M44C090 M44C890 Table of Contents 1 2 3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MARC4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Components of MARC4 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.4 ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.5 I/O Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.6 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.7 Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Master Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Power-on Reset and Brown-out Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Watchdog Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 External Clock Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Voltage Monitor Control / Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Clock Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Oscillator Circuits and External Clock Input Stage . . . . . . . . . . . . . . . . . . . . . . . . RC-Oscillator 1 Fully Integrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Input Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RC-Oscillator 2 with External Trimming Resistor . . . . . . . . . . . . . . . . . . . . . . . . . 4-MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-kHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 Clock Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Management Register (CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Configuration Register (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Power-down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peripheral Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Addressing Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Bidirectional Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Bidirectional Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 2 Data Register (P2DAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 2 Control Register (P2CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Bidirectional Port 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Bidirectional Port 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Universal Timer/Counter / Communication Module (UTCM) . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 1 Control Register 1 (T1C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 1 Control Register 2 (T1C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev.A4, 14-Dec-01 5 5 5 6 6 6 7 9 9 9 9 11 11 11 12 13 13 13 14 15 15 16 16 16 16 16 17 17 17 18 18 19 19 20 21 21 21 22 24 25 26 27 27 3 (63) M44C090 M44C890 Table of Contents (continued) 4 5 6 7 4 (63) Watchdog Control Register (WDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Timer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Control Register (T2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Mode Register 1 (T2M1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Mode Register 2 (T2M2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Compare and Compare Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Compare Mode Register (T2CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 COmpare Register 1 (T2CO1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 COmpare Register 2 (T2CO2) Byte Write . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Synchronous Serial Interface (SSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSI Peripheral Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General SSI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bit Synchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-bit Shift Mode (I2C compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bit Pseudo I2C Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSI Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal 2-Wire Multi-Chip Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Control Register 1 (SIC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Control Register 2 (SIC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Interface Status and Control Register (SISC) . . . . . . . . . . . . . . . . . . . . . . . Serial Transmit Buffer (STB) – Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Receive Buffer (SRB) – Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.4 Combination Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combination Mode Timer 2 and SSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M44C890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 U505M EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EEPROM – Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization after a Reset Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 DC Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 28 29 30 31 34 34 35 36 37 37 37 37 38 38 38 39 41 42 42 43 43 44 45 45 45 46 46 47 47 47 50 50 51 51 52 52 52 53 53 54 54 54 56 61 62 Rev.A4, 14-Dec-01 M44C090 M44C890 1 Introduction The M44C090 / M44C890 are members of Atmels family of 4-bit single-chip microcontrollers. They contain ROM, RAM, parallel I/O ports, one 8-bit programmable multi- function timer/counter, voltage supervisor, interval timer with watchdog function and a sophisticated on-chip clock generation with integrated RC-, 32-kHz crystal- and 4-MHz crystal-oscillators. Table 2 provides an overview of the available variants. ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ 2 MARC4 Architecture Table 2 Available variants of M4xCx9x Version Flash device Production Production 2.1 Type T48C893 M44C090 M44C890 ROM 4 Kbyte EEPROM 2 Kbyte mask ROM 2 Kbyte mask ROM General Description The MARC4 microcontroller consists of an advanced stack-based, 4-bit CPU core and on-chip peripherals. The CPU is based on the HARVARD architecture with physically separate program memory (ROM) and data memory (RAM). Three independent buses, the instruction bus, the memory bus and the I/O bus, are used for parallel communication between ROM, RAM and E2PROM peripheral Packages 64 byte SSO20 ––– SSO20 64 byte SSO20 peripherals. This enhances program execution speed by allowing both instruction prefetching, and a simultaneous communication to the on-chip peripheral circuitry. The extremely powerful integrated interrupt controller with associated eight prioritized interrupt levels supports fast and efficient processing of hardware events. The MARC4 is designed for the high-level programming language qFORTH. The core includes both, an expression and a return stack. This architecture enables high-level language programming without any loss of efficiency or code density. ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ MARC4 CORE ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ X Reset ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Program Y RAM PC ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ SP memory ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ RP ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏ Instruction ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏ bus Memory bus ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Instruction ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TOS decoder ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ SystemÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ CCR ALU clock Interrupt ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ controller ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ I/O bus ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ 256 x 4-bit Reset Clock Sleep On–chip peripheral modules 94 8973 Figure 3. MARC4 core Rev.A4, 14-Dec-01 5 (63) M44C090 M44C890 2.2 Components of MARC4 Core 1F8 h 1F0h 1 E8h 1 E0h 7FFFh SCALL addresses ROM (2 K x 8 bit) Z ero p age 0 20 h 01 8 h 01 0 h 00 8h 0 00 h 1FFh Zero page 000h 1 E0 h INT7 1 C0 h INT6 18 0h INT5 14 0h INT4 1 00 h INT3 0 C0 h INT2 0 80 h INT1 04 0h INT0 00 8h 0 00 h $RESET $AUTOSLEEP 13391 Figure 4. ROM map of M44C090 The core contains ROM, RAM, ALU, program counter, RAM address registers, instruction decoder and interrupt controller. The following sections describe each functional block in more detail: expression stack, the return stack and data memory for variables and arrays. The RAM is addressed by any of the four 8-bit wide RAM address registers SP, RP, X and Y. 2.2.1 The 4-bit wide expression stack is addressed with the expression stack pointer (SP). All arithmetic, I/O and memory reference operations take their operands from, and return their results to the expression stack. The MARC4 performs the operations with the top of stack items (TOS and TOS–1). The TOS register contains the top element of the expression stack and works in the same way as an accumulator. This stack is also used for passing parameters between subroutines and as a scratch pad area for temporary storage of data. ROM The program memory (ROM) is mask programmed with the customer application program during the fabrication of the microcontroller. The ROM is addressed by a 12–bit wide program counter, thus predefining a maximum program bank size of 2 Kbytes. An additional 1 Kbyte of ROM exists which is reserved for quality control self–test software The lowest user ROM address segment is taken up by a 512 byte zero page which contains predefined start addresses for interrupt service routines and special subroutines accessible with single byte instructions (SCALL). The corresponding memory map is shown in figure 4. Look-up tables of constants can also be held in ROM and are accessed via the MARC4’s built-in TABLE instruction. 2.2.2 RAM The M44C090 / M44C890 contains 256 x 4-bit wide static random access memory (RAM). It is used for the 6 (63) Expression Stack Return Stack The 12-bit wide return stack is addressed by the return stack pointer (RP). It is used for storing return addresses of subroutines, interrupt routines and for keeping loop index counts. The return stack can also be used as a temporary storage area. The MARC4 instruction set supports the exchange of data between the top elements of the expression stack and the return stack. The two stacks within the RAM have a user definable location and maximum depth. Rev.A4, 14-Dec-01 M44C090 M44C890 RAM ÏÏÏÏÏ ÏÏÏÏÏ (192 x 4-bit) Autosleep 3 RAM address register: Global variables X ÏÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ SP TOS–1 RP SP 4-bit Expression stack ÏÏÏÏÏ ÏÏÏÏÏ Return stack 11 Return stack Global vvariables 07h 03h 04h 00h 2.2.3 0 TOS TOS–1 TOS–2 FFh FCh Y ÏÏÏ ÏÏÏ Expression stack 0 RP 12-bit 13392 Figure 5. RAM map from the ROM. Instructions currently being executed are decoded in the instruction decoder to determine the internal micro-operations. For linear code (no calls or branches) the program counter is incremented with every instruction cycle. If a branch-, call-, return-instruction or an interrupt is executed, the program counter is loaded with a new address. The program counter is also used with the TABLE instruction to fetch 8-bit wide ROM constants. Registers The MARC4 controller has seven programmable registers and one condition code register. They are shown in the following programming model. Program Counter (PC) The program counter (PC) is a 12-bit register which contains the address of the next instruction to be fetched 11 0 PC Program counter 0 0 7 0 RP 0 Return stack pointer 0 7 SP Expression stack pointer 0 7 X RAM address register (X) 7 0 Y RAM address register (Y) 3 0 3 0 Top of stack register TOS CCR C –– B I Condition code register Interrupt enable Branch Reserved Carry / borrow Figure 6. Programming model Rev.A4, 14-Dec-01 7 (63) M44C090 M44C890 RAM Address Registers Top Of Stack (TOS) The RAM is addressed with the four 8-bit wide RAM address registers: SP, RP, X and Y. These registers allow access to any of the 256 RAM nibbles. The top of stack register is the accumulator of the MARC4. All arithmetic/logic, memory reference and I/O operations use this register. The TOS register receives data from the ALU, ROM, RAM or I/O bus. Expression Stack Pointer (SP) The stack pointer (SP) contains the address of the next-totop 4-bit item (TOS–1) of the expression stack. The pointer is automatically pre-incremented if a nibble is moved onto the stack or post-decremented if a nibble is removed from the stack. Every post-decrement operation moves the item (TOS–1) to the TOS register before the SP is decremented. After a reset the stack pointer has to be initialized with ” >SP S0 ” to allocate the start address of the expression stack area. Return Stack Pointer (RP) The return stack pointer points to the top element of the 12-bit wide return stack. The pointer automatically preincrements if an element is moved onto the stack, or it post-decrements if an element is removed from the stack. The return stack pointer increments and decrements in steps of 4. This means that every time a 12-bit element is stacked, a 4-bit RAM location is left unwritten. This location is used by the qFORTH compiler to allocate 4-bit variables. After a reset the return stack pointer has to be initialized via ”>RP FCh ”. RAM Address Registers (X and Y) The X and Y registers are used to address any 4-bit item in the RAM. A fetch operation moves the addressed nibble onto the TOS. A store operation moves the TOS to the addressed RAM location. By using either the pre–increment or post–decrement addressing mode arrays in the RAM can be compared, filled or moved. 8 (63) Condition Code Register (CCR) The 4-bit wide condition code register contains the branch, the carry and the interrupt enable flag. These bits indicate the current state of the CPU. The CCR flags are set or reset by ALU operations. The instructions SET_BCF, TOG_BF, CCR! and DI allow direct manipulation of the condition code register. Carry/Borrow (C) The carry/borrow flag indicates that the borrowing or carrying out of arithmetic logic unit (ALU) occurred during the last arithmetic operation. During shift and rotate operations, this bit is used as a fifth bit. Boolean operations have no affect on the C-flag. Branch (B) The branch flag controls the conditional program branching. Should the branch flag have been set by a previous instruction a conditional branch will cause a jump. This flag is affected by arithmetic, logic, shift, and rotate operations. Interrupt Enable (I) The interrupt enable flag globally enables or disables the triggering of all interrupt routines with the exception of the non-maskable reset. After a reset or on executing the DI instruction, the interrupt enable flag is reset thus disabling all interrupts. The core will not accept any further interrupt requests until the interrupt enable flag has been set again by either executing an EI, RTI or SLEEP instruction. Rev.A4, 14-Dec-01 M44C090 M44C890 2.2.4 ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏ ÏÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏÏÏ ÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏ ÏÏÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ALU RAM SP TOS–1 TOS–2 TOS–3 TOS–4 TOS ALU CCR 94 8977 Figure 7. ALU zero-address operations The 4-bit ALU performs all the arithmetic, logical, shift and rotate operations with the top two elements of the expression stack (TOS and TOS–1) and returns the result to the TOS. The ALU operations affect the carry/borrow and branch flag in the condition code register (CCR). 2.2.5 I/O Bus The I/O ports and the registers of the peripheral modules are I/O mapped. All communication between the core and the on-chip peripherals takes place via the I/O bus and the associated I/O control. With the MARC4 IN and OUT instructions the I/O bus allows a direct read or write access to one of the 16 primary I/O addresses. More about the I/O access to the on-chip peripherals is described in the section ”Peripheral Modules”. The I/O bus is internal and is not accessible by the customer on the final microcontroller device, but it is used as the interface for the MARC4 emulation (see also the section ”Emulation”). 2.2.6 Instruction Set The MARC4 instruction set is optimized for the high level programming language qFORTH. Many MARC4 instructions are qFORTH words. This enables the compiler to generate a fast and compact program code. The CPU has an instruction pipeline allowing the controller to prefetch an instruction from ROM at the same time as the present instruction is being executed. Rev.A4, 14-Dec-01 The MARC4 is a zero address machine, the instructions containing only the operation to be performed and no source or destination address fields. The operations are implicitly performed on the data placed on the stack. There are one and two byte instructions which are executed within 1 to 4 machine cycles. A MARC4 machine cycle is made up of two system clock cycles (SYSCL). Most of the instructions are only one byte long and are executed in a single machine cycle. For more information refer to the ”MARC4 Programmer’s Guide”. 2.2.7 Interrupt Structure The MARC4 can handle interrupts with eight different priority levels. They can be generated from the internal and external interrupt sources or by a software interrupt from the CPU itself. Each interrupt level has a hard-wired priority and an associated vector for the service routine in the ROM (see table 2). The programmer can postpone the processing of interrupts by resetting the interrupt enable flag (I) in the CCR. An interrupt occurrence will still be registered, but the interrupt routine only started after the I flag is set. All interrupts can be masked, and the priority individually software configured by programming the appropriate control register of the interrupting module. (see section ”Peripheral Modules”). 9 (63) M44C090 M44C890 INT7 ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ 7 INT7 active 6 Priority level RTI INT5 5 INT5 active RTI INT3 4 ÁÁÁ ÁÁÁ 3 INT3 active 2 ÁÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ ÁÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ INT2 RTI INT2 pending 1 INT2 active RTI SWI0 0 ÁÁÁÁÁ ÁÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ ÏÏÏÏÏÏÏ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ INT0 pending INT0 active RTI Main / Autosleep Main / Autosleep Time 94 8978 Figure 8. Interrupt handling Interrupt Processing For processing the eight interrupt levels, the MARC4 includes an interrupt controller with two 8-bit wide ”interrupt pending” and ”interrupt active” registers. The interrupt controller samples all interrupt requests during every non-I/O instruction cycle and latches these in the interrupt pending register. If no higher priority interrupt is present in the interrupt active register, it signals the CPU to interrupt the current program execution. If the interrupt enable bit is set, the processor enters an interrupt acknowledge cycle. During this cycle a short call (SCALL) instruction to the service routine is executed and the current PC is saved on the return stack. An interrupt service routine is completed with the RTI instruction. This instruction sets the interrupt enable flag, resets the corresponding bits in the interrupt pending/active register and fetches the return address from the return stack to the program counter. When the interrupt enable flag is reset (triggering of interrupt routines are disabled), the execution of new interrupt 10 (63) service routines is inhibited but not the logging of the interrupt requests in the interrupt pending register. The execution of the interrupt is delayed until the interrupt enable flag is set again. Note that interrupts are only lost if an interrupt request occurs while the corresponding bit in the pending register is still set (i.e., the interrupt service routine is not yet finished). It should also be noted that automatic stacking of the RBR is not carried out by the hardware and so if ROM banking is used, the RBR must be stacked on the expression stack by the application program and restored before the RTI. After a master reset (power-on, brown-out or watchdog reset), the interrupt enable flag and the interrupt pending and interrupt active register are all reset. Interrupt Latency The interrupt latency is the time from the occurrence of the interrupt to the interrupt service routine being activated. In MARC4 this is extremely short (taking between 3 to 5 machine cycles depending on the state of the core). Rev.A4, 14-Dec-01 M44C090 M44C890 Table 3 Interrupt priority table ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Interrupt INT0 INT1 Priority lowest | ROM Address Interrupt Opcode 040h C8h (SCALL 040h) 080h D0h (SCALL 080h) INT2 INT3 | | 0C0h 100h D8h (SCALL 0C0h) E8h (SCALL 100h) INT4 INT5 INT6 | | ↓ 140h 180h 1C0h E8h (SCALL 140h) F0h (SCALL 180h) F8h (SCALL 1C0h) INT7 highest 1E0h FCh (SCALL 1E0h) Function Software interrupt (SWI0) External hardware interrupt, any edge at BP52 or BP53 Timer 1 interrupt SSI interrupt or external hardware interrupt at BP40 or BP43 Timer 2 interrupt Software interrupt (SW15) External hardware interrupt, at any edge at BP50 or BP51 Voltage monitor (VM) interrupt Table 4 Hardware interrupts Interrupt Interrupt Mask Register Bit P5CR P52M1, P52M2 P53M1, P53M2 T1M T1IM SISC SIM T2CM T2IM P5CR P50M1, P50M2 P51M1, P51M2 VCM VIM Interrupt Source ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ INT1 INT2 INT3 INT4 INT6 INT7 Software Interrupts The programmer can generate interrupts by using the software interrupt instruction (SWI) which is supported in qFORTH by predefined macros named SWI0...SWI7. The software triggered interrupt operates exactly like any hardware triggered interrupt. The SWI instruction takes the top two elements from the expression stack and writes the corresponding bits via the I/O bus to the interrupt pending register. Therefore, by using the SWI instruction, interrupts can be re-prioritized or lower priority processes scheduled for later execution. Hardware Interrupts In the M44C090, there are eleven hardware interrupt sources with seven different levels. Each source can be masked individually by mask bits in the corresponding control registers. An overview of the possible hardware configurations is shown in table 4. Rev.A4, 14-Dec-01 Any edge at BP52 any edge at BP53 Timer 1 SSI buffer full / empty or BP40/BP43 interrupt Timer 2 compare match / overflow Any edge at BP50, any edge at BP51 External / internal voltage monitoring 2.3 Master Reset The master reset forces the CPU into a well-defined condition. It is unmaskable and is activated independent of the current program state. It can be triggered by either initial supply power-up, a short collapse of the power supply, brown-out detection circuitry, watchdog time-out, or an external input clock supervisor stage (see figure 9). A master reset activation will reset the interrupt enable flag, the interrupt pending register and the interrupt active register. During the power-on reset phase the I/O bus control signals are set to ’reset mode’ thereby initializing all on-chip peripherals. All bidirectional ports are set to input mode. Attention: During any reset phase, the BP20/NTE input is driven towards VDD by a strong pull-up transistor. Releasing the reset results in a short call instruction (opcode C1h) to the ROM address 008h. This activates the initialization routine $RESET which in turn has to initialize all necessary RAM variables, stack pointers and peripheral configuration registers (see table 7). 11 (63) M44C090 M44C890 V DD Pull-up CL NRST res Reset timer Internal reset CL=SYSCL/4 Power–on reset Brown–out detection VDD VSS VDD VSS Watch– dog res CWD Ext. clock supervisor ExIn 13752 Figure 9. Reset configuration The M44C090 / M44C890 has a fully integrated power-on reset and brown-out detection circuitry. For reset generation no external components are needed . reached. A reset condition will also be generated should the supply voltage drop momentarily below the minimum operating level except when a power down mode is activated (the core is in SLEEP mode and the peripheral clock is stopped). In this power-down mode the brownout detection is disabled. These circuits ensure that the core is held in the reset state until the minimum operating supply voltage has been Two values for the brown-out voltage threshold are programmable via the BOT-bit in the SC-register. 2.3.1 Power-on Reset and Brown-out Detection V DD 2.0 V 1.7 V t d CPU Reset BOT = ’1’ td CPU Reset t td BOT = ’0’ td = 1.5 ms (typically) 13753 BOT = 1, low brown-out voltage threshold. (1.7 V) is reset value. BOT = 0, high brown-out voltage threshold (1.9 V). Figure 10. Brown-out detection 12 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 A power-on reset pulse is generated by a VDD rise across the default BOT voltage level (1.7 V). A brown-out reset pulse is generated when VDD falls below the brown-out voltage threshold. Two values for the brown-out voltage threshold are programmable via the BOT-bit in the SC-register. When the controller runs in the upper supply voltage range with a high system clock frequency, the high threshold must be used. When it runs with a lower system clock frequency, the low threshold and a wider supply voltage range may be chosen. For further details, see the electrical specification and the SC-register description for BOT programming. 2.3.2 Watchdog Reset The watchdog’s function can be enabled at the WDC-register and triggers a reset with every watchdog counter overflow. To supress the watchdog reset, the watchdog counter must be regularly reset by reading the watchdog register address (CWD). The CPU reacts in exactly the same manner as a reset stimulus from any of the above sources. 2.3.3 2.4 Voltage Monitor The voltage monitor consists of a comparator with internal voltage reference. It is used to supervise the supply voltage or an external voltage at the VMI-pin. The comparator for the supply voltage has three internal programmable thresholds one lower threshold (2.2 V), one middle threshold (2.6 V). and one higher threshold (3.0 V). For external voltages at the VMI-pin, the comparator threshold is set to VBG = 1.3 V. The VMS-bit indicates if the supervised voltage is below (VMS = 0) or above (VMS = 1) this threshold. An interrupt can be generated when the VMS-bit is set or reset to detect a rising or falling slope. A voltage monitor interrupt (INT7) is enabled when the interrupt mask bit (VIM) is reset in the VMC-register. V DD Voltage monitor BP41/ VMI OUT IN INT7 External Clock Supervisor The external input clock supervisor function can be enabled if the external input clock is selected within the CM- and SC-registers of the clock module. VMC : VM2 VM1 VM0 VIM VMST : The CPU reacts in exactly the same manner as a reset stimulus from any of the above sources. Rev.A4, 14-Dec-01 – – res VMS 13754 Figure 11. Voltage monitor 13 (63) M44C090 M44C890 2.4.1 Voltage Monitor Control / Status Register Primary register address: ’F’hex ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ VMC: Write Bit 3 VM2 Bit 2 VM1 Bit 1 VM0 Bit 0 VIM Reset value: 1111b VMST: Read ––– ––– reserved VMS Reset value: xx11b VM2: Voltage monitor Mode bit 2 VM1: Voltage monitor Mode bit 1 VM0: Voltage monitor Mode bit 0 ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ VM2 1 1 1 1 0 0 0 0 VM1 1 1 0 0 1 1 0 0 VM0 1 0 1 0 1 0 1 0 Function Disable voltage monitor External (VIM-input), internal reference threshold (1.3 V), interrupt with negative slope Not allowed External (VMI-input), internal reference threshold (1.3 V), interrupt with positive slope Internal (supply voltage), high threshold (3.0 V), interrupt with negative slope Internal (supply voltage), middle threshold (2.6 V), interrupt with negative slope Internal (supply voltage), low threshold (2.2 V), interrupt with negative slope Not allowed VIM Voltage Interrupt Mask bit VIM = 0, voltage monitor interrupt is enabled VIM = 1, voltage monitor interrupt is disabled VMS Voltage Monitor Status bit VMS = 0, the voltage at the comparator input is below Vref VMS = 1, the voltage at the comparator input is above Vref VMS = 1 V DD Low threshold Middle threshold High threshold 3.0 V 2.6 V 2.2 V Low threshold Middle threshold High threshold VMS = 0 13755 Figure 12. Internal supply voltage supervisor Internal reference level VMI Negative slope Interrupt positive slope VMS = 1 VMS = 1 VMS = 0 VMS = 0 1.3 V Positive slope Interrupt negative slope t 13756 Figure 13. External input voltage supervisor 14 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 2.5 maintained stable to within a tolerance of ± 15% over the full operating temperature and voltage range. Clock Generation 2.5.1 Clock Module The M44C090 / M44C890 contains a clock module with 4 different internal oscillator types: two RC-oscillators, one 4-MHz crystal oscillator and one 32-kHz crystal oscillator. The pins OSC1 and OSC2 are the interface to connect a crystal either to the 4-MHz, or to the 32-kHz crystal oscillator. OSC1 can be used as input for external clocks or to connect an external trimming resistor for the RC-oscillator 2. All necessary circuitry except the crystal and the trimming resistor is integrated on-chip. One of these oscillator types or an external input clock can be selected to generate the system clock (SYSCL). In applications that do not require exact timing, it is possible to use the fully integrated RC-oscillator 1 without any external components. The RC-oscillator 1 center frequency tolerance is better than ± 50%. The RC-oscillator 2 is a trimmable oscillator whereby the oscillator frequency can be trimmed with an external resistor attached between OSC1 and VDD. In this configuration, the RC-oscillator 2 frequency can be RC oscillator 1 Ext. clock OSC1 Oscin The clock module is programmable via software with the clock management register (CM) and the system configuration register (SC). The required oscillator configuration can be selected with the OS1-bit and the OS0-bit in the SC-register. A programmable 4-bit divider stage allows the adjustment of the system clock speed. A special feature of the clock management is that an external oscillator may be used and switched on and off via a port pin for the power-down mode. Before the external clock is switched off, the internal RC-oscillator 1 must be selected with the CCS-bit and then the SLEEP mode may be activated. In this state an interrupt can wake up the controller with the RC-oscillator, and the external oscillator can be activated and selected by software. A synchronization stage avoids too short clock periods if the clock source or the clock speed is changed. If an external input clock is selected, a supervisor circuit monitors the external input