NCP585 Tri-Mode 300 mA CMOS LDO Regulator with Enable The NCP585 series of low dropout regulators are designed for portable battery powered applications which require precise output voltage accuracy, low quiescent current, and high ripple rejection. These devices feature an enable function which lowers current consumption significantly and are offered in the SOT23−5 and the HSON−6 packages, in fixed output voltages between 0.8 V and 3.3 V. This series of devices have three modes. Chip Enable (CE mode), Fast Transient Mode (FT mode), and Low Power Mode (LP mode). Both the FT and LP mode are utilized via the ECO pin. http://onsemi.com MARKING DIAGRAMS Features 5 • Tri−mode Operation • Low Dropout Voltage: • • • • • • • • • • 1 Typ 550 mV at 300 mA, Output Voltage = 0.9 V Typ 480 mV at 300 mA, Output Voltage = 1.0 V Typ 310 mV at 300 mA, Output Voltage = 1.5 V Excellent Line Regulation of 0.01%/V (0.05%/V LP Mode) Excellent Load Regulation of 15 mV (40 mV FT Mode) High Output Voltage Accuracy of "2% ("3% LP mode) Ultra−Low Iq Current of: 3.5 mA (LP mode, Output Voltage < 1.6 V) 80 mA (FT mode, Output Voltage < 1.8 V) 60 mA (FT mode, Output Voltage = 1.8 V) Very Low Shutdown Current of 0.1 mA Excellent Power Supply Rejection Ratio of 70 dB at f = 1.0 kHz Low Temperature Drift Coefficient on the Output Voltage of "100 ppm/°C Fold Back Protection Circuit Input Voltage up to 6.5 V These are Pb−Free Devices SOT23−5 SN SUFFIX CASE 1212 5 XXXTT 1 6 6 1 HSON−6 SAN SUFFIX CASE 506AE XXX XTT 1 XXX = Specific Device Code TT = Traceability Information ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. *Additional voltage options may be available between 0.8 V and 3.3 V in 100 mV steps. Typical Applications • Portable Equipment • Hand−Held Instrumentation • Camcorders and Cameras © Semiconductor Components Industries, LLC, 2009 July, 2009 − Rev. 14 1 Publication Order Number: NCP585/D NCP585 ECO ECO Vin Vout Vin Vout + + Vref Vref Current Limit Current Limit CE GND CE Figure 1. Simplified Block Diagram for Active Low GND Figure 2. Simplified Block Diagram for Active High ECO Vin Vout + Vref Current Limit CE GND Figure 3. Simplified Block Diagram for Active High with Auto Discharge PIN FUNCTION DESCRIPTION HSON−6 SOT23−5 Pin Name Description 1 1 Vin Power supply input voltage. 2 − NC No Connect. 3 5 Vout Regulated output voltage. 4 4 ECO Mode alternative pin. (VECO = Vin for FT mode; VECO = GND for LP mode) 5 2 GND Power supply ground. 