Freescale MCF51AG128VLH Mcf51ag128 coldfire microcontroller Datasheet

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MCF51AG128
Rev. 5, 6/2010
MCF51AG128
MCF51AG128 ColdFire
Microcontroller
Covers: MCF51AG128 and
MCF51AG96
The MCF51AG128 is a member of the ColdFire® family of
32-bit variable-length reduced instruction set (RISC)
microcontroller. This document provides an overview of the
MCF51AG128 series MCUs, focusing on its highly
integrated and diverse feature set.
The MCF51AG128 derivative are low-cost, low-power, and
high-performance 32-bit ColdFire V1 microcontroller units
(MCUs) designed for industrial and appliance applications. It
is an ideal upgrade for designs based on the MC9S08AC128
series of 8-bit microcontrollers.
The MCF51AG128 features the following functional units:
• 32-bit Version 1 ColdFire® central processor unit (CPU)
– Up to 50.33 MHz ColdFire CPU from 2.7 V to 5.5 V
– Provide 0.94 Dhrystone 2.1 DMIPS per MHz
performance when running from internal RAM (0.76
DMIPS per MHz when running from flash)
– Implements Coldfire Instruction Set Revision C
(ISA_C)
• On-chip memory
– Up to 128 KB flash memory read/program/erase over
full operating voltage and temperature
– Up to 16 KB random access memory (RAM)
– Security circuitry to prevent unauthorized access to
RAM and flash contents
• Power-Saving Modes
– Three ultra-low power stop modes and reduced power
wait mode
– Peripheral clock enable register can disable clocks to
unused modules, thereby reducing currents
• System Protection
– Advanced independent clocked watchdog (WDOG)
with features like, robust refresh mechanism, windowed
mode, high granulation timeout, fast test of timeout, and
always forces a reset
– Additional external watchdog monitor (EWM) to help
reset external circuits
80 LQFP
14 mm × 14 mm
48 LQFP
7 mm x 7mm
–
–
–
–
64 QFP
14 mm × 14 mm
Low-voltage detection with reset or interrupt
Separate low voltage warning with selectable trip points
Illegal opcode and illegal address detection with reset
Flash block protection for each array to prevent
accidental write/erasure
– Hardware CRC module to support fast cyclic
redundancy checks
• Debug Support
– Single-wire back ground debug interface
– Real-time debug support, with six hardware breakpoints
(4 PC, 1 address pair and 1 data) that can be configured
into a 1- or 2-level trigger
– On-chip trace buffer provides programmable start/stop
recording conditions
– Support for real-time program (and optional partial data)
trace using the debug visibility bus
• DMA Controller
– Four independently programmable DMA channels
provide the means to directly transfer data between
system memory and I/O peripherals
– DMA enabled peripherals include IIC, SCI, SPI, FTM,
HSCMP, ADC, RTC, and eGPIO, and the DMA request
from these peripherals can be configured as DMA
source or as an iEvent input
• CF1_INTC
– Support of 44 peripheral I/O interrupt requests and seven
software (one per level) interrupt requests
– Fixed association between interrupt request source, level
and priority, up to two requests can be remapped to the
highest maskable level and priority
– Unique vector number for each interrupt source
– Support for service routine interrupt acknowledge
(software IACK) read cycles for improved system
performance
– Ability to mask any individual or all interrupt sources
Freescale reserves the right to change the detail specifications as may be required to permit
improvements in the design of its products.
© Freescale Semiconductor, Inc., 2010. All rights reserved.
64 LQFP
10 mm × 10 mm
• System Clock Sources
– Oscillator (XOSC) — Loop-control pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1
MHz to 16 MHz
– Internal Clock Source (ICS) — Frequency-locked-loop (FLL) controlled by internal or external reference; trimmable
internal reference allows 0.2% resolution and 2% deviation (1% across 0 to 70 ºC)
• Peripherals
– ADC — 24 analog inputs with 12 bits resolution; output formatted in 12-, 10- or 8-bit right-justified format; single or
continuous conversion (automatic return to idle after single conversion); interrupt or DMA request when conversion
complete; operation in low-power modes for lower noise operation; asynchronous clock source for lower noise operation;
selectable asynchronous hardware conversion triggers from RTC, PDB, or iEvent; dual samples based on hardware
triggers during ping-pong mode; on-chip temperature sensor
– PDB — 16-bit of resolution with prescaler; seven possible trigger events input; positive transition of trigger event signal
initiates the counter; support continuous trigger or single shot, bypass mode; supports two triggered delay outputs or ORed
together; pulsed output could be used for HSCMP windowing signal
– iEvent — User programmable combinational boolean output using the four selected iEvent input channels for use as
interrupt requests, DMA transfer requests, or hardware triggers
– FTM — Two 6-channel flexible timer/PWM modules with DMA request option; deadtime insertion is available for each
complementary channel pair; channels operate as pairs with equal outputs, pairs with complimentary outputs or
independent channels (with independent outputs); 16-bit free-running counter; the load of the FTM registers which have
write buffer can be synchronized; write protection for critical registers; backwards compatible with TPM
– TPM — 16-bit free-running or modulo up/down count operation; two channels, each channel may be input capture, output
compare, or edge-aligned PWM; one interrupt per channel plus terminal count interrupt
– CRC — High speed hardware CRC generator circuit using 16-bit shift register; CRC16-CCITT compliancy with x16 + x12
+ x5 + 1 polynomial; error detection for all single, double, odd, and most multi-bit errors; programmable initial seed value
– HSCMP — Two analog comparators with selectable interrupt on rising edge, falling edge, or either edges of comparator
output; the positive and negative inputs of the comparator are both driven from 4-to-1 muxes; programmable voltage
reference from two internal DACs; support DMA transfer
– IIC — Compatible with IIC bus standard and SMBus version 2 features; up to 100 kbps with maximum bus loading;
multi-master operation; software programmable for one of 64 different serial clock frequencies; programmable slave
address and glitch input filter; interrupt driven byte-by-byte data transfer; arbitration lost interrupt with automatic mode
switching from master to slave; calling address identification interrupt; bus busy detection; broadcast and 10-bit address
extension; address matching causes wake-up when MCU is in Stop3 mode; DMA support
– SCI — Two serial communications interface modules with optional 13-bit break; full-duplex, standard non-return-to-zero
(NRZ) format; double-buffered transmitter and receiver with separate enables; 13-bit baud rate selection with /32
fractional divide; interrupt-driven or polled operation; hardware parity generation and checking; programmable 8-bit or
9-bit character length; receiver wakeup by idle-line or address-mark; address match feature in receiver to reduce
address-mark wakeup ISR overhead; 1/16 bit-time noise detection; DMA transmission for both transmit and receive
– SPI — Two serial peripheral interfaces with full-duplex or single-wire bidirectional option; double-buffered transmitter
and receiver; master or slave mode operation; selectable MSB-first or LSB-first shifting; 8-bit or 16-bit data modes;
programmable transmit bit rate; receive data buffer hardware match feature; DMA transmission for transmit and receive
• Input/Output
– Up to 69 GPIOs and one Input-only pin
– Interrupt or DMA request with selectable polarity on all input pins
– Programmable glitch filter, hysteresis and configurable pull up/down device on all input pins
– Configurable slew rate and drive strength on all output pins
– Independent pin value register to read logic level on digital pin
– Up to 16 rapid general purpose I/O (RGPIO) pins connected to the processor’s local 32-bit platform bus with set, clear,
and faster toggle functionality
MCF51AG128 ColdFire Microcontroller, Rev. 5
2
Freescale Semiconductor
Table of Contents
1
2
3
4
5
6
MCF51AG128 Family Configurations . . . . . . . . . . . . . . . . . . . .4
1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . . .14
2.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .14
2.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .14
2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .15
2.4 Electrostatic Discharge (ESD) Protection Characteristics
16
2.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .21
2.7 High Speed Comparator (HSCMP) Electricals . . . . . . .23
2.8 Digital to Analog (DAC) Characteristics . . . . . . . . . . . .23
2.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2.10 External Oscillator (XOSC) Characteristics . . . . . . . . .27
2.11 ICS Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
2.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.12.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.12.2 Timer (TPM/FTM) Module Timing . . . . . . . . . . .31
2.12.3 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . .32
2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .34
2.14 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.14.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . .35
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .37
5.1 80-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . .37
5.2 64-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . .40
5.3 64-pin QFP Package. . . . . . . . . . . . . . . . . . . . . . . . . . .43
5.4 48-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . .46
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
List of Tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 9.
MCF51AG128 Series Device Comparison. . . . . . . . . . .4
MCF51AG128 Series Functional Units . . . . . . . . . . . . . .7
Pin Availability by Package Pin-Count. . . . . . . . . . . . . .12
Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . .14
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .15
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .15
ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . .16
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 8. ESD and Latch-Up Protection Characteristics. . . . . . . 17
Table 10. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 21
Table 11.HSCMP Electrical Specifications. . . . . . . . . . . . . . . . . 23
Table 12.5V 12-bit ADC Operating Conditions. . . . . . . . . . . . . . 23
Table 13.5 V 12-bit ADC Characteristics (VREFH = VDDA, VREFL =
VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 14.Oscillator Electrical Specifications (Temperature Range =
–40 to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 15.ICS Frequency Specifications (Temperature Range = –40
to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 17.TPM/FTM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 18.SPI Timing Characteristics . . . . . . . . . . . . . . . . . . . . . 32
Table 19.Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 20.Orderable Part Number Summary. . . . . . . . . . . . . . . . 36
Table 21.Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 22.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
List of Figures
Figure 1. MCF51AG128 Series MCUs Block Diagram . . . . . . . . . 6
Figure 2. 80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. 64-Pin QFP and LQFP . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. 48-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Typical IOH vs. VDD – VOH (Low Drive,PTxDSn = 0) . . 19
Figure 6. Typical IOH vs. VDD – VOH (High Drive, PTxDSn = 1) . 19
Figure 7. Typical IOL vs. VOL (Low Drive, PTxDSn = 0) . . . . . . . 20
Figure 8. Typical IOL vs. VOL (High Drive, PTxDSn = 1) . . . . . . . 20
Figure 9. Run Current at Different Conditions. . . . . . . . . . . . . . . 22
Figure 10.ADC Input Impedance Equivalency Diagram. . . . . . . 25
Figure 11.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 12.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 13.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 14.Timer Input Capture Pulse . . . . . . . . . . . . . . . . . . . . . 31
Figure 15.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 33
Figure 16.SPI Master Timing (CPHA = 1) . . . . . . . . . . . . . . . . . 33
Figure 17.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 34
Figure 18.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 34
MCF51AG128 ColdFire Microcontroller, Rev. 5
3
Freescale Semiconductor
MCF51AG128 Family Configurations
1
MCF51AG128 Family Configurations
1.1
Device Comparison
The following table compares the various device derivatives available within the MCF51AG128 series MCUs.
Table 1. MCF51AG128 Series Device Comparison
MCF51AG128
MCF51AG96
Feature
80-pin
Flash memory size (KB)
64-pin
48-pin
80-pin
128
64-pin
48-pin
96
RAM size (KB)
16
ColdFire V1 core with BDM
(background debug module)
Yes
HSCMP (analog comparator)
2
2
1
2
2
1
ADC (analog-to-digital converter)
channels (12-bit)
24
19
12
24
19
12
2
2
1
1
1
No
CRC (cyclic redundancy check)
Yes
DAC
2
2
1
DMA controller
4-ch
iEvent (intelligent Event module)
Yes
EWM (External Watchdog Monitor)
Yes
WDOG (Watchdog timer)
Yes
RTC
Yes
DBG (debug module)
Yes
IIC (inter-integrated circuit)
1
1
No
IRQ (interrupt request input)
Yes
INTC (interrupt controller)
Yes
LVD (low-voltage detector)
Yes
ICS (internal clock source)
Yes
OSC (crystal oscillator)
Yes
Port I/O1
69
53
39
69
53
39
RGPIO (rapid general-purpose I/O)
16
16
15
16
16
15
Yes
No
No
SCI (serial communications interface)
2
SPI1 (serial peripheral interface)
Yes
SPI2 (serial peripheral interface)
Yes
No
No
FTM1 (flexible timer module) channels
62
FTM2 channels
62
MCF51AG128 ColdFire Microcontroller, Rev. 5
4
Freescale Semiconductor
MCF51AG128 Family Configurations
Table 1. MCF51AG128 Series Device Comparison (continued)
MCF51AG128
MCF51AG96
Feature
80-pin
64-pin
48-pin
TPM3 (timer pulse-width modulator)
channels
Debug Visibility Bus
1
2
80-pin
64-pin
48-pin
Yes
No
No
2
Yes
No
No
Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module.
Some pins of FTMx might not be bonded on small package, therefore these channels could be used as soft timer only.
1.2
Block Diagram
Figure 1 shows the connections between the MCF51AG128 series pins and modules.
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
5
RESET
FTM1CLK
FTM1*
SIM
IRQ/
TPMCLK
FTM2CLK
WDOG
LVD
*
Port J:
FTM2CH5
FTM2CH4
FTM2CH3
FTM2CH2
Port F:
FTM2CH1
FTM2CH0
TPM3
Port B:
or Port G:
IRQ
FTM2
FLASH
128 or 96 KB
TPMCLK
RAM
16 KB
SCI2
Port C:
RXD2
TXD2
SPI1
Port E:
SS1
SPSCK1
MOSI1
MISO1
Port H:
SS2
SPI2 SPSCK2
MOSI2
MISO2
Port F
CRC
ICS
OSC
Port G:
EXTAL
XTAL
PTA7/ADP23
PTA6/MCLK
PTA5/C2IN3
PTA4/C2IN2
PTA3/CMP2OUT
PTA2/CIN1
PTA1/EWM_out
PTA0/EWM_in
PTB7/ADP11
PTB6/ADP12
PTB5/ADP13
PTB4/ADP14
PTB3/ADP15
PTB2ADP16
PTB1/ADP17/TPM3CH1
PTB0/ADP18/TPM3CH0
PTC6/FTM2FLT
PTC5/RxD2
PTC4/SS2
PTC3/TxD2
PTC2/ADP8
PTC1/SDA
PTC0/SCL
PTD7/ADP7
PTD6/FTM1CLK/ADP0
PTD5/ADP1
PTD4/FTM2CLK/ADP2
PTD3/ADP5
PTD2/ADP6/CMP1OUT
PTD1/ADP9/C1IN3
PTD0/ADP10/C1IN2
PTE7/RGPIO7/SPSCK1
PTE6/RGPIO6/MOSI1
PTE5/RGPIO5/MISO1
PTE4/RGPIO4/SS1
PTE3/RGPIO3/FTM1CH1
PTE2/RGPIO2/FTM1CH0
PTE1/RGPIO1/RxD1
PTE0/RGPIO0/TxD1
PTF7/RGPIO15
PTF6/RGPIO14/FTM1FLT
PTF5/RGPIO13/FTM2CH1
PTF4/RGPIO12/FTM2CH0
PTF3/RGPIO11/FTM1CH5
PTF2/RGPIO10/FTM1CH4
PTF1/RGPIO9/FTM1CH3
PTF0/RGPIO8/FTM1CH2
PTG6/XTAL
PTG5/EXTAL
PTG4/ADP3
PTG3/ADP4
PTG2/BKPT
PTG1/PSTCLK1/TPM3CH1
PTG0/PSTCLK0/TPM3CH0
RTC
DAC1
VREG
IIC
Port C:
SDA
SCL
DAC2
EWM_in
EWM_out
Port E:
RXD1
TXD1
Port J
VDD
VSS
VSS
Port E:
RGPIO7
RGPIO6
RGPIO5
RGPIO4
RGPIO3
RGPIO2
RGPIO1
RGPIO0
SCI1
TPM3CH1
TPM3CH0
Port F:
RGPIO15
RGPIO14
RGPIO13
RGPIO12
RGPIO11
RGPIO10
RGPIO9
RGPIO8
RGPIO
Port F:
FTM1CH5
FTM1CH4
FTM1CH3
FTM1CH2
Port E:
FTM1CH1
FTM1CH0
Port B
ADP22ADP19
Port A:
ADP23
BKPT
ColdFire V1 core
+ DMA + iEvent
Port A:
CMP2OUT
CIN1
HSCMP2
C2IN2
C2IN3
Port C
BDM
Port B:
ADP18ADP11
Port H:
ADC
Port D
BKGD/MS
Port J:
DDATA3DDATA0
PST3VBUS PST0
Port G:
PSTCLK
Port G
DBG
Port D:
CMP1OUT
CIN1
C1IN2
HSCMP1
C1IN3
Port C,D,G:
ADP10ADP0
Port E
VREFH
VREFL
VDDA
VSSA
Port H
VREFH
VREFL
VDDA
VSSA
Port A
MCF51AG128 Family Configurations
EWM
PTH6/MISO2
PTH5/MOSI2
PTH4/SPSCK2
PTH3/ADP19/FTM2CH5
PTH2/ADP20/FTM2CH4
PTH1/ADP21/FTM2CH3
PTH0/ADP22/FTM2CH2
PTJ7/DDATA3/FTM2CH2
PTJ6/DDATA2/FTM2CH3
PTJ5/DDATA1/FTM2CH4
PTJ4/DDATA0//FTM2CH5
PTJ3/PST3
PTJ2/PST2
PTJ1/PST1
PTJ0/PST0
Figure 1. MCF51AG128 Series MCUs Block Diagram
MCF51AG128 ColdFire Microcontroller, Rev. 5
6
Freescale Semiconductor
MCF51AG128 Family Configurations
1.3
Features
Table 2 describes the functional units of the MCF51AG128 series.
Table 2. MCF51AG128 Series Functional Units
Functional Unit
Function
CF1Core (V1 ColdFire core)
Executes programs and interrupt handlers
BDM (background debug module)
Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)
Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)
Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)
Controls resets and chip level interfaces between modules
Flash (flash memory)
Provides storage for program code, constants, and variables
RAM (random-access memory)
Provides storage for program variables
RGPIO (rapid general-purpose input/output) Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)
Controls power management across the device
LVD (low-voltage detect)
Monitors internal and external supply voltage levels, and generates a reset or
interrupt when the voltages are too low
CF1_INTC (interrupt controller)
Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)
Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width
modulators)
Provide a variety of timing-based features
TPM3 (timer/pulse-width modulator)
Provides a variety of timing-based features
CRC (cyclic redundancy check)
Accelerates computation of CRC values for ranges of memory
HSCMP1, HSCMP2 (analog comparators)
Compare two analog inputs
DAC1, DAC2 (digital-to-analog converter)
Provide programmable voltage reference for HSCMPx
IIC (inter-integrated circuit)
Supports standard IIC communications protocol
ICS (internal clock source)
Provides clocking options for the device, including a frequency-locked loop
(FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)
Allows a crystal or ceramic resonator to be used as the system clock source
or reference clock for the FLL
SCI1, SCI2 (serial communications
interfaces)
Serial communications UARTs capable of supporting RS-232 and LIN
protocols
SPI1, SPI2 (8/16-bit serial peripheral
interfaces)
Provide 8/16-bit 4-pin synchronous serial interface
DMA
Provides the means to directly transfer data between system memory and I/O
peripherals
iEvent
Highly programmable module for creating combinational boolean outputs for
use as interrupt requests, DMA transfer requests, or hardware triggers
EWM (External Watchdog Monitor)
Additional watchdog system to help reset external circuits
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
7
MCF51AG128 Family Configurations
Table 2. MCF51AG128 Series Functional Units (continued)
Functional Unit
Function
WDOG (Watchdog timer)
keeps a watch on the system functioning and resets it in case of its failure
RTC (Real Time Counter)
Provides a constant time-base with optional interrupt
MCF51AG128 ColdFire Microcontroller, Rev. 5
8
Freescale Semiconductor
MCF51AG128 Family Configurations
1.4
Pin Assignments
This section describes the pin assignments for the available packages.
80-Pin
LQFP
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
PTG3/ADP4
PTD3/ADP5
PTD2/ADP6/CMP1OUT
PTD7/ADP7
PTC2/ADP8
PTD1/ADP9/C1IN3
PTD0/ADP10/C1IN2
PTB7/ADP11
PTB6/ADP12
PTB5/ADP13
PTB4/ADP14
PTB3/ADP15
PTB2/ADP16
PTB1/ADP17/TPM3CH1
PTB0/ADP18/TPM3CH0
PTH3/ADP19/FTM2CH5
PTH2/ADP20/FTM2CH4
PTH1/ADP21/FTM2CH3
PTH0/ADP22/FTM2CH2
PTA7/ADP23
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
PTE4/RGPIO4/SS1
PTE5/RGPIO5/MISO1
PTE6/RGPIO6/MOSI1
PTE7/RGPIO7/SPSCK1
PTJ4/DDATA0/FTM2CH5
PTJ5/DDATA1/FTM2CH4
PTJ6/DDATA2/FTM2CH3
PTJ7/DDATA3/FTM2CH2
PTG0/PSTCLK0/TPM3CH0
VSS
VDD
PTG1/PSTCLK1/TPM3CH1
PTG2/BKPT
PTA0/EWM_in
PTA1/EWM_out
PTA2/CIN1
PTA3/CMP2OUT
PTA4/C2IN2
PTA5/C2IN3
PTA6/MCLK
PTC0/SCL
PTC1/SDA
IRQ/TPMCLK
PTF0/RGPIO8/FTM1CH2
PTF1/RGPIO9/FTM1CH3
PTF2/RGPIO10/FTM1CH4
PTF3/RGPIO11/FTM1CH5
PTF4/RGPIO12/FTM2CH0
PTC6/FTM2FLT
PTF7/RGPIO15
PTF5/RGPIO13/FTM2CH1
PTF6/RGPIO14/FTM1FLT
PTJ0/PST0
PTJ1/PST1
PTJ2/PST2
PTJ3/PST3
PTE0/RGPIO0/TxD1
PTE1/RGPIO1/RxD1
PTE2/RGPIO2/FTM1CH0
PTE3/RGPIO3/FTM1CH1
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PTC5/RxD2
PTC3/TxD2
PTH6/MISO2
PTH5/MOSI2
PTH4/SPCK2
RESET
BKGD/MS
PTG6/XTAL
PTG5/EXTAL
VSS
VDD
VDDA
VREFH
VREFL
VSSA
PTC4/SS2
PTD6/FTM1CLK/ADP0
PTD5/ADP1
PTD4/FTM2CLK/ADP2
PTG4/ADP3
Figure 2 shows the pinout of the 80-pin LQFP.
Note: Pin names in bold
are not available in lower
pin count packages.
Figure 2. 80-Pin LQFP
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
9
MCF51AG128 Family Configurations
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PTC5/RxD2
PTC3/TxD2
PTH5
RESET
BKGD/MS
PTG6/XTAL
PTG5/EXTAL
VSS
VDD
VDDA
VREFH
VREFL
VSSA
PTD6/FTM1CLK/ADP0
PTD5/ADP1
PTD4/FTM2CLK/ADP2
Figure 3 shows the pinout of the 64-pin LQFP and QFP.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
64-Pin QFP
64-Pin LQFP
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PTG3/ADP4
PTD3/ADP5
PTD2/ADP6/CMP1OUT
PTD7/ADP7
PTC2/ADP8
PTD1/ADP9/C1IN3
PTD0/ADP10/C1IN2
PTB7/ADP11
PTB6/ADP12
PTB5/ADP13
PTB4/ADP14
PTB3/ADP15
PTB2/ADP16
PTB1/ADP17/TPM3CH1
PTB0/ADP18/TPM3CH0
PTA7/ADP23
PTE4/RGPIO4/SS1
PTE5/RGPIO5/MISO1
PTE6/RGPIO6/MOSI1
PTE7/RGPIO7/SPSCK1
PTJ6/FTM2CH3
PTJ7/FTM2CH2
PTG0/TPM3CH0
VSS
VDD
PTA0/EWM_in
PTA1/EWM_out
PTA2/CIN1
PTA3/CMP2OUT
PTA4/C2IN2
PTA5/C2IN3
PTA6/MCLK
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PTC0/SCL
PTC1/SDA
IRQ/TPMCLK
PTF0/RGPIO8/FTM1CH2
PTF1/RGPIO9/FTM1CH3
PTF2/RGPIO10/FTM1CH4
PTF3/RGPIO11/FTM1CH5
PTF4/RGPIO12/FTM2CH0
PTC6/FTM2FLT
PTF7/RGPIO15
PTF5/RGPIO13/FTM2CH1
PTF6/RGPIO14/FTM1FLT
PTE0/RGPIO0/TxD1
PTE1/RGPIO1/RxD1
PTE2/RGPIO2/FTM1CH0
PTE3/RGPIO3/FTM1CH1
Figure 3. 64-Pin QFP and LQFP
MCF51AG128 ColdFire Microcontroller, Rev. 5
10
Freescale Semiconductor
MCF51AG128 Family Configurations
IRQ/TPMCLK
PTF0/RGPIO8/FTM1CH2
PTF1/RGPIO9/FTM1CH3
PTF2/RGPIO10/FTM1CH4
PTF3/RGPIO11/FTM1CH5
PTF4/RGPIO12/FTM2CH0
PTC6/FTM2FLT
PTF7/RGPIO15
PTF5/RGPIO13/FTM2CH1
PTF6/RGPIO14/FTM1FLT
1
2
3
4
5
6
7
8
9
10
11
48 LQFP
12
36
35
34
33
32
31
30
29
28
27
26
25
PTD2/ADP6/CMP1OUT
PTD1/ADP9/CMP1IN3
PTD0/ADP10/CMP1IN2
PTB7/ADP11
PTB6/ADP12
PTB5/ADP13
PTB4/ADP14
PTB3/ADP15
PTB2/ADP16
PTB1/ADP17/TPM3CH1
PTB0/ADP18/TPM3CH0
PTA3
PTE7 /RGPIO7/ SPSCK1
PTJ6/FTM2CH3
PTJ7/FTM2CH2
PTG0/TPM3CH0
VSS
VDD
PTA0/EWM_in
PTA1/EWM_out
PTE2 /RGPIO2/FTM1CH0
PTE4/RGPIO4 / SS1
PTE5 /RGPIO5/MISO1
PTE6 /RGPIO6/ MOSI1
13
14
15
16
17
18
19
20
21
22
23
24
PTE0/RGPIO0/TXD1
PTE1/RGPIO1/RXD1
48
47
46
45
44
43
42
41
40
39
38
37
PTC5/RXD2
PTC3/TXD2
PTH5
RESET
BKGD/MS
PTG6/XTAL
PTG5/EXTAL
VSS
VDD
VDDAD / VREFH
VSSAD / VREFL
PTD6/FTM1CLK/ADP0
Figure 4 shows the pinout of the 48-pin LQFP.
Figure 4. 48-Pin LQFP
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
11
MCF51AG128 Family Configurations
Table 3 shows the package pin assignments.
Table 3. Pin Availability by Package Pin-Count
Pin Number
Lowest <--
Priority
Port Pin
--> Highest
80
64
48
Alt 1
1
1
—
PTC0
SCL
2
2
—
PTC1
SDA
3
3
1
IRQ
TPMCLK1
4
4
2
PTF0
RGPIO8
FTM1CH2
5
5
3
PTF1
RGPIO9
FTM1CH3
6
6
4
PTF2
RGPIO10
FTM1CH4
7
7
5
PTF3
RGPIO11
FTM1CH5
8
8
6
PTF4
RGPIO12
FTM2CH0
9
9
7
PTC6
FTM2FLT
10
10
8
PTF7
RGPIO15
Alt 2
11
11
9
PTF5
RGPIO13
FTM2CH1
12
12
10
PTF6
RGPIO14
FTM1FLT
13
—
—
PTJ0
PST0
14
—
—
PTJ1
PST1
15
—
—
PTJ2
PST2
16
—
—
PTJ3
PST3
17
13
11
PTE0
RGPIO0
TxD1
18
14
12
PTE1
RGPIO1
RxD1
19
15
13
PTE2
RGPIO2
FTM1CH0
20
16
—
PTE3
RGPIO3
FTM1CH1
21
17
14
PTE4
RGPIO4
SS1
22
18
15
PTE5
RGPIO5
MISO1
23
19
16
PTE6
RGPIO6
MOSI1
24
20
17
PTE7
RGPIO7
SPSCK1
25
—
—
PTJ4
DDATA0
FTM2CH5
26
—
—
PTJ5
DDATA1
FTM2CH4
27
21
18
PTJ6
DDATA2
FTM2CH3
28
22
19
PTJ7
DDATA3
FTM2CH2
29
23
20
PTG0
PSTCLK0
TPM3CH0
30
24
21
VSS
31
25
22
VDD
32
—
—
PTG1
PSTCLK1
TPM3CH1
33
—
—
PTG2
BKPT
34
26
23
PTA0
EWM_in
35
27
24
PTA1
EWM_out
36
28
—
PTA2
CIN1
37
29
25
PTA3
CMP2OUT
38
30
—
PTA4
C2IN2
39
31
—
PTA5
C2IN3
40
32
—
PTA6
MCLK
MCF51AG128 ColdFire Microcontroller, Rev. 5
12
Freescale Semiconductor
MCF51AG128 Family Configurations
Table 3. Pin Availability by Package Pin-Count (continued)
Pin Number
Lowest <--
Priority
Port Pin
--> Highest
80
64
48
Alt 1
Alt 2
41
33
—
PTA7
ADP23
42
—
—
PTH0
ADP22
FTM2CH2
43
—
—
PTH1
ADP21
FTM2CH3
44
—
—
PTH2
ADP20
FTM2CH4
45
—
—
PTH3
ADP19
FTM2CH5
46
34
26
PTB0
ADP18
TPM3CH0
47
35
27
PTB1
ADP17
TPM3CH1
48
36
28
PTB2
ADP16
49
37
29
PTB3
ADP15
50
38
30
PTB4
ADP14
51
39
31
PTB5
ADP13
52
40
32
PTB6
ADP12
53
41
33
PTB7
ADP11
54
42
34
PTD0
ADP10
C1IN2
55
43
35
PTD1
ADP9
C1IN3
56
44
—
PTC2
ADP8
57
45
—
PTD7
ADP7
58
46
36
PTD2
ADP6
59
47
—
PTD3
ADP5
60
48
—
PTG3
ADP4
61
—
—
PTG4
ADP3
62
49
—
PTD4
FTM2CLK
63
50
—
PTD5
ADP1
64
51
37
PTD6
FTM1CLK
65
—
—
PTC4
SS2
66
52
38
VSSA
67
53
38
VREFL
68
54
39
VREFH
69
55
39
VDDA
70
56
40
VDD
71
57
41
VSS
72
58
42
PTG5
EXTAL
73
59
43
PTG6
XTAL
MS
74
60
44
BKGD
75
61
45
RESET
76
—
—
PTH4
SPSCK2
77
62
46
PTH5
MOSI2
78
—
—
PTH6
MISO2
79
63
47
PTC3
TxD2
80
64
48
PTC5
RxD2
CMP1OUT
ADP2
ADP0
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
13
Preliminary Electrical Characteristics
1
2
TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of
reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and
TPM3 respectively.
Preliminary Electrical Characteristics
This section contains electrical specification tables and reference timing diagrams for the MCF51AG128 series MCUs,
including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not
be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for
production silicon. Finalized specifications will be published after complete characterization and device qualifications have
been completed.
NOTE
The parameters specified in this data sheet supersede any values found in the module
specifications.
2.1
Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:
Table 4. Parameter Classifications
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical devices
under typical conditions unless otherwise noted. All values shown in the typical column are within this
category.
D
Those parameters are derived mainly from simulations.
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
2.2
Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the
limits specified in Table 5 may affect device reliability or cause permanent damage to the device. For functional operating
conditions, refer to the remaining tables in this section.
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for
instance, either VSS or VDD).
MCF51AG128 ColdFire Microcontroller, Rev. 5
14
Freescale Semiconductor
Preliminary Electrical Characteristics
Table 5. Absolute Maximum Ratings
Rating
Symbol
Value
Unit
Supply voltage
VDD
–0.3 to 5.8
V
Input voltage
VIn
–0.3 to VDD + 0.3
V
Instantaneous maximum current
Single pin limit (applies to all port pins)1, 2, 3
ID
±25
mA
IDD
120
mA
Tstg
–55 to 150
°C
Maximum current into VDD
Storage temperature
1
Input must be current limited to the value specified. To determine the value of the required
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp
voltages, then use the larger of the two resistance values.
2
All functional non-supply pins are internally clamped to VSS and VDD.
3
Power supply must maintain regulation within operating VDD range during instantaneous and
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than
IDD, the injection current may flow out of VDD and could result in external power supply going
out of regulation. Ensure external VDD load will shunt current greater than maximum injection
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if
no system clock is present, or if the clock rate is very low which would reduce overall power
consumption.
2.3
Thermal Characteristics
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than
being controlled by the MCU design. To take PI/O into account in power calculations, determine the difference between actual
pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current
(heavy loads), the difference between pin voltage and VSS or VDD is very small.
Table 6. Thermal Characteristics
Rating
Symbol
Value
Unit
Operating temperature range (packaged)
TA
–40 to 105
°C
Maximum junction temperature
TJ
150
°C
Thermal resistance 1,2,3,4
80-pin LQFP
1s
2s2p
56
45
64-pin QFP
1s
2s2p
θJA
54
41
°C/W
64-pin LQFP
1s
2s2p
67
49
1s
2s2p
69
51
48-pin LQFP
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
15
Preliminary Electrical Characteristics
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal
resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation
of other components on the board, and board thermal resistance.
2
Junction to Ambient Natural Convection
3
1s — Single layer board, one signal layer
4 2s2p — Four layer board, 2 signal and 2 power layers
The average chip-junction temperature (TJ) in °C can be obtained from:
TJ = TA + (PD × θJA)
Eqn. 1
where:
TA = Ambient temperature, °C
θJA = Package thermal resistance, junction-to-ambient, °C/W
PD = Pint + PI/O
Pint = IDD × VDD, Watts — chip internal power
PI/O = Power dissipation on input and output pins — user determined
For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected)
is:
PD = K ÷ (TJ + 273 °C)
Eqn. 2
Solving Equation 1 and Equation 2 for K gives:
K = PD × (TA + 273°C) + θJA × (PD)2
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively
for any value of TA.
2.4
Electrostatic Discharge (ESD) Protection Characteristics
Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling
precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices
can withstand exposure to reasonable levels of static without suffering any permanent damage.
All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits.
(http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.
A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification
requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room
temperature followed by hot temperature, unless specified otherwise in the device specification.
Table 7. ESD and Latch-up Test Conditions
Model
Human Body
Description
Symbol
Value
Unit
Series Resistance
R1
1500
Ω
Storage Capacitance
C
100
pF
Number of Pulse per pin
—
3
—
MCF51AG128 ColdFire Microcontroller, Rev. 5
16
Freescale Semiconductor
Preliminary Electrical Characteristics
Table 7. ESD and Latch-up Test Conditions (continued)
Model
Latch-up
Description
Symbol
Value
Unit
Minimum input voltage limit
—
–2.5
V
Maximum input voltage limit
—
7.5
V
Table 8. ESD and Latch-Up Protection Characteristics
Num
2.5
Rating
Symbol
Min
Max
Unit
1
Human Body Model (HBM)
VHBM
±2000
—
V
2
Charge Device Model (CDM)
VCDM
±500
—
V
3
Latch-up Current at TA = 85°C
ILAT
±100
—
mA
DC Characteristics
This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various
operating modes.
Table 9. DC Characteristics
Num C
1
Parameter
— Operating voltage
Output high voltage — Low Drive (PTxDSn = 0)
5 V, ILoad = –5 mA
3 V, ILoad = –1.5 mA
5V, ILoad = –3 mA, PTC0 and PTC1
3V, ILoad = –1.5 mA, PTC0 and PTC1
2
Symbol
Output high voltage — High Drive (PTxDSn = 1)
5 V, ILoad = –20 mA
P
3 V, ILoad = –8 mA
5V, ILoad = –12 mA, PTC0 and PTC1
3V, ILoad = –8 mA, PTC0 and PTC1
Output low voltage — Low Drive (PTxDSn = 0)
5 V, ILoad = 5 mA
3 V, ILoad = 1.5 mA
5V, ILoad = 3 mA, PTC0 and PTC1
3V, ILoad = 1.5 mA, PTC0 and PTC1
VOH
VOL
Min
Typical1
Max
Unit
2.7
—
5.5
V
VDD – 1.5
VDD – 0.8
VDD – 0.4
VDD – 0.4
—
—
—
—
—
—
—
—
VDD – 1.5
VDD – 0.8
VDD – 0.4
VDD – 0.4
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
1.5
0.8
0.4
0.4
—
—
—
—
—
—
—
—
1.5
0.8
0.4
0.4
V
3
Output low voltage — High Drive (PTxDSn = 1)
5 V, ILoad = 20 mA
P
3 V, ILoad = 8 mA
5V, ILoad = 12 mA, PTC0 and PTC1
3V, ILoad = 8 mA, PTC0 and PTC1
4
C
Output high current — Max total IOH for all ports
5V
3V
IOHT
—
—
—
—
100
60
mA
5
C
Output low current — Max total IOL for all ports
5V
3V
IOLT
—
—
—
—
100
60
mA
V
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
17
Preliminary Electrical Characteristics
Table 9. DC Characteristics (continued)
Num C
Parameter
Symbol
Min
Typical1
Max
Unit
6
P Input high voltage; all digital inputs
VIH
0.65 × VDD
—
—
7
P Input low voltage; all digital inputs
VIL
—
—
0.35 × VDD
V
8
D Input hysteresis; all digital inputs
Vhys
0.06 × VDD
—
—
mV
9
P Input leakage current; input only pins2
|IIn|
—
0.1
1
μA
|IOZ|
—
0.1
1
μA
RPU
20
10
45
22
65
32
kΩ
10
P High Impedance (off-state) leakage current
2
3
Internal pullup resistors
Internal pullup resistorsPTC0 and PTC1
11
P
12
P Internal pulldown resistors4
RPD
20
45
65
kΩ
13
C Input Capacitance; all non-supply pins
CIn
—
—
8
pF
14
P POR rearm voltage
VPOR
0.9
1.4
2.0
V
15
D POR rearm time
tPOR
10
—
—
μs
3.9
4.0
4.0
4.1
4.1
4.2
2.48
2.54
2.56
2.62
2.64
2.70
4.5
4.6
4.6
4.7
4.7
4.8
4.2
4.3
4.3
4.4
4.4
4.5
2.84
2.90
2.92
2.98
3.00
3.06
2.66
2.72
2.74
2.80
2.82
2.88
Vhys
—
—
100
60
—
—
mV
VRAM
—
0.6
1.0
V
0
0
—
—
2
–0.2
mA
0
0
—
—
25
–5
16
17
18
19
20
P
P
P
P
P
21
P
22
T
23
D
Low-voltage detection threshold —
high range
VDD falling
VDD rising
Low-voltage detection threshold —
low range
VDD falling
VDD rising
Low-voltage warning threshold —
high range 1
VDD falling
VDD rising
Low-voltage warning threshold —
high range 0
VDD falling
VDD rising
Low-voltage warning threshold
low range 1
VDD falling
VDD rising
Low-voltage warning threshold —
low range 0
VDD falling
VDD rising
VLVD1
VLVD0
VLVW3
VLVW2
VLVW1
VLVW0
V
V
V
V
V
V
Low-voltage inhibit reset/recover hysteresis
5V
3V
RAM retention voltage
DC injection current5 6 7 8 (single pin limit)
VIN >VDD
VIN <VSS
24
D DC injection current (Total MCU limit, includes
sum of all stressed pins)
VIN >VDD
VIN <VSS
IIC
mA
MCF51AG128 ColdFire Microcontroller, Rev. 5
18
Freescale Semiconductor
Preliminary Electrical Characteristics
1
2
3
4
5
6
7
8
Typical values are based on characterization data at 25°C unless otherwise stated.
Measured with VIn = VDD or VSS.
Measured with VIn = VSS.
Measured with VIn = VDD.
Power supply must maintain regulation within operating VDD range during instantaneous and operating
maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may
flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will
shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not
consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce
overall power consumption).
All functional non-supply pins are internally clamped to VSS and VDD.
Input must be current limited to the value specified. To determine the value of the required current-limiting
resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two
values.
The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD.
Typical VDD - VOH vs. IOH AT VDD=3V
Typical VDD - VOH vs. IOH AT VDD = 5V
0.8
1.4
1.2
Room (25°C)
Room (25°C)
Cold (-40°C)
1.0
Cold (-40°C)
0.6
VDD - VOH (v)
VDD - VOH (v)
Hot (105°C)
Hot (105°C)
0.8
0.6
0.4
0.4
0.2
0.2
0.0
0.0
0
-1
-2
-3
-4
-5
0
-1
-2
IOH (mA)
IOH (mA)
Figure 5. Typical IOH vs. VDD – VOH (Low Drive,PTxDSn = 0)
Typical VDD - VOH vs. IOH AT VDD = 5V
Typical VDD - VOH vs. IOH AT VDD=3V
Hot (105°C)
0.8
1.2
Room (25°C)
1.0
Cold (-40°C)
Hot (105°C)
Room (25°C)
VDD - VOH (v)
VDD - VOH (v)
1.4
0.8
0.6
0.4
0.2
0.0
0.6
Cold (-40°C)
0.4
0.2
0
-1
-2
-3
-4
-5
-6
-7
-8
-1 9
-10
1
-1
-12
3
-1
-14
5
-1
-16
-17
8
-1
-29
0
0.0
IOH (mA)
0
-1
-2
-3
-4
-5
-6
-7
-8
IOH (mA)
Figure 6. Typical IOH vs. VDD – VOH (High Drive, PTxDSn = 1)
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
19
Preliminary Electrical Characteristics
Typical VOL vs. IOL AT VDD = 5V
1.40
Hot (105°C)
1.20
0.80
Hot (105°C)
Room (25°C)
Cold (-40°C)
Room (25°C)
0.60
VOL (v)
1.00
VOL (v)
Typical VOL vs. IOL AT VDD = 3V
0.80
0.60
0.40
Cold (-40°C)
0.40
0.20
0.20
0.00
0.00
0
0
1
2
3
4
1
2
5
IOL (mA)
IOL (mA)
Figure 7. Typical IOL vs. VOL (Low Drive, PTxDSn = 0)
Typical VOL vs. IOL AT VDD = 3V
Typical VOL vs. IOL AT VDD = 5V
1.40
Hot (105°C)
1.20
Hot (105°C)
Cold (-40°C)
1.00
Room (25°C)
0.60
0.80
VOL (v)
VOL (v)
0.80
Room (25°C)
0.60
0.40
Cold (-40°C)
0.40
0.20
0.20
0.00
0.00
1
2
3
4
5
6
7
8
20
18
16
14
12
8
10
6
4
2
0
0
IOL (mA)
IOL (mA)
Figure 8. Typical IOL vs. VOL (High Drive, PTxDSn = 1)
MCF51AG128 ColdFire Microcontroller, Rev. 5
20
Freescale Semiconductor
Preliminary Electrical Characteristics
2.6
Supply Current Characteristics
Table 10. Supply Current Characteristics
Num
C
Parameter
Symbol
VDD (V)
Typical1
Max2
1
C
Run supply current3 measured at 4 MHz CPU
clock (All Peripheral Clocks are ON)
RIDD
5
5.8
7
3
5.7
7
5
21
25
3
20.9
25
5
39.2
50
3
39.1
50
5
57.9
70
3
57.8
70
5
4.7
6
3
4.6
6
Run supply current3 measured at 16 MHz CPU
clock (All Peripheral Clocks are OFF4)
5
16.1
20
3
15.9
20
Run supply current3 measured at 32 MHz CPU
clock (All Peripheral Clocks are OFF4)
5
29
35
3
28.9
35
5
44.1
50
3
44.0
50
5
3.2
5
3
3.2
5
Wait supply current3 measured at 16 MHz
CPU clock
5
10.1
13
3
10
13
Wait supply current3 measured at 32 MHz
CPU clock
5
19
25
3
18.8
25
Wait supply current3 measured at 50 MHz
CPU clock
5
29.2
40
3
29
40
5
1.17
1.35
28.6
3
3
40
μA
1.0
1.34
26.8
3
3
40
μA
2
3
4
5
6
7
8
9
10
11
12
C
C
P
C
C
C
C
C
C
C
C
13
Run supply current3 measured at 16 MHz CPU
clock (All Peripheral Clocks are ON)
Run supply current3 measured at 32 MHz CPU
clock (All Peripheral Clocks are ON)
3
Run supply current measured at 50MHz CPU
clock (All Peripheral Clocks are ON)
Run supply current3 measured at 4 MHz CPU
clock (All Peripheral Clocks are OFF4)
RIDD
3 measured at
50 MHz CPU
Run supply current
clock (All Peripheral Clocks are OFF4)
Wait supply current3 measured at 4 MHz CPU
clock
C
P
C
Stop2 mode supply current
–40 °C
25 °C
105 °C
C
P
C
–40 °C
25 °C
105 °C
WIDD
S2IDD
3
Unit
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
21
Preliminary Electrical Characteristics
Table 10. Supply Current Characteristics
Num
C
14
17
1
2
3
4
5
6
Symbol
C
P
C
Stop3 mode supply current
–40 °C
25 °C
105 °C
C
P
C
–40 °C
25 °C
105 °C
C
P
C
Stop4 mode supply current
–40 °C
25 °C
105 °C
C
P
C
–40 °C
25 °C
105 °C
C
RTC adder to stop2 or stop35, 25 °C
15
16
Parameter
C
S3IDD
VDD (V)
Typical1
Max2
Unit
5
1.2
1.7
43.3
3
3
60
μA
1.04
1.6
45.5
3
3
60
μA
106
109
155
130
130
170
μA
3
95
98
142
130
130
170
μA
5
300
—
nA
3
300
—
nA
5, 3
5
—
μA
3
S4IDD
6
Adder to stop3 for oscillator enabled
(ERCLKEN = 1 and EREFSTEN = 1)
S23IDDRTC
S3IDDOSC
5
Typicals are measured at 25 °C.
