Cypress MB9A420L 32-bit armâ® cortexâ®-m3 fm3 microcontroller Datasheet

MB9A420L Series
32-Bit ARM® Cortex®-M3
FM3 Microcontroller
The MB9A420L Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power
consumption mode and competitive cost.
These series are based on the ARM® Cortex®-M3 Processor with on-chip Flash memory and SRAM, and have peripheral
functions such as various timers, ADCs, DACs and Communication Interfaces (CAN, UART, CSIO, I 2C, LIN).
The products which are described in this data sheet are placed into TYPE11 product categories in FM3 Family Peripheral Manual.
Features
32-bit ARM® Cortex®-M3 Core
[UART]
 Processor version: r2p1
 Full duplex double buffer
 Up to 40 MHz Frequency Operation
 Selection with or without parity supported
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
 Built-in dedicated baud rate generator
NMI (non-maskable interrupt) and
 External clock available as a serial clock
 48 peripheral interrupts and 16 priority levels
 24-bit System timer (Sys Tick): System timer for OS task
 Various error detection functions available (parity errors,
framing errors, and overrun errors)
management
[CSIO]
On-chip Memories
 Full
duplex double buffer
dedicated baud rate generator
 Overrun error detection function available
 Built-in
[Flash memory]
 64 Kbytes
 Read cycle: 0 wait-cycle
[LIN]
 Security function for code protection
 LIN protocol Rev.2.1 supported
 Full duplex double buffer
[SRAM]
This series contains 4 Kbyte on-chip SRAM memories that is
connected to System bus of Cortex-M3 core.
 Master/Slave mode supported
 LIN break field generation (can be changed to 13-bit to 16-bit
length)
 SRAM1: 4 Kbyte
 LIN break delimiter generation (can be changed to 1-bit to
4-bit length)
CAN Interface (Max one channel)
 Various error detection functions available (parity errors,
 Compatible with CAN Specification 2.0A/B
framing errors, and overrun errors)
 Maximum transfer rate: 1 Mbps
[I2C]
 Built-in 32 message buffer
Multi-function Serial Interface (Max four channels)
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps)
supported
 4 channels without FIFO (ch.0, ch.1, ch.3, ch.5)
 Operation mode is selectable from the followings for each
channel.
 UART
 CSIO
 LIN
 I2 C
Cypress Semiconductor Corporation
Document Number: 002-05659 Rev.*B
• 198 Champion Court
•
San Jose, CA 95134-1709
408-943-2600
Revised March 13, 2017
MB9A420L Series
A/D Converter (Max eight channels)
Multi-function Timer
The Multi-function timer is composed of the following blocks.
[12-bit A/D Converter]
 Successive Approximation type
 Conversion time: 0.8 μs @ 5 V
 Priority conversion available (priority at 2 levels)
 Scanning conversion mode
Built-in FIFO for conversion data storage (for SCAN
conversion: 16 steps, for Priority conversion: 4 steps)
 16-bit free-run timer × 3 ch.
 Input capture × 3 ch.
 Output compare × 6 ch.
 A/D activation compare × 1 ch.
 Waveform generator × 3 ch.
 16-bit PPG timer × 3 ch.
IGBT mode is contained
D/A Converter (Max one channel)
 R-2R type
 10-bit resolution
The following function can be used to achieve the motor
control.
 PWM signal output function
Base Timer (Max eight channels)
 DC chopper waveform output function
Operation mode is selectable from the followings for each
channel.
 Dead time function
 16-bit PWM timer
 16-bit PPG timer
 16-/32-bit reload timer
 Input capture function
 A/D convertor activate function
 DTIF (Motor emergency stop) interrupt function
 16-/32-bit PWC timer
Real-time clock (RTC)
General-Purpose I/O Port
The Real-time clock can count
Year/Month/Day/Hour/Minute/Second/A day of the week from
00 to 99.
This series can use its pins as general-purpose I/O ports when
they are not used for peripherals. Moreover, the port relocate
function is built-in. It can set which I/O port the peripheral
function can be allocated to.
 Capable of pull-up control per pin
 The interrupt function with specifying date and time
(Year/Month/Day/Hour/Minute) is available. This function is
also available by specifying only Year, Month, Day, Hour or
Minute.
 Capable of reading pin level directly
 Timer interrupt function after set time or each set time.
 Built-in the port relocate function
 Capable of rewriting the time with continuing the time count.
 Up to 51 high-speed general-purpose I/O Ports@64 pin
 Leap year automatic count is available.
Package
 Some ports are 5V tolerant
External Interrupt Controller Unit
See List of Pin Functions and I/O Circuit Type to confirm the
corresponding pins.
 Up to 19 external interrupt input pins @ 64 pin Package
Dual Timer (32-/16-bit Down Counter)
The Dual Timer consists of two programmable 32-/16-bit down
counters.
Operation mode is selectable from the followings for each
channel.
 Free-running
 Periodic (=Reload)
 One-shot
Document Number: 002-05659 Rev.*B
 Include one non-maskable interrupt (NMI) input pin
Watchdog Timer (Two channels)
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
This series consists of two different watchdogs, a Hardware
watchdog and a Software watchdog.
The Hardware watchdog timer is clocked by the built-in
low-speed CR oscillator. Therefore, the Hardware watchdog is
active in any low-power consumption modes except RTC, Stop
modes.
Page 2 of 90
MB9A420L Series
Clock and Reset
Low-Voltage Detector (LVD)
[Clocks]
This Series includes 2-stage monitoring of voltage on the VCC
pins. When the voltage falls below the voltage that has been
set, Low-Voltage Detector generates an interrupt or reset.
Selectable from five clock sources (2 external oscillators, 2
built-in CR oscillators, and Main PLL).
 Main Clock: 4 MHz to 48 MHz
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
 Sub Clock: 32.768 kHz
 Built-in high-speed CR Clock: 4 MHz
Low-Power Consumption Mode
 Built-in low-speed CR Clock: 100 kHz
 Sleep
 Main PLL Clock
 Timer
[Resets]
 RTC
 Reset requests from INITX pin
 Stop
 Power-on reset
Debug
 Software reset
Serial Wire JTAG Debug Port (SWJ-DP)
 Watchdog timers reset
 Low-voltage detection reset
 Clock Super Visor reset
Clock Super Visor (CSV)
Four low-power consumption modes supported.
Unique ID
Unique value of the device (41-bit) is set.
Power Supply
Wide range voltage: VCC = 2.7 V to 5.5 V
Clocks generated by built-in CR oscillators are used to
supervise abnormality of the external clocks.
 If external clock failure (clock stop) is detected, reset is
asserted.
 If external frequency anomaly is detected, interrupt or reset is
asserted.
Document Number: 002-05659 Rev.*B
Page 3 of 90
MB9A420L Series
Contents
1. Product Lineup .................................................................................................................................................................. 6
2. Packages ........................................................................................................................................................................... 7
3. Pin Assignment ................................................................................................................................................................. 8
4. List of Pin Functions....................................................................................................................................................... 13
5. I/O Circuit Type................................................................................................................................................................ 24
6. Handling Precautions ..................................................................................................................................................... 31
6.1
Precautions for Product Design ................................................................................................................................... 31
6.2
Precautions for Package Mounting .............................................................................................................................. 32
6.3
Precautions for Use Environment ................................................................................................................................ 33
7. Handling Devices ............................................................................................................................................................ 34
8. Block Diagram ................................................................................................................................................................. 36
9. Memory Size .................................................................................................................................................................... 37
10. Memory Map .................................................................................................................................................................... 37
11. Pin Status in Each CPU State ........................................................................................................................................ 40
12. Electrical Characteristics ............................................................................................................................................... 45
12.1 Absolute Maximum Ratings ......................................................................................................................................... 45
12.2 Recommended Operating Conditions.......................................................................................................................... 47
12.3 DC Characteristics....................................................................................................................................................... 48
12.3.1 Current Rating .............................................................................................................................................................. 48
12.3.2 Pin Characteristics ....................................................................................................................................................... 51
12.4 AC Characteristics ....................................................................................................................................................... 52
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 52
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 53
12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 54
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of Main PLL) ......................................... 55
12.4.5 Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock of Main PLL) .............. 55
12.4.6 Reset Input Characteristics .......................................................................................................................................... 56
12.4.7 Power-on Reset Timing................................................................................................................................................ 56
12.4.8 Base Timer Input Timing .............................................................................................................................................. 57
12.4.9 CSIO/UART Timing ...................................................................................................................................................... 58
12.4.10 External Input Timing ................................................................................................................................................ 66
12.4.11 I2C Timing ................................................................................................................................................................. 67
12.4.12 JTAG Timing ............................................................................................................................................................. 68
12.5 12-bit A/D Converter .................................................................................................................................................... 69
12.6 10-bit D/A Converter .................................................................................................................................................... 72
12.7 Low-Voltage Detection Characteristics ........................................................................................................................ 73
12.7.1 Low-Voltage Detection Reset ....................................................................................................................................... 73
12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................... 74
12.8 Flash Memory Write/Erase Characteristics ................................................................................................................. 75
12.8.1 Write / Erase time......................................................................................................................................................... 75
12.8.2 Write cycles and data hold time ................................................................................................................................... 75
12.9 Return Time from Low-Power Consumption Mode ...................................................................................................... 76
12.9.1 Return Factor: Interrupt ................................................................................................................................................ 76
12.9.2 Return Factor: Reset .................................................................................................................................................... 78
13. Ordering Information ...................................................................................................................................................... 80
14. Package Dimensions ...................................................................................................................................................... 81
Document Number: 002-05659 Rev.*B
Page 4 of 90
MB9A420L Series
15. Major Changes ................................................................................................................................................................ 87
Document History ................................................................................................................................................................. 89
Sales, Solutions, and Legal Information ............................................................................................................................. 90
Document Number: 002-05659 Rev.*B
Page 5 of 90
MB9A420L Series
1. Product Lineup
Memory size
Product name
MB9AF421K/L
On-chip Flash memory
64 Kbytes
On-chip SRAM
4 Kbytes
SRAM1
Function
Product name
Pin count
CPU
Freq.
Power supply voltage range
CAN
Multi-function Serial Interface
(UART/CSIO/LIN/I2C)
Base Timer
(PWC/Reload timer/PWM/PPG)
A/D activation
1 ch.
compare
Input capture
3 ch.
Free-run timer
3 ch.
MFOutput compare 6 ch.
Timer
Waveform
3 ch.
generator
PPG
3 ch.
(IGBT mode)
MB9AF421K
48/52
Cortex-M3
40 MHz
2.7 V to 5.5 V
1 ch. (Max)
4 ch. (Max)
ch.0, ch.1, ch.3, ch.5: No FIFO
(In ch.5, only UART and LIN are
available.)
MB9AF421L
64
4ch. (Max)
ch.0, ch.1, ch.3, ch.5: No FIFO
8 ch. (Max)
1 unit
Dual Timer
1 unit
Real-Time Clock
Watchdog timer
External Interrupts
I/O ports
12-bit A/D converter
10-bit D/A converter
CSV (Clock Super Visor)
LVD (Low-Voltage Detector)
High-speed
Built-in CR
Low-speed
Debug Function
Unique ID
1 unit
1 ch. (SW) + 1 ch. (HW)
14 pins (Max) + NMI × 1
36 pins (Max)
8 ch. (1 unit)
1 ch. (Max)
Yes
2 ch.
4 MHz
100 kHz
SWJ-DP
Yes
19 pins (Max) + NMI × 1
51 pins (Max)
Note:
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the I/O port according to your function use.
See Electrical Characteristics 4.AC Characteristics (3) Built-in CR Oscillation Characteristics for accuracy of built-in CR.
Document Number: 002-05659 Rev.*B
Page 6 of 90
MB9A420L Series
2. Packages
Product name
Package
LQFP:
LQA048 (0.5 mm pitch)
MB9AF421K
MB9AF421L

-
QFN:
WNY048 (0.5 mm pitch)

LQFP:
LQC052 (0.65 mm pitch)

LQFP:
LQD064 (0.5 mm pitch)
-

LQFP:
LQG064 (0.65 mm pitch)
-

QFN:
WNS064 (0.5 mm pitch)
-

-
: Supported
Note:
−
See Package Dimensions for detailed information on each package.