6 3 CE or CE Chip enable pin. http://onsemi.com 2 NCP585 MAXIMUM RATINGS Rating Input Voltage Input Voltage (CE or CE Pin) Symbol Value Unit Vin 6.5 V VCE −0.3 to 6.5 V VECO −0.3 to 6.5 V Output Voltage Vout −0.3 to Vin +0.3 V Output Current Iout 350 mA PD 250 400 mW ESD Capability, Human Body Model, C = 100 pF, R = 1.5 kW ESDHBM 2000 V ESD Capability, Machine Model, C = 200 pF, R = 0 W ESDMM 150 V TA −40 to +85 °C TJ(max) 125 °C Tstg −55 to +150 °C Input Voltage (ECO Pin) Power Dissipation SOT23−5 HSON−6 Operating Ambient Temperature Range Maximum Junction Temperature Storage Temperature Range Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ELECTRICAL CHARACTERISTICS (Vin = Vout + 1.0 V, TA = 25°C, unless otherwise noted.) Symbol Min Typ Max Unit Input Voltage Characteristic Vin 1.4 − 6.0 V Output Voltage (1.0 mA ≤ Iout ≤ 30 mA) VECO = Vin VECO = GND Vout Vout x 0.980 Vout x 0.970 − − Vout x 1.020 Vout x 1.030 − − 0.01 0.05 0.15 0.20 − − 40 15 70 30 Line Regulation (Iout = 30 mA, Vout + 0.5 V ≤ Vin ≤ 6.0 V) FT Mode VECO = Vin LP Mode VECO = GND Regline Load Regulation FT Mode (1.0 mA ≤ Iout ≤ 300 mA), VECO = Vin LP Mode (1.0 mA ≤ Iout ≤ 100 mA), VECO = GND Regload Dropout Voltage (Iout = 300 mA) Vout = 0.9 V 1.0 V v Vout v 1.25 V 1.5 V v Vout v 2.5 V 2.8 V v Vout v 3.3 V VDO Quiescent Current (Iout = 0 mA) FT Mode, VECO = Vin Vout < 1.8 V Vout ≥ 1.8 V LP Mode, VECO = GND Vout < 1.6 V Vout ≥ 1.8 V Iq Output Current (Vin − Vout = 1.0 V) Shutdown Current (VCE = Vin) Output Short Circuit Current (Vout = 0 V) − − − − ECO = H 0.55 0.48 0.31 0.23 ECO = L 0.59 0.51 0.32 0.24 ECO = H 0.78 0.70 0.45 0.35 V %/V mV ECO = L 0.80 0.75 0.48 0.375 V mA − − 80 60 111 90 − − 3.5 4.5 8.0 9.0 Iout 300 − − mA ISD − 0.1 1.0 mA Ilim − 50 − mA Vthenh Vthenl 1.0 0.0 − − Vin 0.3 V Vn − 30 − mVrm s N−Channel On Resistance for Auto Discharge RLow − 60 − W Ripple Rejection (Iout = 50 mA, Vout = 0.9 V, Vin − Vout = 1.0 V) f = 120 Hz f = 1.0 kHz f = 10 kHz RR Enable Input Threshold Voltage − High Enable Input Threshold Voltage − Low Output Noise Voltage (10 Hz − 100 kHz) Output Voltage Temperature Coefficient (Iout = 30 mA, −40°C ≤ TA ≤ 85°C) dB DVout/ DT − − − 75 70 65 − − − − "100 − http://onsemi.com 3 ppm/ °C NCP585 1.6 1.4 1.4 Vin = Vout nominal +2.0 V 1.2 1.0 0.8 0.6 Vin = Vout nominal +0.3 V 0.4 Vout = Vout nominal ECO = H 0.2 0.0 OUTPUT VOLTAGE, Vout (V) OUTPUT VOLTAGE, Vout (V) 1.6 0 400 200 1.2 0.8 0.6 Vin = Vout nominal +0.3 V 0.4 0.2 Vout = Vout nominal ECO = L 0 Figure 4. Output Voltage vs. Output Current Figure 5. Output Voltage vs. Output Current 1.0 1.0 0.9 0.8 0.7 0.6 Iout = 1.0 mA 0.5 Iout = 30 mA 0.4 Iout = 50 mA 0.3 Vout = 0.9 V ECO = H 0.2 1.1 2.1 3.1 4.1 5.1 0.9 0.8 0.7 0.6 Iout = 1.0 mA 