and generates a hardware reset if the external clock source fails or drops below 500 kHz for more than 1 msec. SYSCL ExOut Stop ExIn RCOut1 Stop Control RC oscillator2 RCOut2 Stop RTrim IN1 Cin /2 /2 4–MHz oscillator Oscin Oscout /2 /2 IN2 Divider 4Out Stop 32–kHz oscillator OSC2 Oscout Oscin Oscout 32Out Osc–Stop Sleep WDL CM: NSTOP Cin/16 CCS CSS1 SUBCL CSS0 32 kHz SC: BOT ––– OS1 OS0 Figure 14. Clock module Table 5 Clock modes Mode Clock Source for SYSCL OS0 CCS = 1 CCS = 0 1 RC-oscillator 1 (intern) External input clock 1 RC-oscillator 1 (intern) RC-oscillator 2 with external trimming resistor 0 RC-oscillator 1 (intern) 4-MHz oscillator 0 RC-oscillator 1 (intern) 32-kHz oscillator Clock Source for SUBCL ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ 1 2 OS1 1 0 3 4 1 0 Rev.A4, 14-Dec-01 Cin / 16 Cin / 16 Cin / 16 32 kHz 15 (63) M44C090 M44C890 The clock module generates two output clocks. One is the system clock (SYSCL) and the other the periphery (SUBCL). The SYSCL can supply the core and the peripherals and the SUBCL can supply only the peripherals with clocks. The modes for clock sources are programmable with the OS1-bit and OS0-bit in the SCregister and the CCS-bit in the CM-register. Ext. input clock ExIn Osc–Stop Stop CCS Clock monitor OSC2 2.5.2 RcOut1 ExOut Ext. OSC1 Clock Res Oscillator Circuits and External Clock Input Stage The M44C090 / M44C890 series consists of four different internal oscillators: two RC-oscillators, one 4-MHz crystal oscillator, one 32-kHz crystal oscillator and one external clock input stage. RC-Oscillator 1 Fully Integrated For timing insensitive applications, it is possible to use the fully integrated RC oscillator 1. It operates without any external components and saves additional costs. The RC–oscillator 1 center frequency tolerance is better than ±50% over the full temperature and voltage range. The basic center frequency of the RC-oscillator 1 is fO [3.8 MHz The RC oscillator 1 is selected by default after power–on reset. RC oscillator 1 RcOut1 RcOut1 Stop 13759 Figure 16. External input clock ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ OS1 OS0 CCS 1 1 x 1 1 0 0 1 x Supervisor Reset Output (Res) enable disable disable RC-Oscillator 2 with External Trimming Resistor The RC-oscillator 2 is a high resolution trimmable oscillator whereby the oscillator frequency can be trimmed with an external resistor between OSC1 and VDD. In this configuration, the RC-oscillator 2 frequency can be maintained stable to within a tolerance of ± 10% over the full operating temperature and, voltage range from VDD = 2.5 V to 6V. For example: An output frequency at the RC-oscillator 2 of 2 MHz, can be obtained by connecting a resistor Rext = 360 kΩ (see figure 17). Osc–Stop VDD Control 13758 Rext OSC1 Figure 15. RC-oscillator 1 RC oscillator 2 RcOut2 RcOut2 RTrim Osc–Stop Stop External Input Clock The OSC1 can be driven by an external clock source provided it meets the specified duty cycle, rise and fall times and input levels. Additionally the external clock stage contains a supervisory circuit for the input clock. The supervisor function is controlled via the OS1, OS0-bit in the SC–register and the CCS–bit in the CMregister. If the external input clock fails and CCS = 0 is set in the CM-register, the supervisory circuit generates a hardware reset. The input clock has failed if the frequency is less than 500 kHz for more than 1 ms. 16 (63) OSC2 13760 Figure 17. RC-oscillator 2 4-MHz Oscillator The M44C090 / M44C890 4-MHz oscillator options need a crystal or ceramic resonator connected to the OSC1 and OSC2 pins to establish oscillation. All the necessary oscillator circuitry, with the exception of the actual crystal, resonator, C3 and C4 are integrated on-chip. Rev.A4, 14-Dec-01 M44C090 M44C890 32-kHz Oscillator OSC1 Oscin 4Out 4–MHz oscillator Stop Oscout XTAL 4 MHz 4Out Osc–Stop OSC2 Some applications require long-term time keeping or low resolution timing. In this case, an on–chip, low power 32-kHz crystal oscillator can be used to generate both the SUBCL and the SYSCL. In this mode, power consumption is greatly reduced. The 32-kHz crystal oscillator can not be stopped while the power-down mode is in operation. OSC1 Oscin Figure 18. 4-MHz crystal oscillator 32Out 32–kHz oscillator XTAL 32 kHz 32Out Oscout C3 OSC2 OSC1 Oscin 4 MHz C4 4Out 4–MHz oscillator Oscout Stop Cer. Res 4Out Figure 20. 32-kHz crystal oscillator Osc–Stop OSC2 2.5.3 C2 = C3 = 22 pF Clock Management The clock management register controls the system clock divider and synchronization stage. Writing to this register triggers the synchronization cycle. Figure 19. Ceramic resonator Clock Management Register (CM) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁÁ Auxiliary register address: ’3’hex Bit 3 NSTOP CM: NSTOP Bit 2 CCS Bit 1 CSS1 Bit 0 CSS0 Reset value: 1111b CCS Not STOP peripheral clock NSTOP = 0, stops the peripheral clock while the core is in SLEEP mode NSTOP = 1, enables the peripheral clock while the core is in SLEEP mode Core Clock Select CCS = 1, the internal RC-oscillator 1 generates SYSCL CCS = 0, the 4-MHz crystal oscillator, the 32-kHz crystal oscillator, an external clock source or the internal RC-oscillator 2 with the external resistor at OSC1 generates SYSCL dependent on the setting of OS0 and OS1 in the system configuration register CSS1 CSS0 Core Speed Select 1 Core Speed Select 0 CSS1 0 1 1 0 Rev.A4, 14-Dec-01 CSS0 0 1 0 1 Divider 16 8 4 2 Note Reset value 17 (63) M44C090 M44C890 System Configuration Register (SC) Primary register address: ’3’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Bit 3 BOT SC: write BOT Bit 2 ––– Bit 1 OS1 Bit 0 OS0 Reset value: 1x11b Brown-Out Threshold BOT = 1, low brown-out voltage threshold (1.7 V) BOT = 0, high brown-out voltage threshold (2.0 V) Oscillator Select 1 Oscillator Select 0 OS1 OS0 Mode 1 2 3 4 OS1 1 0 1 0 OS0 1 1 0 0 Input for SUBCL Cin / 16 Cin / 16 Cin / 16 32 kHz Selected Oscillators RC–oscillator 1 and external input clock RC-oscillator 1 and RC-oscillator 2 RC-oscillator 1 and 4-MHz crystal oscillator RC-oscillator 1 and 32-kHz crystal oscillator If the bit CCS = 0 in the CM-register the RC-oscillator 1 always stops. 2.6 instruction cycles (for example NOP NOP NOP) between the IN or OUT command and the SLEEP command. Power-down Modes The sleep mode is a shut-down condition which is used to reduce the average system power consumption in applications where the µC is not fully utilized. In this mode, the system clock is stopped. The sleep mode is entered via the SLEEP instruction. This instruction sets the interrupt enable bit (I) in the condition code register to enable all interrupts and stops the core. During the sleep mode the peripheral modules remain active and are able to generate interrupts. The µC exits the sleep mode by carrying out any interrupt or a reset. The sleep mode can only be kept when none of the interrupt pending or active register bits are set. The application of the $AUTOSLEEP routine ensures the correct function of the sleep mode. For standard applications use the $AUTOSLEEP routine to enter the power-down mode. Using the SLEEP instruction instead of the $AUTOSLEEP following an I/O instruction requires to insert 3 non I/O The total power consumption is directly proportional to the active time of the µC. For a rough estimation of the expected average system current consumption, the following formula should be used: Itotal (VDD,fsyscl) = ISleep + (IDD tactive / ttotal) IDD depends on VDD and fsyscl. The M44C090 / M44C890 has various power-down modes. During the sleep mode the clock for the MARC4 core is stopped. With the NSTOP-bit in the clock management register (CM) it is programmable if the clock for the on–chip peripherals is active or stopped during the sleep mode. If the clock for the core and the peripherals is stopped the selected oscillator is switched off. An exception is the 32-kHz oscillator, if it is selected it runs continously independent of the NSTOP-bit. If the oscillator is stopped or the 32 kHz oscillator is selected, power consumption is extremely low. Table 6 Power-down modes Mode CPU Core Osc-Stop* Brown-out Function Active Power-down SLEEP RUN SLEEP SLEEP NO NO YES Active Active STOP RC-Oscillator 1 RC-Oscillator 2 4-MHz Oscillator RUN RUN STOP 32-kHz Oscillator External Input Clock RUN RUN RUN YES YES STOP ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ * Osc-Stop = SLEEP & NSTOP & WDL 18 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 3 Peripheral Modules 3.1 Addressing Peripherals Accessing the peripheral modules takes place via the I/O bus (see figure 21). The IN or OUT instructions allow direct addressing of up to 16 I/O modules. A dual register addressing scheme has been adopted to enable direct addressing of the ”primary register”. To address the ”auxiliary register”, the access must be switched with an ”auxiliary switching module”. Thus a single IN (or OUT) to the module address will read (or write) into the module primary register. Accessing the auxiliary register is performed with the same instruction preceded by writing the module address into the auxiliary switching module. Byte wide registers are accessed by multiple IN- (or OUT-) instructions. For more complex peripheral modules, with a larger number of registers, extended addressing is used. In this case a bank of up to 16 subport registers are indirectly addressed with the subport address. The first OUT-instruction writes the subport address to the subaddress register, the second IN- or OUT-instruction reads data from or writes data to the addressed subport. Module M1 Module ASW Module M2 Module M3 (Address Pointer) Subaddress Reg. Bank of Primary Regs. Aux. Reg. Subport Fh Auxiliary Switch Module 1 5 Subport Eh Subport 1 Primary Reg. Primary Reg. Primary Reg. Subport 0 2 3 6 4 I/O bus to other modules Dual Register Access Indirect Subport Access (Primary Register Write) (Subport Register Write) 1 2 Addr.(SPort) Addr.(M1) SPort_Data Addr.(M1) Example of qFORTH Program Code Addr.(SPort) Addr.(M1) 2 Addr.(M 1) OUT (Prima ry Register Write) 3 Prim._Data 4 Address(M2) Address(ASW) OUT 5 Aux._Data OUT OUT (Subport Register Read) 1 Single Register Access Address(M2) OU T 6 Prim._Data Address(M3) O UT ( Auxiliary Register Write ) (Prima ry Register Read) 6 Address(M3) IN Address(M2) OUT IN (Primary Register Rea d) (Subport Register Write Byte) 1 Addr.(SPort) Addr.(M1) OUT 2 SPort_Data(lo) Addr.(M1) OUT 2 SPort_Data(hi) Addr.(M1) OUT 3 4 2 2 Address(M2) Address(ASW) OUT Address(M 2) IN (Auxiliary Register Write Byte) (Subport Register Rea d Byte) Addr.(SPort) Addr.(M1) IN (Auxiliary Register Rea d) 5 1 Address(M 2) OUT 4 Addr.(M 1) IN (hi) 5 Aux._Data(lo) Address(M2) OUT Addr.(M 1) IN (lo) 5 Aux._Data(hi) Address(M2) OUT Address(M2) Address(ASW) OUT Addr.(ASW) = Auxiliary Switch Module Address Aux._Data (hi) = da ta to be written into Auxiliar y Register (high nibble) Addr.(Mx) = Module Mx Addr ess SPort_Data(lo) = data to be written into SubP ort (low nibble) Addr.(SPort) = Subport Address SPort_Data(hi) = da ta to be written into Subport (high nibble) (lo) = SPort_Data (low nibble) (hi) = SPort_Data (high nibble) Prim._Data = data to be written into Primar y Register. Aux._Data = da ta to be written into Auxilia ry Register Aux. _Data (lo ) = data to be written into Auxiliar y Re gister (low nibble ) 13357 Figure 21. Example of I/O addressing Rev.A4, 14-Dec-01 19 (63) M44C090 M44C890 Table 7 Peripheral addresses ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ Á ÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ Á ÁÁÁ ÁÁ Á ÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Port Address 1 2 3 4 5 6 7 8 9 A B C D E F Name –––– P2DAT Aux. P2CR SC CWD Aux. CM P4DAT Aux. P4CR P5DAT Aux. P5CR –––– T12SUB Subport address 0 T2C 1 T2M1 2 T2M2 3 T2CM 4 T2CO1 5 T2CO2 6 –––– 7 –––– 8 T1C1 9 T1C2 A WDC B-F ASW STB SRB Aux. SIC1 SISC Aux. SIC2 –––– –––– ––– ––– VMC VMST 3.2 Write /Read Reset Value W/R W W R W/R W/R W W/R W 1111b 1111b 1x11b xxxxb 1111b 1111b 1111 1111b 1111b 1111 1111b W –––– W W W W W W –––– –––– W W W 0000b 1111b 1111b 0000b 1111b 1111 1111b –––– –––– 1111b x111b 1111b W W R W W/R W 1111b xxxx xxxxb xxxx xxxxb 1111b 1x11b 1111b –––– –––– –––– –––– 1111b xx11b –––– W R Bidirectional Ports Register Function Reserved Port 2 – data register / pin data Port 2 – control register Port 3 – system configuration register Watchdog reset Port 3 – clock management register Port 4 – data register / pin data Port 4 – control register (byte) Port 5 – data register / pin data Port 5 – control register (byte) Reserved Data to Timer 1/2 subport Timer 2 control register Timer 2 mode register 1 Timer 2 mode register 2 Timer 2 compare mode register Timer 2 compare register 1 Timer 2 compare register 2 (byte) Reserved Reserved Timer 1 control register 1 Timer 1 control register 2 Watchdog control register Reserved Auxiliary / switch register Serial transmit buffer (byte) Serial receive buffer (byte) Serial interface control register 1 Serial interface status / control register Serial interface control register 2 Reserved Reserved Reserved Reserved Voltage monitor control register Voltage monitor status register Module Type See Page M2 21 21 18 26 17 24 24 23 23 M3 M3 M2 M2 M2 M1 19 M1 M1 M1 M1 M1 M1 34 35 36 37 37 37 M1 M1 M1 27 27 28 ASW M2 19 46 47 45 46 45 M2 M3 M3 14 14 There are three different directional ports available: Port 2 4-bit wide bitwise-programmable I/O port. All ports (2, 4 and 5) are 4 bits wide. All ports may be used for data input or output. All ports are equipped with Schmitt trigger inputs and a variety of mask options for open drain, open source, full complementary outputs, pull up and pull down transistors. All Port Data Registers (PxDAT) are I/O mapped to the primary address register of the respective port address and the Port Control Register (PxCR), to the corresponding auxiliary register. 