Lattice ISPLSI1016E-80LJ In-system programmable high density pld Datasheet

ispLSI 1016E
®
In-System Programmable High Density PLD
Features
Functional Block Diagram
B7
Output Routing Pool
A0
• HIGH-PERFORMANCE E2CMOS® TECHNOLOGY
— fmax = 125 MHz Maximum Operating Frequency
— tpd = 7.5 ns Propagation Delay
— TTL Compatible Inputs and Outputs
— Electrically Erasable and Reprogrammable
— Non-Volatile
— 100% Tested at Time of Manufacture
— Unused Product Term Shutdown Saves Power
D Q
A1
A2
Logic
A3
Array
B6
B5
D Q
D Q
GLB
B4
B3
A4
D Q
B2
A5
B1
A6
A7
Global Routing Pool (GRP)
Output Routing Pool
• HIGH-DENSITY PROGRAMMABLE LOGIC
— 2000 PLD Gates
— 32 I/O Pins, Four Dedicated Inputs
— 96 Registers
— High-Speed Global Interconnect
— Wide Input Gating for Fast Counters, State
Machines, Address Decoders, etc.
— Small Logic Block Size for Random Logic
B0
CLK
• IN-SYSTEM PROGRAMMABLE
— In-System Programmable (ISP™) 5V Only
— Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality
— Reprogram Soldered Device for Faster Prototyping
0139C1-isp
Description
The ispLSI 1016E is a High Density Programmable Logic
Device containing 96 Registers, 32 Universal I/O pins,
four Dedicated Input pins, three Dedicated Clock Input
pins, one Global OE input pin and a Global Routing Pool
(GRP). The GRP provides complete interconnectivity
between all of these elements. The ispLSI 1016E features
5V in-system programming and in-system diagnostic
capabilities. The ispLSI 1016E offers non-volatile
reprogrammability of the logic, as well as the interconnect
to provide truly reconfigurable systems. A functional
superset of the ispLSI 1016 architecture, the ispLSI
1016E device adds a new global output enable pin.
• OFFERS THE EASE OF USE AND FAST SYSTEM
SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY
OF FIELD PROGRAMMABLE GATE ARRAYS
— Complete Programmable Device Can Combine Glue
Logic and Structured Designs
— Enhanced Pin Locking Capability
— Three Dedicated Clock Input Pins
— Synchronous and Asynchronous Clocks
— Programmable Output Slew Rate Control to
Minimize Switching Noise
— Flexible Pin Placement
— Optimized Global Routing Pool Provides Global
Interconnectivity
• ispDesignEXPERT™ – LOGIC COMPILER AND COMPLETE ISP DEVICE DESIGN SYSTEMS FROM HDL
SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING
— Superior Quality of Results
— Tightly Integrated with Leading CAE Vendor Tools
— Productivity Enhancing Timing Analyzer, Explore
Tools, Timing Simulator and ispANALYZER™
— PC and UNIX Platforms
The basic unit of logic on the ispLSI 1016E device is the
Generic Logic Block (GLB). The GLBs are labeled A0,
A1...B7 (see Figure 1). There are a total of 16 GLBs in the
ispLSI 1016E device. Each GLB has 18 inputs, a
programmable AND/OR/Exclusive OR array, and four
outputs which can be configured to be either combinatorial
or registered. Inputs to the GLB come from the GRP and
dedicated inputs. All of the GLB outputs are brought back
into the GRP so that they can be connected to the inputs
of any other GLB on the device.
Copyright © 1998 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject
to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
1016e_06
1
October 1998
Specifications ispLSI 1016E
Functional Block Diagram
Figure 1. ispLSI 1016E Functional Block Diagram
Generic
Logic Blocks
(GLBs)
GOE 0/IN 3
MODE/IN 2
I/O 31
I/O 30
I/O 29
I/O 28
B7
I/O 12
I/O 13
I/O 14
I/O 15
B5
A2
A3
Global
Routing
Pool
(GRP)
A4
B4
B3
B2
A5
lnput Bus
Output Routing Pool (ORP)
I/O 8
I/O 9
I/O 10
I/O 11
B6
A1
Input Bus
I/O 4
I/O 5
I/O 6
I/O 7
A0
Output Routing Pool (ORP)
I/O 0
I/O 1
I/O 2
I/O 3
I/O 27
I/O 26
I/O 25
I/O 24
I/O 23
I/O 22
I/O 21
I/O 20
I/O 19
I/O 18
I/O 17
I/O 16
B1
A6
B0
A7
SDI/IN 0
SDO/IN 1
Clock
Distribution
Network
CLK 0
CLK 1
CLK 2
IOCLK 0
IOCLK 1
Megablock
Y0
Y1/RESET*
SCLK/Y2
ispEN
*Note: Y1 and RESET are multiplexed on the same pin
0139B(1a)-isp
The GRP has, as its inputs, the outputs from all of the
GLBs and all of the inputs from the bi-directional I/O cells.
All of these signals are made available to the inputs of the
GLBs. Delays through the GRP have been equalized to
minimize timing skew.
The device also has 32 I/O cells, each of which is directly
connected to an I/O pin. Each I/O cell can be individually
programmed to be a combinatorial input, registered input, latched input, output or bi-directional
I/O pin with 3-state control. The signal levels are TTL
compatible voltages and the output drivers can source
4 mA or sink 8 mA. Each output can be programmed
independently for fast or slow output slew rate to minimize overall output switching noise.
Clocks in the ispLSI 1016E device are selected using the
Clock Distribution Network. Three dedicated clock pins
(Y0, Y1 and Y2) are brought into the distribution network,
and five clock outputs (CLK 0, CLK 1, CLK 2, IOCLK 0
and IOCLK 1) are provided to route clocks to the GLBs
and I/O cells. The Clock Distribution Network can also be
driven from a special clock GLB (B0 on the ispLSI 1016E
device). The logic of this GLB allows the user to create an
internal clock from a combination of internal signals
within the device.
Eight GLBs, 16 I/O cells, two dedicated inputs and one
ORP are connected together to make a Megablock (see
Figure 1). The outputs of the eight GLBs are connected
to a set of 16 universal I/O cells by the ORP. Each ispLSI
1016E device contains two Megablocks.
2
Specifications ispLSI 1016E
Absolute Maximum Ratings 1
Supply Voltage VCC ................................ -0.5 to +7.0V
Input Voltage Applied ........................ -2.5 to VCC +1.0V
Off-State Output Voltage Applied ..... -2.5 to VCC +1.0V
Storage Temperature ................................ -65 to 150°C
Case Temp. with Power Applied .............. -55 to 125°C
Max. Junction Temp. (TJ) with Power Applied ... 150°C
1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
DC Recommended Operating Conditions
SYMBOL
PARAMETER
MIN.
MAX.
UNITS
5.25
V
Commercial
TA = 0°C to + 70°C
4.75
Industrial
TA = -40°C to + 85°C
4.5
5.5
V
0
0.8
V
VCC
Supply Voltage
VIL
VIH
Input Low Voltage
Input High Voltage
2.0
Vcc+1
V
Table 2-0005/1016E
Capacitance (TA=25oC, f=1.0 MHz)
TYPICAL
UNITS
C1
Dedicated Input, I/O, Y1, Y2, Y3, Clock Capacitance
(Commercial/Industrial)
8
pf
VCC = 5.0V, VPIN = 2.0V
C2
Y0 Clock Capacitance
12
pf
VCC = 5.0V, VPIN = 2.0V
SYMBOL
PARAMETER
TEST CONDITIONS
Table 2-0006/1016E
Data Retention Specifications
PARAMETER
MINIMUM
MAXIMUM
UNITS
20
–
Years
10000
–
Cycles
Data Retention
Erase/Reprogram Cycles
Table 2-0008/1016E
3
Specifications ispLSI 1016E
Switching Test Conditions
Input Pulse Levels
Figure 2. Test Load
GND to 3.0V
Input Rise and Fall Time
10% to 90%
-125
≤ 2 ns
-100, -80
≤ 3 ns
Input Timing Reference Levels
1.5V
Output Timing Reference Levels
1.5V
Output Load
+ 5V
R1
Device
Output
See Figure 2
Table 2-0003/1016E
3-state levels are measured 0.5V from
steady-state active level.
Test
Point
R2
CL*
Output Load Conditions (see Figure 2)
TEST CONDITION
R1
R2
CL
470Ω
390Ω
35pF
Active High
∞
390Ω
35pF
Active Low
470Ω
390Ω
35pF
Active High to Z
at VOH -0.5V
∞
390Ω
5pF
Active Low to Z
at VOL +0.5V
470Ω
390Ω
5pF
A
B
C
*CL includes Test Fixture and Probe Capacitance.
0213a
Table 2-0004/1016E
DC Electrical Characteristics
Over Recommended Operating Conditions
SYMBOL
CONDITION
PARAMETER
3
MIN.
TYP.
MAX. UNITS
VOL
VOH
IIL
IIH
IIL-isp
IIL-PU
IOS1
Output Low Voltage
IOL= 8 mA
–
–
Output High Voltage
IOH = -4 mA
2.4
–
–
V
Input or I/O Low Leakage Current
0V ≤ VIN ≤ VIL (Max.)
–
–
-10
µA
Input or I/O High Leakage Current
3.5V ≤ VIN ≤ VCC
–
–
10
µA
ispEN Input Low Leakage Current
0V ≤ VIN ≤ VIL
–
–
-150
µA
I/O Active Pull-Up Current
0V ≤ VIN ≤ VIL
–
–
-150
µA
Output Short Circuit Current
VCC = 5V, VOUT = 0.5V
–
–
-200
mA
ICC2, 4
Operating Power Supply Current
VIL = 0.5V, VIH = 3.0V
Commercial
–
90
–
mA
fCLOCK = 1 MHz
Industrial
–
90
–
mA
0.4
V
Table 2-0007/1016E
1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems
by tester ground degradation. Characterized but not 100% tested.
2. Measured using four 16-bit counters.
3. Typical values are at VCC = 5V and TA= 25°C.
4. Maximum I CC varies widely with specific device configuration and operating frequency. Refer to the Power Consumption
section of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate
maximum ICC .
4
Specifications ispLSI 1016E
External Timing Parameters
Over Recommended Operating Conditions
4
PARAMETER
tpd1
tpd2
fmax
fmax (Ext.)
fmax (Tog.)
tsu1
tco1
th1
tsu2
tco2
th2
tr1
trw1
tptoeen
tptoedis
tgoeen
tgoedis
twh
twl
tsu3
th3
1.
2.
3.
4.
TEST
#2
COND.
-80
-100
-125
DESCRIPTION 1
MIN. MAX. MIN. MAX. MIN. MAX.
UNITS
A
1 Data Prop. Delay, 4PT Bypass, ORP Bypass
–
7.5
–
10.0
–
15.0
ns
A
2 Data Prop. Delay, Worst Case Path
–
10.0
–
13.0
–
18.5
ns
125
–
100
–
84.0
–
MHz
100
–
77.0
–
57.0
–
MHz
–
MHz
A
–
3 Clk. Frequency with Int. Feedback
3
4 Clk. Frequency with Ext. Feedback(
1
tsu2 + tco1
1
twh + tw1
)
–
5 Clk. Frequency, Max. Toggle(
–
6 GLB Reg. Setup Time before Clk., 4 PT Bypass
)
A
–
167
–
125
–
100
5.0
–
7.0
–
8.5
–
ns
7 GLB Reg. Clk. to Output Delay, ORP Bypass
–
4.5
–
5.0
–
8.0
ns
8 GLB Reg. Hold Time after Clk., 4 PT Bypass
0.0
–
0.0
–
0.0
–
ns
–
9 GLB Reg. Setup Time before Clk.
5.5
–
8.0
–
9.5
–
ns
–
10 GLB Reg. Clk. to Output Delay
–
5.5
–
6.0
–
9.5
ns
–
11 GLB Reg. Hold Time after Clk.
0.0
–
0.0
–
0.0
–
ns
13.5
–
17.0
ns
A
12 Ext. Reset Pin to Output Delay
–
10.0
–
–
13 Ext. Reset Pulse Duration
5.0
–
6.5
–
ns
14 Input to Output Enable
–
12.0
–
15.0
10.0
–
–
B
20.0
ns
C
15 Input to Output Disable
–
12.0
–
15.0
–
20.0
ns
B
16 Global OE Output Enable
–
7.0
–
9.0
–
10.5
ns
C
17 Global OE Output Disable
–
7.0
–
9.0
–
10.5
ns
–
18 Ext. Sync. Clk. Pulse Duration, High
3.0
–
4.0
–
5.0
–
ns
–
19 Ext. Sync. Clk. Pulse Duration, Low
3.0
–
4.0
–
5.0
–
ns
–
20 I/O Reg. Setup Time before Ext. Sync. Clk. (Y2, Y3) 3.0
–
3.5
–
4.5
–
ns
–
0.0
–
ns
–
21 I/O Reg. Hold Time after Ext. Sync. Clk. (Y2, Y3)
0.0
–
Unless noted otherwise, all parameters use the GRP, 20 PTXOR path, ORP and Y0 clock.
Refer to Timing Model in this data sheet for further details.
Standard 16-bit counter using GRP feedback.
Reference Switching Test Conditions Section.
5
0.0
Table 2-0030-16/125,100, 80
Specifications ispLSI 1016E
Internal Timing Parameters1
PARAMETER
2
#
-100
-125
DESCRIPTION
-80
MIN. MAX. MIN. MAX. MIN. MAX.
UNITS
Inputs
tiobp
tiolat
tiosu
tioh
tioco
tior
tdin
22 I/O Register Bypass
–
0.3
–
0.4
–
0.6
ns
23 I/O Latch Delay
–
1.8
–
2.4
–
3.6
ns
ns
24 I/O Register Setup Time before Clock
3.0
–
3.5
–
4.5
–
25 I/O Register Hold Time after Clock
-0.3
–
-0.4
–
–
ns
–
4.0
–
5.0
-0.6
–
7.5
ns
5.0
–
7.5
ns
3.9
ns
26 I/O Register Clock to Out Delay
27 I/O Register Reset to Out Delay
–
4.0
–
28 Dedicated Input Delay
–
2.2
–
2.6
–
29 GRP Delay, 1 GLB Load
–
1.8
–
1.9
–
2.9
ns
30 GRP Delay, 4 GLB Loads
GRP
tgrp1
tgrp4
tgrp8
tgrp16
–
1.9
–
2.2
–
3.3
ns
31 GRP Delay, 8 GLB Loads
–
2.1
–
2.5
–
3.8
ns
32 GRP Delay, 16 GLB Loads
–
2.4
–
3.1
–
4.7
ns
34 4 Product Term Bypass Path Delay (Combinatorial)
–
3.9
–
5.7
–
8.1
ns
35 4 Product Term Bypass Path Delay (Registered)
–
3.9
–
5.6
–
7.3
ns
36 1 Product Term/XOR Path Delay
–
4.4
–
6.1
–
7.1
ns
37 20 Product Term/XOR Path Delay
–
4.4
–
6.1
–
8.2
ns
38 XOR Adjacent Path Delay 3
–
4.4
–
6.6
–
8.3
ns
39 GLB Register Bypass Delay
–
1.0
–
1.6
–
1.9
ns
40 GLB Register Setup Time before Clock
0.2
–
0.2
–
-0.6
–
ns
41 GLB Register Hold Time after Clock
1.5
–
2.5
–
4.3
–
ns
42 GLB Register Clock to Output Delay
–
1.8
–
1.9
–
2.9
ns
43 GLB Register Reset to Output Delay
–
4.4
–
6.3
–
7.0
ns
44 GLB Product Term Reset to Register Delay
–
3.5
–
5.1
–
7.2
ns
GLB
t4ptbpc
t4ptbpr
t1ptxor
t20ptxor
txoradj
tgbp
tgsu
tgh
tgco
tgro
tptre
tptoe
tptck
–
5.5
–
7.1
–
9.7
ns
3.2
3.5
4.8
5.3
6.8
7.5
ns
47 ORP Delay
–
1.0
–
1.0
–
1.5
ns
48 ORP Bypass Delay
–
0.0
–
0.0
–
0.0
ns
45 GLB Product Term Output Enable to I/O Cell Delay
46 GLB Product Term Clock Delay
ORP
torp
torpbp
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
3. The XOR Adjacent path can only be used by Lattice hard macros.
6
Table 2-0036-16/125,100, 80
Specifications ispLSI 1016E
Internal Timing Parameters1
PARAMETER
#2
-80
-100
-125
DESCRIPTION
MIN. MAX. MIN. MAX. MIN. MAX.
UNITS
Outputs
tob
tsl
toen
todis
tgoe
49 Output Buffer Delay
–
1.4
–
1.7
–
3.0
ns
50 Output Slew Limited Delay Adder
–
10.0
–
10.0
–
10.0
ns
51 I/O Cell OE to Output Enabled
–
4.3
–
5.3
–
6.4
ns
52 I/O Cell OE to Output Disabled
–
4.3
–
5.3
–
6.4
ns
53 Global Output Enable
–
2.7
–
3.7
–
4.1
ns
54 Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)
1.3
1.3
1.4
1.4
2.1
2.1
ns
55 Clock Delay, Y1 or Y2 to Global GLB Clock Line
2.3
2.7
2.4
2.9
3.6
4.4
ns
56 Clock Delay, Clock GLB to Global GLB Clock Line
0.8
1.8
0.8
1.8
1.2
2.7
ns
57 Clock Delay, Y1 or Y2 to I/O Cell Global Clock Line
0.0
0.3
0.0
0.4
0.0
0.6
ns
58 Clock Delay, Clock GLB to I/O Cell Global Clock Line
0.8
1.8
0.8
1.8
1.2
2.7
ns
–
3.2
–
4.5
–
5.5
ns
Clocks
tgy0
tgy1/2
tgcp
tioy1/2
tiocp
Global Reset
tgr
59 Global Reset to GLB and I/O Registers
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
7
Table 2-0037-16/125,100,80
Specifications ispLSI 1016E
ispLSI 1016E Timing Model
I/O Cell
GRP
GLB
ORP
I/O Cell
Feedback
Ded. In
I/O Pin
(Input)
#59
Comb 4 PT Bypass #34
#28
I/O Reg Bypass
#22
Reg 4 PT Bypass
GLB Reg Bypass
ORP Bypass
#35
#39
#48
GRP
Loading
Delay
20 PT
XOR Delays
GLB Reg
Delay
ORP
Delay
#29, 31, 32
#36-38
#30
Input
D Register Q
RST
#23 - 27
D
Q
#49, 50
I/O Pin
(Output)
#51, 52
#47
RST
#59
Reset
Clock
Distribution
Y1,2
#55-58
#40-43
Control RE
PTs
OE
#44-46 CK
#54
Y0
0491-16
#53
GOE 0
Derivations of tsu, th and tco from the Product Term Clock 1
tsu
=
=
=
1.4 ns =
Logic + Reg su - Clock (min)
(tiobp + tgrp4 + t20ptxor) + (tgsu) - (tiobp + tgrp4 + tptck(min))
(#22 + #30 + #37) + (#40) - (#22 + #30 + #46)
(0.3 + 1.9 + 4.4) + (0.2) - (0.3 + 1.9 + 3.2)
th
=
=
=
0.6 ns =
Clock (max) + Reg h - Logic
(tiobp + tgrp4 + tptck(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)
(#22 + #30 + #46) + (#41) - (#22 + #30 + #37)
(0.3 + 1.9 + 3.5) + (1.5) - (0.3 + 1.9 + 4.4)
tco
=
=
=
9.9 ns =
Clock (max) + Reg co + Output
(tiobp + tgrp4 + tptck(max)) + (tgco) + (torp + tob)
(#22 + #30 + #46) + (#42) + (#47 + #49)
(0.3 + 1.9 + 3.5) + (1.8) + (1.0 + 1.4)
Derivations of tsu, th and tco from the Clock GLB 1
tsu
=
=
=
2.9 ns =
Logic + Reg su - Clock (min)
(tiobp + tgrp4 + t20ptxor) + (tgsu) - (tgy0(min) + tgco + tgcp(min))
(#22 + #30 + #37) + (#40) - (#54 + #42 + #56)
(0.3 + 1.9 + 4.4) + (0.2) - (1.3 + 1.8 + 0.8)
th
=
=
=
-0.2 ns =
Clock (max) + Reg h - Logic
(tgy0(max) + tgco + tgcp(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)
(#54 + #42 + #56) + (#41) - (#22 + #30 + #37)
(1.3 + 1.8 + 1.8) + (1.5) - (0.3 + 1.9 + 4.4)
tco
=
=
=
9.1 ns =
Clock (max) + Reg co + Output
(tgy0(max) + tgco + tgcp(max)) + (tgco) + (torp + tob)
(#54 + #42 + #56) + (#42) + (#47 + #49)
(1.3 + 1.8 + 1.8) + (1.8) + (1.0 + 1.4)
Table 2-0042-16
1. Calculations are based upon timing specifications for the ispLSI 1016E-125
8
Specifications ispLSI 1016E
Maximum GRP Delay vs GLB Loads
ispLSI 1016E-80
3
GRP Delay (ns)
ispLSI 1016E-100
2
ispLSI 1016E-125
1
1
8
4
16
12
GLB Load
16E GRP/GLB.eps
Power Consumption
Figure 3 shows the relationship between power and
operating speed.
