Microsemi APT43GA90B High speed pt igbt Datasheet

APT43GA90B
APT43GA90S
900V
High Speed PT IGBT
(B)
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
®
FEATURES
TO
-2
D3PAK
47
(S)
C
G
G
C
E
E
Single die IGBT
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
900
V
IC1
Continuous Collector Current @ TC = 25°C
78
IC2
Continuous Collector Current @ TC = 100°C
43
129
Vces
Parameter
A
ICM
Pulsed Collector Current
VGE
Gate-Emitter Voltage 2
±30
V
PD
Total Power Dissipation @ TC = 25°C
337
W
1
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
VBR(CES)
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
Symbol
129A @ 900V
TJ = 25°C unless otherwise specified
Parameter
Collector-Emitter Breakdown Voltage
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
°C
300
Test Conditions
Min
VGE = 0V, IC = 1.0mA
900
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
3.1
VGE = 15V,
TJ = 25°C
2.5
IC = 25A
TJ = 125°C
2.2
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
V
6
VCE = 900V,
TJ = 25°C
250
VGE = 0V
TJ = 125°C
1000
VGS = ±30V
Unit
±100
μA
nA
Thermal and Mechanical Characteristics
Symbol
Min
Typ
Max
Unit
RθJC
Junction to Case Thermal Resistance
-
-
0.37
°C/W
WT
Package Weight
-
5.9
-
g
10
in·lbf
Torque
Characteristic
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Microsemi Website - http://www.microsemi.com
052-6333 Rev C 7 - 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg2
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
APT43GA90B_S
TJ = 25°C unless otherwise specified
Test Conditions
Min
Typ
Capacitance
2465
VGE = 0V, VCE = 25V
227
f = 1MHz
34
Gate Charge
116
VGE = 15V
18
VCE= 450V
44
L= 100uH, VCE = 900V
129
12
Current Rise Time
VCC = 600V
16
Turn-Off Delay Time
VGE = 15V
82
IC = 25A
57
Turn-On Switching Energy
RG = 4.7Ω3
875
Eoff5
Turn-Off Switching Energy
TJ = +25°C
425
td(on
Turn-On Delay Time
Inductive Switching (125°C)
12
tr
Current Rise Time
VCC = 600V
16
Turn-Off Delay Time
VGE = 15V
117
IC = 25A
129
Eon1
Turn-On Switching Energy
RG = 4.7Ω3
1660
Eoff5
Turn-Off Switching Energy
TJ = +125°C
1000
tf
Current Fall Time
pF
nC
A
Eon1
td(off)
Unit
IC = 25A
TJ = 150°C, RG = 4.7Ω, VGE = 15V,
Inductive Switching (25°C)
Current Fall Time
Max
ns
μJ
ns
μJ
052-6333 Rev C 7 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. See Mil-Std-750 Method 3471
3 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
4 Eon1 is the inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on switching loss. It is
measured by clamping the inductance with a silicon carbide Schottky diode.
5 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT43GA90B_S
300
40
= 15V
25
20
TJ= 125°C
TJ= 150°C
15
TJ= 25°C
10
5
150
100
TJ= 25°C
TJ= -55°C
TJ= 125°C
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
6
100
0
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 50A
3
IC = 25A
IC = 12.5A
1
6
8
J
VCE = 180V
8
10
12
14
16
2
0.80
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
100 150
200
250
GATE CHARGE (nC)
FIGURE 4, Gate charge
300
4
IC = 50A
3
IC = 25A
2
IC = 12.5A
1
0
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
50
100
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
0.85
50
5
1.05
0.90
0
6
120
0.95
VCE = 720V
4
1.10
1.00
VCE = 450V
6
0
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
5V
0
5
10
15
20
25
30
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0.75
-.50 -.25
8V
I = 25A
C
T = 25°C
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
2
9V
50
2
5
0
10V
VGE, GATE-TO-EMITTER VOLTAGE (V)
200
0
11V
150
12
250μs PULSE
TEST<0.5 % DUTY
CYCLE
50
12V
200
0
0.5 1
1.5
2
2.5 3
3.5
4
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
250
13V
250
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
30
0
IC, COLLECTOR CURRENT (A)
15V
TJ= 55°C
0
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6333 Rev C 7 - 2009
GE
IC, COLLECTOR CURRENT (A)
V
35
Typical Performance Curves
APT43GA90B_S
200
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
16
14
VGE = 15V
12
10
8
6
VCE = 600V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
150
100
50
VCE = 600V
RG = 4.7Ω
L = 100μH
0
10
20
30
40
50
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
10
20
30
40
50
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
160
RG = 4.7Ω, L = 100μH, VCE = 600V
45
VGE =15V,TJ=25°C
0
4
50
VGE =15V,TJ=125°C
RG = 4.7Ω, L = 100μH, VCE = 600V
140
40
120
tr, FALL TIME (ns)
tr, RISE TIME (ns)
35
30
25
20
15
10
TJ = 25 or 125°C,VGE = 15V
0
2500
G
2000
TJ = 125°C
1500
1000
TJ = 25°C
500
0
10
20
30
40
50
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2400
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
V
= 600V
CE
V
= +15V
GE
R = 4.7Ω
J
4000
Eon2,50A
3000
Eon2,50A
Eoff,25A
Eon2,25A
1000
Eoff,12.5A
Eon2,12.5A
0
0
G
2000
TJ = 125°C
1600
1200
800
400
TJ = 25°C
0
10
20
30
40
50
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
3000
V
= 600V
CE
V
= +15V
GE
T = 125°C
2000
V
= 600V
CE
V
= +15V
GE
R = 4.7Ω
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
5000
TJ = 25°C, VGE = 15V
40
0
0
10
20
30
40
50
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
60
20
0
052-6333 Rev C 7 - 2009
80
5
0
10
20
30
40
50
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3000
TJ = 125°C, VGE = 15V
100
V
= 600V
CE
V
= +15V
GE
R = 4.7Ω
2500
G
Eon2,50A
Eon2,50A
2000
1500
Eoff,25A
1000
Eoff,25A
500
Eon2,12.5A
Eoff,12.5A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT43GA90B_S
10000
200
1000
Coes
100
Cres
10
0
200
400
600
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
100
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
10
1
0.1
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
D = 0.9
0.35
0.30
0.7
0.25
0.5
0.20
Note:
0.15
PDM
0.3
0.10
t2
t
0.1
0.05
0.05
0
t1
SINGLE PULSE
10-2
10-3
0.1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5
10-4
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
1
052-6333 Rev C 7 - 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
APT43GA90B_S
10%
Gate Voltage
TJ = 125°C
90%
td(on)
APT30DQ120
tr
V CE
IC
V CC
Collector Current
10%
5%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
TJ = 125°C
90%
Gate Voltage
Figure 21, Turn-on Switching Waveforms and Definitions
td(off)
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 22, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector (Cathode)
(Heat Sink)
D PAK Package Outline
e3 SAC: Tin, Silver, Copper
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
052-6333 Rev C 7 - 2009
13.41 (.528)
13.51(.532)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
Emitter
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages