EP7311 Data Sheet FEATURES High-Performance, Low-Power System on Chip with SDRAM and Enhanced Digital Audio Interface ■ ARM720T Processor — ARM7TDMI CPU — 8 KB of four-way set-associative cache — MMU with 64-entry TLB — Thumb code support enabled ■ Ultra low power — 90 mW at 74 MHz typical — 30 mW at 18 MHz typical — 10 mW in the Idle State — <1 mW in the Standby State ■ 48 KB of on-chip SRAM ■ MaverickKey™ IDs OVERVIEW The Maverick™ EP7311 is designed for ultra-low-power applications such as PDAs, smart cellular phones, and industrial hand held information appliances. The corelogic functionality of the device is built around an ARM720T processor with 8 KB of four-way setassociative unified cache and a write buffer. Incorporated into the ARM720T is an enhanced memory management unit (MMU) which allows for support of sophisticated operating systems like Linux®. — 32-bit unique ID can be used for SDMI compliance — 128-bit random ID ■ Dynamically programmable clock speeds of 18, 36, 49, and 74 MHz (cont.) (cont.) BLOCK DIAGRAM EPB Bus Serial Interface Power Management (2) UARTs w/ IrDA Clocks & Timers ARM720T ICE-JTAG Interrupts, PWM & GPIO ARM7TDMI CPU Core 8 KB Cache Boot ROM Write Buffer Bus Bridge MMU Keypad& Touch Screen I/F Internal Data Bus Memory Controller MaverickKeyT M SRAM I/F SDRAM I/F On-chip SRAM 48 KB USER INTERFACE SERIAL PORTS Multimedia Codec Port LCD Controller MEMORY AND STORAGE Copyright Cirrus Logic, Inc. 2003 http://www.cirrus.com (All Rights Reserved) Nov ’03 DS506PP1 EP7311 High-Performance, Low-Power System on Chip FEATURES (cont) ■ LCD controller — Interfaces directly to a single-scan panel monochrome STN LCD — Interfaces to a single-scan panel color STN LCD with minimal external glue logic ■ Full JTAG boundary scan and Embedded ICE support ■ Integrated Peripheral Interfaces — 32-bit SDRAM Interface up to 2 external banks — 8/32/16-bit SRAM/FLASH/ROM Interface — Multimedia Codec Port — Two Synchronous Serial Interfaces (SSI1, SSI2) — CODEC Sound Interface — 8×8 Keypad Scanner — 27 General Purpose Input/Output pins — Dedicated LED flasher pin from the RTC ■ Internal Peripherals — Two 16550 compatible UARTs — IrDA Interface — Two PWM Interfaces — Real-time Clock — Two general purpose 16-bit timers — Interrupt Controller — Boot ROM ■ Package — 208-Pin LQFP — 256-Ball PBGA — 204-Ball TFBGA ■ The fully static EP7311 is optimized for low power dissipation and is fabricated on a 0.25 micron CMOS process ■ Development Kits — EDB7312: Development Kit with color STN LCD on board. — EDB7312-LW: EDB7312 with Lynuxworks’ BlueCat Linux Tools and software for Windows host (free 30 day BlueCat support from Lynuxworks). — EDB7312-LL: EDB7312 with Lynuxworks’ BlueCat Linux Tools and software for Linux host (free 30 day BlueCat support from Lynuxworks). Note: * BlueCat available separately through Lynuxworks only. * Use the EDB7312 Development Kit for all the EP73xx devices. OVERVIEW (cont.) The EP7311 is designed for low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V. The device has three basic power states: operating, idle and standby. Simply by adding desired memory and peripherals to the highly integrated EP7311 completes a low-power system solution. All necessary interface logic is integrated onchip. One of its notable features is MaverickKey unique IDs. These are factory programmed IDs in response to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs consist of two registers, one 32-bit series register and one random 128bit register that may be used by an OEM for an authentication mechanism. 