20 (63) Port 5 4-bit wide bitwise-programmable bidirectional port with optional strong pull-ups and programmable interrupt logic. Port 4 4-bit wide bitwise-programmable bidirectional port also provides the I/O interface to Timer 2, SSI, voltage monitor input and external interrupt input. Rev.A4, 14-Dec-01 M44C090 M44C890 3.2.1 Bidirectional Port 2 This, and all other bidirectional ports include a bitwise programmable Control Register (P2CR), which enables the individual programming of each port bit as input or output. It also opens up the possibility of reading the pin condition when in output mode. This is a useful feature for self testing and for serial bus applications. Port 2 however, has an increased drive capability and an additional low resistance pull-up/-down transistor mask option. * * (Data out) D DD Static Pull-up * I/O Bus Q P2DATy S BP2y V * Master reset I/O Bus V Switched Pull-up I/O Bus * Static * D S Q P2CRy (Direction) DD * Mask options Pull-down Switched Pull-down Figure 22. Bidirectional Port 2 Port 2 Data Register (P2DAT) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’2’hex Bit 3 * P2DAT3 P2DAT Bit 2 P2DAT2 Bit 1 P2DAT1 Bit 0 P2DAT0 Reset value: 1111b * Bit 3 –> MSB, Bit 0 –> LSB Port 2 Control Register (P2CR) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Auxiliary register address: ’2’hex Bit 3 P2CR3 P2CR Bit 2 P2CR2 Bit 1 P2CR1 Bit 0 P2CR0 Reset value: 1111b Value: 1111b means all pins in input mode Code 3210 xxx1 xxx0 xx1x xx0x x1xx x0xx 1xxx 0xxx Function BP20 in input mode BP20 in output mode BP21 in input mode BP21 in output mode BP22 in input mode BP22 in output mode BP23 in input mode BP23 in output mode Rev.A4, 14-Dec-01 21 (63) M44C090 M44C890 3.2.2 Bidirectional Port 5 This, and all other bidirectional ports include a bitwise programmable Control Register (P5CR), which allows the individual programming of each port bit as input or output. It also opens up the possibility of reading the pin condition when in output mode. This is a useful feature for self testing and for serial bus applications. The port pins can also be used as external interrupt inputs (see figures 24 & 25). The interrupts (INT1 and INT6) can be masked or independently configured to trigger on ei- ther edge. The interrupt configuration and port direction is controlled by the Port 5 Control Register (P5CR). An additional low resistance pull–up/–down transistor mask option provides an internal bus pull–up for serial bus applications. The Port 5 Data Register (P5DAT) is I/O mapped to the primary address register of address ’5’h and the Port 5 Control Register (P5CR) to the corresponding auxiliary register. The P5CR is a byte-wide register and is configured by writing first the low nibble then the high nibble (see section 2.1 ”Addressing peripherals”). I/O Bus Switched Pull-up V * * DD Static Pull-up VDD (Data out) * I/O Bus D Q P5DATy BP5y S V * DD Master reset Static * Pull-down * IN enable Switched Pull-down * Mask options Figure 23. Bidirectional Port 5 INT1 INT6 Data in Data in BP52 BP51 Bidir. Port Bidir. Port IN_Enable IN_Enable I/O–bus I/O–bus Data in Data in BP53 BP50 Bidir. Port Bidir. Port IN_Enable IN_Enable Decoder Decoder Decoder Decoder P5CR: P53M2 P53M1 P52M2 P52M1 P51M2 P51M1 P50M2 P50M1 13764 Figure 24. Port 5 external interrupts 22 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Port 5 Data Register (P5DAT) ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Primary register address: ’5’hex P5DAT Bit 3 Bit 2 Bit 1 Bit 0 P5DAT3 P5DAT2 P5DAT1 P5DAT0 Reset value: 1111b Port 5 Control Register (P5CR) Byte Write Auxiliary register address: ’5’hex P5CR First write cycle Second write cycle Bit 3 Bit 2 Bit 1 Bit 0 P51M2 P51M1 P50M2 P50M1 Bit 7 Bit 6 Bit 5 Bit 4 P53M2 P53M1 P52M2 P52M1 Reset value: 1111b Reset value: 1111b P5xM2, P5xM1 – Port 5x Interrupt mode/direction code Auxiliary Address: ’5’hex First Write Cycle Code Function 3210 x x 1 1 BP50 in input mode – interrupt disabled x x 0 1 BP50 in input mode – rising edge interrupt x x 1 0 BP50 in input mode – falling edge interrupt x x 0 0 BP50 in output mode – interrupt disabled 1 1 x x BP51 in input mode – interrupt disabled 0 1 x x BP51 in input mode – rising edge interrupt 1 0 x x BP51 in input mode – falling edge interrupt 0 0 x x BP51 in output mode – interrupt disabled Code 3210 xx11 xx01 xx10 xx00 11xx 01xx 10xx 00xx Second Write Cycle Function ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Rev.A4, 14-Dec-01 BP52 in input mode – interrupt disabled BP52 in input mode – rising edge interrupt BP52 in input mode – falling edge interrupt BP52 in output mode – interrupt disabled BP53 in input mode – interrupt disabled BP53 in input mode – rising edge interrupt BP53 in input mode – falling edge interrupt BP53 in output mode – interrupt disabled 23 (63) M44C090 M44C890 3.2.3 Bidirectional Port 4 The bidirectional Port 4 is both a bitwise configurable I/O port and provides the external pins for the Timer 2, SSI and the voltage monitor input (VMI). As a normal port, it performs in exactly the same way as bidirectional Port 2 (see figure 26). Two additional multiplexes allow data and port direction control to be passed over to other internal modules (Timer 2, VM or SSI). The I/O-pins for SC and SD line have an additional mode to generate an SSI– interrupt. All four Port 4 pins can be individually switched by the P4CR–register . Figure 26 shows the internal interfaces to bidirectional Port 4. V I/O Bus DD Intx PIn Static * PxMRy * Pull-up VDD POut * I/O Bus Switched Pull-up Q D BPxy PxDATy S VDD * Master reset (Direction) I/O Bus D S * Q Static * Pull-down PxCRy PDir * Mask options Switched Pull-down Figure 25. Bidirectional Port 4 Port 4 Data Register (P4DAT) ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’4’hex P4DAT Bit 3 Bit 2 Bit 1 Bit 0 P4DAT3 P4DAT2 P4DAT1 P4DAT0 Reset value: 1111b Port 4 Control Register (P4CR) Byte Write ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Auxiliary register address: ’4’hex P4CR First write cycle Second write cycle Bit 3 Bit 2 Bit 1 Bit 0 P41M2 P41M1 P40M2 P40M1 Bit 7 Bit 6 Bit 5 Bit 4 P43M2 P43M1 P42M2 P42M1 Reset value: 1111b Reset value: 1111b P4xM2, P4xM1 – Port 4x Interrupt mode/direction code 24 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Auxiliary Address: ’4’hex First Write Cycle Code Function 3210 x x 1 1 BP40 in input mode x x 1 0 BP40 in output mode x x 0 1 BP40 enable alternate function (SC for SSI) Code 3210 xx11 xx10 xx0x Second Write Cycle Function ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ x x 0 0 BP40 enable alternate function (falling edge interrupt input for INT3) 1 1 x x BP41 in intput mode 1 0 x x BP41 in output mode 0 1 x x BP41 enable alternate function (VMI for voltage monitor input) 0 0 x x BP41 enable alternate function (T2I external clock input for Timer 2) 3.3 11xx 10xx 01xx 00xx ––– BP42 in input mode BP42 in output mode BP42 enable alternate function (T2O for Timer 2) BP43 in input mode BP43 in output mode BP43 enable alternate function (SD for SSI) BP43 enable alternate function (falling edge interrupt input for INT3) ––– Universal Timer/Counter / Communication Module (UTCM) The Universal Timer/counter/ Communication Module (UTCM) consists of Timer 1, Timer 2 and a Synchronous Serial Interface (SSI). Timer 1 is an interval timer that can be used to generate periodical interrupts and as prescaler for Timer 2, the serial interface and the watchdog function. Timer 2 is an 8/12-bit timer with an external clock inSYSCL SUBCL put (T2I) and an output (T2O). The SSI operates as two wire serial interface or as shift register for modulation. The modulator units work together with the timers and shift the data bits out of the shift register. There is a multitude of modes in which the timers and the serial interface can work together. from clock module Timer 1 NRST INT2 Watchdog MUX Interval / Prescaler Timer 2 T1OUT 4-bit Counter 2/1 MUX Compare 2/1 Modu– lator 2 T2O I/O bus T2I Control POUT 8-bit Counter 2/2 MUX DCG INT4 Compare 2/2 TOG2 SSI SCL Receive–Buffer MUX 8-bit Shift–Register SC SD Control Transmit–Buffer INT3 13393 Figure 26. UTCM block diagram Rev.A4, 14-Dec-01 25 (63) M44C090 M44C890 3.3.1 power-on reset ! If the watchdog function is not activated, the timer can be restarted by writing into the T1C1 register with T1RM=1. Timer 1 The Timer 1 is an interval timer which can be used to generate periodical interrupts and as prescaler for Timer 2, Timer 3, the serial interface and the watchdog function. Timer 1 can also be used as a watchdog timer to prevent a system from stalling. The watchdog timer is a 3-bit counter that is supplied by a separate output of Timer 1. It generates a system reset when the 3-bit counter overflows. To avoid this, the 3-bit counter must be reset before it overflows. The application software has to accomplish this by reading the CWD register. The Timer 1 consists of a programmable 14-stage divider that is driven by either SUBCL or SYSCL. The timer output signal can be used as prescaler clock or as SUBCL and as source for the Timer 1 interrupt. Because of other system requirements the Timer 1 output T1OUT is synchronized with SYSCL. Therefore in the power-down mode SLEEP (CPU core –> sleep and OSC-Stop –> yes) the output T1OUT is stopped (T1OUT=0). Nevertheless the Timer 1 can be active in SLEEP and generate Timer 1 interrupts. The interrupt is maskable via the T1IM bit and the SUBCL can be bypassed via the T1BP bit of the T1C2 register. The time interval for the timer output can be programmed via the Timer 1 control register T1C1. After power-on reset the watchdog must be activated by software in the $RESET initialization routine. There are two watchdog modes, in one mode the watchdog can be switched on and off by software, in the other mode the watchdog is active and locked. This mode can only be stopped by carrying out a system reset. The watchdog timer operation mode and the time interval for the watchdog reset can be programmed via the watchdog control register (WDC). This timer starts running automatically after any SYSCL WDCL MUX SUBCL CL1 Prescaler 14 bit NRST Watchdog 4 bit INT2 T1CS T1BP T1IM T1OUT T1MUX 13766 Figure 27. Timer 1 module T1C1 T1RM T1C2 T1C1 T1C0 T1C2 T1BP T1IM 3 Write of the T1C1 register Decoder T1IM=0 T1MUX MUX for interval timer INT2 T1IM=1 T1OUT RES Q1 Q2 Q3 Q4 Q5 CL1 CL Q6 Q8 Q11 Q14 SUBCL Q8 Q11 Q14 Watchdog Divider / 8 Decoder MUX for watchdog timer 2 WDC WDL WDR WDT1 WDT0 WDCL Divider RESET RESET (NRST) RES Watchdog mode control Read of the CWD register 13767 Figure 28. Timer 1 and watchdog 26 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Timer 1 Control Register 1 (T1C1) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’8’hex Bit 3 * T1RM T1C1 Bit 2 T1C2 Bit 1 T1C1 Bit 0 T1C0 Reset value: 1111b * Bit 3 –> MSB, Bit 0 –> LSB T1RM Timer 1 Restart Mode T1RM = 0, write access without Timer 1 restart T1RM = 1, write access with Timer 1 restart Note: if WDL = 0, Timer 1 restart is impossible Timer 1 Control bit 2 Timer 1 Control bit 1 Timer 1 Control bit 0 T1C2 T1C1 T1C0 The three bits T1C[2:0] select the divider for timer 1. The resulting time interval depends on this divider and the timer 1 input clock source. The timer input can be supplied by the system clock, the 32kHz oscillator or via the T1C2 T1C1 T1C0 Divider 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 clock management. If the clock management generates the SUBCL, the selected input clock from the RC oscillator, 4MHz oscillator or an external clock is divided by 16. Time Interval with SUBCL Time Interval with SUBCL = 32 kHz Time Interval with SYSCL = 2/1 MHz SUBCL / 2 SUBCL / 4 SUBCL / 8 SUBCL / 16 SUBCL / 32 SUBCL / 256 SUBCL / 2048 SUBCL / 16384 61 µs 122 µs 244 µs 488 µs 0.977 ms 7.812 ms 62.5 ms 500 ms 1 µs / 2 µs 2 µs / 4 µs 4 µs / 8 µs 8 µs / 16 µs 16 µs / 32 µs 128 µs / 256 µs 1024 µs / 2048 µs 8192 µs / 16384 µs 2 4 8 16 32 256 2048 16384 Timer 1 Control Register 2 (T1C2) Address: ’7’hex – Subaddress: ’9’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Bit 3 * ––– T1C2 Bit 2 T1BP Bit 1 T1CS Bit 0 T1IM Reset value: x111b * Bit 3 –> MSB, Bit 0 –> LSB T1BP T1CS T1IM Timer 1 SUBCL ByPassed T1BP = 1, TIOUT = T1MUX T1BP = 0, T1OUT = SUBCL Timer 1 input Clock Select T1CS = 1, CL1 = SUBCL (see figure 28) T1CS = 0, CL1 = SYSCL (see figure 28) Timer 1 Interrupt Mask T1IM = 1, disables Timer 1 interrupt T1IM = 0, enables Timer 1 interrupt Rev.A4, 14-Dec-01 27 (63) M44C090 M44C890 Watchdog Control Register (WDC) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’A’hex Bit 3 * WDL WDC Bit 2 WDR Bit 1 WDT1 Bit 0 WDT0 Reset value: 1111b * Bit 3 –> MSB, Bit 0 –> LSB WDL WDR WDT1 WDT0 WatchDog Lock mode WDL = 1, the watchdog can be enabled and disabled by using the WDR-bit WDL = 0, the watchdog is enabled and locked. In this mode the WDR-bit has no effect. After the WDL-bit is cleared, the watchdog is active until a system reset or power-on reset occurs. WatchDog Run and stop mode WDR = 1, the watchdog is stopped / disabled WDR = 0, the watchdog is active / enabled WatchDog Time 1 WatchDog Time 0 Both these bits control the time interval for the watchdog reset WDT1 WDT0 Divider 0 0 1 1 3.3.2 0 1 0 1 Delay Time to Reset with SUBCL = 32 kHz Delay Time to Reset with SYSCL = 2 / 1 MHz 15.625 ms 62.5 ms 0.5 s 4s 0.256 ms / 0.512 ms 1.024 ms / 2.048 ms 8.2 ms / 16.4 ms 65.5 ms / 131 ms 512 2048 16384 131072 Timer 2 Features: 8/12 bit timer for Interrupt, square-wave, generation pulse and duty-cycle Baud-rate generation for the internal shift register Manchester and Biphase modulation together with the SSI Carrier frequency generation together with the SSI and modulation Timer 2 can be used as interval timer for interrupt generation, as signal generator or as baud-rate generator and modulator for the serial interface. It consists of a 4-bit and an 8-bit up counter stage which both have compare registers. The 4-bit counter stages of Timer 2 are cascadable as 12-bit timer or as 8-bit timer with 4-bit prescaler. The timer can also be configured as 8-bit timer and separate 4-bit prescaler. The Timer 2 input can be supplied via the system clock, the external input clock (T2I), the Timer 1 output clock or the shift clock of the serial interface. The external input clock T2I is not synchronized with SYSCL. Therefore it is possible to use Timer 2 with a higher clock speed than 28 (63) SYSCL. Furthermore with that input clock the Timer 2 operates in the power-down mode SLEEP (CPU core –> sleep and OSC–Stop –> yes) as well as in the POWERDOWN (CPU core –> sleep and OSC–Stop –> no). All other clock sources supplied no clock signal in SLEEP. The 4-bit counter stages of Timer 2 have an additional clock output (POUT). Its output has a modulator stage that allows the generation of pulses as well as the generation and modulation of carrier frequencies. The Timer 2 output can modulate with the shift register internal data output to generate Biphase- or Manchester-code. If the serial interface is used to modulate a bitstream, the 4-bit stage of Timer 2 has a special task. The shift register can only handle bitstream lengths divisible by 8. For other lengths, the 4-bit counter stage can be used to stop the modulator after the right bitcount is shifted out. If the timer is used for carrier frequency modulation, the 4-bit stage works together with an additional 2-bit dutycycle generator like a 6-bit prescaler to generate carrier frequency and duty cycle. The 8-bit counter is used to enable and disable the modulator output for a programmable count of pulses. Rev.A4, 14-Dec-01 M44C090 M44C890 I/O–bus P4CR T2M1 T2M2 T2I DCGO SYSCL T1OUT CL2/1 SCL 4–bit Counter 2/1 RES T2C T2O CL2/2 OVF1 DCG POUT Compare 2/1 8–bit Counter 2/2 RES Control OUTPUT OVF2 TOG2 M2 Compare 2/2 MOUT to Modulator 3 INT4 CM1 T2CO1 T2CM Biphase–, Manchester– modulator T2CO2 SSI POUT SO Timer 2 modulator output–stage Control I/O–bus SSI SSI 13394 Figure 29. Timer 2 For 12-bit compare data value: m = x +1 0 ≤ x ≤ 4095 For programming the time interval, the timer has a 4-bit and an 8-bit compare register. For programming the timer function, it has four mode and control registers. The comparator output of stage 2 is controlled by a special compare mode register (T2CM). This register contains mask bits for the actions (counter reset, output toggle, timer interrupt) which can be triggered by a compare match event or the counter overflow. This architecture enables the timer function for various modes. For 8-bit compare data value: n = y +1 0 ≤ y ≤ 255 For 4-bit compare data value: l = z +1 0 ≤ z ≤ 15 Timer 2 Modes Mode 1: 12-bit compare counter The 4-bit stage and the 8-bit stage work together as a 12-bit compare counter. A compare match signal of the 4-bit and the 8-bit stage generates the signal for the counter reset, toggle flip-flop or interrupt. The compare action is programmable via the compare mode register (T2CM). The 4-bit counter overflow (OVF1) supplies the clock output (POUT) with clocks. The duty-cycle generator (DCG) has to be bypassed in this mode. Timer 2 compare data values The Timer 2 has a 4-bit compare register (T2CO1) and an 8-bit compare register (T2CO2). Both these compare registers are cascadable as a 12-bit compare register, or 8-bit compare register and 4-bit compare register. POUT (CL2/1 /16) CL2/1 4-bit counter DCG OVF2 8-bit counter RES TOG2 RES INT4 4-bit compare 8-bit compare CM2 CM1 4-bit register T2D1, 0 Timer 2 output mode and T2OTM–bit 8-bit register T2RM T2OTM T2IM T2CTM 13778 Figure 30. 