Values given here are preliminary estimates prior to completing characterization.
Code run from flash, FEI mode, and does not include any dc loads on port pins. Bus CLK= (CPU CLK/2)
GPIO filters are working on LPO clock.
Most customers are expected to use auto-wakeup from stop2 or stop3 instead of the higher current wait mode.
Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).
Figure 9. Run Current at Different Conditions
MCF51AG128 ColdFire Microcontroller, Rev. 5
22
Freescale Semiconductor
Preliminary Electrical Characteristics
2.7
High Speed Comparator (HSCMP) Electricals
Table 11. HSCMP Electrical Specifications
Num
C
Rating
Symbol
Min
Typical
Max
Unit
1
—
Supply voltage
VDD
2.7
—
5.5
V
2
T
Supply current, high speed mode (EN = 1,
PMODE = 1)
IDDAHS
—
200
—
μA
3
T
Supply current, low speed mode (EN = 1,
PMODE = 0)
IDDALS
—
20
—
μA
4
—
Analog input voltage
VAIN
VSS – 0.3
—
VDD
V
5
D
Analog input offset voltage
VAIO
—
5
40
mV
6
D
Analog Comparator hysteresis
VH
3.0
9.0
20.0
mV
7
D
Propagation delay, high speed mode (EN = 1,
PMODE = 1)
tDHS
—
70
120
ns
8
D
Propagation delay, low speed mode (EN = 1,
PMODE = 0)
tDLS
—
400
600
ns
9
D
Analog Comparator initialization delay
tAINIT
—
400
—
ns
Symbol
Min
Typical
Max
Unit
Digital to Analog (DAC) Characteristics
2.8
Num
C
1
D
Supply voltage
VDDA
2.7
—
5.5
V
2
D
Supply current (enabled)
IDDAC
—
—
20
μA
3
D
Supply current (stand-by)
IDDACS
—
—
150
nA
4
D
DAC reference input voltage
Vin1,Vin2
VSSA
—
VDDA
V
5
D
DAC setup delay
tPRGST
—
1000
—
nS
6
D
DAC step size
Vstep
3Vin/128
Vin/32
5Vin/128
V
7
D
DAC output voltage range
Vdacout
Vin/32
—
Vin
V
8
P
Bandgap voltage reference
factory trimmed at VDD = 5 V, Temp = 25 °C
VBG
1.18
1.20
1.21
V
2.9
Rating
ADC Characteristics
Table 12. 5V 12-bit ADC Operating Conditions
Num
C
1
D
2
D
Characterist
ic
Conditions
Symb
Min
Typic
al1
Max
Unit
Comment
Supply
voltage
Absolute
VDDA
2.7
—
5.5
V
—
Delta to VDD
(VDD–VDDA)2
ΔVDDA
–100
0
100
mV
—
Ground
voltage
Delta to VSS
(VSS–VSSA)2
ΔVSSA
–100
0
100
mV
—
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
23
Preliminary Electrical Characteristics
Table 12. 5V 12-bit ADC Operating Conditions (continued)
Conditions
Symb
Min
Typic
al1
Max
Unit
Comment
Ref Voltage
High
—
VREFH
2.7
VDDA
VDDA
V
—
D
Ref Voltage
Low
—
VREFL
VSSAD
VSSA
VSSA
V
—
5
D
Input Voltage
—
VADIN
VREFL
—
VREFH
V
—
6
C
Input
Capacitance
—
CADIN
—
4.5
5.5
pF
—
7
C
Input
Resistance
—
RADIN
—
3
5
kΩ
—
8
C
Analog
Source
Resistance
kΩ
—
—
—
—
2
5
External to
MCU
10 bit mode
fADCK > 4 MHz
fADCK < 4 MHz
—
—
—
—
5
10
8 bit mode (all valid fADCK)
—
—
10
0.4
—
8.0
MHz
—
0.4
—
4.0
Num
C
3
D
4
Characterist
ic
C
C
9
D
D
ADC
Conversion
Clock Freq.
12 bit mode
fADCK > 4 MHz
fADCK < 4 MHz
High Speed (ADLPC = 0)
Low Power (ADLPC = 1)
RAS
fADCK
—
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2 DC potential difference.
1
MCF51AG128 ColdFire Microcontroller, Rev. 5
24
Freescale Semiconductor
Preliminary Electrical Characteristics
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
RADIN
ADC SAR
ENGINE
+
VADIN
VAS
–
CAS
+
–
RADIN
INPUT PIN
RADIN
INPUT PIN
RADIN
INPUT PIN
CADIN
Figure 10. ADC Input Impedance Equivalency Diagram
Table 13. 5 V 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA)
Num
C
Characteristic
Conditions
Symb
Min
Typical1
Max
Unit
Comment
1
T
Supply Current
ADLPC = 1
ADLSMP = 1
ADCO = 1
—
IDDAD
—
181
—
μA
—
2
T
Supply Current
ADLPC = 1
ADLSMP = 0
ADCO = 1
—
IDDAD
—
334
—
μA
—
3
T
Supply Current
ADLPC = 0
ADLSMP = 1
ADCO = 1
—
IDDAD
—
385
—
μA
—
4
D
Supply Current
ADLPC = 0
ADLSMP = 0
ADCO = 1
—
IDDAD
—
0.717
1
mA
—
5
T
Supply Current
Stop, Reset,
Module Off
IDDAD
—
0.065
1
μA
—
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
25
Preliminary Electrical Characteristics
Table 13. 5 V 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symb
Min
Typical1
Max
Unit
Comment
fADACK
2
3.3
5
MHz
tADACK =
1/fADACK
1.25
2
3.3
—
20
—
ADCK
cycles
—
40
—
See Table 10 for
conversion time
variances
—
3.5
—
—
23.5
—
—
±3.0
—
10 bit mode
—
±1
±2.5
8 bit mode
—
±0.5
±1.0
—
±1.75
—
10 bit mode3
—
±0.5
±1.0
8 bit mode5
—
±0.3
±0.5
—
±1.5
—
10 bit mode
—
±0.5
±1.0
8 bit mode
—
±0.3
±0.5
—
±1.5
—
10 bit mode
—
±0.5
±1.5
8 bit mode
—
±0.5
±0.5
—
±1
—
Num
C
Characteristic
6
P
ADC
Asynchronous
Clock Source
High Speed
(ADLPC = 0)
Conversion
Time (Including
sample time)
Short Sample
(ADLSMP = 0)
Sample Time
Short Sample
(ADLSMP = 0)
7
8
P
T
Conditions
Low Power
(ADLPC = 1)
tADC
Long Sample
(ADLSMP = 1)
tADS
Long Sample
(ADLSMP = 1)
9
T
P
Total
Unadjusted
Error
T
10
T
P
Differential
Non-Linearity
T
11
T
P
Integral
Non-Linearity
T
12
T
P
Zero-Scale
Error
T
13
14
15
T
Full-Scale Error
12 bit mode
12 bit mode
12 bit mode
12 bit mode
12 bit mode
ETUE
DNL
INL
EZS
EFS
P
10 bit mode
—
±0.5
±1
T
8 bit mode
—
±0.5
±0.5
—
–1 to 0
—
10 bit mode
—
—
±0.5
8 bit mode
—
—
±0.5
—
±1
—
10 bit mode
—
±0.2
±2.5
8 bit mode
—
±0.1
±1
D
D
Quantization
Error
Input Leakage
Error
12 bit mode
12 bit mode
EQ
EIL
ADCK
cycles
LSB2
Includes
quantization
LSB2
—
LSB2
—
LSB2
VADIN = VSSAD
LSB2
VADIN = VDDAD
LSB2
—
LSB2
Pad leakage4 *
RAS
MCF51AG128 ColdFire Microcontroller, Rev. 5
26
Freescale Semiconductor
Preliminary Electrical Characteristics
Table 13. 5 V 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Num
C
Characteristic
Conditions
16
D
Temp Sensor
Voltage
25 °C
17
D
Temp Sensor
Slope
–40 °C — 25 °C
25 °C — 85 °C
Symb
Min
Typical1
Max
Unit
Comment
VTEMP25
—
1.396
—
mV
—
m
—
3.266
—
mV/°C
—
—
3.638
—
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference
only and are not tested in production.