2 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Processor Core - ARM720T Digital Music Initiative) or any other authentication mechanism. The EP7311 incorporates an ARM 32-bit RISC microcontroller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include: Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7311 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7311 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances. • ARM (32-bit) and Thumb (16-bit compressed) instruction sets • Enhanced MMU for Microsoft Windows CE and other operating systems • 8 KB of 4-way set-associative cache. • Translation Look Aside Buffers with 64 Translated Entries Power Management The EP7311 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V allowing the device to achieve a performance level equivalent to 60 MIPS. The device has three basic power states: • Operating — This state is the full performance state. All the clocks and peripheral logic are enabled. • Idle — This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press. • Standby — This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor. Pin Mnemonic I/O Pin Description BATOK I Battery ok input nEXTPWR I External power supply sense input nPWRFL I Power fail sense input nBATCHG I Battery changed sense input Memory Interfaces There are two main external memory interfaces. The first one is the ROM/SRAM/FLASH-style interface that has programmable wait-state timings and includes burstmode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH memory. To further minimize system memory requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industryleading code density. Pin Mnemonic I/O Pin Description nCS[5:0] O Chip select out A[27:0] O Address output D[31:0] I/O Data I/O nMOE/nSDCAS (Note) O ROM expansion OP enable nMWE/nSDWE (Note) O ROM expansion write enable HALFWORD O Halfword access select output WORD O Word access select output O Transfer direction WRITE/nSDRAS (Note) Table A. Power Management Pin Assignments Table B. Static Memory Interface Pin Assignments MaverickKey™ Unique ID Note: MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure DS506PP1 Pins are multiplexed. See Table S on page 8 for more information. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 3 EP7311 High-Performance, Low-Power System on Chip The second is the programmable 16- or 32-bit-wide SDRAM interface that allows direct connection of up to two banks of SDRAM, totaling 512 Mb. To assure the lowest possible power consumption, the EP7311 supports self-refresh SDRAMs, which are placed in a low-power state by the device when it enters the lowpower Standby State. Pin Mnemonic I/O Pin Description SDCLK O SDRAM clock output SDCKE O SDRAM clock enable output nSDCS[1:0] O SDRAM chip select out WRITE/nSDRAS (Note 2) O SDRAM RAS signal output nMOE/nSDCAS (Note 2) O SDRAM CAS control signal RX/TX signals to/from UART 1 to enable these signals to drive an infrared communication interface directly. Pin Mnemonic I/O Pin Description TXD[1] O UART 1 transmit RXD[1] I UART 1 receive CTS I UART 1 clear to send DCD I UART 1 data carrier detect DSR I UART 1 data set ready TXD[2] O UART 2 transmit RXD[2] I UART 2 receive LEDDRV O Infrared LED drive output PHDIN I Photo diode input nMWE/nSDWE (Note 2) O SDRAM write enable control signal A[27:15]/DRA[0:12] (Note 1) O SDRAM address O SDRAM internal bank select Multimedia Codec Port (MCP) I/O SDRAM byte lane mask SDQM[3:2] O SDRAM byte lane mask D[31:0] I/O Data I/O The Multimedia Codec Port provides access to an audio codec, a telecom codec, a touchscreen interface, four general purpose analog-to-digital converter inputs, and ten programmable digital I/O lines. A[14:13]/DRA[12:14] PD[7:6]/SDQM[1:0] (Note 2) Table D. Universal Asynchronous Receiver/Transmitters Pin Assignments Table C. SDRAM Interface Pin Assignments Pin Mnemonic Note: 1. Pins A[27:13] map to DRA[0:14] respectively. (i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to balance the load for large memory systems. 