Power consumption in the ispLSI 1016E device depends
on two primary factors: the speed at which the device is
operating and the number of Product Terms used.
Figure 3. Typical Device Power Consumption vs fmax
130
ispLSI 1016E
120
ICC (mA)
110
100
90
80
0
20
40
60
80
100 120 140
fmax (MHz)
Notes: Configuration of four 16-bit counters
Typical current at 5V, 25°C
ICC can be estimated for the ispLSI 1016E using the following equation:
ICC(mA) = 23 + (# of PTs * 0.52) + (# of nets * max freq * 0.004)
Where:
# of PTs = Number of product terms used in design
# of nets = Number of signals used in device
Max freq = Highest clock frequency to the device (in MHz)
The ICC estimate is based on typical conditions (VCC = 5.0V, room temperature) and an assumption of four GLB loads
on average exists and the device is filled with four 16-bit counters. These values are for estimates only. Since the
value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified.
0127B-16-80-isp/1016
9
Specifications ispLSI 1016E
Pin Description
NAME
PLCC
PIN NUMBERS
16,
20,
26,
30,
38,
42,
4,
8,
9,
13,
19,
23,
31,
35,
41,
1,
10,
14,
20,
24,
32,
36,
42,
2,
11,
15,
21,
25,
33,
37,
43,
3,
12,
16,
22,
26,
34,
38,
44,
4
15,
19,
25,
29,
37,
41,
3,
7,
GOE 0/IN 32
2
40
This is a dual function pin. It can be used either as Global Output Enable for
all I/O cells or it can be used as a dedicated input pin.
ispEN
13
7
Input - Dedicated in-system programming enable input pin. This pin is
brought low to enable the programming mode. The MODE, SDI, SDO and
SCLK controls become active.
SDI/IN 01
14
8
Input - This pin performs two functions. When ispEN is logic low, it functions
as an input pin to load programming data into the device. It is a dedicated
input pin when ispEN is logic high.SDI/IN0 also is used as one of the two
control pins for the isp state machine.
MODE/IN 21
36
30
Input - This pin performs two functions. When ispEN is logic low, it functions
as a pin to control the operation of the isp state machine. It is a dedicated
input pin when ispEN is logic high.
SDO/IN 11
24
18
Output/Input - This pin performs two functions. When ispEN is logic low, it
functions as an output pin to read serial shift register data. It is a dedicated
input pin when ispEN is logic high.
SCLK/Y21
33
27
Input - This pin performs two functions. When ispEN is logic low, it
functions as a clock pin for the Serial Shift Register. It is a dedicated clock
input when ispEN is logic high. This clock input is brought into the Clock
Distribution Network, and can optionally be routed to any GLB and/or I/O
cell on the device.
Y0
11
5
Dedicated Clock input. This clock input is connected to one of the clock
inputs of all the GLBs on the device.
Y1/RESET
35
29
This pin performs two functions:
- Dedicated clock input. This clock input is brought into the Clock
Distribution Network, and can optionally be routed to any GLB and/or
I/O cell on the device.
- Active Low (0) Reset pin which resets all of the GLB and I/O registers
in the device.
