Qimonda HYS64T64020HM 214-pin micro-dimm-ddr2-sdram module Datasheet

November 2006
HYS64T32000HM–[3S/3.7/5]–A
HYS64T64020HM–[3S/3.7/5]–A
214-Pin Micro-DIMM-DDR2-SDRAM Modules
MDIMM
DDR2 SDRAM
RoHS Compliant
Internet Data Sheet
Rev. 1.11
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
HYS64T32000HM–[3S/3.7/5]–A, HYS64T64020HM–[3S/3.7/5]–A
Revision History: 2006-11, Rev. 1.11
Page
Subjects (major changes since last revision)
All
Qimonda update
All
Adapted internet edition
Previous Revision: 2005-10, Rev. 1.1
All
Added -3S
Previous Revision: 2004-10, 1.0
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07
03062006-HT1R-Z2PY
2
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
1
Overview
This chapter gives an overview of the 1.8 V 214-Pin Micro-DIMM-DDR2-SDRAM Modules product family and describes its
main characteristics.
1.1
Features
• 214-Pin PC2-5300, PC2-4200 and PC2-3200 DDR2
SDRAM memory modules for use as main memory when
installed in systems such as mobile personal computers.
• 32M × 64and 64M × 64 module organization, and 32M
× 16 chip organization
• Standard Double-Data-Rate-Two Synchronous DRAMs
(DDR2 SDRAM) with a single + 1.8 V (± 0.1 V) power
supply
• 256MB and 512MB modules built with 512Mb DDR2
SDRAMs in P-TFBGA-84 chipsize packages
• Programmable CAS Latencies (3, 4 and 5), Burst Length
(8 & 4) and Burst Type
• Burst Refresh, Distributed Refresh and Self Refresh
• All inputs and outputs SSTL_1.8 compatible
• Off-Chip Driver Impedance Adjustment (OCD) and On-Die
Termination (ODT)
• Serial Presence Detect with E2PROM
• MDIMM Dimensions (nominal): 30 mm high, 54.0 mm
wide
• Based on standard reference layouts Raw Cards:
“A” and “B”
• 2-piece type Mezzanine Socket with 0,4 mm contact
centers
• RoHS Compliant Products1)
TABLE 1
Performance Table
Product Type Speed Code
–3S
–3.7
–5
Unit
Speed Grade
PC2–5300
5–5–5
PC2–4200
4–4–4
PC2–3200
3–3–3
—
333
266
200
MHz
266
266
200
MHz
200
200
200
MHz
15
15
15
ns
15
15
15
ns
45
45
40
ns
60
60
55
ns
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
3
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
1.2
Description
The QIMONDA HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
module family are Unbuffered Micro-DIMM modules
“MDIMMs” with 30 mm height based on DDR2 technology.
DIMMs are available as non-ECC modules in 32M × 64
(256 MB) and 64M × 64 (512 MB) organization and density,
intended for mounting into 214-pin mezzanine connector
sockets.
The memory array is designed with 512-Mbit Double-DataRate-Two (DDR2) Synchronous DRAMs. Decoupling
capacitors are mounted on the PCB board. The DIMMs
feature serial presence detect based on a serial E2PROM
device using the 2-pin I2C protocol. The first 128 bytes are
programmed with configuration data and are write protected;
the second 128 bytes are available to the customer.
TABLE 2
Ordering Informationfor RoHS Compliant Products
Product Type1)
Compliance Code2)
Description
SDRAM
Technology
PC2-5300
HYS64T32000HM-3S-A
256MB 1R×16 PC2–5300M–555–12–B1
1 rank, Non-ECC
512 Mbit (×16)
HYS64T64020HM-3S-A
512MB 2R×16 PC2–5300M–555–12–A1
2 ranks, Non-ECC
512 Mbit (×16)
HYS64T32000HM–3.7–A
256MB 1R×16 PC2–4200M–444–12–B1
1 rank, Non-ECC
512 Mbit (×16)
HYS64T64020HM–3.7–A
512MB 2R×16 PC2–4200M–444–12–A1
2 ranks, Non-ECC
512 Mbit (×16)
HYS64T32000HM–5–A
256MB 1R×16 PC2–3200M–333–12–B1
1 rank, Non-ECC
512 Mbit (×16)
HYS64T64020HM–5–A
512MB 2R×16 PC2–3200M–333–12–A1
2 ranks, Non-ECC
512 Mbit (×16)
PC2–4200
PC2–3200
1) All Product Type numbers end with a place code, designating the silicon die revision. Example: HYS64T32000HM–3.7–A, indicating Rev.
“A” dies are used for DDR2 SDRAM components. For all QIMONDA DDR2 module and component nomenclature see Chapter 6 of this
data sheet.
2) The Compliance Code is printed on the module label and describes the speed grade, for example “PC2–4200M–444–12–B1”, where
4200M means Unbuffered Micro-DIMM modules with 4.26 GB/sec Module Bandwidth and “444-11” means Column Address Strobe (CAS)
latency = 4, Row Column Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.2 and
produced on the Raw Card “B”.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
4
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 3
Address Format
DIMM
Density
Module
Organization
Memory
Ranks
ECC/
Non-ECC
# of
SDRAMs
# of row/bank/columns bits
Raw
Card
256 MByte
32M ×64
1
Non-ECC
4
13/2/10
B
512 MByte
64M ×64
2
Non-ECC
8
13/2/10
A
TABLE 4
Components on Modules
Product Type1)
DRAM Components1)
DRAM Density
DRAM Organisation Note2)
HYS64T32000HM
HYB18T512160AF
512 Mbit
32M ×16
HYS64T64020HM
HYB18T512160AF
512 Mbit
32M ×16
1) Green Product
2) For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
5
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
2
Pin Configuration
This chapter contains the pin configuration.
2.1
Pin Configuration
The pin configuration of the DDR2 SDRAM Micro-DIMM is listed by function in Table 5 (214 pins). The abbreviations used in
columns Pin and Buffer Type are explained in Table 6 and Table 7 respectively. The pin numbering is depicted in Figure 1.
TABLE 5
Pin Configuration of MDIMM
Ball No.
Name
Pin
Type
Buffer
Type
Function
122
CK0
I
SSTL
Clock Signal CK 1:0, Complementary Clock Signal CK 1:0
194
CK1
I
SSTL
123
CK0
I
SSTL
195
CK1
I
SSTL
43
CKE0
I
SSTL
147
CKE1
I
SSTL
NC
NC
S0
I
SSTL
SSTL
Clock Signals
Clock Enables 1:0
Note: 2-rank module
Not Connected
Note: 1-rank module
Control Signals
165
62
Chip Select Rank 1:0
Note: 2-rank module.
S1
I
NC
NC
Not Connected
Note: 1-rank module
163
RAS
I
60
CAS
I
SSTL
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
56
WE
I
SSTL
Address Signals
55
BA0
I
SSTL
162
BA1
I
SSTL
46
BA2
I
SSTL
Bank Address Bus 2
Note: Greater than 512Mb DDR2 SDRAMS
NC
NC
–
Not Connected
Note: Less than 1Gb DDR2 SDRAMS
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
Bank Address Bus 1:0
6
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
161
A0
I
SSTL
Address Inputs 12:0, Address Input 10/Autoprecharge
159
A1
I
SSTL
52
A2
I
SSTL
158
A3
I
SSTL
51
A4
I
SSTL
50
A5
I
SSTL
157
A6
I
SSTL
48
A7
I
SSTL
155
A8
I
SSTL
154
A9
I
SSTL
54
A10
I
SSTL
AP
I
SSTL
47
A11
I
SSTL
153
A12
I
SSTL
167
A13
I
SSTL
Address Input 13
Note: Modules based on ×4/×8 component
NC
NC
–
Not Connected
Note: Modules based on ×16 component
3
DQ0
I/O
SSTL
4
DQ1
I/O
SSTL
Data Bus 0:38
Note: Data Input/Output pins
9
DQ2
I/O
SSTL
10
DQ3
I/O
SSTL
109
DQ4
I/O
SSTL
110
DQ5
I/O
SSTL
114
DQ6
I/O
SSTL
115
DQ7
I/O
SSTL
12
DQ8
I/O
SSTL
Data Signals
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
7
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
13
DQ9
I/O
SSTL
21
DQ10
I/O
SSTL
Data Bus 0:38
Note: Data Input/Output pins
22
DQ11
I/O
SSTL
117
DQ12
I/O
SSTL
118
DQ13
I/O
SSTL
125
DQ14
I/O
SSTL
126
DQ15
I/O
SSTL
24
DQ16
I/O
SSTL
25
DQ17
I/O
SSTL
30
DQ18
I/O
SSTL
31
DQ19
I/O
SSTL
128
DQ20
I/O
SSTL
129
DQ21
I/O
SSTL
133
DQ22
I/O
SSTL
134
DQ23
I/O
SSTL
33
DQ24
I/O
SSTL
34
DQ25
I/O
SSTL
38
DQ26
I/O
SSTL
39
DQ27
I/O
SSTL
136
DQ28
I/O
SSTL
137
DQ29
I/O
SSTL
142
DQ30
I/O
SSTL
143
DQ31
I/O
SSTL
67
DQ32
I/O
SSTL
68
DQ33
I/O
SSTL
73
DQ34
I/O
SSTL
74
DQ35
I/O
SSTL
174
DQ36
I/O
SSTL
175
DQ37
I/O
SSTL
179
DQ38
I/O
SSTL
180
DQ39
I/O
SSTL
76
DQ40
I/O
SSTL
77
DQ41
I/O
SSTL
81
DQ42
I/O
SSTL
82
DQ43
I/O
SSTL
182
DQ44
I/O
SSTL
183
DQ45
I/O
SSTL
188
DQ46
I/O
SSTL
189
DQ47
I/O
SSTL
84
DQ48
I/O
SSTL
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
Data Bus 39:57
8
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
85
DQ49
I/O
SSTL
Data Bus 39:57
92
DQ50
I/O
SSTL
93
DQ51
I/O
SSTL
191
DQ52
I/O
SSTL
192
DQ53
I/O
SSTL
200
DQ54
I/O
SSTL
201
DQ55
I/O
SSTL
95
DQ56
I/O
SSTL
96
DQ57
I/O
SSTL
101
DQ58
I/O
SSTL
102
DQ59
I/O
SSTL
203
DQ60
I/O
SSTL
204
DQ61
I/O
SSTL
208
DQ62
I/O
SSTL
209
DQ63
I/O
SSTL
7
DQS0
I/O
SSTL
6
DQS0
I/O
SSTL
19
DQS1
I/O
SSTL
18
DQS1
I/O
SSTL
28
DQS2
I/O
SSTL
27
DQS2
I/O
SSTL
140
DQS3
I/O
SSTL
139
DQS3
I/O
SSTL
71
DQS4
I/O
SSTL
70
DQS4
I/O
SSTL
186
DQS5
I/O
SSTL
185
DQS5
I/O
SSTL
198
DQS6
I/O
SSTL
197
DQS6
I/O
SSTL
99
DQS7
I/O
SSTL
98
DQS7
I/O
SSTL
112
DM0
I
SSTL
120
DM1
I
SSTL
131
DM2
I
SSTL
36
DM3
I
SSTL
177
DM4
I
SSTL
79
DM5
I
SSTL
90
DM6
I
SSTL
206
DM7
I
SSTL
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
Data Strobes 7:0
Data Masks 7:0
Note: ×8 based module
9
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
EEPROM
105
SCL
I
CMOS
Serial Bus Clock
104
SDA
I/O
OD
Serial Bus Data
211
SA0
I
CMOS
Serial Address Select Bus 1:0
213
SA1
I
CMOS
VREF
VDD
AI
–
I/O Reference Voltage
PWR
–
Power Supply
VDDSPD
VSS
PWR
–
EEPROM Power Supply
GND
–
Ground Plane
166
ODT0
I
SSTL
On-Die Termination Control 1:0
Note: 2-rank module
63
ODT1
I
SSTL
On-Die Termination Control 1:0
Note: 2-rank module
Power Supplies
1
42, 45, 49, 53,
57, 61, 64, 146,
149, 152, 156,
160, 164, 168,
171
107
2, 5, 8, 11, 14,
17, 20, 23, 26,
29, 32, 35, 37,
40, 66, 69, 72,
75, 78, 80, 83,
86, 89, 91, 94,
97, 100, 103,
108, 111, 113,
116, 119, 121,
124, 127, 130,
132, 135, 138,
141, 144, 173,
176, 178, 181,
184, 187, 190,
193, 196, 205,
199, 202, 207,
210
Other Pins
NC
15, 16, 41, 44,
46, 58, 59, 65,
87, 88, 106,
145, 148, 150,
151, 167, 169,
170, 172, 212,
214
NC
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
Not Connected
Note: 1-rank module
NC
Not connected
10
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 6
Abbreviations for Pin Type
Abbreviation
Description
I
Standard input-only pin. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 7
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
11
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
FIGURE 1
Pin Configuration for Two-Piece Mezzanine Socket on MDIMM (214 pins)
95() 3LQ
'4
3LQ
966 3LQ
'46
3LQ
'4
3LQ
966 3LQ
'4
3LQ
1& 3LQ
966 3LQ
'46
3LQ
'4
3LQ
966 3LQ
'4
3LQ
'46
3LQ
966 3LQ
'4
3LQ
'4
3LQ
966 3LQ
966 3LQ
'4
3LQ
1& 3LQ
&.(
3LQ
9'' 3LQ
$
3LQ
9'' 3LQ
$ 3LQ
9'' 3LQ
%$ 3LQ
9'' 3LQ
1& 3LQ
9'' 3LQ
2'7
1&
3LQ
1& 3LQ
'4
3LQ
966 3LQ
'46
3LQ
'4
3LQ
966 3LQ
'4
3LQ
'0 3LQ
'4
3LQ
966 3LQ
'4
3LQ
1& 3LQ
966 3LQ
966 3LQ
'4
3LQ
'4
3LQ
966 3LQ
'46
3LQ
'4
3LQ
966 3LQ
6&/
3LQ
9'
'6 3' 3LQ
96
63LQ
3LQ
'
4
3LQ
9
6
6
'4
3LQ
6
3LQ
9
6
'46
3LQ
96
63LQ
3LQ
'
4
'4
3LQ
3LQ
'
4
'4
3LQ
6
3LQ
9
6
96
63LQ
6
3LQ
9
6
1&3LQ
3LQ
&
.
'46
3LQ
4
3LQ
'
96
63LQ
6
3LQ
9
6
'4
3LQ
3LQ
'4
'4
3LQ
3LQ
'0
96
63LQ
3LQ
'4
'46
3LQ
3LQ
96
6
'4
3LQ
3LQ
'4
96
63LQ
'4
3LQ
3LQ
'46
'03LQ
'4
3LQ
3LQ
'4
6
3LQ
96
3LQ
1&
96
63LQ
3LQ
&.(
1
&
9''3LQ
3LQ
9'
'
1&3LQ
1&%
$ 3LQ
3LQ
1&
$3LQ
3LQ
$
$3LQ
3LQ
$
$3LQ
$
$
3 3LQ
:(3LQ
3LQ
$
1&3LQ
&$63LQ
3LQ
6
3LQ
$
3LQ
$
3LQ
5$6
3LQ
1&
61&
3LQ
9''3LQ
3LQ
1&
'
3LQ
9'
96
63LQ
'4
3LQ
3LQ
96
6
'46
3LQ
3LQ
'0
96
63LQ
'4
3LQ
6
3LQ
96
'4
3LQ
3LQ
'4
96
63LQ
3LQ
'46
3LQ
'4
3LQ
'4
96
63LQ
'4
3LQ
6
3LQ
96
'4
3LQ
3LQ
'4
3LQ
'4
96
63LQ
6
3LQ
96
1&3LQ
3LQ
&.
'03LQ
3LQ
'46
'4
3LQ
6
3LQ
96
96
63LQ
3LQ
'4
'4
3LQ
3LQ
'4
'46
3LQ
6
3LQ
96
96
63LQ
6
3LQ
96
'4
3LQ
3LQ
'4
6'$
3LQ
3LQ
6$
1&3LQ
3LQ
6$
3LQ
966
3LQ
'4
3LQ
'0
3LQ
'4
3LQ
966
3LQ
'4
3LQ
'0
3LQ
&.
3LQ
966
3LQ
'4
'4
3LQ
3LQ
966
3LQ
966
3LQ
'4
3LQ
'4
3LQ
966
3LQ
'46
3LQ
'4
3LQ
966
3LQ
9''
3LQ
1&
3LQ
1&
3LQ
9''
3LQ
$
3LQ
9''
3LQ
$
3LQ
9''
3LQ
%$
3LQ
9''
3LQ
2'7
3LQ
9''
3LQ
1&
3LQ
1&
3LQ
'4
3LQ
966
3LQ
966
3LQ
'4
3LQ
'4
3LQ
966
3LQ
'46
3LQ
'4
3LQ
966
3LQ
'4
3LQ
&.
3LQ
966
3LQ
'46
3LQ
'4
3LQ
966
3LQ
'4
3LQ
'0
3LQ
'4
3LQ
966
3LQ
1&
3LQ
1&
0337
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
12
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
3
Electrical Characteristics
This chapter lists the electrical characteristics.
3.1
Absolute Maximum Ratings
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 8 at any time.
TABLE 8
Absolute Maximum Ratings
Symbol
VDD
VDDQ
VDDL
VIN, VOUT
TSTG
Parameter
Rating
Unit
Note
Min.
Max.
Voltage on VDD pin relative to VSS
–1.0
+2.3
V
1)
Voltage on VDDQ pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on VDDL pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on any pin relative to VSS
–0.5
+2.3
V
1)
°C
1)2)
Storage Temperature
–55
+100
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 9
DRAM Component Operating Temperature Range
Symbol
TOPER
Parameter
Rating
Operating Temperature
Min.
Max.
0
95
Unit
Note
°C
1)2)3)4)
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case
temperature must be maintained between 0 - 95 °C under all other specification parameters.
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
13
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
3.2
DC Operating Conditions
This chapter contains the DC operating conditions tables.
TABLE 10
Operating Conditions
Parameter
Symbol
Values
Unit
Min.
Max.
0
+65
°C
0
+95
°C
Storage Temperature
TOPR
TCASE
TSTG
– 50
+100
°C
Barometric Pressure (operating & storage)
PBar
+69
+105
kPa
Operating Humidity (relative)
HOPR
10
90
%
Operating temperature (ambient)
DRAM Case Temperature
Note
1)2)3)4)
5)
1)
2)
3)
4)
DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs.
Within the DRAM Component Case Temperature Range all DRAM specifications will be supported
Above 85 °C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs
When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%.
5) Up to 3000 m.
TABLE 11
Supply Voltage Levels and DC Operating Conditions
Parameter
Device Supply Voltage
Output Supply Voltage
Input Reference Voltage
SPD Supply Voltage
DC Input Logic High
DC Input Logic Low
Symbol
VDD
VDDQ
VREF
VDDSPD
VIH(DC)
VIL (DC)
IL
Values
Unit
Min.
Typ.
Max.
1.7
1.8
1.9
V
1.7
1.8
1.9
V
1)
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
2)
1.7
—
3.6
V
VREF + 0.125
—
V
– 0.30
—
VDDQ + 0.3
VREF – 0.125
V
In / Output Leakage Current
–5
—
5
µA
1) Under all conditions, VDDQ must be less than or equal to VDD
2) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).VREF is also expected to track noise in VDDQ.
3) Input voltage for any connector pin under test of 0 V ≤ VIN ≤ VDDQ + 0.3 V; all other pins at 0 V. Current is per pin
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
Note
14
3)
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
3.3
Timing Characteristics
This chapter describes the AC characteristics.
3.3.1
Speed Grade Definitions
This chapter contains the Speed Grade Definition tables.
TABLE 12
Speed Grade Definition Speed Bins for DDR2-667D, DDR2–533C and DDR2–400B
Speed Grade
DDR2–667D
DDR2–533C
DDR2–400B
QAG Sort Name
–3S
–3.7
–5
CAS-RCD-RP latencies
5–5–5
4–4–4
3–3–3
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
Min.
Max.
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
5
8
5
8
ns
1)2)3)4)
3.75
8
3.75
8
5
8
ns
1)2)3)4)
3
8
3.75
8
5
8
ns
1)2)3)4)
45
70000
45
70000
40
70000
ns
1)2)3)4)5)
60
—
60
—
55
—
ns
1)2)3)4)
15
—
15
—
15
—
ns
1)2)3)4)
15
—
15
—
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) only.
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS,
input reference level is the crosspoint when in differential strobe mode
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
15
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
3.3.2
Component AC Timing Parameters
This chapter contains the AC Timing Parameters.
TABLE 13
DRAM Component Timing Parameter by Speed Grade - DDR2–667
Parameter
Symbol
DDR2–667
Unit
Note
1)2)3)4)5)6)7)8)
tAC
DQS output access time from CK / CK
tDQSCK
Average clock high pulse width
tCH.AVG
Average clock low pulse width
tCL.AVG
Average clock period
tCK.AVG
tDS.BASE
DQ and DM input setup time
DQ and DM input hold time
tDH.BASE
Control & address input pulse width for each input tIPW
DQ and DM input pulse width for each input
tDIPW
Data-out high-impedance time from CK / CK
tHZ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
DQ low impedance time from CK/CK
tLZ.DQ
DQS-DQ skew for DQS & associated DQ signals tDQSQ
CK half pulse width
tHP
DQ output access time from CK / CK
Min.
Max.
–450
+450
ps
–400
+400
ps
9)
10)11)
9)
0.48
0.52
0.48
0.52
tCK.AVG
tCK.AVG
3000
8000
ps
100
––
ps
12)13)14)
175
––
ps
13)14)15)
0.6
—
0.35
—
tCK.AVG
tCK.AVG
—
ps
9)16)
tAC.MIN
2 x tAC.MIN
tAC.MAX
tAC.MAX
tAC.MAX
ps
9)16)
ps
9)16)
—
240
ps
17)
Min(tCH.ABS,
tCL.ABS)
__
ps
18)
—
340
ps
19)
DQ/DQS output hold time from DQS
tQHS
tQH
tHP – tQHS
—
ps
20)
Write command to DQS associated clock edges
WL
RL–1
DQ hold skew factor
10)11)
nCK
21)
DQS latching rising transition to associated clock tDQSS
edges
– 0.25
+ 0.25
tCK.AVG
DQS input high pulse width
tDQSH
tDQSL
DQS falling edge to CK setup time
tDSS
DQS falling edge hold time from CK
tDSH
Write postamble
tWPST
Write preamble
tWPRE
Address and control input setup time
tIS.BASE
Address and control input hold time
tIH.BASE
Read preamble
tRPRE
Read postamble
tRPST
CAS to CAS command delay
tCCD
tWR
Write recovery time
Auto-Precharge write recovery + precharge time tDAL
Internal write to read command delay
tWTR
0.35
—
DQS input low pulse width
0.35
—
0.2
—
0.2
—
0.4
0.6
0.35
—
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
tCK.AVG
200
—
ps
22)23)
275
—
ps
23)24)
0.9
1.1
25)26)
0.4
0.6
tCK.AVG
tCK.AVG
2
—
nCK
15
—
ns
28)
WR + tnRP
—
nCK
29)30)
7.5
—
ns
28)31)
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
16
21)
21)
25)27)
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Parameter
Symbol
DDR2–667
Unit
Note
1)2)3)4)5)6)7)8)
Min.
Max.
tRTP
tXSNR
tXSRD
tXP
7.5
—
ns
28)
tRFC +10
—
ns
28)
200
—
nCK
2
—
nCK
tXARD
tXARDS
2
—
nCK
7 – AL
—
nCK
CKE minimum pulse width ( high and low pulse
width)
tCKE
3
—
nCK
Mode register set command cycle time
tMRD
tMOD
tOIT
tDELAY
2
—
nCK
0
12
ns
28)
0
12
ns
28)
tIS + tCK .AVG +
tIH
—
ns
Internal Read to Precharge command delay
Exit self-refresh to a non-read command
Exit self-refresh to read command
Exit precharge power-down to any valid
command (other than NOP or Deselect)
Exit power down to read command
Exit active power-down mode to read command
(slow exit, lower power)
MRS command to ODT update delay
OCD drive mode output delay
Minimum time clocks remain ON after CKE
asynchronously drops LOW
32)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 5)6)7)8)
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ).
12) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Figure 3.
13) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
14) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 3.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
17
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
16) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
17) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
18) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
19) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
20) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the
max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
21) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
22) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 4.
23) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
24) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 4.
25) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
26) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
27) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
28) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
29) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
30) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
31) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
32) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
18
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
FIGURE 2
Method for calculating transitions and endpoint
92+[P9
977[P9
92+[P9
977[P9
W/=
W+=
W535(EHJLQSRLQW
W5367
H QGSRLQW
92/[P9
977[P9
92/[P9
977[P9
7 7
7 7
W+=W5367
HQGSRLQW 77
W/=W535(
E HJLQSRLQW 7
7
FIGURE 3
Differential input waveform timing - tDS and tDS
'46
'46
W'6
W'+
W'6
W'+
9''4
9,+ DF PL
Q
9,+ GF PL
Q
95() GF 9,/ GF PD
[
9,/ DF PD
[
966
FIGURE 4
Differential input waveform timing - tlS and tlH
&.
&.
W,6
W,+
W,6
W,+
9''4
9,+DF PLQ
9,+GF PLQ
95() GF 9,/ GF PD[
9,/ DF PD[
966
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
19
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 14
DRAM Component Timing Parameter by Speed Grade - DDR2–533
Parameter
Symbol
DDR2–533
Unit
Note
1)2)3)4)5)6)7)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–500
+500
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
—
ns
9)
DQ and DM input hold time (differential data
strobe)
tDH(base)
225
—
ps
10)
–25
—
ps
11)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
0.35
—
tCK
–450
+450
ps
0.35
—
tCK
—
300
ps
tDQSS
tDS(base)
– 0.25
+ 0.25
tCK
100
—
ps
11)
–25
—
ps
11)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
Write command to 1st DQS latching transition
DQ and DM input setup time (differential data
strobe)
DQ and DM input setup time (single ended data tDS1(base)
strobe)
DQS falling edge hold time from CK (write
cycle)
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
tHP
tHZ
tIH(base)
tIPW
MIN. (tCL, tCH)
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
tQHS
20
8)18)
11)
—
12)
—
tAC.MAX
ps
13)
375
—
ps
11)
0.6
—
tCK
250
—
ps
11)
2 × tAC.MIN
ps
14)
tAC.MIN
tAC.MAX
tAC.MAX
ps
14)
2
—
tCK
0
12
ns
tHP –tQHS
—
—
—
400
ps
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Parameter
Symbol
DDR2–533
Unit
Note
1)2)3)4)5)6)7)
Average periodic refresh Interval
tREFI
Min.
Max.
—
7.8
µs
14)15)
—
3.9
µs
16)18)
17)
Auto-Refresh to Active/Auto-Refresh
command period
tRFC
105
—
ns
Precharge-All (4 banks) command period
tRP
tRP
tRPRE
tRPST
tRRD
tRP + 1tCK
15 + 1tCK
—
ns
—
ns
0.9
1.1
14)
0.40
0.60
tCK
tCK
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
14)
7.5
—
ns
14)18)
10
—
ns
16)20)
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25
—
0.40
0.60
tCK
tCK
15
—
ns
Write recovery time for write with AutoPrecharge
WR
tWR/tCK
—
tCK
20)
Internal Write to Read command delay
tWTR
tXARD
7.5
—
ns
21)
2
—
tCK
22)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
22)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
tCK
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
19)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 5)6)7)8)
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
10) For timing definition, refer to the Component data sheet.
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
21
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
15) 0 °C≤ TCASE ≤ 85 °C
16) 85 °C < TCASE ≤ 95 °C
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Informationfor RoHS Compliant
Products” on Page 4.
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
20) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
21) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 MHz.
22) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
22
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 15
DRAM Component Timing Parameter by Speed Grade - DDR2-400
Parameter
Symbol
DDR2–400
Unit
Note
1)2)3)4)5)6)7)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–600
+600
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
—
ns
9)
DQ and DM input hold time (differential data
strobe)
tDH(base)
275
—
ps
10)
–25
—
ps
11)
0.35
—
tCK
–500
+500
ps
0.35
—
tCK
—
350
ps
– 0.25
+ 0.25
tCK
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
Write command to 1st DQS latching transition tDQSS
8)22)
11)
DQ and DM input setup time (differential data
strobe)
tDS(base)
150
—
ps
11)
DQ and DM input setup time (single ended
data strobe)
tDS1(base)
–25
—
ps
11)
DQS falling edge hold time from CK (write
cycle)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
tHP
tHZ
tIH(base)
tIPW
MIN. (tCL, tCH)
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
tQHS
23
—
12)
—
tAC.MAX
ps
13)
475
—
ps
11)
0.6
—
tCK
350
—
ps
11)
2 × tAC.MIN
ps
14)
tAC.MIN
tAC.MAX
tAC.MAX
ps
14)
2
—
tCK
0
12
ns
tHP –tQHS
—
—
—
450
ps
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Parameter
Symbol
DDR2–400
Unit
Note
1)2)3)4)5)6)7)
Average periodic refresh Interval
tREFI
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
tRP
tRP
tRPRE
tRPST
tRRD
Min.
Max.
—
7.8
µs
14)15)
—
3.9
µs
16)18)
105
—
ns
17)
tRP + 1tCK
15 + 1tCK
—
ns
—
ns
0.9
1.1
14)
0.40
0.60
tCK
tCK
14)
7.5
—
ns
14)18)
10
—
ns
16)20)
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25
—
0.40
0.60
tCK
tCK
15
—
ns
Write recovery time for write with AutoPrecharge
WR
tWR/tCK
—
tCK
20)
Internal Write to Read command delay
tWTR
tXARD
10
—
ns
21)
2
—
tCK
22)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
22)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
tCK
Internal Read to Precharge command delay
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
19)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V. See notes 5)6)7)8)
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS/ RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
10) For timing definition, refer to the Component data sheet.
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
24
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
15) 0 °C≤ TCASE ≤ 85 °C
16) 85 °C < TCASE ≤ 95 °C
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Informationfor RoHS Compliant
Products” on Page 4.
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
20) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
21) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 MHz.
22) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
25
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
3.3.3
ODT AC Electrical Characteristics
This chapter contains the ODT AC electrical characteristic tables.
TABLE 16
ODT AC Character. and Operating Conditions for DDR2-667
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Note
Min.
Max.
ODT turn-on delay
2
2
nCK
1)
ODT turn-on
tAC.MAX + 0.7 ns
2 tCK + tAC.MAX + 1 ns
ns
1)2)
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
1)
ODT turn-off delay
2.5
2.5
nCK
1)
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
1)3)
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
1)
ODT to Power Down Mode Entry Latency
3
—
nCK
1)
1)
ODT Power Down Exit Latency
8
—
nCK
1) New units, 'tCK.AVG' and 'nCK', are introduced in DDR2-667 and DDR2-800. Unit 'tCK.AVG' represents the actual tCK.AVG of the input clock
under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and
DDR2-533, 'tCK' is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 × tCK.AVG+ tEPR.2PER(MIN).
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is
2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.
3) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800,if tCK.AVG =
3 ns is assumed, tAOFD= 1.5 ns (0.5 × 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT
LOW and by counting the actual input clock edge.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
26
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 17
ODT AC Character. and Operating Conditions for DDR2-533 & DDR2-400
Symbol
Parameter / Condition
Values
Min.
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Unit
Note
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MAX + 1 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
tCK
tCK
1)
ns
2)
ns
1) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
27
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
3.4
IDD Specifications and Conditions
This chapter describes the IDD Specifications and Conditions.
TABLE 18
IDD Measurement Conditions
Parameter
Symbol Note
1)2)3)4)5)
Operating Current 0
IDD0
One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between
valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.
Operating Current 1
One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN,
tRCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and
control inputs are SWITCHING, Databus inputs are SWITCHING.
IDD1
6)
Precharge Standby Current
IDD2N
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING,
Databus inputs are SWITCHING.
Precharge Power-Down Current
Other control and address inputs are STABLE, Data bus inputs are FLOATING.
IDD2P
Precharge Quiet Standby Current
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE,
Data bus inputs are FLOATING.
IDD2Q
Active Standby Current
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN;
tRAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are
SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA.
IDD3N
Active Power-Down Current
IDD3P(0)
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs
are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit);
Active Power-Down Current
IDD3P(1)
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs
are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit);
Operating Current - Burst Read
IDD4R
All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCKMIN; tRAS = tRASMAX;
tRP = tRPMIN; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data
bus inputs are SWITCHING; IOUT = 0mA.
Operating Current - Burst Write
All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN;
tRAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are
SWITCHING; Data Bus inputs are SWITCHING;
IDD4W
Burst Refresh Current
tCK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
IDD5B
Distributed Refresh Current
tCK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
IDD5D
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
28
6)
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Parameter
Symbol Note
1)2)3)4)5)
Self-Refresh Current
IDD6
CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data
bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 °C max.
All Bank Interleave Read Current
IDD7
All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control
and address bus inputs are STABLE during DESELECTS. Iout = 0 mA.
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
2) IDD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled.
3) Definitions for IDD see Table 19
4) For two rank modules: for all active current measurements the other rank is in Precharge Power-Down Mode IDD2P
6)
5) For details and notes see the relevant Qimonda component data sheet
6) IDD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output
buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH.
TABLE 19
Definitions for IDD
Parameter
Description
LOW
VIN ≤ VIL(ac).MAX, HIGH is defined as VIN ≥ VIH(ac).MIN
STABLE
Inputs are stable at a HIGH or LOW level
FLOATING
Inputs are VREF = VDDQ /2
SWITCHING
Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control
signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ
signals not including mask or strobes
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
29
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 20
IDD Specification for HYS64T[32000/64020]HM-3S-A
380
mA
2)
420
440
mA
2)
200
400
mA
3)
20
40
mA
3)
160
320
mA
3)
200
400
mA
3)
80
150
mA
3)
20
50
mA
3)
600
620
mA
2)
680
700
mA
2)
560
580
mA
2)
20
50
mA
3)4)
20
40
mA
3)4)
910
930
mA
2)
HYS64T64020HM-3S-A
Note1)
HYS64T32000HM-3S-A
Unit
Product Type
Organization
256MB
512MB
1 Rank
2 Ranks
×64
×64
–3S
–3S
Symbol
Max.
Max.
IDD0
IDD1
IDD2N
IDD2P
IDD2Q
IDD3N
IDD3P( MRS = 0)
IDD3P( MRS = 1)
IDD4R
IDD4W
IDD5B
IDD5D
IDD6
IDD7
360
1)
2)
3)
4)
Calculated values from component data. ODT disabled. IDD1, IDD4R and IDD7 are defined with the outputs disabled
The other rank is in IDD2P Precharge Power-Down Standby Current mode
Both ranks are in the same IDD mode
Values for 0 °C ≤ TCASE ≤ 85 °C
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
30
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 21
Product Type
HYS64T32000HM-3.7-A
HYS64T64020HM-3.7-A
IDD Specification for HYS64T[32000/64020]HM–3.7–A
Organization
256 MB
512 MB
1 Rank
2 Ranks
×64
×64
–3.7
–3.7
Symbol
Max.
Max.
IDD0
IDD1
IDD2N
IDD2P
IDD2Q
IDD3N
IDD3P( MRS = 0)
IDD3P( MRS = 1)
IDD4R
IDD4W
IDD5B
IDD5D
IDD6
IDD7
320
1)
2)
3)
4)
Unit
Note1)
340
mA
2)
360
380
mA
2)
160
320
mA
3)
20
30
mA
3)
120
240
mA
3)
160
320
mA
3)
60
130
mA
3)
20
40
mA
3)
400
420
mA
2)
440
460
mA
2)
520
540
mA
2)
20
50
mA
3)4)
16
32
mA
3)4)
900
mA
Calculated values from component data. ODT disabled. IDD1, IDD4R and IDD7 are defined with the outputs disabled
The other rank is in IDD2P Precharge Power-Down Standby Current mode
Both ranks are in the same IDD mode
Values for 0 °C ≤ TCASE ≤ 85 °C
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
880
31
2)
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
TABLE 22
IDD Specification for HYS64T[32000/64020]HM–5–A
300
mA
2)
320
mA
2)
mA
3)
HYS64T64020HM-5-A
Note1)
HYS64T32000HM-5-A
Unit
Product Type
Organization
256 MB
512 MB
1 Rank
2 Ranks
×64
×64
–5
–5
Symbol
Max.
Max.
IDD0
IDD1
IDD2N
IDD2P
IDD2Q
IDD3N
IDD3P( MRS = 0)
IDD3P( MRS = 1)
IDD4R
IDD4W
IDD5B
IDD5D
280
300
20
30
mA
3)
100
200
mA
3)
140
280
mA
3)
50
100
mA
3)
20
40
mA
3)
340
360
mA
2)
360
380
mA
2)
480
500
mA
2)
20
50
mA
3)4)
IDD6
16
32
mA
3)4)
IDD7
840
1)
2)
3)
4)
860
mA
Calculated values from component data. ODT disabled. IDD1, IDD4R and IDD7 are defined with the outputs disabled
The other rank is in IDD2P Precharge Power-Down Standby Current mode
Both ranks are in the same IDD mode
Values for 0 °C ≤ TCASE ≤ 85 °C
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
32
2)
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
4
SPD Codes
This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands
for serial presence detect. All values with XX in the table are module specific bytes which are defined during production.
List of SPD Code Tables
• Table 23 “SPD codes for HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A” on Page 33
TABLE 23
Product Type
HYS64T32000HM–3S–A
HYS64T64020HM–3S–A
HYS64T32000HM–3.7–A
HYS64T64020HM–3.7–A
HYS64T32000HM–5–A
HYS64T64020HM–5–A
SPD codes for HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Organization
256MB
512MB
256MB
512MB
256MB
512MB
×64
×64
×64
×64
×64
×64
1 Rank
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks
(×16)
Label Code
PC2–
PC2–
PC2–
PC2–
PC2–
PC2–
5300M– 5300M– 4200M– 4200M– 3200M– 3200M–
555
555
444
444
333
333
JEDEC SPD Revision
Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1
Byte#
Description
HEX
HEX
HEX
HEX
HEX
HEX
0
Programmed SPD Bytes in
EEPROM
80
80
80
80
80
80
1
Total number of Bytes in
EEPROM
08
08
08
08
08
08
2
Memory Type (DDR2)
08
08
08
08
08
08
3
Number of Row Addresses
0D
0D
0D
0D
0D
0D
4
Number of Column Addresses 0A
0A
0A
0A
0A
0A
5
DIMM Rank and Stacking
Information
60
61
60
61
60
61
6
Data Width
40
40
40
40
40
40
7
Not used
00
00
00
00
00
00
8
Interface Voltage Level
05
05
05
05
05
05
9
tCK @ CLMAX (Byte 18) [ns]
30
30
3D
3D
50
50
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
33
Internet Data Sheet
Product Type
HYS64T32000HM–3S–A
HYS64T64020HM–3S–A
HYS64T32000HM–3.7–A
HYS64T64020HM–3.7–A
HYS64T32000HM–5–A
HYS64T64020HM–5–A
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Organization
256MB
512MB
256MB
512MB
256MB
512MB
×64
×64
×64
×64
×64
×64
1 Rank
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks
(×16)