2. Pins are multiplexed. See Table S on page 8 for more information. Digital Audio Capability I/O Pin Description SIBCLK O Serial bit clock SIBDOUT O Serial data out SIBDIN I Serial data in SIBSYNC O Sample clock Table E. MCP Interface Pin Assignments The EP7311 uses its powerful 32-bit RISC processing engine to implement audio decompression algorithms in software. The nature of the on-board RISC processor, and the availability of efficient C-compilers and other software development tools, ensures that a wide range of audio decompression algorithms can easily be ported to and run on the EP7311 Note: See Table R on page 8 for information on pin multiplexes. Universal Asynchronous Receiver/Transmitters (UARTs) The EP7311 includes two 16550-type UARTs for RS-232 serial communications, both of which have two 16-byte FIFOs for receiving and transmitting data. The UARTs support bit rates up to 115.2 kbps. An IrDA SIR protocol encoder/decoder can be optionally switched into the 4 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip CODEC Interface Synchronous Serial Interface The EP7311 includes an interface to telephony-type CODECs for easy integration into voice-over-IP and other voice communications systems. The CODEC interface is multiplexed to the same pins as the MCP and SSI2. • ADC (SSI) Interface: Master mode only; SPI and Microwire1-compatible (128 kbps operation) • Selectable serial clock polarity Pin Mnemonic Pin Mnemonic I/O PCMCLK O Serial bit clock PCMOUT O Serial data out PCMIN I Serial data in PCMSYNC O Frame sync O SSI1 ADC serial clock ADCIN I SSI1 ADC serial input ADCOUT O SSI1 ADC serial output nADCCS O SSI1 ADC chip select SMPCLK O SSI1 ADC sample clock Table H. Serial Interface Pin Assignments See Table R on page 8 for information on pin multiplexes. LCD Controller SSI2 Interface An additional SPI/Microwire1-compatible interface is available for both master and slave mode communications. The SSI2 unit shares the same pins as the MCP and CODEC interfaces through a multiplexer. • • • • Synchronous clock speeds of up to 512 kHz Separate 16 entry TX and RX half-word wide FIFOs Half empty/full interrupts for FIFOs Separate RX and TX frame sync signals for asymmetric traffic Pin Mnemonic I/O Pin Description SSICLK I/O Serial bit clock SSITXDA O Serial data out SSIRXDA I Serial data in SSITXFR I/O Transmit frame sync SSIRXFR I/O Receive frame sync Table G. SSI2 Interface Pin Assignments Note: See Table R on page 8 for information on pin multiplexes. DS506PP1 Pin Description ADCLK Table F. CODEC Interface Pin Assignments Note: I/O Pin Description A DMA address generator is provided that fetches video display data for the LCD controller from memory. The display frame buffer start address is programmable, allowing the LCD frame buffer to be in SDRAM, internal SRAM or external SRAM. • Interfaces directly to a single-scan panel monochrome STN LCD • Interfaces to a single-scan panel color STN LCD with minimal external glue logic • Panel width size is programmable from 32 to 1024 pixels in 16-pixel increments • Video frame buffer size programmable up to 128 KB • Bits per pixel of 1, 2, or 4 bits Pin Mnemonic I/O Pin Description CL1 O LCD line clock CL2 O LCD pixel clock out DD[3:0] O LCD serial display data bus FRM O LCD frame synchronization pulse M O LCD AC bias drive Table I. LCD Interface Pin Assignments Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 5 EP7311 High-Performance, Low-Power System on Chip 64-Keypad Interface . Pin Mnemonic Matrix keyboards and keypads can be easily read by the EP7311. A dedicated 8-bit column driver output generates strobes for each keyboard column signal. The pins of Port A, when configured as inputs, can be selectively OR'ed together to provide a keyboard interrupt that is capable of waking the system from a STANDBY or IDLE state. • Column outputs can be individually set high with the remaining bits left at high-impedance • Column outputs can be driven all-low, all-high, or allhigh-impedance • Keyboard interrupt driven by OR'ing together all Port A bits • Keyboard interrupt