APT43GA90B APT43GA90S 900V High Speed PT IGBT (B) POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. ® FEATURES TO -2 D3PAK 47 (S) C G G C E E Single die IGBT TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 900 V IC1 Continuous Collector Current @ TC = 25°C 78 IC2 Continuous Collector Current @ TC = 100°C 43 129 Vces Parameter A ICM Pulsed Collector Current VGE Gate-Emitter Voltage 2 ±30 V PD Total Power Dissipation @ TC = 25°C 337 W 1 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL VBR(CES) -55 to 150 Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics Symbol 129A @ 900V TJ = 25°C unless otherwise specified Parameter Collector-Emitter Breakdown Voltage VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage °C 300 Test Conditions Min VGE = 0V, IC = 1.0mA 900 Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 3.1 VGE = 15V, TJ = 25°C 2.5 IC = 25A TJ = 125°C 2.2 VGE =VCE , IC = 1mA ICES Typ 3 4.5 V 6 VCE = 900V, TJ = 25°C 250 VGE = 0V TJ = 125°C 1000 VGS = ±30V Unit ±100 μA nA Thermal and Mechanical Characteristics Symbol Min Typ Max Unit RθJC Junction to Case Thermal Resistance - - 0.37 °C/W WT Package Weight - 5.9 - g 10 in·lbf Torque Characteristic Mounting Torque (TO-247 Package), 4-40 or M3 screw Microsemi Website - http://www.microsemi.com 052-6333 Rev C 7 - 2009 Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg2 Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf Gate- Collector Charge Switching Safe Operating Area Turn-On Delay Time APT43GA90B_S TJ = 25°C unless otherwise specified Test Conditions Min Typ Capacitance 2465 VGE = 0V, VCE = 25V 227 f = 1MHz 34 Gate Charge 116 VGE = 15V 18 VCE= 450V 44 L= 100uH, VCE = 900V 129 12 Current Rise Time VCC = 600V 16 Turn-Off Delay Time VGE = 15V 82 IC = 25A 57 Turn-On Switching Energy RG = 4.7Ω3 875 Eoff5 Turn-Off Switching Energy TJ = +25°C 425 td(on Turn-On Delay Time Inductive Switching (125°C) 12 tr Current Rise Time VCC = 600V 16 Turn-Off Delay Time VGE = 15V 117 IC = 25A 129 Eon1 Turn-On Switching Energy RG = 4.7Ω3 1660 Eoff5 Turn-Off Switching Energy TJ = +125°C 1000 tf Current Fall Time pF nC A Eon1 td(off) Unit IC = 25A TJ = 150°C, RG = 4.7Ω, VGE = 15V, Inductive Switching (25°C) Current Fall Time Max ns μJ ns μJ 052-6333 Rev C 7 - 2009 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. See Mil-Std-750 Method 3471 3 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 4 Eon1 is the inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on switching loss. It is measured by clamping the inductance with a silicon carbide Schottky diode. 5 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves APT43GA90B_S 300 40 = 15V 25 20 TJ= 125°C TJ= 150°C 15 TJ= 25°C 10 5 150 100 TJ= 25°C TJ= -55°C TJ= 125°C VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 6 100 0 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 50A 3 IC = 25A IC = 12.5A 1 6 8 J VCE = 180V 8 10 12 14 16 2 0.80 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 100 150 200 250 GATE CHARGE (nC) FIGURE 4, Gate charge 300 4 IC = 50A 3 IC = 25A 2 IC = 12.5A 1 0 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 50 100 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 0.85 50 5 1.05 0.90 0 6 120 0.95 VCE = 720V 4 1.10 1.00 VCE = 450V 6 0 IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 5V 0 5 10 15 20 25 30 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 0.75 -.50 -.25 8V I = 25A C T = 25°C 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 2 9V 50 2 5 0 10V VGE, GATE-TO-EMITTER VOLTAGE (V) 200 0 11V 150 12 250μs PULSE TEST<0.5 % DUTY CYCLE 50 12V 200 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 250 13V 250 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 30 0 IC, COLLECTOR CURRENT (A) 15V TJ= 55°C 0 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6333 Rev C 7 - 2009 GE IC, COLLECTOR CURRENT (A) V 35 Typical Performance Curves APT43GA90B_S 200 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 16 14 VGE = 15V 12 10 8 6 VCE = 600V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH 150 100 50 VCE = 600V RG = 4.7Ω L = 100μH 0 10 20 30 40 50 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 10 20 30 40 50 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 160 RG = 4.7Ω, L = 100μH, VCE = 600V 45 VGE =15V,TJ=25°C 0 4 50 VGE =15V,TJ=125°C RG = 4.7Ω, L = 100μH, VCE = 600V 140 40 120 tr, FALL TIME (ns) tr, RISE TIME (ns) 35 30 25 20 15 10 TJ = 25 or 125°C,VGE = 15V 0 2500 G 2000 TJ = 125°C 1500 1000 TJ = 25°C 500 0 10 20 30 40 50 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 2400 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) V = 600V CE V = +15V GE R = 4.7Ω J 4000 Eon2,50A 3000 Eon2,50A Eoff,25A Eon2,25A 1000 Eoff,12.5A Eon2,12.5A 0 0 G 2000 TJ = 125°C 1600 1200 800 400 TJ = 25°C 0 10 20 30 40 50 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 3000 V = 600V CE V = +15V GE T = 125°C 2000 V = 600V CE V = +15V GE R = 4.7Ω 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) 5000 TJ = 25°C, VGE = 15V 40 0 0 10 20 30 40 50 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) 60 20 0 052-6333 Rev C 7 - 2009 80 5 0 10 20 30 40 50 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 3000 TJ = 125°C, VGE = 15V 100 V = 600V CE V = +15V GE R = 4.7Ω 2500 G Eon2,50A Eon2,50A 2000 1500 Eoff,25A 1000 Eoff,25A 500 Eon2,12.5A Eoff,12.5A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT43GA90B_S 10000 200 1000 Coes 100 Cres 10 0 200 400 600 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 100 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 10 1 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area D = 0.9 0.35 0.30 0.7 0.25 0.5 0.20 Note: 0.15 PDM 0.3 0.10 t2 t 0.1 0.05 0.05 0 t1 SINGLE PULSE 10-2 10-3 0.1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10-5 10-4 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 1 052-6333 Rev C 7 - 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 0.40 APT43GA90B_S 10% Gate Voltage TJ = 125°C 90% td(on) APT30DQ120 tr V CE IC V CC Collector Current 10% 5% 5% Collector Voltage Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit TJ = 125°C 90% Gate Voltage Figure 21, Turn-on Switching Waveforms and Definitions td(off) Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 22, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) (Heat Sink) D PAK Package Outline e3 SAC: Tin, Silver, Copper 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 052-6333 Rev C 7 - 2009 13.41 (.528) 13.51(.532) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Gate Collector Emitter 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated Emitter Collector Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.