Label Code
PC2–
PC2–
PC2–
PC2–
PC2–
PC2–
5300M– 5300M– 4200M– 4200M– 3200M– 3200M–
555
555
444
444
333
333
JEDEC SPD Revision
Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1
Byte#
Description
10
HEX
HEX
HEX
HEX
HEX
HEX
tAC SDRAM @ CLMAX (Byte 18) 45
45
50
50
60
60
11
Error Correction Support (non- 00
ECC, ECC)
00
00
00
00
00
12
Refresh Rate and Type
82
82
82
82
82
82
13
Primary SDRAM Width
10
10
10
10
10
10
14
Error Checking SDRAM Width 00
00
00
00
00
00
15
Not used
00
00
00
00
00
00
16
Burst Length Supported
0C
0C
0C
0C
0C
0C
17
Number of Banks on SDRAM
Device
04
04
04
04
04
04
18
Supported CAS Latencies
38
38
38
38
38
38
19
DIMM Mechanical
Characteristics
01
01
00
00
00
00
20
DIMM Type Information
08
08
08
08
08
08
21
DIMM Attributes
00
00
00
00
00
00
22
Component Attributes
03
03
01
01
01
01
23
tCK @ CLMAX -1 (Byte 18) [ns]
tAC SDRAM @ CLMAX -1 [ns]
tCK @ CLMAX -2 (Byte 18) [ns]
tAC SDRAM @ CLMAX -2 [ns]
tRP.MIN [ns]
tRRD.MIN [ns]
tRCD.MIN [ns]
tRAS.MIN [ns]
3D
3D
3D
3D
50
50
50
50
50
50
60
60
50
50
50
50
50
50
[ns]
24
25
26
27
28
29
30
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
34
60
60
60
60
60
60
3C
3C
3C
3C
3C
3C
28
28
28
28
28
28
3C
3C
3C
3C
3C
3C
2D
2D
2D
2D
28
28
Internet Data Sheet
Product Type
HYS64T32000HM–3S–A
HYS64T64020HM–3S–A
HYS64T32000HM–3.7–A
HYS64T64020HM–3.7–A
HYS64T32000HM–5–A
HYS64T64020HM–5–A
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Organization
256MB
512MB
256MB
512MB
256MB
512MB
×64
×64
×64
×64
×64
×64
1 Rank
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks
(×16)
Label Code
PC2–
PC2–
PC2–
PC2–
PC2–
PC2–
5300M– 5300M– 4200M– 4200M– 3200M– 3200M–
555
555
444
444
333
333
JEDEC SPD Revision
Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1
Byte#
Description
HEX
HEX
HEX
HEX
HEX
HEX
31
Module Density per Rank
40
40
40
40
40
40
32
20
20
25
25
35
35
27
27
37
37
47
47
10
10
10
10
15
15
38
tAS.MIN and tCS.MIN [ns]
tAH.MIN and tCH.MIN [ns]
tDS.MIN [ns]
tDH.MIN [ns]
tWR.MIN [ns]
tWTR.MIN [ns]
tRTP.MIN [ns]
39
Analysis Characteristics
40
tRC and tRFC Extension
tRC.MIN [ns]
tRFC.MIN [ns]
tCK.MAX [ns]
tDQSQ.MAX [ns]
tQHS.MAX [ns]
46
PLL Relock Time
47
48
Psi(T-A) DRAM
49
∆T0 (DT0)
50
33
34
17
17
22
22
27
27
3C
3C
3C
3C
3C
3C
1E
1E
1E
1E
28
28
1E
1E
1E
1E
1E
1E
00
00
00
00
00
00
00
00
00
00
00
00
3C
3C
3C
3C
37
37
69
69
69
69
69
69
80
80
80
80
80
80
18
18
1E
1E
23
23
22
22
28
28
2D
2D
00
00
00
00
00
00
TCASE.MAX Delta / ∆T4R4W Delta 55
55
53
53
51
51
72
72
72
72
72
72
5F
5F
53
53
43
43
∆T2N (DT2N, UDIMM) or ∆T2Q
(DT2Q, RDIMM)
36
36
2B
2B
23
23
51
∆T2P (DT2P)
24
24
1D
1D
1D
1D
52
∆T3N (DT3N)
24
24
1D
1D
19
19
53
∆T3P.fast (DT3P fast)
29
29
23
23
1C
1C
35
36
37
41
42
43
44
45
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
35
Internet Data Sheet
Product Type
HYS64T32000HM–3S–A
HYS64T64020HM–3S–A
HYS64T32000HM–3.7–A
HYS64T64020HM–3.7–A
HYS64T32000HM–5–A
HYS64T64020HM–5–A
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Organization
256MB
512MB
256MB
512MB
256MB
512MB
×64
×64
×64
×64
×64
×64
1 Rank
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks
(×16)
Label Code
PC2–
PC2–
PC2–
PC2–
PC2–
PC2–
5300M– 5300M– 4200M– 4200M– 3200M– 3200M–
555
555
444
444
333
333
JEDEC SPD Revision
Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1
Byte#
Description
HEX
HEX
HEX
HEX
HEX
HEX
54
∆T3P.slow (DT3P slow)
1A
1A
16
16
16
16
55
∆T4R (DT4R) / ∆T4R4W Sign
(DT4R4W)
52
52
36
36
2E
2E
56
∆T5B (DT5B)
1E
1E
1C
1C
1A
1A
57
∆T7 (DT7)
31
31
30
30
2D
2D
58
Psi(ca) PLL
00
00
00
00
00
00
59
Psi(ca) REG
00
00
00
00
00
00
60
∆TPLL (DTPLL)
00
00
00
00
00
00
61
∆TREG (DTREG) / Toggle Rate 00
00
00
00
00
00
62
SPD Revision
12
12
11
11
11
11
63
Checksum of Bytes 0-62
D0
D1
C0
C1
08
09
64
Manufacturer’s JEDEC ID
Code (1)
7F
7F
7F
7F
7F
7F
65
Manufacturer’s JEDEC ID
Code (2)
7F
7F
7F
7F
7F
7F
66
Manufacturer’s JEDEC ID
Code (3)
7F
7F
7F
7F
7F
7F
67
Manufacturer’s JEDEC ID
Code (4)
7F
7F
7F
7F
7F
7F
68
Manufacturer’s JEDEC ID
Code (5)
7F
7F
7F
7F
7F
7F
69
Manufacturer’s JEDEC ID
Code (6)
51
51
51
51
51
51
70
Manufacturer’s JEDEC ID
Code (7)
00
00
00
00
00
00
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
36
Internet Data Sheet
Product Type
HYS64T32000HM–3S–A
HYS64T64020HM–3S–A
HYS64T32000HM–3.7–A
HYS64T64020HM–3.7–A
HYS64T32000HM–5–A
HYS64T64020HM–5–A
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Organization
256MB
512MB
256MB
512MB
256MB
512MB
×64
×64
×64
×64
×64
×64
1 Rank
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks
(×16)
Label Code
PC2–
PC2–
PC2–
PC2–
PC2–
PC2–
5300M– 5300M– 4200M– 4200M– 3200M– 3200M–
555
555
444
444
333
333
JEDEC SPD Revision
Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1
Byte#
Description
HEX
HEX
HEX
HEX
HEX
HEX
71
Manufacturer’s JEDEC ID
Code (8)
00
00
00
00
00
00
72
Module Manufacturer Location xx
xx
xx
xx
xx
xx
73
Product Type, Char 1
36
36
36
36
36
36
74
Product Type, Char 2
34
34
34
34
34
34
75
Product Type, Char 3
54
54
54
54
54
54
76
Product Type, Char 4
33
36
33
36
33
36
77
Product Type, Char 5
32
34
32
34
32
34
78
Product Type, Char 6
30
30
30
30
30
30
79
Product Type, Char 7
30
32
30
32
30
32
80
Product Type, Char 8