12-bit compare counter Rev.A4, 14-Dec-01 29 (63) M44C090 M44C890 Mode 2: 8-bit compare counter with 4-bit programmable prescaler DCGO POUT CL2/1 4-bit counter DCG OVF2 8-bit counter RES TOG2 RES INT4 4-bit compare CM2 8-bit compare CM1 4-bit register T2D1, 0 Timer 2 output mode and T2OTM–bit 8-bit register T2RM T2OTM T2IM T2CTM 13778 Figure 31. 8-bit compare counter The 4-bit stage is used as programmable prescaler for the 8-bit counter stage. In this mode, a duty-cycle stage is also available. This stage can be used as an additional 2-bit prescaler or for generating duty cycles of 25%, 33% and 50%. The 4-bit compare output (CM1) supplies the clock output (POUT) with clocks. Mode 3/4: 8-bit compare counter and 4-bit programmable prescaler In these modes the 4-bit and the 8-bit counter stages work independently as a 4-bit prescaler and an 8-bit timer with an 2-bit prescaler or as a duty-cycle generator. Only in the mode 3 and mode 4, can the 8-bit counter be supplied via the external clock input (T2I) which is selected via the P4CR register. The 4-bit prescaler is started via activating of mode 3 and stopped and reset in mode 4. Changing mode 3 and 4 has no effect for the 8-bit timer stage. The 4-bit stage can be used as prescaler for the SSI or to generate the stop signal for modulator 2. DCGO T2I CL2/2 DCG SYSCL 8-bit counter OVF2 TOG2 RES INT4 8-bit compare CM2 Timer 2 output mode and T2OTM–bit P4CR P41M2, 1 T2D1, 0 8-bit register T2RM T2OTM T2IM T2CTM T1OUT SYSCL MUX SCL CL2/1 4-bit counter RES 4-bit compare T2CS1, 0 CM1 4-bit register POUT 13779 Figure 32. 4-/8-bit compare counter 30 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Timer 2 Output Modes The signal at the timer output is generated via modulator 2. In the toggle mode, the compare match event toggles the output T2O. For high resolution dutycycle modulation 8 bits or 12 bits can be used to toggle the output. In the duty-cycle burst modulator modes the DCG output is connected to T2O and switched on and off either by the toggle flipflop output or the serial data line of the SSI. Modulator 2 also has 2 modes to output the content of the serial interface as Biphase or Manchester code. The modulator output stage can be configured by the output control bits in the T2M2 register. The modulator is started with the start of the shift register (SIR = 0) and stopped either by carrying out a shift register stop (SIR = 1) or compare match event of stage 1 (CM1) of Timer 2. For this task, Timer 2 mode 3 must be used and the prescaler has to be supplied with the internal shift clock (SCL). DCGO SO TOG2 T2O RE Biphase/ Manchester modulator FE SSI CONTROL Toggle S1 S3 M2 S2 RES/SET OMSK M2 T2M2 T2OS2, 1, 0 T2TOP 13395 Figure 33. Timer 2 modulator output stage Timer 2 Output Signals Timer 2 output mode 1: Toggle mode A: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Input Counter 2 T2R 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 Counter 2 CMx INT4 T2O 13781 Figure 34. Interrupt timer / square wave generator – the output toggles with each edge compare match event Rev.A4, 14-Dec-01 31 (63) M44C090 M44C890 Timer 2 output mode 1: Toggle mode B: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Input Counter 2 T2R Counter 2 0 0 0 1 2 3 4 5 6 7 4095/ 255 0 1 2 3 4 5 6 CMx INT4 T2O Toggle by start T2O 13782 Figure 35. Pulse generator – the timer output toggles with the timer start if the T2TS-bit is set Timer 2 output mode 1: Toggle mode C: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Input Counter 2 T2R Counter 2 0 0 0 1 2 3 4 5 6 7 4095/ 255 0 1 2 3 4 5 6 CMx OVF2 INT4 T2O 13783 Figure 36. Pulse generator – the timer toggles with timer overflow and compare match Timer 2 output mode 2: Duty-cycle burst generator 1: the DCG output signal (DCGO) is given to the output, and gated by the output flip-flop (M2) DCGO 1 2 0 1 2 0 1 2 3 4 5 0 1 2 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 Counter 2 TOG2 M2 T2O Counter = compare register (=2) 13784 Figure 37. Carrier frequency burst modulation with Timer 2 toggle flip-flop output 32 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Timer 2 output mode 3: Duty-cycle burst generator 2: the DCG output signal (DCGO) is given to the output, and gated by the SSI internal data output (SO) DCGO 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 Counter 2 Counter = compare register (=2) TOG2 SO Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 T2O 13785 Figure 38. Carrier frequency burst modulation with the SSI data output Timer 2 output mode 4: Biphase modulator: Timer 2 modulates the SSI internal data output (SO) to Biphase code. TOG2 SC 8-bit SR-Data 0 0 Bit 7 0 0 SO T2O 1 1 1 0 1 1 0 1 0 1 0 Bit 0 1 13786 Data: 00110101 Figure 39. Biphase modulation Timer 2 output mode 5: Manchester modulator: Timer 2 modulates the SSI internal data output (SO) to Manchester code TOG2 SC 8-bit SR-Data SO T2O 0 Bit 7 0 0 1 1 0 1 0 1 Bit 0 0 1 1 0 1 0 Bit 7 1 Bit 0 13787 Data: 00110101 Figure 40. Manchester modulation Rev.A4, 14-Dec-01 33 (63) M44C090 M44C890 Timer 2 output mode 7: PWM mode: Pulse–width modulation output on Timer 2 output pin (T2O) In this mode the timer overflow defines the period and the compare register defines the duty cycle. During one period only the first compare match occurence is used to toggle the timer output flip-flop, until the overflow all further compare match are ignored. This avoids the stuation that changing the compare register causes the occurence of several compare match during one period. The resolution at the pulse-width modulation Timer 2 mode 1 is 12-bit and all other Timer 2 modes are 8-bit. Input clock Counter 2/2 T2R 0 0 50 255 0 100 255 0 150 255 0 50 255 0 100 Counter 2/2 CM2 OVF2 load the next compare value INT4 T2O T1 T2CO2=150 load T2 T3 T load T1 T T T2 T T 13788 Figure 41. PWM modulation Timer 2 Registers Timer 2 has 6 control registers to configure the timer mode, the time interval, the input clock and its output function. All registers are indirectly addressed using extended addressing as described in section ”Addressing peripherals”. The alternate functions of the Ports BP41 or BP42 must be selected with the Port 4 control register P4CR, if one of the Timer 2 modes require an input at T2I/BP41 or an output at T2O/BP42. Timer 2 Control Register (T2C) Address: ’7’hex – Subaddress: ’0’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ T2C Bit 3 T2CS1 Bit 2 T2CS0 Bit 1 T2TS Bit 0 T2R Reset value: 0000b T2CS1 Timer 2 Clock Select bit 1 T2CS1 T2CS0 T2CS0 Timer 2 Clock Select bit 0 0 0 1 1 0 1 0 1 T2TS Timer 2 Toggle with Start T2TS = 0, the output flip-flop of Timer 2 is not toggled with the timer start T2TS = 1, the output flip-flop of Timer 2 is toggled when the timer is started with T2R Timer 2 Run T2R = 0, Timer 2 stop and reset T2R = 1, Timer 2 run T2R 34 (63) Input Clock (CL 2/1) of Counter Stage 2/1 System clock (SYSCL) Output signal of Timer 1 (T1OUT) Internal shift clock of SSI (SCL) Reserved Rev.A4, 14-Dec-01 M44C090 M44C890 Timer 2 Mode Register 1 (T2M1) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ Á Address: ’7’hex – Subaddress: ’1’hex T2M1 Bit 3 T2D1 T2D1 T2D0 Timer 2 Duty cycle bit 1 Timer 2 Duty cycle bit 0 T2D1 1 1 0 0 T2MS1 T2MS0 T2D0 1 0 1 0 Bit 2 T2D0 Bit 1 T2MS1 Bit 0 T2MS0 Reset value: 1111b Function of Duty-Cycle Generator (DCG) Bypassed (DCGO0) Duty cycle 1/1 (DCGO1) Duty cycle 1/2 (DCGO2) Duty cycle 1/3 (DCGO3) Additional Divider Effect /1 /2 /3 /4 Timer 2 Mode Select bit 1 Timer 2 Mode Select bit 0 Mode 1 T2MS1 1 T2MS0 Clock Output (POUT) 1 4-bit counter overflow (OVF1) 2 1 0 4-bit compare output (CM1) 3 0 1 4-bit compare output (CM1) 4 0 0 4-bit compare output (CM1) Timer 2 Modes 12-bit compare counter, the DCG have to be bypassed in this mode 8-bit compare counter with 4-bit programmable prescaler and dutycycle generator 8-bit compare counter clocked by SYSCL or the external clock input T2I, 4-bit prescaler run, the counter 2/1 starts after writing mode 3 8-bit compare counter clocked by SYSCL or the external clock input T2I, 4-bit prescaler stop and resets Duty-Cycle Generator The duty-cycle generator generates duty cycles from 25%, 33% or 50%. The frequency at the duty-cycle generator output depends on the duty cycle and the Timer 2 prescaler setting. The DCG-stage can also be used as additional programmable prescaler for Timer 2. DCGIN DCGO0 DCGO1 DCGO2 DCGO3 13807 Figure 42. DCG output signals Rev.A4, 14-Dec-01 35 (63) M44C090 M44C890 Timer 2 Mode Register 2 (T2M2) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’2’hex Bit 3 T2TOP T2M2 Bit 2 T2OS2 Bit 1 T2OS1 Bit 0 T2OS0 Reset value: 1111b T2TOP Timer 2 Toggle Output Preset This bit allows the programmer to preset the Timer 2 output T2O. T2TOP = 0, resets the toggle outputs with the write cycle (M2 = 0) T2TOP = 1, sets toggle outputs with the write cycle (M2 = 1) Note: If T2R = 1, no output preset is possible T2OS2 T2OS1 T2OS0 Timer 2 Output Select bit 2 Timer 2 Output Select bit 1 Timer 2 Output Select bit 0 Output Mode 1 T2OS2 T2OS1 T2OS0 Clock Output (POUT) 1 1 1 2 1 1 0 3 1 0 1 4 1 0 0 5 0 1 1 6 0 1 0 7 8 0 0 0 0 1 0 Toggle mode: a Timer 2 compare match toggles the output flip-flop (M2) –> T2O Duty-cycle burst generator 1: the DCG output signal (DCG0) is given to the output and gated by the output flip-flop (M2) Duty-cycle burst generator 2: the DCG output signal (DCGO) is given to the output and gated by the SSI internal data output (SO) Biphase modulator: Timer 2 modulates the SSI internal data output (SO) to Biphase code Manchester modulator: Timer 2 modulates the SSI internal data output (SO) to Manchester code SSI output: T2O is used directly as SSI internal data output (SO) PWM mode: an 8/12-bit PWM mode Not allowed If one of these output modes is used the T2O alternate function of Port 4 must also be activated. 36 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Timer 2 Compare and Compare Mode Registers Timer 2 has two separate compare registers, T2CO1 for the 4-bit stage and T2CO2 for the 8-bit stage of Timer 2. The timer compares the contents of the compare register current counter value and if it matches it generates an output signal. Dependent on the timer mode, this signal is used to generate a timer interrupt, to toggle the output flip-flop as SSI clock or as a clock for the next counter stage. In the 12-bit timer mode, T2CO1 contains bits 0 to 3 and T2CO2 bits 4 to 11 of the 12-bit compare value. In all other modes, the two compare registers work independently as a 4- and 8-bit compare register. When assigned to the compare register a compare event will be supressed. Timer 2 Compare Mode Register (T2CM) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Á Address: ’7’hex – Subaddress: ’3’hex Bit 3 T2OTM T2CM T2OTM T2CTM T2RM T2IM Bit 2 T2CTM Bit 1 T2RM Bit 0 T2IM Reset value: 0000b Timer 2 Overflow Toggle Mask bit T2OTM = 0, disable overflow toggle T2OTM = 1, enable overflow toggle, a counter overflow (OVF2) toggles output flip-flop (TOG2). If the T2OTM-bit is set, only a counter overflow can generate an interrupt except on the Timer 2 output mode 7. Timer 2 Compare Toggle Mask bit T2CTM = 0, disable compare toggle T2CTM = 1, enable compare toggle, a match of the counter with the compare register toggles output flip-flop (TOG2). In Timer 2 output mode 7 and when the T2CTM-bit is set, only a match of the counter with the compare register can generate an interrupt. Timer 2 Reset Mask bit T2RM = 0, disable counter reset T2RM = 1, enable counter reset, a match of the counter with the compare register resets the counter Timer 2 Interrupt Mask bit T2IM = 0, disable Timer 2 interrupt T2IM = 1, enable Timer 2 interrupt Timer 2 Output Mode 1, 2, 3, 4, 5 and 6 1, 2, 3, 4, 5 and 6 7 T2OTM 0 1 x T2CTM x x 1 Timer 2 Interrupt Source Compare match (CM2) Overflow (OVF2) Compare match (CM2) Timer 2 COmpare Register 1 (T2CO1) ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’4’hex T2CO1 Write cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: 1111b In prescaler mode the clock is bypassed if the compare register T2CO1 contains 0. Timer 2 COmpare Register 2 (T2CO2) Byte Write ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Address: ’7’hex – Subaddress: ’5’hex T2CO2 First write cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: 1111b Second write cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: 1111b Rev.A4, 14-Dec-01 37 (63) M44C090 M44C890 3.3.3 Synchronous Serial Interface (SSI) SSI Features: (SI), a serial output data terminal (SO) and a shift clock (SC). The SSI uses BP40 as shift clock (SC), while the serial data input (SI) is applied to BP43 (configured in P4CR as input!). Serial output data (SO) in this case is passed through to BP42 (configured in P4CR to T2O) via the Timer 2 output stage (T2M2 configured in mode 6). 