can be used to wake up the system • 8×8 keyboard matrix usable with no external logic, extra keys can be added with minimal glue logic Pin Mnemonic I/O Pin Description O Keyboard scanner column drive COL[7:0] Table J. Keypad Interface Pin Assignments Interrupt Controller When unexpected events arise during the execution of a program (i.e., interrupt or memory fault) an exception is usually generated. When these exceptions occur at the same time, a fixed priority system determines the order in which they are handled. The EP7311 interrupt controller has two interrupt types: interrupt request (IRQ) and fast interrupt request (FIQ). The interrupt controller has the ability to control interrupts from 22 different FIQ and IRQ sources. • Supports 22 interrupts from a variety of sources (such as UARTs, SSI1, and key matrix.) • Routes interrupt sources to the ARM720T’s IRQ or FIQ (Fast IRQ) inputs • Five dedicated off-chip interrupt lines operate as level sensitive interrupts I/O Pin Description nEINT[2:1] I External interrupt EINT[3] I External interrupt nEXTFIQ I External Fast Interrupt input I Media change interrupt input nMEDCHG/nBROM (Note) Table K. Interrupt Controller Pin Assignments Note: Pins are multiplexed. See Table S on page 8 for more information. Real-Time Clock The EP7311 contains a 32-bit Real Time Clock (RTC) that can be written to and read from in the same manner as the timer counters. It also contains a 32-bit output match register which can be programmed to generate an interrupt. • Driven by an external 32.768 kHz crystal oscillator Pin Mnemonic Pin Description RTCIN Real-Time Clock Oscillator Input RTCOUT Real-Time Clock Oscillator Output VDDRTC Real-Time Clock Oscillator Power VSSRTC Real-Time Clock Oscillator Ground Table L. Real-Time Clock Pin Assignments PLL and Clocking • Processor and Peripheral Clocks operate from a single 3.6864 MHz crystal or external 13 MHz clock • Programmable clock speeds allow the peripheral bus to run at 18 MHz when the processor is set to 18 MHz and at 36 MHz when the processor is set to 36, 49 or 74 MHz Pin Mnemonic Pin Description MOSCIN Main Oscillator Input MOSCOUT Main Oscillator Output VDDOSC Main Oscillator Power VSSOSC Main Oscillator Ground Table M. PLL and Clocking Pin Assignments 6 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip DC-to-DC converter interface (PWM) Hardware debug Interface • Provides two 96 kHz clock outputs with programmable duty ratio (from 1-in-16 to 15-in-16) that can be used to drive a positive or negative DC to DC converter • Full JTAG boundary scan and Embedded ICE support Pin Mnemonic Pin Mnemonic DRIVE[1:0] I/O I/O FB[1:0] I Pin Description PWM drive output PWM feedback input Table N. DC-to-DC Converter Interface Pin Assignments Pin Description TCLK I JTAG clock TDI I JTAG data input TDO O JTAG data output nTRST I JTAG async reset input TMS I JTAG mode select Timers Table P. Hardware Debug Interface Pin Assignments • Internal (RTC) timer • Two internal 16-bit programmable hardware countdown timers General Purpose Input/Output (GPIO) • Three 8-bit and one 3-bit GPIO ports • Supports scanning keyboard matrix Pin Mnemonic I/O Pin Description PA[7:0] I/O GPIO port A PB[7:0] I/O GPIO port B I/O GPIO port D I/O GPIO port D (Note) I/O GPIO port D PE[1:0]/BOOTSEL[1:0] (Note) I/O GPIO port E PE[2]/CLKSEL I/O GPIO port E PD[0]/LEDFLSH (Note) PD[5:1] PD[7:6]/SDQM[1:0] (Note) LED Flasher A dedicated LED flasher module can be used to generate a low frequency signal on Port D pin 0 for the purpose of blinking an LED without CPU intervention. The LED flasher feature is ideal as a visual annunciator in battery powered applications, such as a voice mail indicator on a portable phone or an appointment reminder on a PDA. • • • • Software adjustable flash period and duty cycle Operates from 32 kHz RTC clock Will continue to flash in IDLE and STANDBY states 4 mA