Document Number: 002-05659 Rev.*B
Page 7 of 90
MB9A420L Series
3. Pin Assignment
LQD064/ LQG064
P0C/TIOA6_1/INT19_0
P0A/INT00_2
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
54
53
52
51
50
49
P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0
57
P0B/TIOB6_1/INT18_0
P62/SCK5_0/ADTG_3
58
55
P61/SOT5_0/TIOB2_2/DTTI0X_2
59
56
P80/INT16_1
P60/SIN5_0/TIOA2_2/INT15_1/IGTRG_1
P81/INT17_1
62
60
P82
63
61
VSS
64
(TOP VIEW)
VCC
1
48
P21/AN14/SIN0_0/INT06_1
P50/INT00_0/SIN3_1
2
47
P22/AN13/SOT0_0/TIOB7_1
P51/INT01_0/SOT3_1
3
46
P23/AN12/SCK0_0/TIOA7_1
P52/INT02_0/SCK3_1
4
45
P19
P30/TIOB0_1/INT03_2
5
44
P18
P31/TIOB1_1/INT04_2
6
43
AVRL
P32/TIOB2_1/INT05_2
7
42
AVRH
P33/INT04_0/TIOB3_1/ADTG_6
8
41
AVCC
P39/DTTI0X_0/INT06_0/ADTG_2
9
40
P17/INT04_1
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2
10
39
P15/AN05/SOT0_1/INT14_0/IC03_2
P3B/RTO01_0/TIOA1_1
11
38
P14/AN04/SIN0_1/INT03_1/IC02_2
P3C/RTO02_0/TIOA2_1/INT18_2
12
37
AVSS
P3D/RTO03_0/TIOA3_1
13
36
P12/AN02/SOT1_1/TX1_2/IC00_2
P3E/RTO04_0/TIOA4_1/INT19_2
14
35
P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2
P3F/RTO05_0/TIOA5_1
15
34
P10/AN00/SCK1_1
VSS
16
33
VCC
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
C
VCC
P46/X0A
P47/X1A
INITX
P49/TIOB0_0/SOT3_2/INT20_1/DA0_0
P4A/TIOB1_0/SCK3_2/INT21_1
P4B/TIOB2_0/INT22_1/IGTRG_0
P4C/TIOB3_0/INT12_0
P4D/TIOB4_0/INT13_0
P4E/TIOB5_0/INT06_2
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
LQFP- 64
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05659 Rev.*B
Page 8 of 90
MB9A420L Series
WNS064
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
52
51
50
49
57
P0A/INT00_2
P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0
58
53
P62/SCK5_0/ADTG_3
59
54
P61/SOT5_0/TIOB2_2/DTTI0X_2
60
P0C/TIOA6_1/INT19_0
P60/SIN5_0/TIOA2_2/INT15_1/IGTRG_1
61
P0B/TIOB6_1/INT18_0
P80/INT16_1
62
55
P81/INT17_1
63
56
VSS
P82
64
(TOP VIEW)
VCC
1
48
P21/AN14/SIN0_0/INT06_1
P50/INT00_0/SIN3_1
2
47
P22/AN13/SOT0_0/TIOB7_1
P51/INT01_0/SOT3_1
3
46
P23/AN12/SCK0_0/TIOA7_1
P52/INT02_0/SCK3_1
4
45
P19
P30/TIOB0_1/INT03_2
5
44
P18
P31/TIOB1_1/INT04_2
6
43
AVRL
P32/TIOB2_1/INT05_2
7
42
AVRH
P33/INT04_0/TIOB3_1/ADTG_6
8
41
AVCC
P39/DTTI0X_0/INT06_0/ADTG_2
9
40
P17/INT04_1
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2
10
39
P15/AN05/SOT0_1/INT14_0/IC03_2
P3B/RTO01_0/TIOA1_1
11
38
P14/AN04/SIN0_1/INT03_1/IC02_2
P3C/RTO02_0/TIOA2_1/INT18_2
12
37
AVSS
P3D/RTO03_0/TIOA3_1
13
36
P12/AN02/SOT1_1/TX1_2/IC00_2
P3E/RTO04_0/TIOA4_1/INT19_2
14
35
P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2
P3F/RTO05_0/TIOA5_1
15
34
P10/AN00/SCK1_1
VSS
16
33
VCC
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
C
VCC
P46/X0A
P47/X1A
INITX
P49/TIOB0_0/SOT3_2/INT20_1/DA0_0
P4A/TIOB1_0/SCK3_2/INT21_1
P4B/TIOB2_0/INT22_1/IGTRG_0
P4C/TIOB3_0/INT12_0
P4D/TIOB4_0/INT13_0
P4E/TIOB5_0/INT06_2
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
QFN- 64
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05659 Rev.*B
Page 9 of 90
MB9A420L Series
LQA048
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
40
39
38
37
P61/SOT5_0/TIOB2_2/DTTI0X_2
43
P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0
P60/SIN5_0/TIOA2_2/INT15_1/IGTRG_1
44
P04/TDO/SWO
P80/INT16_1
45
41
P81/INT17_1
46
42
VSS
P82
47
1
36
P21/AN14/SIN0_0/INT06_1
P50/INT00_0/SIN3_1
2
35
P22/AN13/SOT0_0/TIOB7_1
P51/INT01_0/SOT3_1
3
34
P23/AN12/SCK0_0/TIOA7_1
P52/INT02_0/SCK3_1
4
33
AVRL
P39/DTTI0X_0/INT06_0/ADTG_2
5
32
AVRH
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2
6
31
AVCC
P3B/RTO01_0/TIOA1_1
7
30
P15/AN05/SOT0_1/INT14_0/IC03_2
P3C/RTO02_0/TIOA2_1/INT18_2
8
29
P14/AN04/SIN0_1/INT03_1/IC02_2
P3D/RTO03_0/TIOA3_1
9
28
AVSS
P3E/RTO04_0/TIOA4_1/INT19_2
10
27
P12/AN02/SOT1_1/TX1_2/IC00_2
P3F/RTO05_0/TIOA5_1
11
26
P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2
VSS
12
25
P10/AN00/SCK1_1
24
20
PE0/MD1
VSS
19
P4A/TIOB1_0/INT21_1
23
18
P49/TIOB0_0/INT20_1/DA0_0
PE3/X1
17
INITX
22
16
P47/X1A
21
15
P46/X0A
MD0
14
PE2/X0
13
C
LQFP- 48
VCC
VCC
48
(TOP VIEW)
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05659 Rev.*B
Page 10 of 90
MB9A420L Series
WNY048
P02/TDI
P00/TRSTX
37
P03/TMS/SWDIO
40
P01/TCK/SWCLK
P04/TDO/SWO
41
38
P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0
42
39
P60/SIN5_0/TIOA2_2/INT15_1/IGTRG_1
P80/INT16_1
45
P61/SOT5_0/TIOB2_2/DTTI0X_2
P81/INT17_1
46
43
P82
47
44
VSS
48
(TOP VIEW)
VCC
1
36
P21/AN14/SIN0_0/INT06_1
P50/INT00_0/SIN3_1
2
35
P22/AN13/SOT0_0/TIOB7_1
P51/INT01_0/SOT3_1
3
34
P23/AN12/SCK0_0/TIOA7_1
P52/INT02_0/SCK3_1
4
33
AVRL
P39/DTTI0X_0/INT06_0/ADTG_2
5
32
AVRH
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2
6
31
AVCC
P3B/RTO01_0/TIOA1_1
7
30
P15/AN05/SOT0_1/INT14_0/IC03_2
P3C/RTO02_0/TIOA2_1/INT18_2
8
29
P14/AN04/SIN0_1/INT03_1/IC02_2
P3D/RTO03_0/TIOA3_1
9
28
AVSS
P3E/RTO04_0/TIOA4_1/INT19_2
10
27
P12/AN02/SOT1_1/TX1_2/IC00_2
P3F/RTO05_0/TIOA5_1
11
26
P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2
VSS
12
25
P10/AN00/SCK1_1
13
14
15
16
17
18
19
20
21
22
23
24
C
VCC
P46/X0A
P47/X1A
INITX
P49/TIOB0_0/INT20_1/DA0_0
P4A/TIOB1_0/INT21_1
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
QFN- 48
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05659 Rev.*B
Page 11 of 90
MB9A420L Series
LQC052
P80/INT16_1
P60/SIN5_0/TIOA2_2/INT15_1/IGTRG_1
P61/SOT5_0/TIOB2_2/DTTI0X_2
P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
NC
47
46
45
44
43
42
41
40
P81/INT17_1
50
48
P82
51
49
VSS
52
(TOP VIEW)
VCC
1
39
P21/AN14/SIN0_0/INT06_1
P50/INT00_0/SIN3_1
2
38
P22/AN13/SOT0_0/TIOB7_1
P51/INT01_0/SOT3_1
3
37
P23/AN12/SCK0_0/TIOA7_1
P52/INT02_0/SCK3_1
4
36
NC
NC
5
35
AVRL
P39/DTTI0X_0/INT06_0/ADTG_2
6
34
AVRH
P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2
7
33
AVCC
P3B/RTO01_0/TIOA1_1
8
32
P15/AN05/SOT0_1/INT14_0/IC03_2
P3C/RTO02_0/TIOA2_1/INT18_2
9
31
P14/AN04/SIN0_1/INT03_1/IC02_2
P3D/RTO03_0/TIOA3_1
10
30
AVSS
P3E/RTO04_0/TIOA4_1/INT19_2
11
29
P12/AN02/SOT1_1/TX1_2/IC00_2
P3F/RTO05_0/TIOA5_1
12
28
P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2
VSS
13
27
P10/AN00/SCK1_1
14
15
16
17
18
19
20
21
22
23
24
25
26
C
VCC
P46/X0A
P47/X1A
INITX
P49/TIOB0_0/INT20_1/DA0_0
P4A/TIOB1_0/INT21_1
NC
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
LQFP- 52
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05659 Rev.*B
Page 12 of 90
MB9A420L Series
4. List of Pin Functions
List of pin numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin No
LQFP-64
QFN-64
LQFP-48
QFN-48
LQFP-52
1
1
1
2
2
2
3
3
3
4
4
4
5
-
-
6
-
-
7
-
-
8
-
-
9
6
5
10
7
6
11
8
7
Document Number: 002-05659 Rev.*B
I/O circuit
type
Pin Name
VCC
P50
INT00_0
SIN3_1
P51
INT01_0
SOT3_1
(SDA3_1)
P52
INT02_0
SCK3_1
(SCL3_1)
P30
TIOB0_1
INT03_2
P31
TIOB1_1
INT04_2
P32
TIOB2_1
INT05_2
P33
INT04_0
TIOB3_1
ADTG_6
P39
DTTI0X_0
INT06_0
ADTG_2
P3A
RTO00_0
(PPG00_0)
TIOA0_1
INT07_0
SUBOUT_2
RTCCO_2
P3B
RTO01_0
(PPG00_0)
TIOA1_1
Pin state
type
H*1
K
H*2
K
H*2
K
E
K
E
K
E
K
E
K
E
K
G
K
G
J
Page 13 of 90
MB9A420L Series
Pin No
LQFP-64
QFN-64
LQFP-48
QFN-48
LQFP-52
12
9
8
13
10
9
14
11
10
15
12
11
16
17
18
13
14
15
12
13
14
19
16
15
20
17
16
21
18
17
19
18
22
-
-
20
19
23
-
-
24
-
-
25
-
-
26
-
-
Document Number: 002-05659 Rev.*B
I/O circuit
type
Pin Name
P3C
RTO02_0
(PPG02_0)
TIOA2_1
INT18_2
P3D
RTO03_0
(PPG02_0)
TIOA3_1
P3E
RTO04_0
(PPG04_0)
TIOA4_1
INT19_2
P3F
RTO05_0
(PPG04_0)
TIOA5_1
VSS
C
VCC
P46
X0A
P47
X1A
INITX
P49
TIOB0_0
INT20_1
DA0_0
SOT3_2
(SDA3_2)
P4A
TIOB1_0
INT21_1
SCK3_2
(SCL3_2)
P4B
TIOB2_0
INT22_1
IGTRG_0
P4C
TIOB3_0
INT12_0
P4D
TIOB4_0
INT13_0
Pin state
type
G
K
G
J
G
K
G
J
D
F
D
G
B
C
K
K
E
K
E
K
E
K
E
K
Page 14 of 90
MB9A420L Series
Pin No
LQFP-64
QFN-64
LQFP-48
QFN-48
LQFP-52
27
-
-
28
22
20
29
23
21
30
24
22
31
25
23
32
33
26
-
24
-
34
27
25
35
28
26
36
29
27
37
30
28
38
31
29
39
32
30
40
-
-
41
42
43
44
45
33
34
35
-
31
32
33
-
Document Number: 002-05659 Rev.*B
I/O circuit
type
Pin Name
P4E
TIOB5_0
INT06_2
PE0
MD1
MD0
PE2
X0
PE3
X1
VSS
VCC
P10
AN00
SCK1_1
(SCL1_1)
P11
AN01
SIN1_1
INT02_1
RX1_2
FRCK0_2
P12
AN02
SOT1_1
(SDA1_1)
TX1_2
IC00_2
AVSS
P14
AN04
SIN0_1
INT03_1
IC02_2
P15
AN05
SOT0_1
(SDA0_1)
INT14_0
IC03_2
P17
INT04_1
AVCC
AVRH
AVRL
P18
P19
Pin state
type
E
K
C
E
J
D
A
A
A
B
F
L
F
M
F
L
-
F
M
F
M
E
K
E
E
J
J
Page 15 of 90
MB9A420L Series
Pin No
LQFP-64
QFN-64
LQFP-48
QFN-48
LQFP-52
46
37
34
47
38
35
48
39
36
49
41
37
50
42
38
51
43
39
52
44
40
53
45
41
54
-
-
55
-
-
56
-
-
57
46
42
58
-
-
Document Number: 002-05659 Rev.*B
I/O circuit
type
Pin Name
P23
AN12
SCK0_0
(SCL0_0)
TIOA7_1
P22
AN13
SOT0_0
(SDA0_0)
TIOB7_1
P21
AN14
SIN0_0
INT06_1
P00
TRSTX
P01
TCK
SWCLK
P02
TDI
P03
TMS
SWDIO
P04
TDO
SWO
P0A
INT00_2
P0B
TIOB6_1
INT18_0
P0C
TIOA6_1
INT19_0
P0F
NMIX
SUBOUT_0
CROUT_1
RTCCO_0
P62
SCK5_0
(SCL5_0)
ADTG_3
Pin state
type
I*2
M
I*2
M
I*1
M
E
I
E
I
E
I
E
I
E
I
E
K
E
K
E
K
E
H
E
J
Page 16 of 90
MB9A420L Series
Pin No
LQFP-64
QFN-64
I/O circuit
type
Pin Name
LQFP-48
QFN-48
LQFP-52
Pin state
type
P61
59
47
43
SOT5_0
(SDA5_0)
E
J
I*2
K
L
K
L
K
J
TIOB2_2
DTTI0X_2
P60
SIN5_0
60
48
44
TIOA2_2
INT15_1
IGTRG_1
P80
61
49
45
62
50
46
63
51
47
P82
L
64
52
48
VSS
-
-
5, 21, 36, 40
-
NC
-
INT16_1
P81
INT17_1
*1: 5 V tolerant I/O, without PZR function
*2: 5 V tolerant I/O, with PZR function
Document Number: 002-05659 Rev.*B
Page 17 of 90
MB9A420L Series
List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin
function
ADC
Base Timer
0
Base Timer
1
Base Timer
2
Base Timer
3
Base Timer
4
Base Timer
5
Base Timer
6
Base Timer
7
Debugger
Pin No
Pin name
ADTG_2
ADTG_3
ADTG_6
AN00
AN01
AN02
AN04
AN05
AN12
AN13
AN14
TIOA0_1
TIOB0_0
TIOB0_1
TIOA1_1
TIOB1_0
TIOB1_1
TIOA2_1
TIOA2_2
TIOB2_0
TIOB2_1
TIOB2_2
TIOA3_1
TIOB3_0
TIOB3_1
TIOA4_1
TIOB4_0
TIOA5_1
TIOB5_0
TIOA6_1
TIOB6_1
TIOA7_1
TIOB7_1
SWCLK
SWDIO
SWO
TCK
TDI
TDO
TMS
TRSTX
Function description
A/D converter external trigger input pin
A/D converter analog input pin.
ANxx describes ADC ch.xx.
Base timer ch.0 TIOA pin
Base timer ch.0 TIOB pin
Base timer ch.1 TIOA pin
Base timer ch.1 TIOB pin
Base timer ch.2 TIOA pin
Base timer ch.2 TIOB pin
Base timer ch.3 TIOA pin
Base timer ch.3 TIOB pin
Base timer ch.4 TIOA pin
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
Base timer ch.5 TIOB pin
Base timer ch.6 TIOA pin
Base timer ch.6 TIOB pin
Base timer ch.7 TIOA pin
Base timer ch.7 TIOB pin
Serial wire debug interface clock input pin
Serial wire debug interface data input / output
pin
Serial wire viewer output pin
JTAG test clock input pin
JTAG test data input pin
JTAG debug data output pin
JTAG test mode state input/output pin
JTAG test reset input pin
Document Number: 002-05659 Rev.*B
LQFP-64
QFN-64
LQFP-52
LQFP-48
QFN-48
9
58
8
34
35
36
38
39
46
47
48
10
22
5
11
23
6
12
60
24
7
59
13
25
8
14
26
15
27
56
55
46
47
50
6
27
28
29
31
32
37
38
39
7
19
8
20
9
48
47
10
11
12
37
38
42
5
25
26
27
29
30
34
35
36
6
18
7
19
8
44
43
9
10
11
34
35
38
52
44
40
53
50
51
53
52
49
45
42
43
45
44
41
41
38
39
41
40
37
Page 18 of 90
MB9A420L Series
Pin
function
External
Interrupt
Pin No
Pin name
INT00_0
INT00_2
INT01_0
INT02_0
INT02_1
INT03_1
INT03_2
Function description
External interrupt request 00 input pin
External interrupt request 01 input pin
External interrupt request 02 input pin
External interrupt request 03 input pin
INT04_0
INT04_1
External interrupt request 04 input pin
INT04_2
INT05_2
External interrupt request 05 input pin
INT06_0
INT06_1
External interrupt request 06 input pin
INT06_2
LQFP-64
QFN-64
LQFP-48
QFN-48
LQFP-52
2
2
2
54
-
-
3
3
3
4
4
4
35
28
26
38
31
29
5
-
-
8
-
-
40
-
-
6
-
-
7
-
-
9
6
5
48
39
36
27
-
-
INT07_0
External interrupt request 07 input pin
10
7
6
INT12_0
External interrupt request 12 input pin
25
-
-
INT13_0
External interrupt request 13 input pin
26
-
-
INT14_0
External interrupt request 14 input pin
39
32
30
INT15_1
External interrupt request 15 input pin
60
48
44
INT16_1
External interrupt request 16 input pin
61
49
45
INT17_1
External interrupt request 17 input pin
62
50
46
55
-
-
12
9
8
56
-
-
14
11
10
INT18_0
INT18_2
INT19_0
INT19_2
External interrupt request 18 input pin
External interrupt request 19 input pin
INT20_1
External interrupt request 20 input pin
22
19
18
INT21_1
External interrupt request 21 input pin
23
20
19
INT22_1
External interrupt request 22 input pin
24
-
-
NMIX
Non-Maskable Interrupt input pin
57
46
42
Document Number: 002-05659 Rev.*B
Page 19 of 90
MB9A420L Series
Pin
function
GPIO
Pin No
Pin name
P00
P01
P02
P03
P04
P0A
P0B
P0C
P0F
P10
P11
P12
P14
P15
P17
P18
P19
P21
P22
P23
P30
P31
P32
P33
P39
P3A
P3B
P3C
P3D
P3E
P3F
P46
P47
P49
P4A
P4B
P4C
P4D
P4E
P50
P51
P52
P60
P61
P62
P80
P81
P82
PE0
PE2
PE3
Function description
General-purpose I/O port 0
General-purpose I/O port 1
General-purpose I/O port 2
General-purpose I/O port 3
General-purpose I/O port 4
General-purpose I/O port 5
General-purpose I/O port 6
General-purpose I/O port 8
General-purpose I/O port E
Document Number: 002-05659 Rev.*B
LQFP-64
QFN-64
49
50
51
52
53
54
55
56
57
34
35
36
38
39
40
44
45
48
47
46
5
6
7
8
9
10
11
12
13
14
15
19
20
22
23
24
25
26
27
2
3
4
60
59
58
61
62
63
28
30
31
LQFP-52
41
42
43
44
45
46
27
28
29
31
32
39
38
37
6
7
8
9
10
11
12
16
17
19
20
2
3
4
48
47
49
50
51
22
24
25
LQFP-48
QFN-48
37
38
39
40
41
42
25
26
27
29
30
36
35
34
5
6
7
8
9
10
11
15
16
18
19
2
3
4
44
43
45
46
47
20
22
23
Page 20 of 90
MB9A420L Series
Pin
function
Multifunction
Serial
0
Pin No
Pin name
SIN0_0
SIN0_1
SOT0_0
(SDA0_0)
SOT0_1
(SDA0_1)
Multifunction
Serial
1
Multifunction
Serial
3
Function description
Multi-function serial interface ch.0 input pin
Multi-function serial interface ch.0 output pin.
This pin operates as SOT0 when it is used in
a UART/CSIO/LIN (operation modes 0 to 3)
and as SDA0 when it is used in an I2C
(operation
mode 4).
LQFP-64
QFN-64
LQFP-48
QFN-48
LQFP-52
48
39
36
38
31
29
47
38
35
39
32
30
SCK0_0
(SCL0_0)
Multi-function serial interface ch.0 clock I/O
pin.
This pin operates as SCK0 when it is used in
a CSIO (operation mode 2) and as SCL0
when it is used in an I2C (operation mode 4).
46
37
34
SIN1_1
Multi-function serial interface ch.1 input pin
35
28
26
SOT1_1
(SDA1_1)
Multi-function serial interface ch.1 output pin.
This pin operates as SOT1 when it is used in
a UART/CSIO/LIN (operation modes 0 to 3)
and as SDA1 when it is used in an I2C
(operation mode 4).
36
29
27
SCK1_1
(SCL1_1)
Multi-function serial interface ch.1 clock I/O
pin.
This pin operates as SCK1 when it is used in
a CSIO (operation mode 2) and as SCL1
when it is used in an I2C (operation mode 4).
34
27
25
SIN3_1
Multi-function serial interface ch.3 input pin
2
2
2
SOT3_1
(SDA3_1)
Multi-function serial interface ch.3 output pin.
This pin operates as SOT3 when it is used in
a UART/CSIO/LIN (operation modes 0 to 3)
and as SDA3 when it is used in an I2C
(operation mode 4).
3
3
3
22
-
-
4
4
4
23
-
-
SOT3_2
(SDA3_2)
SCK3_1
(SCL3_1)
SCK3_2
(SCL3_2)
Multi-function serial interface ch.3 clock I/O
pin.
This pin operates as SCK3 when it is used in
a CSIO (operation mode 2) and as SCL3
when it is used in an I2C (operation mode 4).
Document Number: 002-05659 Rev.*B
Page 21 of 90
MB9A420L Series
Pin
function
Multifunction
Serial
5
Pin No
Pin name
SIN5_0
SOT5_0
(SDA5_0)
SCK5_0
(SCL5_0)
Multifunction
Timer
0
DTTI0X_0
DTTI0X_2
Function description
Multi-function serial interface ch.5 input pin
Multi-function serial interface ch.5 output pin.
This pin operates as SOT5 when it is used in
a UART/CSIO/LIN (operation modes 0 to 3)
and as SDA5 when it is used in an I2C
(operation mode 4).
Multi-function serial interface ch.5 clock I/O
pin.
This pin operates as SCK5 when it is used in
a CSIO (operation mode 2) and as SCL5
when it is used in an I2C (operation mode 4).
Input signal of waveform generator to control
outputs RTO00 to RTO05 of Multi-function
timer 0.
LQFP-64
QFN-64
60
48
LQFP-48
QFN-48
44
59
47
43
58
-
-
9
6
5
59
47
43
LQFP-52
FRCK0_2
16-bit free-run timer ch.0 external clock input
pin
35
28
26
IC00_2
IC02_2
IC03_2
16-bit input capture input pin of Multi-function
timer 0.
ICxx describes channel number.
36
38
39
29
31
32
27
29
30
10
7
6
11
8
7
RTO00_0
(PPG00_0)
RTO01_0
(PPG00_0)
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG00 when it is used
in PPG0 output mode.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG00 when it is used
in PPG0 output mode.
RTO02_0
(PPG02_0)
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG02 when it is used
in PPG0 output mode.
12
9
8
RTO03_0
(PPG02_0)
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG02 when it is used
in PPG0 output mode.
13
10
9
RTO04_0
(PPG04_0)
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG04 when it is used
in PPG0 output mode.
14
11
10
RTO05_0
(PPG04_0)
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG04 when it is used
in PPG0 output mode.
15
12
11
IGTRG_0
IGTRG_1
PPG IGBT mode external trigger input pin
24
60
48
44
Document Number: 002-05659 Rev.*B
Page 22 of 90
MB9A420L Series
Pin
function
CAN
Real-time
clock
Pin No
Pin name
36
29
27
RX1_2
CAN interface RX input pin
35
28
26
RTCCO_0
0.5 seconds pulse output pin of Real-time
clock
57
46
42
10
7
6
57
46
42
10
7
6
RTCCO_2
Sub clock output pin
DA0_0
D/A converter ch.0 analog output pin
22
19
18
INITX
External Reset Input pin.
A reset is valid when INITX="L".
21
18
17
MD0
Mode 0 pin.
During normal operation, MD0="L" must be
input. During serial programming to Flash
memory, MD0="H" must be input.
29
23
21
MD1
Mode 1 pin.
During serial programming to Flash memory,
MD1="L" must be input.
28
22
20
1
1
1
18
15
14
33
-
-
16
13
12
32
26
24
64
52
48
Mode
Power
VCC
Power supply Pin
GND
VSS
Clock
LQFP-48
QFN-48
LQFP-52
CAN interface TX output pin
SUBOUT_2
RESET
LQFP-64
QFN-64
TX1_2
SUBOUT_0
DAC
Function description
GND Pin
X0
Main clock (oscillation) input pin
30
24
22
X0A
Sub clock (oscillation) input pin
19
16
15
X1
Main clock (oscillation) I/O pin
31
25
23
X1A
Sub clock (oscillation) I/O pin
20
17
16
CROUT_1
Built-in high-speed CR-osc clock output port
57
46
42
AVCC
A/D converter and D/A converter analog
power supply pin
41
33
31
AVRH
A/D converter analog reference voltage input
pin
42
34
32
Analog
GND
AVSS
A/D converter and D/A converter GND pin
37
30
28
AVRL
A/D converter analog reference voltage input
pin
43
35
33
C pin
C
Power supply stabilization capacity pin
17
14
13
Analog
Power
Note:
−
While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to
all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other
devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP
controller.
Document Number: 002-05659 Rev.*B
Page 23 of 90
MB9A420L Series
5. I/O Circuit Type
Type
Circuit
Remarks
A
It is possible to select the main
oscillation / GPIO function
Pull-up
resistor
P-ch
P-ch
Digital output
X1A
N-ch
Digital output
R
Pull-up resistor control
When the main oscillation is
selected.
• Oscillation feedback resistor
: Approximately 1 MΩ
• With Standby mode control
When the GPIO is selected.
• CMOS level output.
• CMOS level hysteresis input
• With pull-up resistor control
• With standby mode control
• Pull-up resistor
: Approximately 50 kΩ
• IOH= -4 mA, IOL= 4 mA
Digital input
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
Document Number: 002-05659 Rev.*B
Page 24 of 90
MB9A420L Series
Type
Circuit
Remarks
• CMOS level hysteresis input
• Pull-up resistor
: Approximately 50 kΩ
B
Pull-up resistor
Digital input
C
Digital input
N-ch
Document Number: 002-05659 Rev.*B
• Open drain output
• CMOS level hysteresis input
Digital output
Page 25 of 90
MB9A420L Series
Type
Circuit
Remarks
D
It is possible to select the sub
oscillation / GPIO function
Pull-up
When the sub oscillation is selected.
resistor
P-ch
P-ch
Digital output
X1A
• Oscillation feedback resistor
: Approximately 5 MΩ
• With Standby mode control
When the GPIO is selected.
N-ch
Digital output
R
Pull-up resistor control
•
•
•
•
•
CMOS level output.
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH= -4 mA, IOL= 4 mA
Digital input
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
Document Number: 002-05659 Rev.*B
Page 26 of 90
MB9A420L Series
Type
Circuit
Remarks
•
•
•
•
•
E
P-ch
P-ch
N-ch
Digital output
Digital output
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH= -4 mA, IOL= 4 mA
• When this pin is used as an I2C
pin, the digital output
P-ch transistor is always off
• +B input is available
R
Pull-up resistor control
Digital input
Standby mode control
F
P-ch
P-ch
N-ch
R
Digital output
Digital output
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH= -4 mA, IOL= 4 mA
• When this pin is used as an I2C
pin, the digital output
P-ch transistor is always off
• +B input is available
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
Document Number: 002-05659 Rev.*B
Page 27 of 90
MB9A420L Series
Type
Circuit
Remarks
•
•
•
•
•
G
P-ch
P-ch
N-ch
Digital output
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH= -12 mA, IOL= 12 mA
• +B input is available
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
H
P-ch
P-ch
N-ch
Digital output
Digital output
R
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
5 V tolerant
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH= -4 mA, IOL= 4 mA
• Available to control PZR registers.
Only P51, P52.
• When this pin is used as an I2C
pin, the digital output
P-ch transistor is always off
Pull-up resistor control
Digital input
Standby mode control
Document Number: 002-05659 Rev.*B
Page 28 of 90
MB9A420L Series
Type
Circuit
Remarks
I
P-ch
P-ch
N-ch
R
Digital output
Digital output
•
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog input
5 V tolerant
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH= -4 mA, IOL= 4 mA
• Available to control PZR registers.
Only P23, P22, P60.
• When this pin is used as an I2C
pin, the digital output
P-ch transistor is always off
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
J
CMOS level hysteresis input
Mode input
Document Number: 002-05659 Rev.*B
Page 29 of 90
MB9A420L Series
Type
Circuit
Remarks
K
P-ch
P-ch
N-ch
Digital output
Digital output
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog output
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an
I2C pin, the digital output
P-ch transistor is always off
Pull-up resistor control
R
Digital input
Standby mode control
Analog output
•
•
•
•
L
P-ch
N-ch
CMOS level output
CMOS level hysteresis input
With standby mode control
IOH= -4 mA, IOL= 4 mA
Digital output
Digital output
R
Digital input
Standby mode control
Document Number: 002-05659 Rev.*B
Page 30 of 90
MB9A420L Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output
functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at
the design stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.
Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal
noise, surge levels, etc.
2. Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-05659 Rev.*B
Page 31 of 90
MB9A420L Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from
such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or
mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress
recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections
caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended
conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength
may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing
moisture resistance and causing packages to crack. To prevent, do the following:
1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C
and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica
gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-05659 Rev.*B
Page 32 of 90
MB9A420L Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be
needed to remove electricity.
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1
MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
4. Ground all fixtures and instruments, or protect with anti-static measures.
5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1. Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
2. Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases,
use anti-static measures or processing to prevent discharges.
3. Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If
you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4. Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
5. Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances.
If devices begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-05659 Rev.*B
Page 33 of 90
MB9A420L Series
7. Handling Devices
Power supply pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the
ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and
GND pin, between AVCC pin and AVSS pin, between AVRH pin and AVRL pin near this device.
Stabilizing power supply voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended
operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that
the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC
value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a
momentary fluctuation on switching the power supply.
Crystal oscillator circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Sub crystal oscillator
This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to
fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.
 Surface mount type
Size :
Load capacitance:
More than 3.2 mm × 1.5 mm
Approximately 6 pF to 7 pF
 Lead type
Load capacitance:
Approximately 6 pF to 7 pF
Using an external clock
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3)
can be used as a general-purpose I/O port.
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to
X0A. X1A (P47) can be used as a general-purpose I/O port.
Example of Using an External Clock
Device
X0(X0A)
Can be used as
general-purpose
I/O ports.
Document Number: 002-05659 Rev.*B
X1(PE3),
X1A (P47)
Page 34 of 90
MB9A420L Series
Handling when using Multi-function serial pin as I2C pin
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. However, I2C pins need to
keep the electrical characteristic like other pins and not to connect to the external I2C bus system with power OFF.
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use
by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7 μF would be recommended for this series.
C
Device
CS
VSS
GND
Mode pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays
low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is
because of preventing the device erroneously switching to test mode due to noise.
Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS.
Turning on : VCC → AVCC → AVRH
Turning off : AVRH → AVCC → VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end.
If an error is detected, retransmit the data.
Differences in features among the products with different memory sizes and between Flash memory
products and MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among
the products with different memory sizes and between Flash memory products and MASK products are different because chip
layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
Pull-Up function of 5 V tolerant I/O
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.
Document Number: 002-05659 Rev.*B
Page 35 of 90
MB9A420L Series
8. Block Diagram
MB9AF421K/L
TRSTX,TCK,
TDI,TMS
TDO
SWJ-DP
ROM Table
Multi-layer AHB (Max 40MHz)
Cortex-M3 Core I
@40MHz (Max)
D
NVIC
Sys
AHB-APB Bridge :
APB0(Max 40MHz)
Dual-Timer
WatchDog Timer
( Software)
INITX
Clock Reset
Generator
WatchDog Timer
( Hardware )
SRAM1
4 Kbytes
Flash I/F
Security
On- Chip Flash
64 Kbytes
CSV
CLK
X0A
X1A
CROUT
AVCC,
AVSS,
AVRH,
AVRL
ANxx
Main
Osc
Sub
Osc
Source clock
PLL
CR
4 MHz
CR
100kHz
AHB- AHB
Bridge
X0
X1
12- bit A /D Converter
CAN
TX1_2 ,
RX1_2
Unit 0
ADTG_x
T IOBx
Base Timer
16 -bit 8ch./
32 -bit 4ch.
A /D Activation
Compare 1ch.
IC0x
16 - bit Input Capture
3ch.
FRCKx
16- bit Free-run Timer
3ch.
16 - bit Output
Compare 6ch.
DTTI0X
RTO0x
IGTRG_x
LVD Ctrl
AHB-APB Bridge : APB2 (Max 40MHz)
TIOAx
CAN Prescaler
10-bit D/A Converter
1 units
AHB-APB Bridge : APB1 (Max 40MHz)
DAx
LVD
Regulator
C
IRQ - Monitor
Real -Time Colck
RTCCO_x,
SUBOUT_ x
External Interrupt
Controller
19 pin + NMI
INTx
NMIX
MD0,
MD1
P0x,
P1x,
MODE-Ctrl
GPIO
Waveform Generator
3ch.
16- bit PPG
3ch.
Power-On
Reset
PIN- Function-Ctrl
・
・
・
Pxx
Multi - function Serial I /F
4ch.
( without FIFO ch.0/1/3/5)
SCKx
SINx
SOTx
Multi -function Timer
Document Number: 002-05659 Rev.*B
Page 36 of 90
MB9A420L Series
9. Memory Size
See Memory size in Product Lineup to confirm the memory size.
10. Memory Map
Memory Map (1)
Peripherals Area
0x41FF_FFFF
Reserved
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M3 Private
Peripherals
Reserved
0x6000_0000
Reserved
0x4400_0000
0x4200_0000
0x4000_0000
0x2400_0000
0x2200_0000
0x2008_0000
0x2000_0000
0x1FF8_0000
See "  Memory Map
(2)" for the memory size
details.
0x0020_8000
0x0020_0000
0x0010_0008
0x0010_0000
32Mbytes
Bit band alias
Peripherals
Reserved
32Mbytes
Bit band alias
Reserved
SRAM1
Reserved
Reserved
Reserved
Reserved
Security/CR Trim
0x4006_4000
0x4006_3000
0x4006_1000
0x4006_0000
0x4005_0000
0x4004_0000
0x4003_C000
0x4003_B000
0x4003_A000
0x4003_9000
0x4003_8000
0x4003_7000
0x4003_6000
0x4003_5800
0x4003_5000
0x4003_4000
0x4003_3000
0x4003_2000
0x4003_1000
0x4003_0000
0x4002_F000
0x4002_E000
0x4002_9000
0x4002_8000
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
0x4001_6000
0x4001_5000
0x0000_0000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
0x4000_1000
0x4000_0000
Document Number: 002-05659 Rev.*B
Reserved
Reserved
Reserved
Reserved
Reserved
RTC
Reserved
Reserved
MFS
CAN Prescaler
Reserved
Reserved
LVD
Reserved
GPIO
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Reserved
D/AC
A/DC
Reserved
Base Timer
PPG
Reserved
0x4002_1000
0x4002_0000
Flash
CAN ch.1
MFT unit0
Reserved
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
Flash I/F
Page 37 of 90
MB9A420L Series
Memory Map (2)
MB9AF421L
0x2008_0000
Reserved
0x2000_1000
0x2000_0000
SRAM1
4Kbytes
Reserved
0x0010_0008
0x0010_0004
0x0010_0000
CR trimming
Security
Reserved
0x0000_FFF8
SA0-7 (8KBx8)
Flash 64Kbytes *
0x0000_0000
*: See MB9A420L/120L/MB9B120J Series Flash Programming Manual to confirm the detail of Flash memory.
Document Number: 002-05659 Rev.*B
Page 38 of 90
MB9A420L Series
Peripheral Address Map
Start address
End address
Bus
Peripherals
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Dual-Timer
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-function timer unit0
0x4002_1000
0x4002_3FFF
Reserved
0x4002_4000
0x4002_4FFF
PPG
0x4002_5000
0x4002_5FFF
Base Timer
0x4002_6000
0x4002_6FFF
0x4002_7000
0x4002_7FFF
0x4002_8000
0x4002_8FFF
D/A Converter
0x4002_9000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Built-in CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt
0x4003_1000
0x4003_1FFF
Interrupt Source Check Resister
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
Reserved
0x4003_5000
0x4003_57FF
Low-Voltage Detector
0x4003_5800
0x4003_5FFF
0x4003_6000
0x4003_6FFF
0x4003_7000
0x4003_7FFF
CAN prescaler
0x4003_8000
0x4003_8FFF
Multi-function serial Interface
0x4003_9000
0x4003_9FFF
Reserved
0x4003_A000
0x4003_AFFF
Reserved
0x4003_B000
0x4003_BFFF
Real-time clock
0x4003_C000
0x4003_FFFF
Reserved
0x4004_0000
0x4004_FFFF
Reserved
0x4005_0000
0x4005_FFFF
Reserved
0x4006_0000
0x4006_0FFF
0x4006_1000
0x4006_2FFF
0x4006_3000
0x4006_3FFF
CAN ch.1
0x4006_4000
0x41FF_FFFF
Reserved
Document Number: 002-05659 Rev.*B
AHB
APB0
APB1
APB2
AHB
Flash Memory I/F register
Reserved
Software Watchdog timer
Reserved
Reserved
A/D Converter
Reserved
Reserved
Reserved
Reserved
Page 39 of 90
MB9A420L Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX=0
This is the period when the INITX pin is the L level.
 INITX=1
This is the period when the INITX pin is the H level.
 SPL=0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.
 SPL=1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
Document Number: 002-05659 Rev.*B
Page 40 of 90
MB9A420L Series
Pin status type
List of Pin Status
A
Function
group
Power-on
reset or
low-voltage
detection state
Power supply
unstable
-
INITX
input state
Device
internal
reset
state
INITX = 1
-
Power supply
stable
INITX = 1
-
Power supply stable
INITX = 0
-
Run mode or
Sleep mode
state
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
INITX = 1
SPL = 0
SPL = 1
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Main crystal
oscillator input
pin/
External main
clock input
selected
Input enabled
Input
enabled
Input
enabled
Input enabled
Input enabled
Input enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
External main
clock input
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Maintain
previous state
/ When
oscillation
stops*1,
Hi-Z /
Internal input
fixed at 0
Maintain
previous state /
When
oscillation
stops*1,
Hi-Z /
Internal input
fixed at 0
Maintain previous
state / When
oscillation stops*1,
Hi-Z /
Internal input fixed at
0
B
Main crystal
oscillator output
pin
Hi-Z /
Internal input
fixed at 0/
or Input enable
Hi-Z /
Internal input
fixed at 0
Hi-Z /
Internal
input fixed
at 0
C
INITX
input pin
Pull-up / Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up / Input
enabled
Pull-up / Input
enabled
Pull-up / Input
enabled
D
Mode
input pin
Input enabled
Input
enabled
Input
enabled
Input enabled
Input enabled
Input enabled
Mode
input pin
Input enabled
Input
enabled
Input
enabled
Input enabled
Input enabled
Input enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z /
Input enabled
E
Document Number: 002-05659 Rev.*B
Page 41 of 90
Pin status type
MB9A420L Series
Function
group
Power-on
reset or
low-voltage
detection state
Power supply
unstable
-
GPIO
selected
INITX
input state
Device
internal
reset
state
INITX = 1
-
Power supply
stable
INITX = 1
-
Power supply stable
INITX = 0
-
Run mode or
Sleep mode
state
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
INITX = 1
SPL = 0
SPL = 1
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Input enabled
Input
enabled
Input
enabled
Input enabled
Input enabled
Input enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
External sub
clock input
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Maintain
previous state
Maintain
previous state /
When
oscillation
stops*2,
Hi-Z / Internal
input fixed at 0
Maintain previous
state / When
oscillation stops*2,
Hi-Z / Internal input
fixed at 0
F
Sub crystal
oscillator input pin
/
External sub clock
input selected
G
H
Sub crystal
oscillator output
pin
Hi-Z /
Internal input
fixed at 0/
or Input enable
Hi-Z /
Internal input
fixed at 0
Hi-Z /
Internal
input fixed
at 0
NMIX selected
Setting
disabled
Setting
disabled
Setting
disabled
Resource other
than above
selected
GPIO
selected
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
JTAG
selected
Hi-Z
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Setting
disabled
Setting
disabled
I
GPIO
selected
Setting
disabled
Document Number: 002-05659 Rev.*B
Maintain previous
state
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Maintain previous
state
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Page 42 of 90
Pin status type
MB9A420L Series
Function
group
Power-on
reset or
low-voltage
detection state
Power supply
unstable
Resource
selected
J
K
Resource other
than above
selected
Power supply stable
INITX = 0
-
Power supply
stable
INITX = 1
-
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
INITX = 1
SPL = 0
SPL = 1
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Hi-Z
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
L
Resource other
than above
selected
INITX = 1
-
Run mode or
Sleep mode
state
Hi-Z /
Input
enabled
GPIO
selected
Analog input
selected
Device
internal
reset
state
Hi-Z
GPIO
selected
External
interrupt enabled
selected
INITX
input state
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
Maintain previous
state
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
GPIO
selected
Analog input
selected
M
External
interrupt enabled
selected
Resource other
than above
selected
Maintain previous
state
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z / Internal input
fixed at 0
GPIO
selected
Document Number: 002-05659 Rev.*B
Page 43 of 90
Pin status type
MB9A420L Series
Function
group
Power-on
reset or
low-voltage
detection state
Power supply
unstable
-
INITX
input state
Device
internal
reset
state
Power supply stable
INITX = 0
-
INITX = 1
-
Analog
output
selected
Setting
disabled
Setting
disabled
Setting
disabled
External
interrupt enabled
selected
Setting
disabled
Setting
disabled
Setting
disabled
Run mode or
Sleep mode
state
Timer mode,
RTC mode, or
Stop mode state
Power supply
stable
INITX = 1
-
Power supply stable
INITX = 1
SPL = 0
*3
SPL = 1
*4
Maintain previous
state
Maintain
previous state
N
Resource other
than above
selected
Hi-Z
GPIO
selected
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Maintain
previous state
Hi-Z /
Internal input fixed at
0
*1: Oscillation is stopped at Sub timer mode, sub CR timer mode, RTC mode, STOP mode.
*2: Oscillation is stopped at Stop mode.
*3: Maintain previous state at timer mode. GPIO selected Internal input fixed at 0 at RTC mode, Stop mode.
*4: Maintain previous state at timer mode. Hi-Z/Internal input fixed at 0 at RTC mode, Stop mode.
Document Number: 002-05659 Rev.*B
Page 44 of 90
MB9A420L Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Parameter
Symbol
Power supply voltage*1, *2
Analog power supply voltage*1, *3
Analog reference voltage*1, *3
VCC
AVCC
AVRH
Input voltage*1
VI
Rating
Remarks
Max
VSS - 0.5
VSS - 0.5
VSS - 0.5
VSS + 6.5
VSS + 6.5
VSS + 6.5
VCC + 0.5
(≤ 6.5 V)
VSS + 6.5
AVCC + 0.5
(≤ 6.5 V)
VCC + 0.5
(≤ 6.5 V)
+2
+20
mA
mA
*7
10
20
4
12
100
50
- 10
- 20
-4
- 12
- 100
- 50
350
+ 150
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mW
°C
4 mA type
12 mA type
4 mA type
12 mA type
VSS - 0.5
VSS - 0.5
Analog pin input voltage*1
VIA
VSS - 0.5
Output voltage*1
VO
VSS - 0.5
Clamp maximum current
ICLAMP
Σ[ICLAMP]
Clamp total maximum current
Unit
Min
-2
L level maximum output current*4
IOL
-
L level average output current*5
IOLAV
-
L level total maximum output current
L level total average output current*6
∑IOL
∑IOLAV
-
H level maximum output current*4
IOH
-
H level average output current*5
IOHAV
-
H level total maximum output current
H level total average output current*6
Power consumption
Storage temperature
∑IOH
∑IOHAV
PD
TSTG
- 55
V
V
V
V
V
5 V tolerant
V
V
*7
4 mA type
12 mA type
4 mA type
12 mA type
*1: These parameters are based on the condition that VSS = AVSS = 0.0 V.
*2: VCC must not drop below VSS - 0.5 V.
*3: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on.
*4: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
*5: The average output current is defined as the average current value flowing through any one of the corresponding pins
for a 100 ms period.
*6: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.
Document Number: 002-05659 Rev.*B
Page 45 of 90
MB9A420L Series
*7:
•
•
•
•
•
See List of Pin Functions and I/O Circuit Type about +B input available pin.
Use within recommended operating conditions.
Use at DC voltage (current) the +B input.
The +B signal should always be applied a limiting resistance placed between the +B signal and the device.
The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does
not exceed rated values, either instantaneously or for prolonged periods.
• Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass
through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices.
• Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the
pins, so that incomplete operation may result.
• The following is a recommended circuit example (I/O equivalent circuit).
Protection Diode
VCC
VCC
P-ch
Limiting
+B input (0V to 16V)
Digital output
resistor
N-ch
Digital input
R
AVCC
Analog input
WARNING:
−
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or
temperature) in excess of absolute maximum ratings.
Do not exceed any of these ratings.
Document Number: 002-05659 Rev.*B
Page 46 of 90
MB9A420L Series
12.2 Recommended Operating Conditions
(VSS = AVSS = AVRL = 0.0V)
Parameter
Power supply voltage
Analog power supply voltage
Analog reference voltage
Smoothing capacitor
Operating
temperature
LQG064,
LQC052,
LQD064,
LQA048,
WNS064,
WNY048
Symbol
Conditions
Value
Min
Max
Unit
VCC
AVCC
AVRH
AVRL
-
2.7*2
2.7
2.7
AVSS
5.5
5.5
AVCC
AVSS
V
V
V
V
CS
-
1
10
μF
- 40
+ 105
°C
TA
When mounted on
four-layer
PCB
When mounted on
double-sided
single-layer PCB
- 40
+ 85
°C
Remarks
AVCC = VCC
For Regulator*1
*1: See C Pin in Handling Devices for the connection of the smoothing capacitor.
*2: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction
execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is
possible to operate only.
WARNING:
−
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
of the device's electrical characteristics are warranted when the device is operated under these conditions.
Any use of semiconductor devices will be under their recommended operating condition.
Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device
failure.
No warranty is made with respect to any use, operating conditions, or combinations not represented on this data sheet. If you
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.
Document Number: 002-05659 Rev.*B
Page 47 of 90
MB9A420L Series
12.3 DC Characteristics
12.3.1 Current Rating
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Value
Pin
name
Conditions
PLL
Run mode
Run
mode
current
ICC
VCC
Sleep
mode
current
ICCS
High-speed
CR
Run mode
Sub
Run mode
Low-speed
CR
Run mode
PLL
Sleep mode
High-speed
CR
Sleep mode
Sub
Sleep mode
Low-speed
CR
Sleep mode
Unit
Remarks
Typ
Max
15.5
16
mA
*1, *5
9
10.6
mA
*1, *5
14
15
mA
*1
CPU/ Peripheral: 4 MHz*2
Instruction on Flash
1.7
3.0
mA
*1
CPU/ Peripheral: 32 kHz
Instruction on Flash
63
900
μA
*1, *6
CPU/ Peripheral: 100 kHz
Instruction on Flash
88
920
μA
*1
Peripheral: 40 MHz
9
12
mA
*1, *5
Peripheral: 4 MHz*2
1
2.1
mA
*1
Peripheral: 32 kHz
58
880
μA
*1, *6
Peripheral: 100 kHz
71
890
μA
*1
CPU: 40 MHz,
Peripheral: 40 MHz
Instruction on Flash
CPU: 40 MHz,
Peripheral: the clock stops
NOP operation
Instruction on Flash
CPU: 40 MHz,
Peripheral: 40 MHz
Instruction on RAM
*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3: TA=+25°C, VCC=5.5 V
*4: TA=+105°C, VCC=5.5 V
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-05659 Rev.*B
Page 48 of 90
MB9A420L Series
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Value
Pin
name
Symbol
Conditions
Main
Timer mode
ICCT
Timer
mode
current
Sub
Timer mode
ICCT
VCC
RTC
mode
current
ICCR
Stop
mode
current
ICCH
RTC mode
Stop mode
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
Unit
Remarks
Typ
Max
1.8
2.1
mA
*1
-
2.7
mA
*1
13
44
μA
*1
-
730
μA
*1
10
38
μA
*1
-
570
μA
*1
9
32
μA
*1
-
540
μA
*1
*1: When all ports are fixed.
