockets. Absolute Maximum Ratings Max. Units Drain-to-Source Voltage 25 V Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ±20 Parameter VGS ID @ TA = 25°C ID @ TA = 70°C Continuous Drain Current, VGS ID @ TC = 25°C Continuous Drain Current, VGS IDM EAS Pulsed Drain Current IAR Avalanche Current g e @ 10V e @ 10V f Single Pulse Avalanche Energy g Typical RDS(on) (mΩ) ID = 36A 3 T J = 125°C 1 T J = 25°C 0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com 29 A 210 300 h 4 2 36 VGS, Gate-to-Source Voltage (V) VDS 260 mJ 30 A 14.0 ID= 30A 12.0 VDS= 20V VDS= 13V 10.0 8.0 6.0 4.0 2.0 0.0 0 20 40 60 80 100 120 Q G Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.57mH, RG = 25Ω, IAS = 30A. 1 03/16/09 IRF6797MTRPbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Min. Conditions Typ. Max. Units Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient 25 ––– ––– 10 ––– ––– Static Drain-to-Source On-Resistance ––– ––– 1.1 1.8 1.4 2.4 Gate Threshold Voltage Gate Threshold Voltage Coefficient 1.35 ––– 1.8 -4.6 Drain-to-Source Leakage Current ––– ––– ––– ––– Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– Forward Transconductance Total Gate Charge VGS = 0V, ID = 1.0mA V mV/°C Reference to 25°C, ID = 10mA mΩ VGS = 10V, ID = 38A i = 30A i VGS = 4.5V, ID VDS = VGS, ID = 150µA 2.35 V V ––– mV/°C DS = VGS, ID = 10mA 500 µA VDS = 20V, VGS = 0V 5.0 mA ––– ––– 100 -100 nA VDS = 20V, VGS = 0V, TJ = 125°C VGS = 20V 130 ––– ––– 45 ––– 68 S VGS = -20V VDS = 13V, ID = 30A Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge ––– ––– 12 6.2 ––– ––– Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 13 14 ––– ––– Output Charge ––– ––– 19.2 38 ––– ––– Gate Resistance Turn-On Delay Time ––– ––– 1.3 22 2.2 ––– Ω Rise Time Turn-Off Delay Time ––– ––– 32 20 ––– ––– ns Fall Time Input Capacitance ––– ––– 15 5790 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 1790 720 ––– ––– Min. Typ. Max. Units VDS = 13V nC VGS = 4.5V ID = 30A See Fig. 15 nC VDS = 16V, VGS = 0V i VDD = 13V, VGS = 4.5V ID = 30A RG = 1.8Ω pF See Fig. 17 VGS = 0V VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ––– ––– 36 ISM Pulsed Source Current (Body Diode) ––– ––– 300 VSD Diode Forward Voltage ––– ––– trr Reverse Recovery Time Reverse Recovery Charge ––– ––– 30 38 Qrr g Conditions A MOSFET symbol showing the 0.65 V integral reverse p-n junction diode. TJ = 25°C, IS = 30A, VGS = 0V 45 57 ns nC TJ = 25°C, IF = 30A di/dt = 200A/µs i i Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6797MTRPbF Absolute Maximum Ratings Parameter e Power Dissipation e Power Dissipation f PD @TA = 25°C Power Dissipation PD @TA = 70°C PD @TC = 25°C TP Max. Units 2.8 W 1.8 89 270 Peak Soldering Temperature °C -40 to + 150 TJ Operating Junction and TSTG Storage Temperature Range Thermal Resistance Parameter el Junction-to-Ambient jl Junction-to-Ambient kl Junction-to-Case fl RθJA Typ. Max. ––– 45 12.5 ––– 20 ––– ––– 1.4 Junction-to-Ambient RθJA RθJA RθJC RθJ-PCB Junction-to-PCB Mounted Linear Derating Factor 1.0 e Units °C/W ––– 0.022 W/°C Thermal Response ( Z thJA ) 100 D = 0.50 10 0.20 0.10 0.05 1 R1 R1 0.02 τJ 0.01 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τ3 R4 R4 τ4 τ4 R5 R5 τ5 R6 R6 τA τA τ5 Ci= τi/Ri Ci τi/Ri 0.1 1E-005 0.0001 0.001 0.01 τi (sec) 1.65e-06 7.16e-04 4.78e-03 1.17e-02 1.05e+00 4.70e+01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 Ri (°C/W) 1.47e-02 3.04e-01 4.53e-01 3.23e+00 2.28e+01 1.82e+01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (At lower pulse widths ZthJA & ZTHJC are combined) Notes: Rθ is measured at TJ of approximately 90°C. Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6797MTRPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.3V 3.5V 3.3V 3.0V 2.8V 2.5V 100 10 1 2.5V 10 2.5V ≤60µs PULSE WIDTH 1 0.1 1 10 0.1 100 10 100 Fig 5. Typical Output Characteristics 1000 2.0 VDS = 15V ≤60µs PULSE WIDTH ID = 38A Typical R DS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1 2 3 4 10 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd T J = 25°C Typical R DS(on) ( mΩ) Ciss Coss 1000 Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 8 Coss = Cds + Cgd 10000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 BOTTOM VGS 10V 5.0V 4.3V 3.5V 3.3V 3.0V 2.8V 2.5V Crss 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 50 100 150 200 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6797MTRPbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R (on) DS 100µsec 100 100 10 T J = 150°C T J = 25°C T J = -40°C 1 1msec 10msec 10 DC 1 T A = 25°C T J = 150°C VGS = 0V Single Pulse 0.1 0 0.01 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fig 10. Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) 180 160 140 120 100 80 60 40 20 2.0 ID = 10mA 1.5 1.0 0 100 100.00 2.5 Typical V GS(th) Gate threshold Voltage (V) 200 75 10.00 Fig11. Maximum Safe Operating Area 220 50 1.00 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 25 0.10 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 1200 ID 7.6A 19A BOTTOM 30A TOP 1000 800 600 400 200 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6797MTRPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T V RGSG 20V DRIVER L VDS tp + - VDD IAS A I AS 0.01Ω tp Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) Fig 17a. Switching Time Test Circuit 6 tr t d(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6797MTRPbF Driver Gate Drive D.U.T P.W. + + - - RG * • • • • *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period V DD ** + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent - Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel ISD *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6797MTRPbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.616 0.020 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.676 0.080 0.17 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF6797MTRPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6797MTRPBF). For 1000 parts on 7" reel, order IRF6797MTR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC METRIC IMPERIAL MAX MIN CODE MIN MIN MAX MIN MAX MAX N.C 6.9 A 12.992 330.0 N.C 177.77 N.C N.C N.C 0.75 B 0.795 20.2 N.C 19.06 N.C N.C 0.50 0.53 C 0.504 12.8 0.520 13.5 13.2 12.8 0.059 D 0.059 N.C 1.5 N.C 1.5 N.C N.C 2.31 E 3.937 N.C 100.0 58.72 N.C N.C N.C N.C F N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 12.4 11.9 0.567 14.4 12.01 H 0.47 0.469 N.C 11.9 11.9 0.606 15.4 12.01 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 7.90 8.10 0.319 0.154 3.90 4.10 0.161 0.469 11.90 12.30 0.484 0.215 0.219 5.45 5.55 0.201 5.10 5.30 0.209 0.256 6.50 6.70 0.264 0.059 1.50 N.C N.C 0.059 1.50 1.60 0.063 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/09 www.irf.com 9