drive current Pin Mnemonic PD[0]/LEDFLSH (Note) I/O O Pin Description LED flasher driver Table Q. LED Flasher Pin Assignments Table O. General Purpose Input/Output Pin Assignments Note: I/O Pins are multiplexed. See Table S on page 8 for more information. Note: Pins are multiplexed. See Table S on page 8 for more information. Internal Boot ROM The internal 128 byte Boot ROM facilitates download of saved code to the on-board SRAM/FLASH. Packaging The EP7311 is available in a 208-pin LQFP package, 256ball PBGA package or a 204-ball TFBGA package. DS506PP1 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 7 EP7311 High-Performance, Low-Power System on Chip Pin Multiplexing The following table shows the pin multiplexing of the MCP, SSI2 and the CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the MCP is controlled by the MCPSEL bit in SYSCON3 (see the EP73xx User’s Manual for more information). Pin Mnemonic I/O MCP SSI2 CODEC SSICLK I/O SIBCLK SSICLK PCMCLK SSITXDA O SIBDOUT SSITXDA PCMOUT SSIRXDA I SIBDIN SSIRXDA PCMIN SSITXFR I/O SIBSYNC SSITXFR PCMSYNC SSIRXFR I p/u SSIRXFR p/u BUZ O Table R. MCP/SSI2/CODEC Pin Multiplexing The following table shows the pins that have been multiplexed in the EP7311. Signal Block Signal Block nMOE Static Memory nSDCAS SDRAM nMWE Static Memory nSDWE SDRAM WRITE Static Memory nSDRAS SDRAM A[27:15] Static Memory DRA[0:12] SDRAM A[14:13] Static Memory DRA[13:14] SDRAM PD[7:6] GPIO SDQM[1:0] SDRAM RUN System Configuration CLKEN System Configuration nMEDCHG Interrupt Controller nBROM Boot ROM select PD[0] GPIO LEDFLSH LED Flasher PE[1:0] GPIO BOOTSEL[1:0] System Configuration PE[2] GPIO CLKSEL System Configuration Table S. Pin Multiplexing 8 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip System Design As shown in system block diagram, simply adding desired memory and peripherals to the highly integrated EP7311 completes a low-power system solution. All necessary interface logic is integrated on-chip. CRYSTAL MOSCIN DD[0-3] CRYSTAL RTCIN nCS[4] PB0 EXPCLK CL1 CL2 FRM M LCD COL[0-7] PC CARD CONTROLLER PC CARD SOCKET KEYBOARD D[0-31] PA[0-7] A[0-27] PB[0-7] nMOE WRITE PD[0-7] SDRAS/ SDCAS ×16 SDRAM ×16 SDRAM SDCS[0] ×16 SDRAM ×16 SDRAM SDCS[1] SDQM[0-3] SDQM[0-3] EP7311 PE[0-2] nPOR nPWRFL BATOK nEXTPWR nBATCHG RUN WAKEUP DRIVE[0-1] FB[0-1] nCS[0] nCS[1] ×16 FLASH ×16 FLASH SSICLK SSITXFR SSITXDA SSIRXDA SSIRXFR ×16 FLASH ×16 FLASH LEDDRV PHDIN CS[n] WORD EXTERNAL MEMORYMAPPED EXPANSION BUFFERS nCS[2] nCS[3] ADDITIONAL I/O BUFFERS AND LATCHES LEDFLSH RXD1/2 TXD1/2 DSR CTS DCD ADCCLK nADCCS ADCOUT ADCIN SMPCLK POWER SUPPLY UNIT AND COMPARATORS DC INPUT BATTERY DC-TO-DC CONVERTERS CODEC/SSI2/ MCP IR LED AND PHOTODIODE 2× RS-232 TRANSCEIVERS ADC DIGITIZER Figure 1. A Maximum EP7311 Based System Note: A system can only use one of the following peripheral interfaces at any given time: SSI2,CODEC or MCP. DS506PP1 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 9 EP7311 High-Performance, Low-Power System on Chip ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings DC Core, PLL, and RTC Supply Voltage 2.9 V DC I/O Supply Voltage (Pad Ring) 3.6 V DC Pad Input Current ±10 mA/pin; ±100 mA cumulative Storage Temperature, No Power –40°C to +125°C Recommended Operating Conditions DC core, PLL, and RTC Supply Voltage 2.5 V ± 0.2 V DC I/O Supply Voltage (Pad Ring) 2.3 V - 3.5 V DC Input / Output Voltage O–I/O supply voltage Operating Temperature Extended -20°C to +70°C; Commercial 0°C to +70°C; Industrial -40°C to +85°C DC Characteristics All characteristics are specified at V DDCORE = 2.5 V, VDDIO = 3.3 V and VSS = 0 V over an operating temperature of 0°C to +70°C for all frequencies of operation. The current consumption figures have test conditions specified per parameter.” Symbol Parameter Min Typ Max Unit Conditions VIH CMOS input high voltage 0.65 × VDDIO - VDDIO + 0.3 V VDDIO = 2.5 V VIL