*2: VCC=5.5 V
*3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
LVD current
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Low-Voltage
detection
circuit (LVD)
power supply
current
Symbol
ICCLVD
Pin
name
VCC
Value
Conditions
At operation
for reset
Vcc = 5.5 V
At operation
for interrupt
Vcc = 5.5 V
Unit
Remarks
Typ
Max
0.13
0.3
μA
At not detect
0.13
0.3
μA
At not detect
Flash memory current
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Flash
memory
write/erase
current
Symbol
ICCFLASH
Pin
name
VCC
Document Number: 002-05659 Rev.*B
Conditions
At Write/Erase
Value
Typ
Max
9.5
11.2
Unit
Remarks
mA
Page 49 of 90
MB9A420L Series
A/D convertor current
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Power supply
current
Reference
power supply
current
Symbol
ICCAD
ICCAVRH
Pin
name
AVCC
AVRH
Conditions
Value
Unit
Typ
Max
At operation
0.7
0.9
mA
At stop
0.13
13
μA
At operation
AVRH=5.5 V
1.1
1.97
mA
At stop
AVRH=5.5 V
0.1
1.7
μA
Remarks
D/A convertor current
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Pin
name
IDDA
Power supply
current
AVCC
IDSA
Conditions
Value
Unit
Remarks
Typ
Max
At operation
AVCC = 3.3 V
315
380
μA
*
At operation
AVCC = 5.0 V
475
580
μA
*
-
8
μA
*
At stop
*: No-load
Document Number: 002-05659 Rev.*B
Page 50 of 90
MB9A420L Series
12.3.2 Pin Characteristics
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
H level input
voltage
(hysteresis
input)
VIHS
L level input
voltage
(hysteresis
input)
VILS
Pin name
CMOS
hysteresis
input pin,
MD0, MD1
5 V tolerant
input pin
CMOS
hysteresis
input pin,
MD0, MD1
5 V tolerant
input pin
4mA type
H level
output voltage
VOH
12mA type
4mA type
L level
output voltage
VOL
12mA type
Input leak
current
IIL
Pull-up
resistance
value
RPU
Input
capacitance
CIN
-
Min
Value
Typ
Max
-
VCC × 0.8
-
VCC + 0.3
V
-
VCC × 0.8
-
VSS + 5.5
V
-
VSS - 0.3
-
VCC × 0.2
V
-
VSS - 0.3
-
VCC × 0.2
V
VCC - 0.5
-
VCC
V
VCC - 0.5
-
VCC
V
VSS
-
0.4
V
VSS
-
0.4
V
-5
-
+5
μA
VCC ≥ 4.5 V
33
50
90
VCC < 4.5 V
-
-
180
-
5
15
Conditions
VCC ≥ 4.5 V,
IOH = - 4 mA
VCC < 4.5 V,
IOH = - 2 mA
VCC ≥ 4.5 V,
IOH = - 12 mA
VCC < 4.5 V,
IOH = - 8 mA
VCC ≥ 4.5 V,
IOL = 4 mA
VCC < 4.5 V,
IOL = 2 mA
VCC ≥ 4.5 V,
IOL = 12 mA
VCC < 4.5 V,
IOL = 8 mA
-
Pull-up pin
Other than
VCC,
VSS,
AVCC,
AVSS,
AVRH,
AVRL
Document Number: 002-05659 Rev.*B
Unit
Remarks
kΩ
-
pF
Page 51 of 90
MB9A420L Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Input frequency
Input clock cycle
Input clock pulse
width
Input clock rising
time and falling
time
Internal operating
clock frequency*1
Symbol
Conditions
fCH
X0,
X1
tCYLH
Unit
Remarks
48
20
MHz
When crystal oscillator is
connected
4
48
MHz
When using external
Clock
20.83
250
ns
45
55
%
-
-
5
ns
Max
4
4
PWH/tCYLH,
PWL/tCYLH
tCF,
tCR
Value
Min
VCC ≥ 4.5 V
VCC < 4.5 V
When using external
Clock
When using external
Clock
When using external
Clock
fCM
-
-
-
40
MHz
Master clock
fCC
fCP0
fCP1
-
-
-
40
40
40
40
MHz
MHz
MHz
MHz
Base clock (HCLK/FCLK)
APB0 bus clock*2
APB1 bus clock*2
-
-
25
-
ns
Base clock (HCLK/FCLK)
-
-
25
-
ns
APB0 bus clock*2
-
-
25
-
ns
APB1 bus clock*2
-
-
25
-
ns
APB2 bus clock*2
fCP2
Internal operating
clock cycle time*1
Pin
name
tCYCC
tCYCP0
tCYCP1
tCYCP2
APB2 bus clock*2
*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.
X0
Document Number: 002-05659 Rev.*B
Page 52 of 90
MB9A420L Series
12.4.2 Sub Clock Input Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Input frequency
Symbol
Pin
name
Conditions
Value
Unit
Min
Typ
Max
-
-
32.768
-
kHz
-
32
-
100
kHz
-
10
-
31.25
μs
45
-
55
%
fCL
Input clock cycle
tCYLL
Input clock pulse
width
-
X0A,
X1A
PWH/tCYLL,
PWL/tCYLL
Remarks
When crystal oscillator is
connected
When using external
clock
When using external
clock
When using external
clock
*: See Sub crystal oscillator in Handling Devices for the crystal oscillator used.
X0A
Document Number: 002-05659 Rev.*B
Page 53 of 90
MB9A420L Series
12.4.3 Built-in CR Oscillation Characteristics
Built-in High-speed CR
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C
Parameter
Symbol
Value
Conditions
TA = + 25°C,
3.6 V < VCC ≤ 5.5 V
Clock frequency
fCRH
TA =0°C to + 85°C,
3.6 V < VCC ≤ 5.5 V
TA = - 40°C to + 105°C,
3.6 V < VCC ≤ 5.5 V
TA = + 25°C,
2.7 V ≤ VCC ≤ 3.6 V
TA = - 20°C to + 85°C,
2.7 V ≤ VCC ≤ 3.6 V
TA = - 20°C to + 105°C,
2.7 V ≤ VCC ≤ 3.6 V
TA = - 40°C to + 105°C,
2.7 V ≤ VCC ≤ 3.6 V
TA = - 40°C to + 105°C
Frequency
stabilization time
tCRWT
-
Min
Typ
Max
3.92
4
4.08
3.9
4
4.1
3.88
4
4.12
3.94
4
4.06
3.92
4
4.08
3.9
4
4.1
3.88
4
4.12
2.8
4
5.2
-
-
30
Unit
Remarks
When trimming*1
MHz
When not trimming
μs
*2
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming.
*2: This is time from the trim value setting to stable of the frequency of the High-speed CR clock.
After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source
clock.
Built-in Low-speed CR
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Clock frequency
Symbol
fCRL
Document Number: 002-05659 Rev.*B
Conditions
-
Value
Min
Typ
Max
50
100
150
Unit
Remarks
kHz
Page 54 of 90
MB9A420L Series
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of Main PLL)
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Value
Unit
Remarks
Min
Typ
Max
tLOCK
100
-
-
μs
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
fPLLI
4
5
75
-
16
37
150
MHz
multiplier
MHz
Main PLL clock frequency*2
fCLKPLL
-
-
40
MHz
PLL oscillation stabilization wait time*1
(LOCK UP time)
fPLLO
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
12.4.5 Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock of Main PLL)
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Symbol
Value
Unit
Remarks
Min
Typ
Max
tLOCK
100
-
-
μs
fPLLI
3.8
19
72
-
4
-
4.2
35
150
40
MHz
multiplier
MHz
MHz
fPLLO
fCLKPLL
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
Note:
−
Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency/temperature has been
trimmed.
When setting PLL multiple rate, please take the accuracy of the built-in high-speed CR clock into account and prevent the
master clock from exceeding the maximum frequency.
Main PLL connection
K
divider
PLL input
clock
PLL macro
oscillation clock
Main
PLL
M
divider
Main PLL
clock
(CLKPLL)
N
divider
Document Number: 002-05659 Rev.*B
Page 55 of 90
MB9A420L Series
12.4.6 Reset Input Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Reset input time
Pin name
tINITX
Value
Conditions
INITX
-
Min
Max
500
-
Unit
Remarks
ns
12.4.7 Power-on Reset Timing
(VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Power supply shut down time
Pin name
Value
Conditions
tOFF
Min
Typ
Max
1
-
-
-
Unit
Remarks
ms
*1
Power ramp rate
dV/dt
Vcc:0.2 V to 2.7 V
1.2
1000 mV/us *2
VCC
Time until releasing Power-on
tPRT
0.34
3.15
ms
reset
*1: VCC must be held below 0.2 V for minimum period of tOFF. Improper initialization may occur if this condition is not met.
*2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>1 ms).
Note:
−
If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per “12. 4. 6.Reset
Input Characteristics”.
2.7V
VCC
VDH
0.2V
dV/dt
0.2V
tPRT
Internal RST
CPU Operation
RST Active
0.2V
tOFF
release
start
Glossary
VDH: detection voltage of Low Voltage detection reset. See “12.7 Low-Voltage Detection Characteristics”
Document Number: 002-05659 Rev.*B
Page 56 of 90
MB9A420L Series
12.4.8 Base Timer Input Timing
Timer input timing
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Input pulse width
Symbol
tTIWH,
tTIWL
Pin name
Conditions
TIOAn/TIOBn
(when using as
ECK, TIN)
-
tTIWH
Value
Min
Max
2tCYCP
-
Unit
Remarks
ns
tTIWL
VIHS
VIHS
VILS
VILS
Trigger input timing
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Input pulse width
Symbol
tTRGH,
tTRGL
Pin name
Conditions
TIOAn/TIOBn
(when using
as TGIN)
-
tTRGH
VIHS
Value
Min
Max
2tCYCP
-
Unit
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.
Document Number: 002-05659 Rev.*B
Page 57 of 90
MB9A420L Series
12.4.9 CSIO/UART Timing
CSIO (SPI = 0, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Baud rate
Serial clock cycle time
tSCYC
SCK ↓ → SOT delay time
tSLOVI
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK falling time
SCK rising time
tF
tR
Pin
name
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
Conditions
-
Master
mode
Slave mode
VCC < 4.5 V
Min
Max
VCC ≥ 4.5 V
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
−
−
−
The above characteristics apply to clock synchronous mode.
−
When the external load capacitance CL = 30 pF.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05659 Rev.*B
Page 58 of 90
MB9A420L Series
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
SOT
VOL
tIVSHI
SIN
tSHIXI
VIH
VIH
VIL
VIL
Master mode
tSLSH
SCK
tSHSL
VIH
VIH
tF
VIL
VIL
VIH
tR
tSLOVE
SOT
VOH
VOL
tIVSHE
SIN
VIH
VIL
tSHIXE
VIH
VIL
Slave mode
Document Number: 002-05659 Rev.*B
Page 59 of 90
MB9A420L Series
CSIO (SPI = 0, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Baud rate
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓ → SIN hold time
tSLIXI
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓ → SIN hold time
tSLIXE
SCK falling time
SCK rising time
tF
tR
Pin
name
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
VCC < 4.5 V
Min
Max
Conditions
-
VCC ≥ 4.5 V
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Master
mode
Slave mode
Notes:
−
−
−
−
The above characteristics apply to clock synchronous mode.
−
When the external load capacitance CL = 30 pF.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05659 Rev.*B
Page 60 of 90
MB9A420L Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
SIN
tSLIXI
VIH
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05659 Rev.*B
Page 61 of 90
MB9A420L Series
CSIO (SPI = 1, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Baud rate
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓→ SIN hold time
tSLIXI
SOT → SCK ↓ delay time
tSOVLI
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓→ SIN hold time
tSLIXE
SCK falling time
SCK rising time
tF
tR
Pin
name
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Conditions
-
Master mode
Slave mode
VCC < 4.5 V
Min
Max
VCC ≥ 4.5 V
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
−
−
−
The above characteristics apply to clock synchronous mode.
−
When the external load capacitance CL = 30 pF.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05659 Rev.*B
Page 62 of 90
MB9A420L Series
tSCYC
VOH
SCK
VOL
VOH
VOL
SOT
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
Master mode
tSLSH
VIH
SCK
tR
VOH
VOL
tIVSLE
SIN
VIL
tF
*
SOT
VIL
tSHSL
VIH
VIH
tSHOVE
VOH
VOL
tSLIXE
VIH
VIL
VIH
VIL
Slave mode
*: Changes when writing to TDR register
Document Number: 002-05659 Rev.*B
Page 63 of 90
MB9A420L Series
CSIO (SPI = 1, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Pin
name
Baud rate
Serial clock cycle time
tSCYC
SCKx
SCK ↓ → SOT delay time
tSLOVI
SCKx,
SOTx
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
SOT → SCK ↑ delay time
tSOVHI
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK falling time
SCK rising time
tF
tR
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Conditions
-
Master
mode
Slave mode
VCC ≥ 4.5 V
VCC < 4.5 V
Min
Max
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
−
−
−
The above characteristics apply to clock synchronous mode.
−
When the external load capacitance CL = 30 pF.
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05659 Rev.*B
Page 64 of 90
MB9A420L Series
tSCYC
VOH
SCK
tSOVHI
tSLOVI
VOH
VOL
SOT
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
Master mode
tR
tF
tSHSL
SCK
VIL
tSLSH
VIH
VIH
VIL
VIL
tSLOVE
VOH
VOL
SOT
VOH
VOL
tIVSHE
tSHIXE
VIH
VIL
SIN
VIH
VIL
Slave mode
UART external clock input (EXT = 1)
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Serial clock L pulse width
Serial clock H pulse width
SCK falling time
SCK rising time
Value
Conditions
tSLSH
tSHSL
tF
tR
CL = 30 pF
Min
Max
tCYCP + 10
tCYCP + 10
-
5
5
tR
Document Number: 002-05659 Rev.*B
VIL
Remarks
ns
ns
ns
ns
tF
tSHSL
SCK
Unit
VIH
tSLSH
VIH
VIL
VIL
Page 65 of 90
MB9A420L Series
12.4.10 External Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Pin name
Conditions
Value
Min
Max
Unit
ADTG
FRCKx
Input pulse
width
tINH,
tINL
ICxx
DTTIxX
IGTRG
INTxx,
NMIX
-
2tCYCP*1
-
ns
*2
*3
2tCYCP*1
2tCYCP*1
2tCYCP + 100*1
500
-
ns
ns
ns
ns
Remarks
A/D converter trigger
input
Free-run timer input
clock
Input capture
Waveform generator
PPG IGBT mode
External interrupt,
NMI
*1: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to,
see Block Diagram in this data sheet.
*2: When in Run mode, in Sleep mode.
*3: When in stop mode, in RTC mode, in timer mode.