0.5 Iout = 30 mA 0.4 Iout = 50 mA 0.3 Vout = 0.9 V ECO = L 0.2 0.1 0.1 6.1 1.1 INPUT VOLTAGE, Vin (V) 1.7 1.7 OUTPUT VOLTAGE, Vout (V) 1.9 1.5 1.3 1.1 0.9 Iout = 1.0 mA Iout = 30 mA 0.5 Vout = 1.8 V ECO = H Iout = 50 mA 1.3 2.3 3.3 4.3 3.1 4.1 5.1 6.1 Figure 7. Output Voltage vs. Input Voltage 1.9 0.7 2.1 INPUT VOLTAGE, Vin (V) Figure 6. Output Voltage vs. Input Voltage OUTPUT VOLTAGE, Vout (V) 600 OUTPUT CURRENT, Iout (mA) 1.1 0.3 0.3 400 200 OUTPUT CURRENT, Iout (mA) 1.1 0.1 0.1 Vin = Vout nominal +2.0 V 1.0 0.0 600 OUTPUT VOLTAGE, Vout (V) OUTPUT VOLTAGE, Vout (V) TYPICAL CHARACTERISTICS 5.3 1.5 1.3 1.1 0.9 Iout = 30 mA 0.5 0.3 0.3 6.3 Iout = 1.0 mA 0.7 Vout = 1.8 V ECO = L Iout = 50 mA 1.3 2.3 3.3 4.3 5.3 INPUT VOLTAGE, Vin (V) INPUT VOLTAGE, Vin (V) Figure 8. Output Voltage vs. Input Voltage Figure 9. Output Voltage vs. Input Voltage http://onsemi.com 4 6.3 NCP585 100 8 90 7 QUIESCENT CURRENT, Iq (mA) QUIESCENT CURRENT, Iq (mA) TYPICAL CHARACTERISTICS 80 70 60 50 40 30 20 Vout = 0.9 V ECO = H 10 0 0.1 1.1 2.1 3.1 4.1 5.1 6 5 4 3 2 0 0.1 6.1 Vout = 0.9 V ECO = L 1 1.1 INPUT VOLTAGE, Vin (V) 70 7 QUIESCENT CURRENT, Iq (mA) QUIESCENT CURRENT, Iq (mA) 8 60 50 40 30 20 Vout = 1.8 V ECO = H 1.3 2.3 3.3 4.3 5.3 4 3 2 Vout = 1.8 V ECO = L 1 0 0.3 6.3 1.3 0.92 OUTPUT VOLTAGE, Vout (V) OUTPUT VOLTAGE, Vout (V) 0.92 0.91 0.90 0.89 Vout = 0.9 V ECO = H 25 50 3.3 4.3 5.3 6.3 Figure 13. Quiescent Current vs. Input Voltage 0.93 0 2.3 INPUT VOLTAGE, Vin (V) 0.93 −25 6.1 5 Figure 12. Quiescent Current vs. Input Voltage 0.87 −50 5.1 6 INPUT VOLTAGE, Vin (V) 0.88 4.1 Figure 11. Quiescent Current vs. Input Voltage 80 0 0.3 3.1 INPUT VOLTAGE, Vin (V) Figure 10. Quiescent Current vs. Input Voltage 10 2.1 75 100 0.91 0.90 0.89 0.88 0.87 −50 TEMPERATURE (°C) Vout = 0.9 V ECO = L −25 0 25 50 75 TEMPERATURE (°C) Figure 14. Output Voltage vs. Temperature Figure 15. Output Voltage vs. Temperature http://onsemi.com 5 100 NCP585 1.23 1.22 1.22 1.21 1.20 1.19 1.18 1.17 1.16 −50 DROPOUT VOLTAGE, VDO (V) OUTPUT VOLTAGE, VDO (V) 1.23 Vout = 1.2 V ECO = H −25 0 25 50 75 1.21 1.20 1.19 1.18 1.17 1.16 −50 100 −25 50 75 100 Figure 17. Output Voltage vs. Temperature 0.7 0.7 0.6 85°C 0.5 0.4 0.3 −40°C 25°C 0.2 Vout = 0.9 V ECO = H 0.1 0.0 50 100 150 200 250 85°C 0.6 0.5 0.4 25°C 0.3 −40°C 0.2 Vout = 0.9 V ECO = L 0.1 0.0 0 300 50 OUTPUT CURRENT, Iout (mA) 0.6 0.6 DROPOUT VOLTAGE, VDO (V) 0.7 0.5 85°C 0.3 25°C 0.2 −40°C 0.1 Vout = 1.2 V ECO = H 50 100 150 200 150 250 200 300 Figure 19. Dropout Voltage vs. Output Current 0.7 0.4 100 OUTPUT CURRENT, Iout (mA) Figure 18. Dropout Voltage vs. Output