2
1 LSB = (VREFH - VREFL)/2N
3
Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes
4
Based on input pad leakage current. Refer to pad electricals.
1
2.10
External Oscillator (XOSC) Characteristics
Table 14. Oscillator Electrical Specifications (Temperature Range = –40 to 105 °C Ambient)
Num
1
C
Rating
C
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)
Low range (RANGE = 0)
High range (RANGE = 1) FEE or FBE mode 2
High range (RANGE = 1, HGO = 1) FBELP mode
High range (RANGE = 1, HGO = 0) FBELP mode
2
— Load capacitors
3
—
Symbol
Min
Typical1
Max
Unit
flo
fhi
32
1
1
1
—
—
—
—
38.4
16
16
8
kHz
MHz
MHz
MHz
fhi-hgo
fhi-lp
C1
C2
See crystal or resonator
manufacturer’s recommendation.
Feedback resistor
Low range (32 kHz to 100 kHz)
High range (1 MHz to 16 MHz)
RF
10
1
—
—
—
—
0
100
0
—
—
—
—
—
—
0
0
0
0
10
20
—
—
—
—
1500
2000
3
7
—
—
—
—
MΩ
Series resistor
4
5
6
1
Low range, low gain (RANGE = 0, HGO = 0)
Low range, high gain (RANGE = 0, HGO = 1)
High range, low gain (RANGE = 1, HGO = 0)
High range, high gain (RANGE = 1, HGO = 1)
≥ 8 MHz
4 MHz
1 MHz
—
T
T
Crystal start-up time 3
Low range, low gain (RANGE = 0, HGO = 0)
Low range, high gain (RANGE = 0, HGO = 1)
High range, low gain (RANGE = 1, HGO = 0)4
High range, high gain (RANGE = 1, HGO = 1)3
Square wave input clock frequency (EREFS = 0, ERCLKEN =
1)
FEE mode 2
FBE mode2
FBELP mode
RS
t
t
t
CSTL-LP
CSTL-HGO
t
CSTH-LP
CSTH-HGO
fextal
0.03125
0
0
—
—
—
50.33
50.33
50.33
kΩ
ms
MHz
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
27
Preliminary Electrical Characteristics
2
When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of
31.25 kHz to 39.0625 kHz.
3
This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to
achieve specifications.
4
4 MHz crystal
MCU
EXTAL
XTAL
RS
RF
C1
2.11
Crystal or Resonator
C2
ICS Specifications
Table 15. ICS Frequency Specifications (Temperature Range = –40 to 105 °C Ambient)
Num C
Rating
Symbol
Min
Typical1
Max
Unit
32.768
—
kHz
1
C Internal reference frequency - factory trimmed at VDD
= 5 V and temperature = 25 °C
fint_ft
—
2
C Average internal reference frequency – untrimmed
fint_ut
31.25
—
39.06
kHz
3
T Internal reference startup time
tirefst
—
60
100
μs
4
C DCO output frequency
2
C range - untrimmed
Low range (DRS = 00)
fdco_ut
16
—
20
MHz
32
—
40
C
High range (DRS = 10)
48
—
60
P DCO output frequency2
P Reference =32768Hz
and DMX32 = 1
P
Low range (DRS = 00)
—
16.82
—
5
Mid range (DRS = 01)
fdco_DMX32
Mid range (DRS = 01)
—
33.69
—
High range (DRS = 10)
—
50.48
—
MHz
6
D Resolution of trimmed DCO output frequency at fixed
voltage and temperature (using FTRIM)
Δfdco_res_t
—
±0.1
±0.2
%fdco
7
D Resolution of trimmed DCO output frequency at fixed
voltage and temperature (not using FTRIM)
Δfdco_res_t
—
±0.2
±0.4
%fdco
8
D Total deviation of trimmed DCO output frequency over
full voltage and temperature range
Δfdco_t
—
0.5
–1.0
±2
%fdco
9
D Total deviation of trimmed DCO output frequency over
fixed voltage and temperature range of 0 –70 °C
Δfdco_t
—
±0.5
±1
%fdco
MCF51AG128 ColdFire Microcontroller, Rev. 5
28
Freescale Semiconductor
Preliminary Electrical Characteristics
Table 15. ICS Frequency Specifications (continued)(Temperature Range = –40 to 105 °C Ambient)
Num C
Rating
3
Symbol
Min
Typical1
Max
Unit
10
D FLL acquisition time
tfll_acquire
—
—
1
ms
11
D Long term Jitter of DCO output clock (averaged over
2ms interval) 4
CJitter
—
0.02
0.2
%fdco
12
D Loss of external clock minimum freq. (RANGE = 0)
• ext. clock freq: above (3/5)fint, never reset
• ext. clock freq: between (2/5)fint and (3/5)fint, maybe
reset (phase dependency)
• ext. clock freq: below (2/5)fint, always reset
floc_low
(3/5) x fint
—
—
kHz
13
D Loss of external clock minimum freq. (RANGE = 1)
• ext. clock freq: above (16/5)fint, never reset
• ext. clock freq: between (15/5)fint and (16/5)fint,
maybe reset (phase dependency)
• ext. clock freq: below (15/5)fint, always reset
floc_high
(16/5) x fint
—
—
kHz
Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.
3 This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or
changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the
reference, this specification assumes it is already running.
4 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f
BUS.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the FLL circuitry by VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for
a given interval.
1
2
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
29
Preliminary Electrical Characteristics
2.12
AC Characteristics
This section describes ac timing characteristics for each peripheral system.
2.12.1
Control Timing
Table 16. Control Timing
Num
C
1
D
2
D
Symbol
Min
Typ1
Max
Unit
Bus frequency (tcyc = 1/fBus)
fBus
dc
—
24
MHz
Internal low-power oscillator period
tLPO
800
—
1500
μs
textrst
100
—
—
ns
Parameter
2
3
D
External reset pulse width
(tcyc = 1/fSelf_reset)
4
D
Reset low drive
trstdrv
66 x tcyc
—
—
ns
5
D
Active background debug mode latch setup time
tMSSU
500
—
—
ns
6
D
Active background debug mode latch hold time
tMSH
100
—
—
ns
7
D
IRQ pulse width
tILIH, tIHIL
100
1.5 x tcyc
—
—
ns
tRise, tFall
—
—
Asynchronous path2
Synchronous path3
8
Port rise and fall time (load = 30 pF for SPI, rest 50 pF)4
Slew rate control disabled (PTxSE = 0) High drive
Slew rate control enabled (PTxSE = 1) High drive
Slew rate control disabled (PTxSE = 0) Low drive
Slew rate control enabled (PTxSE = 1) Low drive
11
35
40
75
ns
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.
This is the shortest pulse that is guaranteed to be recognized as a RESET pin request. Shorter pulses are not guaranteed to
override reset requests from internal sources.
3 This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.
4 Timing is shown with respect to 20% V
DD and 80% VDD levels. Temperature range –40°C to 105°C.
1
2
textrst
RESET PIN
Figure 11. Reset Timing
MCF51AG128 ColdFire Microcontroller, Rev. 5
30
Freescale Semiconductor
Preliminary Electrical Characteristics
tIHIL
IRQ/KBIPx
IRQ/KBIPx
tILIH
Figure 12. IRQ/KBIPx Timing
2.12.2
Timer (TPM/FTM) Module Timing
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.
Table 17. TPM/FTM Input Timing
NUM
C
Function
Symbol
Min
Max
Unit
1
—
External clock frequency
fTPMext
DC
fBus/4
MHz
2
—
External clock period
tTPMext
4
—
tcyc
3
D
External clock high time
tclkh
1.5
—
tcyc
4
D
External clock low time
tclkl
1.5
—
tcyc
5
D
Input capture pulse width
tICPW
1.5
—
tcyc
tTPMext
tclkh
TPMxCLK
tclkl
Figure 13. Timer External Clock
tICPW
TPMxCHn
TPMxCHn
tICPW
Figure 14. Timer Input Capture Pulse
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
31
Preliminary Electrical Characteristics
2.12.3
SPI Characteristics
Table 18 and Figure 15 through Figure 18 describe the timing requirements for the SPI system.
Table 18. SPI Timing Characteristics
No.