2 and 3 wire NRZ 2 wire mode (I2C compatible) (additional internal 2 wire link for multi-chip packaging solutions) c) Timer/SSI combined modes – the SSI used together with Timer 2 is capable of performing a variety of data modulation and functions (see Timer Section). The modulating data is converted by the SSI into a continuous serial stream of data which is in turn modulated in one of the timer functional blocks. With Timer 2: Biphase modulation Manchester modulation pulse-width demodulation Burst modulation SSI Peripheral Configuration The synchronous serial interface (SSI) can be used either for serial communication with external devices such as EEPROMs, shift registers, display drivers, other microcontrollers, or as a means for generating and capturing on-chip serial streams of data. External data communication takes place via the Port 4 (BP4) multi-functional port which can be software configured by writing the appropriate control word into the P4CR register. The SSI can be configured in any one of the following ways: a) 2-wire external interface for bidirectional data communication with one data terminal and one shift clock. The SSI uses the Port BP43 as a bidirectional serial data line (SD) and BP40 as shift clock line (SC). b) 3-wire external interface for simultaneous input and output of serial data, with a serial input data terminal d) Multi-chip link (MCL) – the SSI can also be used as an interchip data interface for use in single package multi–chip modules or hybrids. For such applications, the SSI is provided with two dedicated pads (MCL_SD and MCL_SC) which act as a two-wire chip-to-chip link. The MCL can be activated by the MCL control bit. Should these MCL pads be used by the SSI, the standard SD and SC pins are not required and the corresponding Port 4 ports are available as conventional data ports. General SSI Operation The SSI is comprised essentially of an 8-bit shift register with two associated 8-bit buffers – the receive buffer (SRB) for capturing the incoming serial data and a transmit buffer (STB) for intermediate storage of data to be serially output. Both buffers are directly accessable by software. Transferring the parallel buffer data into and out of the shift register is controlled automatically by the SSI control, so that both single byte transfers or continuous bit streams can be supported. I/O-bus Timer 2 SIC1 SIC2 SISC SO Control SC SI SCI INT3 SC SSI-Control MCL_SC TOG2 POUT T1OUT SYSCL Output /2 SO Shift_CL MSB 8-bit Shift Register STB SI LSB MCL_SD SD SRB Transmit Buffer Receive Buffer I/O–bus 14103 Figure 43. Block diagram of the synchronous serial interface 38 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 The SSI can generate the shift clock (SC) either from one of several on-chip clock sources or accept an external clock. The external shift clock is output on, or applied to the Port BP40. Selection of an external clock source is performed by the Serial Clock Direction control bit (SCD). In the combinational modes, the required clock is selected by the corresponding timer mode. The SSI can operate in three data transfer modes – synchronous 8-bit shift mode, I2C compatible 9-bit shift modes or 8-bit pseudo I2C protocol (without acknowledge-bit). External SSI clocking is not supported in these modes. The SSI should thus generate and has full control over the shift clock so that it can always be regarded as an I2C Bus Master device. All directional control of the external data port used by the SSI is handled automatically and is dependent on the transmission direction set by the Serial Data Direction (SDD) control bit. This control bit defines whether the SSI is currently operating in Transmit (TX) mode or Receive (RX) mode. Serial data is organized in 8-bit telegrams which are shifted with the most significant bit first. In the 9-bit I2C mode, an additional acknowledge bit is appended to the end of the telegram for handshaking purposes (see I2C protocol). At the beginning of every telegram, the SSI control loads the transmit buffer into the shift register and proceeds immediately to shift data serially out. At the same time, incoming data is shifted into the shift register input. This incoming data is automatically loaded into the receive buffer when the complete telegram has been received. Data can, if required thus be simultaneously received and transmitted. Before data can be transferred, the SSI must first be activated. This is performed by means of the SSI reset control (SIR) bit. All further operation then depends on the data directional mode (TX/RX) and the present status of the SSI buffer registers shown by the Serial Interface Ready Status Flag (SRDY). This SRDY flag indicates the (empty/full) status of either the transmit buffer (in TX mode), or the receive buffer (in RX mode). The control logic ensures that data shifting is temporarily halted at any time, if the appropriate receive/transmit buffer is not ready (SRDY = 0). The SRDY status will then automatically be set back to ‘1’ and data shifting resumed as soon as the application software loads the new data into the transmit register (in TX mode) or frees the shift register by reading it into the receive buffer (in RX mode). A further activity status (ACT) bit indicates the present status of the serial communication. The ACT bit remains high for the duration of the serial telegram or if I2C stop or start conditions are currently being generated. Both the current SRDY and ACT status can be read in the SSI status register. To deactivate the SSI, the SIR bit must be set high. 8-bit Synchronous Mode In the 8-bit synchronous mode, the SSI can operate as either a 2 or 3 wire interface (see SSI peripheral configuration). The serial data (SD) is received or transmitted in NRZ format, synchronised to either the rising or falling edge of the shift clock (SC). The choice of clock edge is defined by the Serial Mode Control bits (SM0,SM1). It should be noted that the transmission edge refers to the SC clock edge with which the SD changes. To avoid clock skew problems, the incoming serial input data is shifted in with the opposite edge. When used together with one of the timer modulator or demodulator stages, the SSI must be set in the 8-bit synchronous mode 1. In RX mode, as soon as the SSI is activated (SIR= 0), 8 shift clocks are generated and the incoming serial data is shifted into the shift register. This first telegram is automatically transferred into the receive buffer and the SRDY set to 0 indicating that the receive buffer contains valid data. At the same time an interrupt (if enabled) is generated. SC (rising edge) SC (falling edge) DATA 0 0 1 1 0 1 0 1 Bit 0 0 1 1 0 1 0 1 Bit 0 Bit 7 SD/TO2 0 Bit 7 Data: 00110101 13823 Figure 44. 8-bit synchronous mode Rev.A4, 14-Dec-01 39 (63) M44C090 M44C890 The SSI then continues shifting in the following 8-bit telegram. If, during this time the first telegram has been read by the controller, the second telegram will also be transferred in the same way into the receive buffer and the SSI will continue clocking in the next telegram. Should, however, the first telegram not have been read (SRDY=1), then the SSI will stop, temporarily holding the second telegram in the shift register until a certain point of time when the controller is able to service the receive buffer. In this way no data is lost or overwritten. Deactivating the SSI (SIR=1) in mid–telegram will immediately stop the shift clock and latch the present contents of the shift register into the receive buffer. This can be used for clocking in a data telegram of less than 8 bits in length. Care should be taken to read out the final complete 8-bit data telegram of a multiple word message before deactivating the SSI (SIR=1) and terminating the reception. After termination, the shift register contents will overwrite the receive buffer. SC msb SD lsb 7 6 5 4 3 2 1 msb 0 lsb msb lsb 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 tx data 1 tx data 2 0 tx data 3 SIR SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) Write STB (tx data 1) Write STB (tx data 2) Write STB (tx data 3) 13824 Figure 45. Example of 8-bit synchronous transmit operation SC lsb msb SD msb lsb msb 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 rx data 1 lsb 7 6 5 4 3 2 1 0 7 6 5 4 rx data 2 rx data 3 SIR SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) Read SRB (rx data 1) Read SRB (rx data 2) Read SRB (rx data 3) 13825 Figure 46. Example of 8-bit synchronous receive operation 40 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 9-bit Shift Mode (I2C compatible) In the 9-bit shift mode, the SSI is able to handle the I2C protocol (described below). It always operates as an I2C master device, i.e., SC is always generated and output by the SSI. Both the I2C start and stop conditions are automatically generated whenever the SSI is activated or deactivated by the SIR–bit. In accordance with the I2C protocol, the output data is always changed in the clock low phase and shifted in on the high phase. Before activating the SSI (SIR=0) and commencing an I2C dialog, the appropriate data direction for the first word must be set using the SDD control bit. The state of this bit controls the direction of the data port (BP43 or MCL_SD). Once started, the 8 data bits are, depending on the selected direction, either clocked into or out of the shift register. During the 9th clock period, the port direction is automatically switched over so that the corresponding acknowledge bit can be shifted out or read in. In transmit mode, the acknowledge bit received from the slave device is captured in the SSI Status Register (TACK ) where it can be read by the controller. and in receive mode, the state of the acknowledge bit to be returned to the slave device is predetermined by the SSI Status Register (RACK ). Changing the directional mode (TX/RX) should not be performed during the transfer of an I2C telegram. One should wait until the end of the telegram which can be detected using the SSI interrupt (IFN =1) or by interrogating the ACT status. A 9-bit telegram, once started will always run to completion and will not be prematurely terminated by the SIR bit. So, if the SIR–bit is set to ‘1’ in mit telegram, the SSI will complete the current transfer and terminate the dialog with an I2C stop condition. Start Stop SC lsb msb SD 7 6 5 4 3 2 1 0 A msb lsb 7 6 5 4 3 2 1 0 A tx data 1 tx data 2 SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) SIR SDD Write STB (tx data 1) Write STB (tx data 2) 13826 Figure 47. Example of I2C transmit dialog Rev.A4, 14-Dec-01 41 (63) M44C090 M44C890 Start Stop SC msb SD lsb 7 6 5 4 3 2 1 0 A tx data 1 msb lsb 7 6 5 4 3 2 1 0 A rx data 2 SRDY ACT Interrupt (IFN = 0) Interrupt (IFN = 1) SIR SDD Write STB (tx data 1) Read SRB (rx data 2) 13827 Figure 48. Example of I2C receive dialog 8-bit Pseudo I2C Mode In this mode, the SSI exhibits all the typical I2C operational features except for the acknowledge-bit which is never expected or transmitted. I2C Bus Protocol The I2C protocol constitutes a simple 2-wire bidirectional communication highway via which devices can communicate control and data information. Although the I2C protocol can support multi-master bus configurations, the SSI, in I2C mode is intended for use purely as a master controller on a single master bus system. So all reference to multiple bus control and bus contention will be omitted at this point. All data is packaged into 8-bit telegrams plus a trailing handshaking or acknowledge-bit. Normally the 42 (63) communication channel is opened with a so-called start condition, which initializes all devices connected to the bus. This is then followed by a data telegram, transmitted by the master controller device. This telegram usually contains an 8-bit address code to activate a single slave device connected onto the I2C bus. Each slave receives this address and compares it with it’s own unique address. The addressed slave device, if ready to receive data will respond by pulling the SD line low during the 9th clock pulse. This represents a so-called I2C acknowledge. The controller on detecting this affirmative acknowledge then opens a connection to the required slave. Data can then be passed back and forth by the master controller, each 8-bit telegram being acknowledged by the respective recipient. The communication is finally closed by the master device and the slave device put back into standby by applying a stop condition onto the bus. Rev.A4, 14-Dec-01 M44C090 M44C890 (1) (2) (4) (4) (3) (1) SC SD Start condition Data valid Data change Data valid Stop condition 13832 Figure 49. I2C bus protocol 1 Bus not busy (1) Data valid (4) Both data and clock lines remain HIGH. The state of the data line represents valid data when, after START condition, the data line is stable for the duration of the HIGH period of the clock signal. Start data transfer (2) A HIGH to LOW transition of the SD line while the clock (SC) is HIGH defines a START condition. Stop data transfer (3) A LOW to HIGH transition of the SD line while the clock (SC) is HIGH defines a STOP condition. Acknowledge All address and data words are serially transmitted to and from device in eight–bit words. The receiving device returns a zero on the data line during the ninth clock cycle to acknowledge word receipt. SC 1 SD Start n 1st Bit 8 9 8th Bit ACK Stop 13833 Figure 50. I2C bus protocol 2 SSI Interrupt The SSI interrupt INT3 can be generated either by an SSI buffer register status (i.e., transmit buffer empty or receive buffer full) at the end of SSI data telegram or on the falling edge of the SC/SD pins on Port 4 (see P4CR). SSI interrupt selection is performed by the Interrupt FunctioN control bit (IFN). The SSI interrupt is usually used to synchronize the software control of the SSI and inform the controller of the present SSI status. The Port 4 interrupts can be used together with the SSI or, if the SSI itself is not required, as additional external interrupt sources. In either case this interrupt is capable of waking the controller out of sleep mode. Rev.A4, 14-Dec-01 To enable and select the SSI relevant interrupts use the SSI interrupt mask (SIM) and the Interrupt Function (IFN) while the Port 4 interrupts are enabled by setting appropriate control bits in P4CR register. Modulation If the shift register is used together with Timer 2 for modulation purposes, the 8-bit synchronous mode must be used. In this case, the unused Port 4 pins can be used as conventional bidirectional ports. The modulation stage, if enabled, operates as soon as the SSI is activated (SIR=0) and ceases when deactivated (SIR=1). 