Current DROPOUT VOLTAGE, VDO (V) 25 Figure 16. Output Voltage vs. Temperature 0.8 0.0 0 0 TEMPERATURE (°C) 0.8 0 Vout = 1.2 V ECO = L TEMPERATURE (°C) DROPOUT VOLTAGE, VDO (V) OUTPUT VOLTAGE, VDO (V) TYPICAL CHARACTERISTICS 250 300 0.5 85°C 0.4 0.3 25°C 0.2 −40°C 0.1 0.0 0 50 100 150 Vout = 1.2 V ECO = L 200 250 OUTPUT CURRENT, Iout (mA) OUTPUT CURRENT, Iout (mA) Figure 21. Dropout Voltage vs. Output Current Figure 20. Dropout Voltage vs. Output Current http://onsemi.com 6 300 NCP585 0.40 0.40 0.35 0.35 DROPOUT VOLTAGE, VDO (V) DROPOUT VOLTAGE, VDO (V) TYPICAL CHARACTERISTICS 0.30 85°C 0.25 0.20 25°C 0.15 −40°C 0.10 Vout = 1.8 V ECO = H 0.05 0.00 0 50 100 150 200 250 0.30 85°C 0.25 0.20 25°C 0.15 0.10 −40°C 0.05 0.00 0 300 RIPPLE REJECTION, RR (dB) 90 80 70 60 Iout = 1.0 mA 50 40 Iout = 50 mA 30 Vout = 0.9 V Vin = 1.9 V + 0.2 Vp−p Cout = 2.2 mF, ECO = H 1 10 RIPPLE REJECTION, RR (dB) 90 I = 30 mA out 80 30 10 Iout = 50 mA 1 10 100 FREQUENCY, f (kHz) FREQUENCY, f (kHz) Figure 24. Ripple Rejection vs. Frequency Figure 25. Ripple Rejection vs. Frequency Iout = 30 mA 60 Iout = 1.0 mA 50 40 Iout = 50 mA 30 0 0 Iout = 30 mA 20 90 10 Iout = 1.0 mA 40 0 0 100 Vout = 0.9 V Vin = 1.9 V + 0.2 Vp−p Cout = 2.2 mF, ECO = L 50 90 20 300 60 100 70 250 70 100 80 200 100 RIPPLE REJECTION, RR (dB) RIPPLE REJECTION, RR (dB) 100 0 0 150 Figure 23. Dropout Voltage vs. Output Current Figure 22. Dropout Voltage vs. Output Current 10 100 OUTPUT CURRENT, Iout (mA) OUTPUT CURRENT, Iout (mA) 20 50 Vout = 1.8 V ECO = L Vout = 1.2 V Vin = 2.2 V + 0.2 Vp−p Cout = 2.2 mF, ECO = H 1 10 80 70 60 50 Iout = 1.0 mA 40 30 Iout = 30 mA 20 10 0 0 100 Vout = 1.2 V Vin = 2.2 V + 0.2 Vp−p Cout = 2.2 mF, ECO = L Iout = 50 mA 1 10 FREQUENCY, f (kHz) FREQUENCY, f (kHz) Figure 27. Ripple Rejection vs. Frequency Figure 26. Ripple Rejection vs. Frequency http://onsemi.com 7 100 NCP585 TYPICAL CHARACTERISTICS OUTPUT VOLTAGE, Vout (V) 0.96 3.1 0.94 2.1 0.92 1.1 Output Voltage 0.90 ECO = H, Iout = 30 mA Cout = Tantalum 1.0 mF Vout = 0.9 V 0.88 0.86 0 0.1 10 20 30 40 50 60 70 80 90 −1.1 3.1 4.1 Input Voltage 2.6 INPUT VOLTAGE, Vin (V) OUTPUT VOLTAGE, Vout (V) Input Voltage 2.1 2.1 1.6 1.1 Output Voltage 1.1 0.1 0.0 0.4 0.8 0.1 ECO = L, Iout = 30 mA −1.1 Cout = Tantalum 1.0 mF Vout = 0.9 V −2.1 1.6 2.0 2.4 2.8 3.2 3.6 4.0 0.6 −2.1 100 3.1 INPUT VOLTAGE, Vin (V) 4.1 0.98 1.2 TIME, t (ms) TIME, t (ms) Figure 28. Input Transient Response 1.0 0.9 50 ECO = H, Vin = 1.9 V Cin = Tantalum 1.0 mF Cout = Tantalum 1.0 mF Vout = 0.9 V 0 −50 Output Voltage 0.8 0.7 0 1.2 1.1 10 15 20 25 30 35 0.9 0.8 −150 40 −90 0.7 0 5 10 15 OUTPUT VOLTAGE, Vout (V) 30 Load Current 0 ECO = H, Vin = 1.9 V Cin = Tantalum 1.0 mF Cout = Tantalum 2.2 mF Vout = 0.9 V −30 −60 Output Voltage 0.8 0.7 0 −90 5 10 15 20 20 25 30 35 25 30 35 3.1 OUTPUT CURRENT, Iout (mA) OUTPUT VOLTAGE, Vout (V) 60 1.2 0.9 −60 40 −120 Time, t (ms) 1.3 1.0 −30 Output Voltage Time, t (ms) 1.1 0 ECO = H, Vin = 1.9 V Cin = Tantalum 1.0 mF Cout = Tantalum 1.0 mF Vout = 0.9 V 1.0 −100 5 30 Load Current 20 2.6 10 Load Current 2.1 1.6 1.1 0 ECO = H, Vin = 1.9 V Cin = Tantalum 1.0 mF Cout = Tantalum 1.0 mF Vout = 0.9 V −120 40 0.1 0 −10 −20 Output Voltage 0.6 0.5 1.0 1.5 Time, t (ms) 2.0 Time, t (ms) Figure 29. Load Transient Response http://onsemi.com 8 OUTPUT CURRENT, Iout (mA) 1.1 100 Load Current OUTPUT CURRENT, Iout (mA) OUTPUT VOLTAGE, Vout (V) OUTPUT VOLTAGE, Vout (V) 1.2 60 1.3 OUTPUT CURRENT, Iout (mA) 150 1.3 −30 2.5 3.0 3.5 −40 4.0 NCP585 2.6 1.9 2.1 VCE = 0 V → 1.9 V 1.0 1.6 0.1 1.1 ECO = H Vin = 1.9 V Cin = Tantalum 1.0 mF Cout = Tantalum 1.0 mF Iout = 300 mA −1.0 −1.9 10 20 30 40 50 0.1 60 2.6 1.9 2.1 VCE = 0 V → 1.9 V 1.0 1.6 0.1 1.1 ECO = L Vin = 1.9 V Cin = Tantalum 1.0 mF Cout = Tantalum 1.0 mF Iout = 300 mA −1.0 −1.9 −2.8 −0.3 −0.2 −.01 −0.6 70 0 TIME, t (ms) 0.1 0.2 0.3 TIME, t (ms) Figure 30. Turn−On Speed with CE Pin, Vout = 0.8 V Vin = 1.9 V, Cin = Tantalum 1.0 mF, Cout = Tantalum 1.0 mF, Vout = 0.9 V 3.1 VECO = 0 V to 1.9 V 2.1 1.1 0.1 0.91 0.90 Iout = 1 mA 0.89 0.91 0.90 Iout = 10 mA 0.89 0.91 0.90 0.89 Iout = 50 mA Iout = 100 mA 0.91 0.90 0.89 Iout = 200 mA 0.91 0.90 0.89 0.91 0.90 0.89 0.88 −0.2 ECO INPUT VOLTAGE, VECO (V) 0 OUTPUT VOLTAGE, Vout (V) −2.8 −30 −20 −10 0.6 2.8 Iout = 300 mA 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 TIME, t (ms) Figure 31. Output Voltage at Mode Alternative Point http://onsemi.com 9 0.4 0.5 0.6 0.6 0.1 OUTPUT VOLTAGE, Vout (V) 2.8 OUTPUT VOLTAGE, Vout (V) CE INPUT VOLTAGE, VCE (V) CE INPUT VOLTAGE, VCE (V) TYPICAL CHARACTERISTICS −0.6 0.7 NCP585 TYPICAL CHARACTERISTICS 100000 Unstable 10000 Region OUTPUT CAPACITOR ESR (W) 1000 100 Stable Region 10 1 0.1 0.01 0 No unstable region in LP Mode 50 100 150 200 250 1000 100 Stable Region 10 1 0.1 0.01 0 300 Cout = 1.0 mF Vout = 1.8 V FT Mode No unstable region in LP Mode 100 50 150 200 250 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) Figure 32. Output Stability, Output Capacitor ESR vs. Output Load Current (0.1 mF) Figure 33. Output Stability, Output Capacitor ESR vs. Output Load Current (1.0 mF) 100000 Unstable 10000 Region OUTPUT CAPACITOR ESR (W) 100000 Cout = 0.1 mF Vout = 1.8 V FT Mode 100000 