C
Symbol
Min
Max
Unit
—
D
Operating frequency
Master
Slave
fop
fBus/2048
0
fBus/2
fBus/4
Hz
1
D
SPSCK period
Master
Slave
tSPSCK
2
4
2048
—
tcyc
tcyc
2
D
Enable lead time
Master
Slave
tLead
1/2
1
—
—
tSPSCK
tcyc
3
D
Enable lag time
Master
Slave
tLag
1/2
1
—
—
tSPSCK
tcyc
4
D
Clock (SPSCK) high or low time
Master
Slave
tWSPSCK
tcyc – 30
tcyc – 30
1024 tcyc
—
ns
ns
5
D
Data setup time (inputs)
Master
Slave
tSU
30
30
—
—
ns
ns
6
D
Data hold time (inputs)
Master
Slave
tHI
10
10
—
—
ns
ns
7
D
—
—
tcyc
8
D
—
—
tcyc
—
—
25
70
ns
ns
10
10
—
—
ns
ns
9
10
1
Function
Slave access time
Slave MISO disable time
ta
tdis
D
Data valid time ( maximum delay after
SPCLK edge to Data output)
Master
Slave
tV1
D
Data hold time ( minimum delay after
SPCLK edge to Data output)
Master
Slave
tHO1
SPI Output Load = 30 pf
MCF51AG128 ColdFire Microcontroller, Rev. 5
32
Freescale Semiconductor
Preliminary Electrical Characteristics
SS1
(OUTPUT)
3
1
2
SPSCK
(CPOL = 0)
(OUTPUT)
4
4
SPSCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
BIT 6 . . . 1
9
MOSI
(OUTPUT)
LSB IN
10
9
MSB OUT2
BIT 6 . . . 1
LSB OUT
NOTES:
1. SS output mode (DDS7 = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 15. SPI Master Timing (CPHA = 0)
SS(1)
(OUTPUT)
1
3
2
SPSCK
(CPOL = 0)
(OUTPUT)
4
4
SPSCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN(2)
LSB IN
10
9
MOSI
(OUTPUT) PORT DATA
BIT 6 . . . 1
MASTER MSB OUT(2)
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
NOTES:
1. SS output mode (DDS7 = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 16. SPI Master Timing (CPHA = 1)
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
33
Preliminary Electrical Characteristics
SS
(INPUT)
3
1
SPSCK
(CPOL = 0)
(INPUT)
2
4
4
SPSCK
(CPOL = 1)
(INPUT)
8
7
MISO
(OUTPUT)
SLAVE LSB OUT
SEE
NOTE
6
5
MOSI
(INPUT)
BIT 6 . . . 1
MSB OUT
SLAVE
10
10
9
BIT 6 . . . 1
MSB IN
LSB IN
NOTE:
1. Not defined but normally MSB of character just received
Figure 17. SPI Slave Timing (CPHA = 0)
SS
(INPUT)
1
3
2
SPSCK
(CPOL = 0)
(INPUT)
4
SPSCK
(CPOL = 1)
(INPUT)
4
10
9
MISO
(OUTPUT)
SEE
NOTE
7
MOSI
(INPUT)
SLAVE
MSB OUT
5
8
BIT 6 . . . 1
SLAVE LSB OUT
6
MSB IN
BIT 6 . . . 1
LSB IN
NOTE:
1. Not defined but normally LSB of character just received
Figure 18. SPI Slave Timing (CPHA = 1)
2.13
Flash Specifications
This section provides details about program/erase times and program-erase endurance for the Flash memory.
Program and erase operations do not require any special power sources other than the normal VDD supply. For more detailed
information about program/erase operations, see MCF51AG128 Reference Manual.
MCF51AG128 ColdFire Microcontroller, Rev. 5
34
Freescale Semiconductor
Preliminary Electrical Characteristics
Table 19. Flash Characteristics
Num
C
1
—
2
Characteristic
Symbol
Min
Supply voltage for program/erase
Vprog/erase
—
Supply voltage for read operation
3
—
4
5
Typical1
Max
Unit
2.7
5.5
V
VRead
2.7
5.5
V
Internal FCLK frequency2
fFCLK
150
200
kHz
—
Internal FCLK period (1/FCLK)
tFcyc
5
6.67
μs
—
Byte program time (random location)2
2
tprog
9
tFcyc
tBurst
4
tFcyc
6
—
Byte program time (burst mode)
7
—
Page erase time3
tPage
4000
tFcyc
8
—
Mass erase time2
tMass
20,000
tFcyc
9
C
Program/erase endurance4
TL to TH = –40 °C to 105 °C
T = 25 °C
10
C
Data retention5
cycles
tD_ret
10,000
—
—
100,000
—
—
15
100
—
years
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.
The frequency of this clock is controlled by a software setting.
3 These values are hardware state machine controlled. User code does not need to count cycles. This information
supplied for calculating approximate time to program and erase.
4 Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information
on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical
Endurance for Nonvolatile Memory.
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and
de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines
typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.
1
2
2.14
EMC Performance
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC
performance.
2.14.1
Radiated Emissions
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller
are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the
evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
35
Ordering Information
3
Ordering Information
This section contains ordering information for MCF51AG128 devices.
MCF 51 AG 128 V XX
Status
(MCF = Fully Qualified ColdFire)
(PCF = Product Engineering)
Package designator
Temperature range
(V = –40 °C to 105 °C, C = –40°C to 85 °C )
Core
Family
Memory size designator
Table 20. Orderable Part Number Summary
Freescale Part Number
Description
Flash / SRAM
(KB)
Package
Temperature
MCF51AG128VLK
MCF51AG128 ColdFire Microcontroller
128 / 16
80 LQFP
–40°C to 105°C
MCF51AG128VLH
MCF51AG128 ColdFire Microcontroller
128 / 16
64 LQFP
–40°C to 105°C
MCF51AG128VQH
MCF51AG128 ColdFire Microcontroller
128 / 16
64 QFP
–40°C to 105°C
MCF51AG128VLF
MCF51AG128 ColdFire Microcontroller
128 / 16
48 LQFP
–40°C to 105°C
MCF51AG96VLK
MCF51AG96 ColdFire Microcontroller
96 / 16
80 LQFP
–40°C to 105°C
MCF51AG96VLH
MCF51AG96 ColdFire Microcontroller
96 / 16
64 LQFP
–40°C to 105°C
MCF51AG96VQH
MCF51AG96 ColdFire Microcontroller
96 / 16
64 QFP
–40°C to 105°C
MCF51AG96VLF
MCF51AG96 ColdFire Microcontroller
96 / 16
48 LQFP
–40°C to 105°C
4
Package Information
Table 21. Package Descriptions
Pin Count
Package Type
Abbreviation
Designator
Case No.
Document No.
LK
917A
98ASS23237W
80
Low Quad Flat Package
LQFP
64
Low Quad Flat Package
LQFP
LH
840F
98ASS23234W
64
Quad Flat Package
QFP
QH
840B
98ASB42844B
48
Low Quad Flat Package
LQFP
LF
932
98ASH00962A
MCF51AG128 ColdFire Microcontroller, Rev. 5
36
Freescale Semiconductor
Mechanical Outline Drawings
5
Mechanical Outline Drawings
5.1
80-pin LQFP Package
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
37
Mechanical Outline Drawings
MCF51AG128 ColdFire Microcontroller, Rev. 5
38
Freescale Semiconductor
Mechanical Outline Drawings
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
39
Mechanical Outline Drawings
5.2
64-pin LQFP Package
MCF51AG128 ColdFire Microcontroller, Rev. 5
40
Freescale Semiconductor
Mechanical Outline Drawings
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
41
Mechanical Outline Drawings
MCF51AG128 ColdFire Microcontroller, Rev. 5
42
Freescale Semiconductor
Mechanical Outline Drawings
5.3
64-pin QFP Package
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
43
Mechanical Outline Drawings
MCF51AG128 ColdFire Microcontroller, Rev. 5
44
Freescale Semiconductor
Mechanical Outline Drawings
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
45
Mechanical Outline Drawings
5.4
48-pin LQFP Package
MCF51AG128 ColdFire Microcontroller, Rev. 5
46
Freescale Semiconductor
Mechanical Outline Drawings
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
47
Revision History
6
Revision History
Table 22. Revision History
Rev. No.
Date
Description
1
11/2008
Initial Draft Release.
2
4/2009
Internal Release.
3
5/2009
Alpha Customer Release.
4
12/2009
• Added 48-pin LQFP information;
• Updated Section 2.5/17 and 2.6/21.
• Provided the supply current in Section 2.7/23, and setup delay in Section 2.8/23.
5
6/2010
•
•
•
•
•
Updated Table 10.
Added Figure 9.
Corrected pin names of PTG6 and PTG5 in 48-pin LQFP.
Standardized Generation 2008 Watchdog to Watchdog.
In Table 9, updated Output high/low voltage — Low Drive (PTxDSn = 0) 3 V, ILoad value.
MCF51AG128 ColdFire Microcontroller, Rev. 5
48
Freescale Semiconductor
THIS PAGE INTENTIONALLY BLANK
MCF51AG128 ColdFire Microcontroller, Rev. 5
Freescale Semiconductor
49
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Document Number: MCF51AG128
Rev. 5
6/2010
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2010. All rights reserved.
Similar pages