Document Number: 002-05659 Rev.*B
Page 66 of 90
MB9A420L Series
12.4.11 I2C Timing
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
SCL clock frequency
(Repeated) Start condition hold
time
SDA ↓ → SCL ↓
SCLclock L width
SCLclock H width
(Repeated) Start condition
setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
Stop condition setup time
SCL ↑ → SDA ↑
Bus free time between
Stop condition and
Start condition
Noise filter
Symbol
Conditions
fSCL
Standard-mode
Min
Max
0
100
Fast-mode
Min
Max
0
400
Unit
kHz
tHDSTA
4.0
-
0.6
-
μs
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
μs
μs
4.7
-
0.6
-
μs
0
3.45*2
0
0.9*3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
2tCYCP*4
-
2tCYCP*4
-
ns
tSUSTA
tHDDAT
tSP
CL = 30 pF,
R = (Vp/IOL)*1
-
Remarks
*1: R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.
Vp indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.
*3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of
tSUDAT ≥ 250 ns.
*4: tCYCP is the APB bus clock cycle time.
About the APB bus number that I2C is connected to, see Block Diagram in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.
Document Number: 002-05659 Rev.*B
Page 67 of 90
MB9A420L Series
12.4.12 JTAG Timing
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Pin name
TMS, TDI setup time tJTAGS
TCK,
TMS, TDI
TMS, TDI hold time
tJTAGH
TCK,
TMS, TDI
TDO delay time
tJTAGD
TCK,
TDO
Conditions
VCC ≥ 4.5 V
VCC < 4.5 V
VCC ≥ 4.5 V
VCC < 4.5 V
VCC ≥ 4.5 V
VCC < 4.5 V
Value
Unit
Min
Max
15
-
ns
15
-
ns
-
25
-
45
Remarks
ns
Note:
−
When the external load capacitance CL = 30 pF.
TCK
TMS/TDI
TDO
Document Number: 002-05659 Rev.*B
Page 68 of 90
MB9A420L Series
12.5 12-bit A/D Converter
Electrical characteristics for the A/D converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Resolution
Integral Nonlinearity
Differential Nonlinearity
Zero transition voltage
Full-scale transition
voltage
Symbol
Pin
name
Value
VZT
ANxx
VFST
ANxx
-
AVRH ± 8
AVRH ± 15
mV
0.8*1
-
10
1000
μs
μs
μs
ns
Conversion time
Typ
± 2.0
± 1.5
±8
Max
12
± 4.5
± 2.5
± 15
Unit
Min
-
bit
LSB
LSB
mV
-
-
Sampling time*2
Compare clock cycle*3
State transition time to
operation permission
Analog input capacity
tS
tCCK
-
1.0*1
0.24
40
tSTT
-
-
-
1.0
μs
CAIN
-
-
-
pF
Analog input resistor
RAIN
-
-
-
Interchannel disparity
Analog port input leak
current
Analog input voltage
-
-
-
-
9.7
1.5
2.2
4
LSB
-
ANxx
-
-
5
μA
-
AVRL
2.7
AVSS
-
AVRH
AVCC
AVSS
V
Reference voltage
ANxx
AVRH
AVRL
kΩ
Remarks
AVRH =
2.7 V to 5.5 V
AVCC ≥ 4.5 V
AVCC < 4.5 V
AVCC ≥ 4.5 V
AVCC < 4.5 V
V
*1: The conversion time is the value of sampling time (tS) + compare time (tC).
The condition of the minimum conversion time is the following.
AVCC ≥ 4.5 V, HCLK=25 MHz
sampling time: 240 ns, compare time: 560 ns
AVCC < 4.5 V, HCLK=40 MHz
sampling time: 300 ns, compare time: 700 ns
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).
For setting of the sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual
Analog Macro Part.
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.
For the number of the APB bus to which the A/D Converter is connected, see Block Diagram.
The Base clock (HCLK) is used to generate the sampling time and the compare clock cycle.
*2: A necessary sampling time changes by external impedance.
Ensure that it sets the sampling time to satisfy (Equation 1).
*3: The compare time (tC) is the value of (Equation 2).
Document Number: 002-05659 Rev.*B
Page 69 of 90
MB9A420L Series
REXT
ANxx
Comparator
RAIN
Analog signal
source
CAIN
(Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9
tS:
Sampling time
RAIN:
Input resistor of A/D = 1.3 kΩ at 4.5 V < AVCC < 5.5 V
ch.0 to ch.2, ch.4, ch.5
Input resistor of A/D = 1.5 kΩ at 4.5 V < AVCC < 5.5 V
ch.12 to ch.14
Input resistor of A/D = 1.9 kΩ at 2.7 V < AVCC < 4.5 V
ch.0 to ch.2, ch.4, ch.5
Input resistor of A/D = 2.2 kΩ at 2.7 V < AVCC < 4.5 V
ch.12 to ch.14
CAIN:
Input capacity of A/D = 9.7 pF at 2.7 V < AVCC < 5.5 V
REXT:
Output impedance of external circuit
(Equation 2) tC = tCCK × 14
tC:
Compare time
tCCK:
Compare clock cycle
Document Number: 002-05659 Rev.*B
Page 70 of 90
MB9A420L Series
Definition of 12-bit A/D Converter Terms
• Resolution:
• Integral Nonlinearity:
Analog variation that is recognized by an A/D converter.
Deviation of the line between the zero-transition point
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point
(0b111111111110 ←→
0b111111111111) from the actual conversion characteristics.
• Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change
the output code by 1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
Actual conversion
characteristics
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
0xN
Ideal characteristics
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
0x002
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVRL
Actual conversion characteristics
AVRH
AVRL
Analog input
Integral Nonlinearity of digital output N =
Differential Nonlinearity of digital output N =
1LSB =
N:
VZT:
VFST:
VNT:
V(N+1)T
0x(N-1)
AVRH
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0xFFE to 0xFFF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-05659 Rev.*B
Page 71 of 90
MB9A420L Series
12.6 10-bit D/A Converter
Electrical Characteristics for the D/A Converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C)
Parameter
Symbol
Resolution
Conversion time
Pin
name
tC20
Min
Value
Typ
Max
-
-
10
bit
0.47
0.58
0.69
μs
Load 20 pF
Load 100 pF
Unit
Remarks
tC100
2.37
2.90
3.43
μs
Integral Nonlinearity
INL
- 4.0
-
+ 4.0
LSB
*
Differential Nonlinearity
DNL
- 0.9
-
+ 0.9
LSB
*
Output Voltage offset
VOFF
-
-
10.0
mV
Code is 0x000
- 20.0
-
+ 5.4
mV
Code is 0x3FF
3.10
3.80
4.50
kΩ
D/A operation
2.0
-
-
MΩ
D/A stop
-
-
70
ns
Analog output impedance
Output undefined period
*: No-load
RO
tR
Document Number: 002-05659 Rev.*B
DAx
Page 72 of 90
MB9A420L Series
12.7 Low-Voltage Detection Characteristics
12.7.1 Low-Voltage Detection Reset
(TA = - 40°C to + 105°C)
Parameter
Symbol
Conditions
Value
Unit
Typ
Max
2.25
2.45
2.65
V
When voltage drops
2.30
2.50
2.70
V
When voltage rises
2.39
2.60
2.81
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
V
When voltage drops
V
When voltage rises
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
LVD stabilization
wait time
tLVDW
-
-
-
8160 × tCYCP*2
μs
LVD detection
delay time
tLVDDL
-
-
-
200
μs
SVHR*1 = 00000
SVHR*1 = 00001
SVHR*1 = 00010
SVHR*1 = 00011
SVHR*1 = 00100
SVHR*1 = 00101
SVHR*1 = 00110
SVHR*1 = 00111
SVHR*1 = 01000
SVHR*1 = 01001
SVHR*1 = 01010
Remarks
Min
Same as SVHR = 0000 value
2.48
2.70
2.92
Same as SVHR = 0000 value
2.58
2.80
3.02
Same as SVHR = 0000 value
2.76
3.00
3.24
Same as SVHR = 0000 value
2.94
3.20
3.46
Same as SVHR = 0000 value
3.31
3.60
3.89
Same as SVHR = 0000 value
3.40
3.70
4.00
Same as SVHR = 0000 value
3.68
4.00
4.32
Same as SVHR = 0000 value
3.77
4.10
4.43
Same as SVHR = 0000 value
3.86
4.20
4.54
Same as SVHR = 0000 value
*1: SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is reset to SVHR = 00000 by low
voltage detection reset.
*2: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05659 Rev.*B
Page 73 of 90
MB9A420L Series
12.7.2 Interrupt of Low-Voltage Detection
(TA = - 40°C to + 105°C)
Parameter
Symbol
Conditions
Detected voltage
VDL
SVHI = 00011
Released voltage
VDH
Detected voltage
VDL
SVHI = 00100
Released voltage
VDH
Detected voltage
VDL
SVHI = 00101
Released voltage
VDH
Detected voltage
VDL
SVHI = 00110
Released voltage
VDH
Detected voltage
VDL
SVHI = 00111
Released voltage
VDH
Detected voltage
VDL
SVHI = 01000
Released voltage
VDH
Detected voltage
VDL
SVHI = 01001
Released voltage
VDH
Detected voltage
VDL
SVHI = 01010
Released voltage
VDH
LVD stabilization
tLVDW
wait time
LVD detection delay
tLVDDL
time
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05659 Rev.*B
Min
2.58
2.67
2.76
2.85
2.94
3.04
3.31
3.40
3.40
3.50
3.68
3.77
3.77
3.86
3.86
3.96
Value
Typ
2.80
2.90
3.00
3.10
3.20
3.30
3.60
3.70
3.70
3.80
4.00
4.10
4.10
4.20
4.20
4.30
Max
3.02
3.13
3.24
3.35
3.46
3.56
3.89
4.00
4.00
4.10
4.32
4.43
4.43
4.54
4.54
4.64
Unit
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
-
-
8160 × tCYCP*
μs
-
-
200
μs
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
Page 74 of 90
MB9A420L Series
12.8 Flash Memory Write/Erase Characteristics
12.8.1 Write / Erase time
(VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C)
Parameter
Value
Unit
Remarks
Typ
Max
Sector erase time
0.3
0.7
s
Includes write time prior to internal erase
Half word (16-bit) write time
16
282
μs
Not including system-level overhead time
Chip erase time
2.4
5.6
s
Includes write time prior to internal erase
*: The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write.
12.8.2 Write cycles and data hold time
Erase/write cycles (cycle)
Data hold time (year)
1,000
20*
10,000
10*
Remarks
*: At average + 85C
Document Number: 002-05659 Rev.*B
Page 75 of 90
MB9A420L Series
12.9 Return Time from Low-Power Consumption Mode
12.9.1 Return Factor: Interrupt
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the
program operation.
Return Count Time
(VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C)
Value
Parameter
Symbol
Typ
Sleep mode
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
Low-speed CR Timer mode
Max*
Sub Timer mode
43
83
μs
310
620
μs
534
724
μs
479
μs
RTC mode,
278
Stop mode
*: The maximum value depends on the accuracy of built-in CR.
Remarks
μs
tCYCC
tICNT
Unit
Operation example of return from Low-Power consumption mode (by external interrupt*)
External
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
Document Number: 002-05659 Rev.*B
Page 76 of 90
MB9A420L Series
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)
Internal
resource
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral
Manual.
−
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the
Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family
Peripheral Manual.
Document Number: 002-05659 Rev.*B
Page 77 of 90
MB9A420L Series
12.9.2 Return Factor: Reset
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program
operation.
Return Count Time
(VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C)
Parameter
Symbol
Value
Unit
Typ
Max*
149
264
μs
149
264
μs
318
603
μs
Sub Timer mode
308
583
μs
RTC/Stop mode
248
443
μs
Sleep mode
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
Low-speed CR Timer mode
tRCNT
Remarks
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by INITX)
INITX
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Document Number: 002-05659 Rev.*B
Start
Page 78 of 90
MB9A420L Series
Operation example of return from low power consumption mode (by internal resource reset*)
Internal
resource
reset
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Start
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
−
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power
consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.
−
The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on Reset Timing in 4. AC
Characteristics in Electrical Characteristics for the detail on the time during the power-on reset/low -voltage detection
reset.
−
When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL
clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait
time.