Unstable 10000 Region Cout = 10 mF Vout = 1.8 V FT Mode OUTPUT CAPACITOR ESR (W) OUTPUT CAPACITOR ESR (W) Unstable 10000 Region 1000 100 Stable Region 10 1 0.1 0.01 0 No unstable region in LP Mode 50 100 150 200 250 300 300 Cout = 100 mF Vout = 1.8 V FT Mode 1000 100 Stable Region 10 1 0.1 0.01 0 No unstable region in LP Mode 100 50 OUTPUT CURRENT (mA) 150 200 250 300 OUTPUT CURRENT (mA) Figure 35. Output Stability, Output Capacitor ESR vs. Output Load Current (100 mF) Figure 34. Output Stability, Output Capacitor ESR vs. Output Load Current (10 mF) APPLICATION INFORMATION Input Decoupling Output Decoupling A 1.0 mF ceramic capacitor is the recommended value to be connected between Vin and GND. For PCB layout considerations, the traces on Vin and GND should be sufficiently wide in order to minimize noise and prevent unstable operation. It is best to use a 1.0 mF capacitor value on the Vout pin. For better performance, select a capacitor with low Equivalent Series Resistance (ESR). For PCB layout considerations, place the output capacitor close to the output pin and keep the leads short as possible. http://onsemi.com 10 NCP585 ORDERING INFORMATION Device Output Type / Features Nominal Output Voltage Marking Package Shipping† NCP585DSAN09T1G Active High w/Auto Discharge, LP and FT Mode 0.9 B09D HSON−6 (Pb−Free) 3000 Tape & Reel NCP585DSAN12T1G Active High w/Auto Discharge, LP and FT Mode 1.2 B12D HSON−6 (Pb−Free) 3000 Tape & Reel NCP585DSAN18T1G Active High w/Auto Discharge, LP and FT Mode 1.8 B18D HSON−6 (Pb−Free) 3000 Tape & Reel NCP585DSN09T1G Active High w/Auto Discharge, LP and FT Mode 0.9 R09 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN12T1G Active High w/Auto Discharge, LP and FT Mode 1.2 R12 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN125T1G Active High w/Auto Discharge, LP and FT Mode 1.25 R01 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN15T1G Active High w/Auto Discharge, LP and FT Mode 1.5 R15 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN18T1G Active High w/Auto Discharge, LP and FT Mode 1.8 R18 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN25T1G Active High w/Auto Discharge, LP and FT Mode 2.5 R25 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN28T1G Active High w/Auto Discharge, LP and FT Mode 2.8 R28 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN30T1G Active High w/Auto Discharge, LP and FT Mode 3.0 R30 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585DSN33T1G Active High w/Auto Discharge, LP and FT Mode 3.3 R33 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585HSAN09T1G