17, 39
Ground (GND)
1,
VCC
12, 34
23
18,
22,
28,
32,
40,
44,
6,
10
DESCRIPTION
I/O 0 - I/O 3
I/O 4 - I/O 7
I/O 8 - I/O 11
I/O 12 - I/O 15
I/O 16 - I/O 19
I/O 20 - I/O 23
I/O 24 - I/O 27
I/O 28 - I/O 31
GND
17,
21,
27,
31,
39,
43,
5,
9,
TQFP
PIN NUMBERS
6,
28
Input/Output Pins - These are the general purpose I/O pins used by the logic
array.
Vcc
Table 2-0002C-16-isp
1. Pins have dual function capability.
2. Pins have dual function capability which is software selectable.
10
Specifications ispLSI 1016E
Pin Configurations
I/O 20
I/O 19
I/O 21
I/O 22
I/O 23
GND
GOE 0/IN 32
I/O 24
I/O 26
I/O 25
I/O 27
ispLSI 1016E 44-Pin PLCC Pinout Diagram
6 5 4 3 2 1 44 43 42 41 40
I/O 29
7
8
I/O 30
9
I/O 31
10
11
I/O 28
Y0
VCC
39
I/O 18
38
37
I/O 17
I/O 16
36
MODE/IN 21
12
ispLSI 1016E
35
34
Y1/RESET
VCC
Top View
ispEN
13
33
SCLK/Y21
SDI/IN 0
14
32
I/O 15
I/O 0
15
31
I/O 14
I/O 1
I/O 2
16
17
30
29
I/O 13
I/O 12
1
I/O 10
I/O 11
I/O 9
I/O 8
1
GND
1SDO/IN
I/O 7
I/O 6
I/O 4
I/O 5
I/O 3
18 19 20 21 22 23 24 25 26 27 28
1. Pins have dual function capability.
2. Pins have dual function capability which is software selectable.
0123A-isp1016
I/O 21
I/O 20
I/O 19
I/O 22
GND
I/O 23
GOE 0/IN 32
I/O 24
I/O 26
I/O 25
I/O 27
ispLSI 1016E 44-Pin TQFP Pinout Diagram
44 43 42 41 40 39 38 37 36 35 34
I/O 28
I/O 29
I/O 30
I/O 31
Y0
VCC
ispEN
1SDI/IN
0
I/O 0
I/O 1
I/O 2
33
I/O 18
32
31
I/O 17
I/O 16
30
MODE/IN 21
29
28
Y1/RESET
VCC
27
SCLK/Y21
8
26
I/O 15
9
10
11
25
24
23
I/O 14
I/O 13
I/O 12
1
2
3
4
5
ispLSI 1016E
6
Top View
7
I/O 9
I/O 10
I/O 11
I/O 8
1
GND
1SDO/IN
I/O 7
I/O 6
I/O 4
I/O 5
I/O 3
12 13 14 15 16 17 18 19 20 21 22
1. Pins have dual function capability.
2. Pins have dual function capability which is software selectable.
0851-16E/TQFP
11
Specifications ispLSI 1016E
Part Number Description
ispLSI 1016E – XXX
X
XXX
X
Grade
Blank = Commercial
I = Industrial
Device Family
Device Number
Package
J = PLCC
T44 = TQFP
Speed
125 = 125 MHz fmax
100 = 100 MHz fmax
80 = 84 MHz fmax
Power
L = Low
0212/1016E
ispLSI 1016E Ordering Information
COMMERCIAL
FAMILY
ispLSI
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
125
7.5
ispLSI 1016E-125LJ
44-Pin PLCC
125
7.5
ispLSI 1016E-125LT44
44-Pin TQFP
100
10
ispLSI 1016E-100LJ
44-Pin PLCC
100
10
ispLSI 1016E-100LT44
44-Pin TQFP
84
15
ispLSI 1016E-80LJ
44-Pin PLCC
84
15
ispLSI 1016E-80LT44
44-Pin TQFP
Table 2-0041A/1016E
INDUSTRIAL
FAMILY
ispLSI
fmax (MHz)
tpd (ns)
ORDERING NUMBER
PACKAGE
84
15
ispLSI 1016E-80LJI
44-Pin PLCC
84
15
ispLSI 1016E-80LT44I
44-Pin TQFP
Table 2-0041B/1016E
12
Similar pages