CMOS input low voltage VSS − 0.3 - 0.25 × VDDIO V VDDIO = 2.5 V VT+ Schmitt trigger positive going threshold - - 2.1 V VT- Schmitt trigger negative going threshold 0.8 - - V Vhst Schmitt trigger hysteresis 0.1 - 0.4 V VIL to VIH VDD – 0.2 2.5 2.5 - - V V V IOH = 0.1 mA IOH = 4 mA IOH = 12 mA Output drive 2a - - 0.3 0.5 0.5 V V V IOL = –0.1 mA IOL = –4 mA IOL = –12 mA Input leakage current - - 1.0 µA VIN = VDD or GND 25 - 100 µA VOUT = VDD or GND 8 - 10.0 pF CMOS output high voltagea VOH Output drive 1a Output drive 2a CMOS output low voltagea VOL IIN IOZ CIN 10 Output drive 1a Bidirectional 3-state leakage currentb c Input capacitance Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Symbol Parameter Min Typ Max Unit COUT Output capacitance 8 - 10.0 pF CI/O Transceiver capacitance 8 - 10.0 pF IDDSTANDBY @ 25 C IDDSTANDBY @ 70 C IDDSTANDBY @ 85 C IDD idle at 74 MHz Standby current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V Standby current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V - 77 41 - - - 570 111 µA Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V µA Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V µA Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = VDD ± 0.1 V, VIL = GND ± 0.1 V Standby current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V Idle current consumption1 Core, Osc, RTC @2.5 V I/O @ 3.3 V VDD STANDBY Standby supply voltage - - 1693 163 Conditions - 6 10 - mA Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = V DD ± 0.1 V, VIL = GND ± 0.1 V 2.0 - - V Minimum standby voltage for state retention, internal SRAM cache, and RTC operation only a. Refer to the strength column in the pin assignment tables for all package types. b. Assumes buffer has no pull-up or pull-down resistors. c. The leakage value given assumes that the pin is configured as an input pin but is not currently being driven. Note: DS506PP1 1) Total power consumption = IDDCORE x 2.5 V + IDDIO x 3.3 V 2) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs). 2) Pull-up current = 50 µA typical at VDD = 3.3 V. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 11 EP7311 High-Performance, Low-Power System on Chip Timings Timing Diagram Conventions This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated. C lo c k H ig h H ig h /L o w B u s to to L o w H ig h C h a n g e B u s V a lid U n d e fin e d /In v a lid V a lid B u s to T r is ta te B u s / S ig n a l O m is s io n Figure 2. Legend for Timing Diagrams Timing Conditions Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at VDDIO = 3.1 - 3.5 V and V SS = 0 V over an operating temperature of -40°C to +85°C. Pin loadings is 50 pF. The timing values are referenced to 1/2 V DD. 12 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip SDRAM Interface Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for the timings of each of the SDRAM modes. Parameter Symbol Min Typ Max Unit SDCLK rising edge to SDCS assert delay time tCSa 0 2 4 ns SDCLK rising edge to SDCS deassert delay time tCSd −3 2 10 ns SDCLK rising edge to SDRAS assert delay time tRAa 1 3 7 ns SDCLK rising edge to SDRAS deassert delay time tRAd −3 1 10 ns SDCLK rising edge to SDRAS invalid delay time tRAnv 2 4 7 ns SDCLK rising edge to SDCAS assert delay time tCAa −2 2 5 ns SDCLK rising edge to SDCAS deassert delay time tCAd −5 0 3 ns SDCLK rising edge to ADDR transition time tADv −3 1 5 ns SDCLK rising edge to ADDR invalid delay time tADx −2 2 5 ns SDCLK rising edge to SDMWE assert delay time tMWa −2 1 5 ns SDCLK rising edge to SDMWE deassert delay time tMWd −4 0 4 ns DATA transition to SDCLK rising edge time tDAs - - 2 ns SDCLK rising edge to DATA transition hold time tDAh - - 1 ns SDCLK rising edge to DATA transition delay time tDAd 0 - 15 ns DS506PP1 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 13 EP7311 High-Performance, Low-Power System on Chip SDRAM Load Mode Register Cycle