−
The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-05659 Rev.*B
Page 79 of 90
MB9A420L Series
13. Ordering Information
On-chip
Flash
memory
On-chip
SRAM
Package
MB9AF421KWQN-G-JNE2
64 Kbyte
4 Kbyte
Plastic  QFN
(0.5 mm pitch), 48-pin
(WNY048)
MB9AF421KPMC-G-JNE2
64 Kbyte
4 Kbyte
Plastic  LQFP
(0.5 mm pitch), 48-pin
(LQA048)
MB9AF421KPMC1-G-JNE2
64 Kbyte
4 Kbyte
Plastic  LQFP
(0.65 mm pitch), 52-pin
(LQC052)
Part number
Packing
Tray
MB9AF421LPMC1-G-JNE2
64 Kbyte
4 Kbyte
Plastic  LQFP
(0.5 mm pitch), 64-pin
(LQD064)
MB9AF421LPMC-G-JNE2
64 Kbyte
4 Kbyte
Plastic  LQFP
(0.65 mm pitch), 64-pin
(LQG064)
MB9AF421LWQN-G-JNE2
64 Kbyte
4 Kbyte
Plastic  QFN
(0.5 mm pitch), 64-pin
(WNS064)
Document Number: 002-05659 Rev.*B
Page 80 of 90
MB9A420L Series
14. Package Dimensions
Package Type
Package Code
LQFP 64
LQD064
4
D
D1
48
5 7
33
33
32
49
48
32
49
17
64
5
7
E1
E
4
3
6
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.08
C A-B
D
8
TOP VIEW
A
2
9
A
A'
0.08 C
SEATING
PLANE
L1
0.25
L
A1
c
b
SECTION A-A'
10
SIDE VIEW
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
A
A1
1. 70
0.00
0.20
b
0.15
0.2
c
0.09
0.20
D
12.00 BSC.
D1
10.00 BSC.
e
0.50 BSC
E
12.00 BSC.
E1
10.00 BSC.
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
PACKAGE OUTLINE, 64 LEAD LQFP
10.0X10.0X1.7 MM LQD064 Rev**
002-13879 **
Document Number: 002-05659 Rev.*B
Page 81 of 90
MB9A420L Series
Package Type
Package Code
LQFP 64
LQG064
D
D1
48
4
5 7
33
33
32
49
48
32
49
17
64
E1 E
5
7
4
3
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.13
C A-B
D
8
TOP VIEW
2
A
A
A'
0.10 C
SEATI NG
PLA NE
0.2 5
L1
L
9
A1
10
c
b
SEC TION A -A'
SIDE VIEW
SYMBOL
DIMENSION
MIN.
NOM. MAX.
1.70
A
A1
0.00
0.20
b
0.27
c
0.09
0.32
0.37
0.20
D
14.00 BSC
D1
12.00 BSC
e
0.65 BSC
E
14.00 BSC
E1
12.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
PACKAGE OUTLINE, 64 LEAD LQFP
12.0X12.0X1.7 MM LQG064 REV**
002-13881 **
Document Number: 002-05659 Rev.*B
Page 82 of 90
MB9A420L Series
Package Type
Package Code
LQFP 48
LQA048
4
D
D1
5 7
36
25
37
24
E1
24
37
13
48
E
5
7
3
36
25
4
6
48
13
1
12
e
1
12
2 5 7
0.10 C A-B D
3
0.20 C A-B D
b
0.80
C A-B
D
8
2
A
9
A
A'
0.80 C
SYMBOL
L1
0.25
L
A1
c
b
10
SECTION A-A'
DIMENSIONS
MIN.
NOM. MAX.
0.00
0.20
1.70
A
A1
SEATING
PLANE
b
0.15
0.27
c
0.09
0.20
D
9.00 BSC
D1
7.00 BSC
e
0.50 BSC
E
9.00 BSC
E1
7.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
8
PACKAGE OUTLINE, 48 LEAD LQFP
7.0X7.0X1.7 MM LQA048 REV**
002-13731 **
Document Number: 002-05659 Rev.*B
Page 83 of 90
MB9A420L Series
Package Type
Package Code
LQFP 52
LQC052
4
D
D1
39
5 7
27
26
40
39
27
26
40
14
52
E1 E
4
5
7
3
6
14
52
1
2 5 7
13
e
b
0.20 C A-B D
0.13
C A-B
1
13
0.10 C A-B D
3
BOTTOM VIEW
D
8
TOP VIEW
A
2
0.25
A
A'
0.10 C
SEAT ING
PLA NE
L1
L
A1
10
9
c
b
SECTION A-A'
SIDE VIEW
SYMBOL
DIMENSION
MIN.
NOM. MAX.
1.70
A
A1
0.00
0.20
b
0.265
c
0.09
0.30
0.365
0.20
D
12.00 BSC
D1
10.00 BSC
e
0.65 BSC
E
12.00 BSC
10.00 BSC
E1
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
PACKAGE OUTLINE, 52 LEAD LQFP
10.0X10.0X1.7 MM LQC052 REV**
002-13880 **
Document Number: 002-05659 Rev.*B
Page 84 of 90
MB9A420L Series
Package Type
Package Code
QFN 48
WNY048
D
A
D2
25
0.15
C A B
37
0.15
36
0.10 C
24
2X
(ND-1)
E
e
C A B
E2
5
13
9
INDEX MARK
8
48
12
B
L
b
0.10 C
TOP VIEW
0.10
0.05
C A B
C
4
BOTTOM VIEW
2X
A
0.05 C
A1
c
1
e
SEATING PLANE
9
C
SIDE VIEW
NOTE
DIMENSIONS
SYMBOL
MIN.
NOM.
MAX.
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5-1994.
3. N IS THE TOTALNUMBER OF TERMINALS.
A
A1
0.80
0.00
D
7.00 BSC
E
b
0.05
7.00 BSC
0.18
0.25
D2
4.65 BSC
E2
4.65 BSC
e
0.50 BSC
c
0.30 REF
L
0.45
0.50
4. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE
DIMENSION "b"SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
5. ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.
0.30
6. MAX. PACKAGE WARPAGE IS 0.05mm.
7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.
8. PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.
9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSEDHEAT
SINK SLUG AS WELL AS THE TERMINALS.
0.55
10. JEDEC SPECIFICATION NO. REF : N/A
PACKAGE OUTLINE, 48 LEAD QFN
7.00X7.00X0.80 MM WNY048 4.65X4.65MMEPAD(SAWN) REV**
002-16422 **
Document Number: 002-05659 Rev.*B
Page 85 of 90
MB9A420L Series
Package Type
Package Code
QFN 64
WNS064
D
D2
A
33
0.15
C A B
49
0.15
48
0.10 C
32
2X
(ND-1)
E
e
C A B
E2
5
64
17
16
INDEX MARK
8
9
B
e
L
b
0.10 C
TOP VIEW
0.10
0.05
C A B
C
4
BOTTOM VIEW
2X
A
0.05 C
A1
c
1
SEATING PLANE
9
C
SIDE VIEW
NOTE
DIMENSIONS
SYMBOL
MIN.
NOM.
MAX.
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5-1994.
3. N IS THE TOTALNUMBER OF TERMINALS.
A
A1
0.80
0.00
D
9.00 BSC
E
b
0.05
9.00 BSC
0.20
0.25
4. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS
THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE
DIMENSION "b"SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
5. ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.
0.30
6. MAX. PACKAGE WARPAGE IS 0.05mm.
D2
7.20 BSC
E2
7.20 BSC
8. PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.
e
0.50 BSC
c
0.50 REF
9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSEDHEAT
SINK SLUG AS WELL AS THE TERMINALS.
L
0.35
0.40
7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.
0.45
10. JEDEC SPECIFICATION NO. REF : N/A
PACKAGE OUTLINE, 64 LEAD QFN
9.00X9.00X0.80MM WNS064 7.20X7.20MMEPAD(SAWN) REV**
002-16424 **
Document Number: 002-05659 Rev.*B
Page 86 of 90
MB9A420L Series
15. Major Changes
Spansion Publication Number: DS706-00054
Page
Section
Revision 0.1
Revision 0.2
Revision 1.0
2
FEATURES
3
FEATURES
4
FEATURES
6
17
29
37
47
48,49
49
55
66
68
71
72,73
74
PRODUCT LINEUP
LIST OF PIN FUNCTION
・List of pin numbers
I/O CIRCUIT TYPE
BLOCK DIAGRAM
ELECTRICAL CHARACTERISTICS
2. Recommended Operating Conditions
ELECTRICAL CHARACTERISTICS
3.DC Characteristics (1) Current Rating
ELECTRICAL CHARACTERISTICS
3.DC Characteristics (1) Current Rating
・A/D converter current
ELECTRICAL CHARACTERISTICS
3.AC Characteristics (6)Power-on Reset
Timing 
ELECTRICAL CHARACTERISTICS
3.AC Characteristics (10) I2C Timing
ELECTRICAL CHARACTERISTICS
5. 12-bit A/D Converter
ELECTRICAL CHARACTERISTICS
6. 10-bit D/A Converter
ELECTRICAL CHARACTERISTICS
7. Low-Voltage Detection Characteristics
ELECTRICAL CHARACTERISTICS
8. Flash Memory Write/Erase
Characteristics
ELECTRICAL CHARACTERISTICS
9. Return Time from Low-Power
Consumption Mode
84,85
PACKAGE DIMENSIONS
Revision 2.0
26
I/O Circuit Type
Memory Map
39
· Memory map(2)
75,77
Document Number: 002-05659 Rev.*B
Change Results
Initial release
Company name and layout design change
Preliminary → Full Production
Revised I2C operation mode name
Revised the value of A/D conversion time
Revised Channel number of MFT A/D activation compare
・Added notes of Built-in high speed CR accuracy
・Revised channel number of MFT A/D activation compare
Corrected I/O circuit type of P80,P81,P82
Added the remarks of type L
Revised Channel number of MFT A/D activation compare
Corrected the minimum value of AVRH voltage
Revised the values of “TBD”
・Current the pin name of power supply current
・Added the at stop condition of power supply current
・Added the remark of reference power supply current
Revised the values of “TBD”
・Revised I2C operation mode name
・Revised the value of noise filter
・Revised the value of zero transition voltage and full-scale
transition voltage
・Revised the value of conversion time, sampling time,
compare clock cycle
・Corrected the value of state transition time to operation
permission
・Corrected the minimum value of AVRH voltage
・Revised the notes explanation
・Delete (Preliminary value) description
・Delete (Preliminary value) description
・Corrected the values of SVHR and SVHI
・Revised the values of “TBD”
・Revised the values of typical
・Revised the notes of Erase/write cycles and data hold time
・Delete (target value) description
Revised the values of “TBD”
Added the figures of LCC-48P-M74 and LCC-64P-M25
Added about +B input
Added the summary of Flash memory sector and the note
Page 87 of 90
MB9A420L Series
Page
46, 47
48
49, 50
56
57
59-66
Section
Electrical Characteristics
1. Absolute Maximum Ratings
Electrical Characteristics
2. Recommended Operation Conditions
Electrical Characteristics
3. DC Characteristics
(1) Current rating
Electrical Characteristics
4. AC Characteristics
(4-1) Operating Conditions of Main PLL
(4-2) Operating Conditions of Main PLL
Electrical Characteristics
4. AC Characteristics
(6) Power-on Reset Timing
Electrical Characteristics
4. AC Characteristics
(8) CSIO/UART Timing
70
Electrical Characteristics
5. 12bit A/D Converter
81
Ordering Information
Change Results
· Added the Clamp maximum current
· Added about +B input
Added the note about less than the minimum power supply
voltage
· Changed the table format
· Added Main TIMER mode current
Added the figure of Main PLL connection
Changed the figure of timing
· Modified from UART Timing to CSIO/UART Timing
· Changed from Internal shift clock operation to Master mode
· Changed from External shift clock operation to Slave mode
Added the typical value of Integral Nonlinearity, Differential
Nonlinearity, Zero transition voltage and Full-scale transition
voltage
Changed notation of part number
NOTE: Please see “Document History” about later revised information.
Document Number: 002-05659 Rev.*B
Page 88 of 90
MB9A420L Series
Document History
Document Title: MB9A420L Series 32-Bit ARM® Cortex®-M3 FM3 Microcontroller
Document Number: 002-05659
Revision
ECN
Orig. of
Change
Submission
Date
**
-
AKIH
03/31/2015
Migrated to Cypress and assigned document number 002-05659
No change to document contents or format.
*A
5162461
AKIH
03/09/2016
Updated to Cypress format.
Description of Change
Updated “12.4.7 Power-On Reset Timing”. Changed parameter from “Power Supply
rise time(Tr)[ms]” to “Power ramp rate(dV/dt)[mV/us]” and added some comments
(Page 56)
Modified RTC description in “Features, Real-Time Clock(RTC)” as below
Changed starting count value from 01 to 00. Deleted “second , or day of the week” in
the Interrupt function (Page 2)
*B
5658524
YSKA
03/13/2017
Added Notes for JTAG (Page 23), Changed “J-TAG” to” JTAG” in “4 List of Pin
Functions” (Page 18)
Updated Package code and dimensions as follows (Page 7-12, 47, 80 -86)
FPT-48P-M49 -> LQA048, LCC-48P-M74 -> WNY048,
FPT-52P-M02 -> LQC052, FPT-64P-M38 -> LQD064,
FPT-64P-M39 -> LQG064, LCC-64P-M25 -> WNS064
Added the Baud rate spec in “12.4.9 CSIO/UART Timing”(Page 58, 60, 62, 64)
Document Number: 002-05659 Rev.*B
Page 89 of 90
MB9A420L Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
ARM® Cortex® Microcontrollers
Automotive
Clocks & Buffers
Interface
Internet of Things
Memory
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory
Microcontrollers
cypress.com/mcu
PSoC
cypress.com/psoc
Power Management ICs
cypress.com/pmic
Touch Sensing
USB Controllers
Wireless/RF
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Forums | WICED IOT Forums | Projects | Video | Blogs |
Training | Components
Technical Support
cypress.com/support
cypress.com/touch
cypress.com/usb
cypress.com/wireless
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,
modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress
from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs,
damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-05659 Rev.*B
March 13, 2017
Page 90 of 90
Similar pages