Active High, LP and FT Mode 0.9 B09B HSON−6 (Pb−Free) 3000 Tape & Reel NCP585HSAN12T1G Active High, LP and FT Mode 1.2 B12B HSON−6 (Pb−Free) 3000 Tape & Reel NCP585HSAN18T1G Active High, LP and FT Mode 1.8 B18B HSON−6 (Pb−Free) 3000 Tape & Reel NCP585HSN09T1G Active High, LP and FT Mode 0.9 Q09 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585HSN10T1G Active High, LP and FT Mode 1.0 Q10 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585HSN12T1G Active High, LP and FT Mode 1.2 Q12 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585HSN18T1G Active High, LP and FT Mode 1.8 Q18 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585HSN30T1G Active High, LP and FT Mode 3.0 Q30 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585LSAN09T1G Active Low, LP and FT Mode 0.9 B09A HSON−6 (Pb−Free) 3000 Tape & Reel NCP585LSAN12T1G Active Low, LP and FT Mode 1.2 B12A HSON−6 (Pb−Free) 3000 Tape & Reel NCP585LSAN18T1G Active Low, LP and FT Mode 1.8 B18A HSON−6 (Pb−Free) 3000 Tape & Reel NCP585LSN09T1G Active Low, LP and FT Mode 0.9 P09 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585LSN12T1G Active Low, LP and FT Mode 1.2 P12 SOT23−5 (Pb−Free) 3000 Tape & Reel NCP585LSN18T1G Active Low, LP and FT Mode 1.8 P18 SOT23−5 (Pb−Free) 3000 Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. Other voltages are available. Consult your ON Semiconductor representative. http://onsemi.com 11 NCP585 PACKAGE DIMENSIONS SOT23−5 SN SUFFIX CASE 1212−01 ISSUE O A 5 E 1 A2 0.05 S B D A1 4 2 NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUM C IS A SEATING PLANE. DIM A1 A2 B C D E E1 e e1 L L1 L 3 E1 L1 B e e1 C 5X 0.10 M C B S A C S SOLDERING FOOTPRINT* 0.95 0.037 1.9 0.074 2.4 0.094 1.0 0.039 0.7 0.028 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 12 MILLIMETERS MIN MAX 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.80 3.00 2.50 3.10 1.50 1.80 0.95 BSC 1.90 BSC 0.20 --0.45 0.75 NCP585 PACKAGE DIMENSIONS HSON−6 SAN SUFFIX CASE 506AE−01 ISSUE A A D PIN ONE REFERENCE 6 B NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.10 AND 0.15 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 4 E1 2X E 0.20 C 1 2X 3 0.20 C TOP VIEW DIM A A3 b D D2 E E1 E2 e L 0.10 C A 6X 0.08 C SEATING PLANE (A3) C SIDE VIEW MILLIMETERS MIN MAX 0.70 0.90 0.15 REF 0.20 0.40 2.90 BSC 1.40 1.60 3.00 BSC 2.80 BSC 1.50 1.70 0.95 BSC 0.15 0.25 D2 1 L e 3 6X EXPOSED PAD E2 6 4 b BOTTOM VIEW 6X NOTE 3 0.10 C A B 0.05 C ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 13 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your loca Sales Representative NCP585/D