43 (63) M44C090 M44C890 Due to the byte-orientated data control, the SSI when running normally generates serial bit streams which are submultiples of 8 bits. An SSI output masking (OMSK) function permits, however, the generation of bit streams of any length. The OMSK signal is derived indirectly from the 4-bit prescaler of the Timer 2 and masks out a programmable number of unrequired trailing data bits during the shifting out of the final data word in the bit stream. The number of non-masked data bits is defined by the value pre-programmed in the prescaler compare register. To use output masking, the modulator stop mode bit (MSM) must be set to ’0’ before programming the final data word into the SSI transmit buffer. This in turn, enables shift clocks to the prescaler when this final word is shifted out. On reaching the compare value, the prescaler triggers the OMSK signal and all following data bits are blanked. Internal 2-Wire Multi-Chip Link Two additional on-chip pads (MCL_SC and MCL_SD) for the SC and the SD line can be used as chip-to-chip link for multi-chip applications. These pads can be activated by setting the MCL-bit in the SISC-register. U505M SCL SDA Multi chip link MCL_SC MCL_SD V DD V SS BP40/SC BP43/SD M44C090 13835 Figure 51. Multi-chip link Timer 2 CL2/1 4-bit counter 2/1 SCL Compare 2/1 CM1 OMSK SO Control SC SSI-control Output TOG2 POUT T1OUT SYSCL SO /2 Shift_CL MSB 8-bit shift register SI LSB 13834 Figure 52. SSI output masking function 44 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Serial Interface Registers Serial Interface Control Register 1 (SIC1) Auxiliary register address: ’9’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ Á Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ Á Bit 3 SIR SIC1 SIR Bit 2 SCD Bit 1 SCS1 Bit 0 SCS0 SCD Serial Interface Reset SIR = 1, SSI inactive SIR = 0, SSI active Serial Clock Direction SCD = 1, SC line used as output SCD = 0, SC line used as input Note: This bit has to be set to ’1’ during the I2C mode SCS1 SCS0 Serial Clock source Select bit 1 Serial Clock source Select bit 0 Note: with SCD = ’0’ the bits SCS1 and SCS0 are insignificant SCS1 1 1 0 0 SCS0 1 0 1 0 Reset value: 1111b Internal Clock for SSI SYSCL / 2 T1OUT / 2 POUT / 2 TOG2 / 2 • In Transmit mode (SDD = 1) shifting starts only if the transmit buffer has been loaded (SRDY = 1). • Setting SIR-bit loads the contents of the shift register into the receive buffer (synchronous 8-bit mode only). • In I2C modes, writing a 0 to SIR generates a start condition and writing a 1 generates a stop condition. Serial Interface Control Register 2 (SIC2) Auxiliary register address: ’A’hex ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Bit 3 MSM SIC2 Bit 2 SM1 Bit 1 SM0 Bit 0 SDD Reset value: 1111b MSM Modular Stop Mode MSM = 1, modulator stop mode disabled (output masking off) MSM = 0, modulator stop mode enabled (output masking on) – used in modulation modes for generating bit streams which are not sub-multiples of 8 bit. SM1 SM0 Serial Mode control bit 1 Mode SM1 SM0 SSI Mode Serial Mode control bit 0 1 1 1 8-bit NRZ-Data changes with the rising edge of SC 2 1 0 8-bit NRZ-Data changes with the falling edge of SC 3 0 1 9-bit two-wire I2C compatible 4 0 0 8-bit two-wire pseudo I2C compatible (no acknowledge) SDD Serial Data Direction SDD = 1, transmit mode – SD line used as output (transmit data). SRDY is set by a transmit buffer write access. SDD = 0, receive mode – SD line used as input (receive data). SRDY is set by a receive buffer read access Note: SDD controls port directional control and defines the reset function for the SRDY–flag Rev.A4, 14-Dec-01 45 (63) M44C090 M44C890 Serial Interface Status and Control Register (SISC) ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Á Á ÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’A’hex SISC write Bit 3 MCL SISC read ––– MCL RACK TACK SIM IFN SRDY ACT Bit 2 RACK Bit 1 SIM Bit 0 IFN Reset value: 1111b TACK ACT SRDY Reset value: xxxxb Multi-Chip Link activation MCL = 1, multi-chip link disabled. This bit has to be set to ’0’ during transactions to/from EEPROM of the M44C890 MCL = 0, connnects SC and SD additional to the internal multi-chip link pads Receive ACKnowledge status/control bit for I2C mode RACK = 0, transmit acknowledge in next receive telegram RACK = 1, transmit no acknowledge in last receive telegram Transmit ACKnowledge status/control bit for I2C mode TACK = 0, acknowledge received in last transmit telegram TACK = 1, no acknowledge received in last transmit telegram Serial Interrupt Mask SIM = 1, disable interrupts SIM = 0, enable serial interrupt. An interrupt is generated. Interrupt FuNction IFN = 1, the serial interrupt is generated at the end of telegram IFN = 0, the serial interrupt is generated when the SRDY goes low (i.e., buffer becomes empty/full in transmit/receive mode) Serial interface buffer ReaDY status flag SRDY = 1, in receive mode: receive buffer empty in transmit mode: transmit buffer full SRDY = 0, in receive mode: receive buffer full in transmit mode: transmit buffer empty Transmission ACTive status flag ACT = 1, transmission is active, i.e., serial data transfer. Stop or start conditions are currently in progress. ACT = 0, transmission is inactive Serial Transmit Buffer (STB) – Byte Write ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Primary register address: ’9’hex STB First write cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: xxxxb Second write cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: xxxxb The STB is the transmit buffer of the SSI. The SSI transfers the transmit buffer into the shift register and starts shifting with the most significant bit. 46 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Serial Receive Buffer (SRB) – Byte Read ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Primary register address: ’9’hex SRB First read cycle Bit 7 Bit 6 Bit 5 Bit 4 Reset value: xxxxb Second read cycle Bit 3 Bit 2 Bit 1 Bit 0 Reset value: xxxxb The SRB is the receive buffer of the SSI. The shift register clocks serial data in (most significant bit first) and loads content into the receive buffer when complete telegram has been received. 3.3.4 Combination Modes The UTCM consists of one timer (Timer 2) and a serial interface. There is a multitude of modes in which the timers and serial interface can work together. The 8-bit wide serial interface operates as shift register for modulation. The modulator units work together with the timer and shift the data bits into or out of the shift register. Combination Mode Timer 2 and SSI I/O–bus P4CR T2M1 T2M2 T2I DCGO SYSCL T1OUT reserved SCL CL2/1 4-bit Counter 2/1 RES T2C CL2/2 OVF1 T2O DCG POUT Compare 2/1 8-bit Counter 2/2 RES Timer 2 – control OUTPUT OVF2 TOG2 Compare 2/2 MOUT INT4 POUT T2CO1 CM1 T2CM Biphase–, Manchester– modulator T2CO2 TOG2 SO Timer 2 modulator output–stage Control I/O–bus SIC1 SIC2 SISC Control TOG2 POUT T1OUT SYSCL INT3 SCLI SO SC SSI–control MCL_SC SCL Output SO Shift_CL MSB 8-bit shift register STB SI MCL_SD SD LSB SRB Transmit buffer Receive buffer I/O–bus 13397 Figure 53. Combination Timer 2 and SSI Rev.A4, 14-Dec-01 47 (63) M44C090 M44C890 Combination mode 1: Burst modulation SSI mode 1: 8-bit NRZ and internal data SO output to the Timer 2 modulator stage Timer 2 mode 1, 2, 3 or 4: 8-bit compare counter with 4-bit programmable prescaler and DCG Timer 2 output mode 3: Duty-cycle burst generator DCGO 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 Counter 2 Counter = compare register (=2) TOG2 SO Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 T2O 13785 Figure 54. Carrier frequency burst modulation with the SSI internal data output Combination mode 2: Biphase modulation 1 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 1, 2, 3 or 4: 8-bit compare counter with 4-bit programmable prescaler Timer 2 output mode 4: The modulator 2 of Timer 2 modulates the SSI internal data output to Biphase code TOG2 SC 8-bit SR-data SO T2O 0 0 Bit 7 0 1 0 1 1 0 1 1 0 1 0 1 0 Bit 0 1 13786 Data: 00110101 Figure 55. Biphase modulation 1 Combination mode 3: Manchester modulation 1 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 1, 2, 3 or 4: 8-bit compare counter with 4-bit programmable prescaler Timer 2 output mode 5: The modulator 2 of Timer 2 modulates the SSI internal data output to Manchester code TOG2 SC 8-bit SR-data SO T2O 0 Bit 7 0 0 1 1 0 1 0 1 Bit 0 0 1 1 0 1 0 Bit 7 1 Bit 0 13787 Data: 00110101 Figure 56. Manchester modulation 1 48 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Combination mode 4: Manchester modulation 2 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 3: Timer 2 output mode 5: 8-bit compare counter and 4-bit prescaler The modulator 2 of Timer 2 modulates the SSI data output to Manchester code The 4-bit stage can be used as prescaler for the SSI to generate the stop signal for modulator 2. The SSI has a special mode to supply the prescaler with the shift-clock. The control output signal (OMSK) of the SSI is used as stop signal for the modulator. This is an example for a 12-bit Manchester telegram: SCLI Buffer full SIR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SO SC MSM Timer 2 Mode 3 SCL Counter 2/1 0 0 0 0 0 Counter 2/1 = Compare Register 2/1 (= 4) 0 0 0 0 1 2 3 4 0 1 2 3 OMSK T2O 13837 Figure 57. Manchester modulation 2 Combination mode 5: Biphase modulation 2 SSI mode 1: 8-bit shift register internal data output (SO) to the Timer 2 modulator stage Timer 2 mode 3: Timer 2 output mode 4: 8-bit compare counter and 4-bit prescaler The modulator 2 of Timer 2 modulates the SSI data output to Biphase code The 4-bit stage can be used as prescaler for the SSI to generate the stop signal for modulator 2. The SSI has a special mode to supply the prescaler via the shift-clock. The control output signal (OMSK) of the SSI is used as stop signal for the modulator. This is an example for a 13-bit Biphase telegram: SCLI Buffer full SIR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SO SC MSM Timer 2 Mode 3 SCL Counter 2/1 0 0 0 0 0 Counter 2/1 = Compare Register 2/1 (= 5) 0 0 0 0 1 2 3 4 5 0 1 2 OMSK T2O 13838 Figure 58. Biphase modulation Rev.A4, 14-Dec-01 49 (63) M44C090 M44C890 4 M44C890 U505M SCL The M44C890 is a multi-chip product which offers a combination of a MARC4-based microcontroller and a serial EEPROM data memory in a single package. As microcontroller the M44C090 is used and as serial EEPROM the U505M. Two internal lines can be used as chip-to-chip link in a single package. The maximum internal data communication frequency between the M44C090 and the U505M over the chip link (MCL_SC and MCL_SD) is fSC_MCL = 500 kHZ. The microcontroller and the EEPROM portions of this multi-chip device are equivalent to their respective individual component chips, except for the electrical specification. Internal 2-wire multi-chip link Two additional on-chip pads (MCL_SC and MCL_SD) for the SC and the SD line can be used as chip-to-chip link for multi-chip applications. These pads can be activated by setting the MCL-bit in the SISC-register. VDD VSS SCL SDA Multi chip link MCL_SC V SS BP40/SC BP43/SD M44C090 13835 Figure 59. Link between M44C090 and U505M 4.1 U505M EEPROM The U505M is a 512-bit EEPROM internally organized 32 x 16 bit. The programming voltage as well as the writecycle timing is generated on-chip. The U505M features a serial interface allowing operation on a simple two-wire bus with an I2C-compatible protocol. Its low power consumption makes it well suited for battery applications. HV–generator Address control EEPROM 32 x 16 I/O control MCL_SD V DD Timing control Mode control SDA 16–bit read/write buffer 8–bit data register 13883 Figure 60. Block diagram EEPROM 50 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 4.1.1 Serial Interface The U505M has an I2C-like two-wire serial interface to the microcontroller for read and write accesses to the EEPROM. The U505M is considered to be a slave in all these applications. That means, the controller has to be the master that initiates the data transfer and provides the clock for transmit and receive operations. The serial interface is controlled by the M44C890 microcontroller which generates the serial clock and controls the access via the SCL-line and SDA-line. SCL is used to clock the data into and out of the device. SDA is a bidirectional line that is used to transfer data into and out of the device. The following protocol is used for the data transfers. Serial Protocol Data states on the SDA-line changing only while SCL is low. Changes on the SDA-line while SCL is high are interpreted as START or STOP condition. A START condition is defined as high to low transition on the SDA-line while the SCL-line is high. A STOP condition is defined as low to high transition on the SDA-line while the SCL-line is high. Each data transfer must be initialized with a START condition and terminated with a STOP condition. The START condition wakes the device from standby mode and the STOP condition returns the device to standby mode. A receiving device generates an acknowledge (A) after the reception of each byte. This requires an additional clock pulse, generated by the master. If the reception was successful the receiving master or slave device pulls down the SDA-line during that clock cycle. If an acknowledge is not detected (N) by the interface in transmit mode, it will terminate further data transmissions and go into receive mode. A master device must finish its read operation by a non-acknowledge and then send a stop condition to bring the device into a known state. SCL SDA Stand Start by condition Data valid Data Data/ change acknowledge valid Stop Stand– condition by 13884 Figure 61. I2C protocol Before the START condition and after the STOP condition the device is in stand-by mode and the SDA line is switched as input with pull-up resistor. termines the following operation. It consists of the 5-bit row address, 2 mode control bits and the READ / NWRITE bit that is used to control the direction of the following transfer. A ”0” defines a write access and a ”1” a read access. The control byte that follows the START condition de- ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ Control byte format: Mode control bits EEPROM address Start A4 A3 A2 A1 A0 C1 C0 Read/ NWrite R/NW Ackn Control byte format: Start Rev.A4, 14-Dec-01 Control byte Ackn Data byte Ackn Data byte Ackn Stop 51 (63) M44C090 M44C890 4.1.2 Two special control bytes enable the complete initialization of EEPROM with ”0” or with ”1. EEPROM The EEPROM has a size of 512 bits and is organized as 32 x 16-bit matrix. To read and write data to and from the EEPROM the serial interface must be used. The interface supports one and two byte write accesses and one to n-byte read accesses to the EEPROM. EEPROM – Operating Modes The operating modes of the EEPROM are defined via the control byte. The control byte contains the row address, the mode control bits and the read/not-write bit that is used to control the direction of the following transfer. A ”0” defines a write access and a ”1” a read access. The five address bits select one of the 32 rows of the EEPROM memory to be accessed. For all accesses the complete 16-bit word of the selected row is loaded into a buffer. The buffer must be read or overwritten via the serial interface. The two mode control bits C1 and C2 define in which order the accesses to the buffer are performed: High byte – low byte or low byte – high byte. The EEPROM also supports autoincrement and autodecrement read operations. After sending the start address with the corresponding mode, consecutive memory cells can be read row by row without transmission of the row addresses. Write Operations The EEPROM permits 8-bit and 16-bit write operations. A write access starts with the START condition followed by a write control byte and one or two data bytes from the master. It is completed via the STOP condition from the master after the acknowledge cycle. The programming cycle consists of an erase cycle (write ”zeros”) and the write cycle (write ”ones”). Both cycles together take about 10 ms. Acknowledge Polling If the EEPROM is busy with an internal write cycle, all inputs are disabled and the EEPROM will not acknowledge until the write cycle is finished. This can be used to detect the end of the write cycle. The master must perform acknowledge polling by sending a start condition followed by the control byte. If the device is still busy with the write cycle, it will not return an acknowledge and the master has to generate a stop condition or perform further acknowledge polling sequences. If the cycle is complete, it returns an acknowledge and the master can proceed with the next read or write cycle. ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ Á ÁÁÁ Á Á ÁÁ Á Á Á ÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ Write One Data Byte Start Control byte A Data byte 1 A Stop A Data byte 1 A Data byte 2 Write Two Data Bytes Start Control byte A Stop Write Control Byte Only Start Control byte A Stop Write Control Bytes MSB Write low byte first A4 LSB A3 A2 A1 A0 Row address Byte order LB(R) C1 C0 R/NW 0 1 0 HB(R) MSB Write high byte first A4 LSB A3 A2 A1 Row address Byte order HB(R) A0 C1 C0 R/NW 1 0 0 LB(R) A –> acknowledge; HB: high byte; LB: low byte; R: row address 52 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 Read Operations The EEPROM allows byte-, word- and current address read operations. The read operations are initiated in the same way as write operations. Every read access is initiated by sending the START condition followed by the control byte which contains the address and the read mode. After the device receives a read command it returns an acknowledge, loads the addressed word into the read\write buffer and sends the selected data byte to the master. The master has to acknowledge the received byte if it wants to proceed the read operation. If two bytes are read out from the buffer the device increments respectively decrements the word address automatically and loads the buffer with the next word. The read mode bits determines if the low or high byte is read first from the buffer and if the word address is incremented or decremented for the next read access. If the memory address limit is reached, the data word address will ”roll over” and the sequential read will continue. The master can terminate the read operation after every byte by not responding with an acknowledge (N) and by issuing a stop condition. ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ Á Á ÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ Á ÁÁ Á ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁ ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁÁÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ Á ÁÁ Á Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁ Á ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁ Á ÁÁÁ Á ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁ Á ÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁ Á ÁÁÁ ÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ Á ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁÁ ÁÁÁ Á ÁÁ Á ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁÁ Á ÁÁÁÁ Á ÁÁÁ Á ÁÁÁÁÁÁÁ Á ÁÁÁÁÁ Á Á Read One Data Byte Start Control byte A Data byte 1 N Stop A Data byte 1 A Data byte 2 N Stop A Data byte 1 A Data byte 2 A –––– Read Two Data Bytes Start Control byte Read n Data Bytes Start Control byte Data byte n N Stop Read Control Bytes MSB Read low byte first, address increment Byte order LB(R) A4 LSB A3 HB(R) A2 A1 A0 C1 C0 R/NW Row address 0 1 1 LB(R+1) ––– HB(R+1) LB(R+n) MSB Read high byte first, addr. decrement A4 LSB A3 A2 A1 A0 Row address Byte order HB(R) LB(R) HB(R+n) HB(R–1) LB(R–1) C1 C0 R/NW 1 0 1 ––– HB(R–n) LB(R–n) A –> acknowledge, N –> no acknowledge; HB: high byte; LB: low byte, R: row address Initialization after a Reset Condition The EEPROM with the serial interface has its own reset circuitry. In systems with microcontrollers that have their own reset circuitry for power on reset, watchdog reset or brown-out reset, it may be necessary to bring the U505M into a known state independent of its internal reset. This is performed by writing: ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁ ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁ ÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁ Á ÁÁ Á ÁÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁÁ Start Control byte A Data byte 1 N Stop to the serial interface. If the U505M acknowledges this sequence it is in a defined state. Maybe it is necessary to perform this sequence twice. Rev.A4, 14-Dec-01 53 (63) M44C090 M44C890 5 Electrical Characteristics 5.1 Absolute Maximum Ratings Voltages are given relative to VSS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ Parameters Symbol Value Unit Supply voltage VDD –0.3 to + 6.5 V Input voltage (on any pin) VIN VSS –0.3 VIN VDD +0.3 V Output short circuit duration tshort indefinite s Operating temperature range Tamb –40 to +85 °C Storage temperature range Tstg –40 to +130 °C RthJA 140 K/W Tsld 260 °C Thermal resistance (SSO20) Soldering temperature (t ≤ 10 s) Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any condition above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating condition for an extended period may affect device 5.2 reliability. All inputs and outputs are protected against high electrostatic voltages or electric fields. However, precautions to minimize the build-up of electrostatic charges during handling are recommended. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (e.g. VDD). DC Operating Characteristics VSS = 0 V, Tamb = –40 to 85°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. VDD VPOR Typ. Max. Unit 6.5 V 150 220 600 350 µA µA µA 30 50 150 100 µA µA µA Power supply Operating voltage at VDD Active current CPU active fSYSCL = 1 MHz VDD = 1.8 V VDD = 3.0 V VDD = 6.5 V IDD Power down current (CPU sleep, RC oscillator active, 4-MHz quartz-osc. active) fSYSCL = 1 MHz VDD = 1.8 V VDD = 3.0 V VDD = 6.5 V Sleep current (CPU sleep, VDD = 1.8 V VDD = 3.0 V VDD = 6.5 V ISleep ISleep 32-kHz quartz-osc. inactive 4-MHz quartz-osc. inactive) VDD = 1.8 V for M44C090 VDD = 3.0 V for M44C090 VDD = 6.5 V for M44C090 VDD = 6.5 V for M44C890 Pin capacitance Any pin to VSS 32-kHz quartz-osc. active 4-MHz quartz-osc. inactive) Sleep current (CPU sleep, 54 (63) IPD CL 0.4 0.6 0.8 1.3 1.8 µA µA µA 0.1 0.3 0.5 0.6 0.5 0.8 1.0 µA µA µA µA 7 10 pF Rev.A4, 14-Dec-01 M44C090 M44C890 VSS = 0 V, Tamb = –40 to +85°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit Power-on reset threshold voltage POR threshold voltage BOT = 1 VPOR 1.6 1.7 1.8 V POR threshold voltage BOT = 0 VPOR 1.75 1.9 2.05 V POR hysteresis VPOR 50 VMThh 3.0 mV Voltage monitor threshold voltage VM high threshold voltage VDD > VM, VMS = 1 VM high threshold voltage VDD < VM, VMS = 0 VMThh VM middle thresh. voltage VDD > VM, VMS = 1 VMThm VM middle thresh. voltage VDD < VM, VMS = 0 VMThm VM low threshold voltage VDD > VM, VMS = 1 VMThl VM low threshold voltage VDD < VM, VMS = 0 VMThl VMI VMI > VBG, VMS = 1 VVMI VMI VMI < VBG, VMS = 0 VVMI 2.8 3.0 2.6 2.4 V V 2.8 2.6 2.2 2.0 3.25 V V 2.4 2.2 V V External input voltage 1.3 1.2 1.4 1.3 V V All Bidirectional Ports VSS = 0 V, Tamb = –40 to 85°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit Input voltage LOW VDD = 1.8 to 6.5 V VIL VSS 0.2*VDD V Input voltage HIGH VDD = 1.8 to 6.5 V VIH 0.8* VDD VDD V Input LOW current (switched pull-up) VDD = 2.0 V, VDD = 3.0 V, VIL= VSS VDD = 6.5 V IIL –2 –10 –50 –4 –20 –100 –12 –40 –200 µA µA µA Input HIGH current (switched pull-down) VDD = 2.0 V, VDD = 3.0 V, VIH = VDD VDD = 6.5 V IIH 2 10 50 4 20 100 12 40 200 µA µA µA Input LOW current (static pull-up) VDD = 2.0 V, VDD = 3.0 V, VIL= VSS VDD = 6.5 V IIL –20 –80 –300 –50 –160 –600 –100 –320 –1200 µA µA µA Input LOW current (static pull-down) VDD = 2.0 V, VDD = 3.0 V, VIH= VDD VDD = 6.5 V IIH 20 80 300 50 160 600 100 320 1200 µA µA µA Input leakage current VIL= VSS IIL 100 nA Input leakage current VIH= VDD IIH 100 nA Output LOW current VOL = 0.2 VDD VDD = 2.0 V VDD = 3.0 V, VDD = 6.5 V Output HIGH current VOH = 0.8 VDD VDD = 2.0 V VDD = 3.0 V, VDD = 6.5 V IOL 0.6 3 8 1.2 5.0 15 2.5 8 22 mA mA mA IOH –0.6 –3 –8 –1.2 –5 –16 –2.5 –8 –24 mA mA mA Note: The Pin BP20/NTE has a static pull-up resistor during the reset-phase of the microcontroller Rev.A4, 14-Dec-01 55 (63) M44C090 M44C890 5.3 AC Characteristics Operation Cycle Time VSS = 0 V ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Parameters System clock cycle Test Conditions / Pins Symbol Min. VDD = 1.8 to 6.5 V Tamb = –40 to 85°C tSYSCL VDD = 2.4 to 6.5 V Tamb = –40 to 85°C tSYSCL Typ. Max. Unit 500 2000 ns 250 2000 ns Supply voltage VDD = 1.8 to 6.5 V, VSS = 0 V, Tamb = 25°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit 5 MHz Timer 2 input timing Pin T2I Timer 2 input clock fT2I Timer 2 input LOW time Rise / fall time < 10 ns tT2IL 100 ns Timer 2 input HIGH time Rise / fall time < 10 ns tT2IH 100 ns Interrupt request input timing Int. request LOW time Rise / fall time < 10 ns tIRL 100 ns Int. request HIGH time Rise / fall time < 10 ns tIRH 100 ns EXSCL at OSC1 input EMC = EN Rise / fall time < 10 ns fEXSCL 0.5 4 MHz EXSCL at OSC1 input EMC = DI Rise / fall time < 10 ns fEXSCL 0.02 4 MHz Input HIGH time Rise / fall time < 10 ns tIH 0.1 External system clock µs Reset timing Power-on reset time VDD u VPOR tPOR 1.5 fRcOut1 3.8 5 ms RC oscillator 1 Frequency Stability VDD = 2.0 to 6.5 V Tamb = –40 to 85°C ∆f/f MHz "50 % RC oscillator 2 – external resistor Frequency Rext = 170 kΩ Stability VDD = 2.0 to 6.5 V Tamb = –40 to 85°C Stabilization time fRcOut2 4 MHz ∆f/f "15 % tS 10 µs 4-MHz crystal oscillator (operating range 2.2 V to 6.5 V) Frequency fX Start-up time tSQ Stability ∆f/f 56 (63) 4 MHz 5 –10 ms 10 ppm Rev.A4, 14-Dec-01 M44C090 M44C890 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit 32-kHz crystal oscillator (operating range 2.0 V to 6.5 V) Frequency fX 32.768 kHz Start-up time tSQ 0.5 s Stability ∆f/f –10 10 ppm External 32-kHz crystal parameters Crystal frequency fX 32.768 kHz Serial resistance RS 30 Static capacitance C0 1.5 pF Dynamic capacitance C1 3 fF Crystal frequency fX 4.0 MHz Serial resistance RS 40 150 Ω Static capacitance C0 1.4 3 pF Dynamic capacitance C1 3 fF Frequency fX 4.0 MHz Serial resistance RS 8 20 Ω Static capacitance C0 36 45 pF Dynamic capacitance C1 4.4 50 kΩ External 4-MHz crystal parameters External 4-MHz ceramic resonator parameters fF Crystal Characteristics L Equivalent circuit OSCIN SCLIN OSCOUT SCLOUT C1 RS C0 96 11553 Figure 62. Crystal equivalent circuit Supply voltage VDD = 1.8 to 6.5 V, VSS = 0 V, Tamb = 25°C unless otherwise specified. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ Parameters Test Conditions / Pins Symbol Min. Typ. Max. Unit 600 1300 µA EEPROM Operating current during erase/write cycle Endurance IWR Erase- / write-cycles Data erase/write cycle time for 16-bit access ED 500,000 tDEW 1,000,000 9 Cycles 12 10 ms Data retension time tDR years Power-up to read operation tPUR 0.2 ms Power-up to write operation tPUW 0.2 ms 500 kHz Serial interface SCL clock frequency Rev.A4, 14-Dec-01 fSC_MCL 100 57 (63) M44C090 M44C890 1100 1000 Tamb = 25C 400 fSYSCLK = 500 kHz VDD = 6.5 V 350 900 700 600 4V 500 3V 400 2V 300 Tamb = 25C 300 5V IDDact ( mA ) IDDact ( µA ) 800 250 200 150 100 200 50 100 0 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 fSYSCLK ( MHz ) VDD ( V ) Figure 63. Active supply current vs. frequency 1100 1000 900 Figure 66. Active supply current vs. VDD 90 Tamb = 25C Tamb = 25C 80 VDD = 6.5 V 70 5V 800 60 4V 600 500 3V 400 IPD ( µA ) IPD ( µA ) 700 2V 300 50 40 30 20 200 10 100 0 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 fSYSCLK ( MHz ) VDD ( V ) Figure 67. Power-down supply current vs. VDD 1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.5 0.4 VDD = 6.5 V 0.3 IDDsleep ( µA ) IDDsleep ( µA ) Figure 64. Power-down supply current vs. frequency 0.6 VDD = 6.5 V 0.5 0.4 5V 0.3 5V 0.2 0.1 3V 0.2 3V 0.1 0.0 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 0.0 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 Tamb ( C ) Tamb ( C ) Figure 65. Sleep current vs. Tamb M44C090 Figure 68. Sleep current vs. Tamb M44C890 58 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 6.0 6.0 5.5 Tamb = –40C 5.0 fRC_INT ( MHz ) fRC_INT ( MHz ) 5.5 4.5 25C 4.0 3.5 85C 3.0 5.0 4.5 4.0 VDD = 6.5 V 3.5 3.0 2V 2.5 2.5 2.0 –40 2.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 –20 Figure 69. Internal RC frequency vs. VDD M44C090 20 40 60 80 Figure 72. Internal RC frequency vs. Tamb M44C090 4.6 4.6 Rext = 170 kOhm Rext = 170 kOhm 4.4 Tamb = –40C 4.2 25C 4.0 85C 3.8 fRC_EXT ( MHz ) 4.4 fRC_EXT ( MHz ) 0 Tamb ( C ) VDD ( V ) 3.6 4.2 VDD = 6.5 V 3V 4.0 2V 3.8 3.6 3.4 3.4 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VDD ( V ) Tamb ( C ) Figure 70. External RC frequency vs. VDD Figure 73. External RC frequency vs. Tamb 10.00 7.5 SYSCLKmax Tamb = 25C, VDD = 3 V SYSCLKmin 0.10 fRC_EXT ( MHz ) fSYSCLK ( MHz ) 6.5 1.00 5.5 4.5 3.5 max. typ. 2.5 min. 0.01 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 1.5 100 150 200 250 300 350 400 VDD ( V ) Rext ( kOhm ) Figure 71. System clock vs. VDD Figure 74. External RC frequency vs. Rext Rev.A4, 14-Dec-01 59 (63) M44C090 M44C890 1000.00 1000.00 VIH = VDD VIL = VSS Tamb = 85C 25C 100.00 –40C RPD ( kΩ ) RPU ( kΩ ) Tamb = 85C 10.00 25C 100.00 –40C 10.00 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VDD ( V ) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VDD ( V ) Figure 75. Pull-up resistor vs. VDD Figure 78. Pull-down resistor vs. VDD 100.00 100.00 VIH = VDD RSPD ( kΩ ) RSPU ( kΩ ) VIL = VSS Tamb = 85C Tamb = 85C 25C 25C –40C –40C 10.00 10.00 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VDD ( V ) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VDD ( V ) Figure 76. Strong pull-up resistor vs. VDD Figure 79. Strong pull-down resistor vs. VDD 30 0 VDD = 2.0 V Tamb = 25C –5 3.0 V 20 –15 4.0 V –20 5.0 V –25 IOL ( mA ) IOH ( mA ) –10 Tamb = 25C 6.5 V –40 5.0 V 15 10 –30 –35 VDD = 6.5 V 25 4.0 V 3.0 V 5 2.0 V 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VDD – VOH ( V ) VOL ( V ) Figure 77. Output high current vs. VDD – output high voltage Figure 80. Output low current vs. output low voltage 60 (63) Rev.A4, 14-Dec-01 M44C090 M44C890 0 25 –5 20 max. –10 IOL ( mA ) IOH ( mA ) min. typ. –15 max. 15 typ. 10 min. –20 5 –25 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 0 –40–30–20–10 0 10 20 30 40 50 60 70 80 90 Tamb ( C ) Tamb ( C ) Figure 81. Output high current vs. Tamb = 25C VDD = 6.5 V, VOH = 0.8 VDD 6 Figure 82. Output low current vs. Tamb VDD = 6.5 V, VOL = 0.2 VDD Package Information Package SSO20 5.7 5.3 Dimensions in mm 6.75 6.50 4.5 4.3 1.30 0.15 0.15 0.05 0.25 6.6 6.3 0.65 5.85 20 11 technical drawings according to DIN specifications 13007 1 Rev.A4, 14-Dec-01 10 61 (63) M44C090 M44C890 7 Ordering Information Please select the option setting from the list below and insert ROM CRC. Port 2 Port52 BP20 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up BP21 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP22 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP23 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP40 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP41 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down ECM(External clock monitor) BP42 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP43 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down Port 4 62 (63) CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP51 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP52 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down BP53 CMOS Open drain [N] Open drain [P] Switched pull-up Switched pull-down Static pull-up Static pull-down Clock used File:____________. HEX Approval BP50 Date: ____–____–____ Watchdog External resistor External clock 32-kHz crystal 4-MHz crystal Enable Disable Softlock Hardlock CRC: _____________ HEX Signature: _______________ Rev.A4, 14-Dec-01 M44C090 M44C890 Ozone Depleting Substances Policy Statement It is the policy of Atmel Germany GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel products for any unintended or unauthorized application, the buyer shall indemnify Atmel against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Data sheets can also be retrieved from the Internet: http://www.atmel–wm.com 1. Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423 Rev.A4, 14-Dec-01 63 (63)