SDCLK tCSa tCSd tRAa tRAd tCAa tCAd SDCS SDRAS SDCAS tADv tADx ADDR DATA SDQM tMWa tMWd SDMWE Figure 3. SDRAM Load Mode Register Cycle Timing Measurement Note: 14 1. Timings are shown with CAS latency = 2 2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip SDRAM Burst Read Cycle SDCLK tCSa SDCS tCSa tCSd tCSd tRAa SDRAS tRAnv tRAd tCAa tCAd SDCAS tADv ADDR tADv ADRAS ADCAS tDAs DATA D1 tDAh tDAs D2 tDAh tDAs D3 tDAh tDAs D4 tDAh SDQM [0:3] SDMWE Figure 4. SDRAM Burst Read Cycle Timing Measurement Note: DS506PP1 1. Timings are shown with CAS latency = 2 2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 15 EP7311 High-Performance, Low-Power System on Chip SDRAM Burst Write Cycle SDCLK tCSa tCSa tCSd SDCS tCSd tRAa tRAd SDRAS tCAa tCAd SDCAS tADv tADv tDAd tDAd tDAd D1 DATA SDQM ADCAS ADRAS ADDR D2 tDAd D3 D4 0 tMWa tMWd SDMWE Figure 5. SDRAM Burst Write Cycle Timing Measurement Note: 16 1. Timings are shown with CAS latency = 2 2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip SDRAM Refresh Cycle SDCLK tCSa tCSd tRAa tRAd SDCS SDRAS tCAd SDCAS tCAa SDATA ADDR SDQM [3:0] SDMWE Figure 6. SDRAM Refresh Cycle Timing Measurement Note: DS506PP1 1. Timings are shown with CAS latency = 2 2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 17 EP7311 High-Performance, Low-Power System on Chip Static Memory Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table contains the values for the timings of each of the Static Memory modes. Parameter Symbol Min Typ Max Unit EXPCLK rising edge to nCS assert delay time tCSd 2 8 20 ns EXPCLK falling edge to nCS deassert hold time tCSh 2 7 20 ns EXPCLK rising edge to A assert delay time tAd 4 9 16 ns EXPCLK falling edge to A deassert hold time tAh 3 10 19 ns EXPCLK rising edge to nMWE assert delay time tMWd 3 6 10 ns EXPCLK rising edge to nMWE deassert hold time tMWh 3 6 10 ns EXPCLK falling edge to nMOE assert delay time tMOEd 3 7 10 ns EXPCLK falling edge to nMOE deassert hold time tMOEh 2 7 10 ns EXPCLK falling edge to HALFWORD deassert delay time tHWd 2 8 20 ns EXPCLK falling edge to WORD assert delay time tWDd 2 8 16 ns EXPCLK rising edge to data valid delay time tDv 8 13 21 ns EXPCLK falling edge to data invalid delay time tDnv 6 15 30 ns Data setup to EXPCLK falling edge time tDs - - 1 ns EXPCLK falling edge to data hold time tDh - - 3 ns EXPCLK rising edge to WRITE assert delay time tWRd 5 11 23 ns EXPREADY setup to EXPCLK falling edge time tEXs - - 0 ns EXPCLK falling edge to EXPREADY hold time tEXh - - 0 ns 18 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Static Memory Single Read Cycle EXPCLK tCSd tCSh nCS tAd A nMWE tMOEd tMOEh nMOE tHWd HALFWORD tWDd WORD tDs tDh D tEXs tEXh EXPRDY tWRd WRITE Figure 7. Static Memory Single Read Cycle Timing Measurement Note: DS506PP1 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 2. Address, Halfword, Word, and Write hold state until next cycle. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 19 EP7311 High-Performance, Low-Power System on Chip Static Memory Single Write Cycle EXPCLK tCSd tCSh nCS tAd A tMWd tMWh nMWE nMOE tHWd HALFWORD tWDd WORD tDv D tEXs tEXh EXPRDY WRITE Figure 8. Static Memory Single Write Cycle Timing Measurement Note: 20 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions. 3. Address, Data, Halfword, Word, and Write hold state until next cycle. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Static Memory Burst Read Cycle EXPCLK tCSd tCSh nCS tAd tAh tAh tAh A nMWE tMOEd tMOEh nMOE tHWd HALF WORD tWDd WORD tDs tDh tDs tDh tDs tDh tDs tDh D tEXs tEXh EXPRDY tWRd WRITE Figure 9. Static Memory Burst Read Cycle Timing Measurement Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively. 