30
30
30
30
30
30
81
Product Type, Char 9
48
48
48
48
48
48
82
Product Type, Char 10
4D
4D
4D
4D
4D
4D
83
Product Type, Char 11
33
33
33
33
35
35
84
Product Type, Char 12
53
53
2E
2E
41
41
85
Product Type, Char 13
41
41
37
37
20
20
86
Product Type, Char 14
20
20
41
41
20
20
87
Product Type, Char 15
20
20
20
20
20
20
88
Product Type, Char 16
20
20
20
20
20
20
89
Product Type, Char 17
20
20
20
20
20
20
90
Product Type, Char 18
20
20
20
20
20
20
91
Module Revision Code
3x
3x
5x
5x
5x
5x
92
Test Program Revision Code
xx
xx
xx
xx
xx
xx
93
Module Manufacturing Date
Year
xx
xx
xx
xx
xx
xx
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
37
Internet Data Sheet
Product Type
HYS64T32000HM–3S–A
HYS64T64020HM–3S–A
HYS64T32000HM–3.7–A
HYS64T64020HM–3.7–A
HYS64T32000HM–5–A
HYS64T64020HM–5–A
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Organization
256MB
512MB
256MB
512MB
256MB
512MB
×64
×64
×64
×64
×64
×64
1 Rank
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks 1 Rank
(×16)
(×16)
2 Ranks
(×16)
Label Code
PC2–
PC2–
PC2–
PC2–
PC2–
PC2–
5300M– 5300M– 4200M– 4200M– 3200M– 3200M–
555
555
444
444
333
333
JEDEC SPD Revision
Rev. 1.2 Rev. 1.2 Rev. 1.1 Rev. 1.1 Rev. 1.1 Rev. 1.1
Byte#
Description
HEX
HEX
HEX
HEX
HEX
HEX
94
Module Manufacturing Date
Week
xx
xx
xx
xx
xx
xx
95 - 98
Module Serial Number
xx
xx
xx
xx
xx
xx
99 - 127
Not used
00
00
00
00
00
00
128 - 255
Blank for customer use
FF
FF
FF
FF
FF
FF
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
38
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
5
Package Outlines
This chapter contains the package outlines of the products.
FIGURE 5
Package Outline Raw Card A L-DIM-214-1
0$;
0$;
“
%
“
“
“
[ %
$
$
0 & % 0
%
&
$
“
'
“
“
“
“
“
“
&
'WDLO RI FRQWDFWV
$$
%%
(
“
0 $ % 0
&RQWDFW $UD
“
& ' ( [
%XUQLVKG QR EXUU DOORZG
*/'
Notes
1. Drawing according to ISO 8015
2. Dimensions in mm
3. General tolerances +/- 0.15
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
39
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
FIGURE 6
Package Outline Raw Card B L-DIM-214-2
0$;
“
%
“
“
“
“
“
“
[ %
$
$
0 & % 0
%
&
$
'
“
“
“
“
&
'WDLO RI FRQWDFWV
%%
$$
(
“
0 $ % 0
&RQWDFW $UD
“
& ' ( [
%XUQLVKG QR EXUU DOORZG
*/'
Notes
1. Drawing according to ISO 8015
2. Dimensions in mm
3. General tolerances +/- 0.15
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
40
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
6
Product Type Nomenclature
Qimonda’s nomenclature uses simple coding combined with some proprietary coding. Table 24 provides examples for module
and component product type number as well as the field number. The detailed field description together with possible values
and coding explanation is listed for modules in Table 25 and for components in Table 26.
TABLE 24
Nomenclature Fields and Examples
Example for
Field Number
1
2
3
4
5
6
7
8
9
10
11
Micro-DIMM
HYS
64
T
64/128
0
2
0
K
M
–5
–A
DDR2 DRAM
HYB
18
T
512/1G 16
0
A
C
–5
TABLE 25
DDR2 DIMM Nomenclature
Field
Description
Values
Coding
1
Qimonda Module Prefix
HYS
Constant
2
Module Data Width [bit]
64
Non-ECC
72
ECC
3
DRAM Technology
T
DDR2
4
Memory Density per I/O [Mbit];
Module Density1)
32
256 MByte
64
512 MByte
128
1 GByte
256
2 GByte
512
4 GByte
5
Raw Card Generation
0 .. 9
Look up table
6
Number of Module Ranks
0, 2, 4
1, 2, 4
7
Product Variations
0 .. 9
Look up table
8
Package, Lead-Free Status
A .. Z
Look up table
9
Module Type
D
SO-DIMM
M
Micro-DIMM
R
Registered
U
Unbuffered
F
Fully Buffered
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
41
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Field
Description
Values
Coding
10
Speed Grade
–2.5F
PC2–6400 5–5–5
–2.5
PC2–6400 6–6–6
11
Die Revision
–3
PC2–5300 4–4–4
–3S
PC2–5300 5–5–5
–3.7
PC2–4200 4–4–4
–5
PC2–3200 3–3–3
–A
First
–B
Second
1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall
module memory density in MBytes as listed in column “Coding”.
TABLE 26
DDR2 DRAM Nomenclature
Field
Description
Values
Coding
1
Qimonda Component Prefix
HYB
Constant
2
Interface Voltage [V]
18
SSTL_18
3
DRAM Technology
T
DDR2
4
Component Density [Mbit]
256
256 Mbit
512
512 Mbit
1G
1 Gbit
2G
2 Gbit
40
×4
80
×8
16
×16
5+6
Number of I/Os
7
Product Variations
0 .. 9
Look up table
8
Die Revision
A
First
B
Second
9
10
Package, Lead-Free Status
Speed Grade
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
C
FBGA, lead-containing
F
FBGA, lead-free
–25F
DDR2-800 5-5-5
–2.5
DDR2-800 6-6-6
–3
DDR2-667 4-4-4
–3S
DDR2-667 5-5-5
–3.7
DDR2-533 4-4-4
–5
DDR2-400 3-3-3
42
Internet Data Sheet
HYS64T[32/64]0[0/2]0HM–[3S/3.7/5]–A
Micro-DIMM DDR2 SDRAM Modules
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
2.1
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IDD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6
Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13
13
14
15
15
16
26
28
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Rev. 1.11, 2006-11
03062006-HT1R-Z2PY
43
Internet Data Sheet
Edition 2006-11
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2006.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com
Similar pages