2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible. 4. Address, Halfword, Word, and Write hold state until next cycle. DS506PP1 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 21 EP7311 High-Performance, Low-Power System on Chip Static Memory Burst Write Cycle EXPCLK tCSd tCSh nCS tAh tAd tAh tAh A tMWd tMWd tMWd tMWh nMWE tMWd tMWh tMWh tMWh nMOE tHWd HALF WORD WORD tWDd tDv tDnv tDv tDnv tDv tDnv tDv D tEXs tEXh EXPRDY WRITE Figure 10. Static Memory Burst Write Cycle Timing Measurement Note: 22 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively. 2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions. 4. Address, Data, Halfword, Word, and Write hold state until next cycle. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip SSI1 Interface Parameter Symbol Min Max Unit ADCCLK falling edge to nADCCSS deassert delay time tCd 9 10 ms ADCIN data setup to ADCCLK rising edge time tINs - 15 ns ADCIN data hold from ADCCLK rising edge time tINh - 14 ns ADCCLK falling edge to data valid delay time tOvd −7 13 ns ADCCLK falling edge to data invalid delay time tOd −2 3 ns ADC CLK tCd nADC CSS tINs tINh ADCIN tOvd tOd ADC OUT Figure 11. SSI1 Interface Timing Measurement DS506PP1 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 23 EP7311 High-Performance, Low-Power System on Chip SSI2 Interface Parameter Symbol Min Max Unit SSICLK period (slave mode) tclk_per 185 2050 ns SSICLK high time tclk_high 925 1025 ns SSICLK low time tclk_low 925 1025 ns SSICLK rise/fall time tclkrf 3 18 ns SSICLK rising edge to RX and/or TX frame sync high time tFRd - 3 ns SSICLK rising edge to RX and/or TX frame sync low time tFRa - 8 ns tFR_per 960 990 ns SSIRXDA setup to SSICLK falling edge time tRXs 3 7 ns SSIRXDA hold from SSICLK falling edge time tRXh 3 7 ns SSICLK rising edge to SSITXDA data valid delay time tTXd - 2 ns SSITXDA valid time tTXv 960 990 ns SSIRXFR and/or SSITXFR period tclk_per tclk_high tclk_low SSI CLK tclkrf tFRd tFRa tFR_per SSIRXFR/ SSITXFR tRXh tRXs SSI RXDA D7 D2 D1 D0 D7 D2 D1 D0 tTXd SSI TXDA tTXv Figure 12. SSI2 Interface Timing Measurement 24 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip LCD Interface Parameter Symbol Min Max Unit CL[2] falling to CL[1] rising delay time tCL1d − 10 25 ns CL[1] falling to CL[2] rising delay time tCL2d 80 3,475 ns CL[1] falling to FRM transition time tFRMd 300 10,425 ns CL[1] falling to M transition time tMd − 10 20 ns CL[2] rising to DD (display data) transition time tDDd − 10 20 ns CL[2] tCL2d tCL1d CL[1] tFRMd FRM tMd M tDDd DD [3:0] Figure 13. LCD Controller Timing Measurement DS506PP1 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 25 EP7311 High-Performance, Low-Power System on Chip JTAG Interface Parameter Symbol Min Max Units TCK clock period tclk_per 2 - ns TCK clock high time tclk_high 1 - ns TCK clock low time tclk_low 1 - ns JTAG port setup time tJPs - 0 ns JTAG port hold time tJPh - 3 ns JTAG port clock to output tJPco - 10 ns JTAG port high impedance to valid output tJPzx - 12 ns JTAG port valid output to high impedance tJPxz - 19 ns tclk_per tclk_high tclk_low TCK tJPs tJPh TMS TDI tJPzx tJPco tJPxz TDO Figure 14. JTAG Timing Measurement 26 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Packages 208-Pin LQFP Package Characteristics 208-Pin LQFP Package Specifications 29.60 (1.165) 30.40 (1.197) 27.80 (1.094) 28.20 (1.110) 0.17 (0.007) 0.27 (0.011) 27.80 (1.094) 28.20 (1.110) EP7311 29.60 (1.165) 30.40 (1.197) 208-Pin LQFP 0.50 (0.0197) BSC Pin 1 Indicator Pin 208 Pin 1 1.35 (0.053) 1.45 (0.057) 0.45 (0.018) 0.75 (0.030) 1.00 (0.039) BSC 0.09 (0.004) 0.20 (0.008) 0° MIN 7° MAX 0.05 (0.002) 0.15 (0.006) 1.40 (0.055) 1.60 (0.063) Figure 15. 208-Pin LQFP Package Outline Drawing Note: DS506PP1 1) 2) 3) 4) Dimensions are in millimeters (inches), and controlling dimension is millimeter. Drawing above does not reflect exact package pin count. Before beginning any new design with this device, please contact Cirrus Logic for the latest package information. For pin locations, please see Figure 16. For pin descriptions see the EP7311 User’s Manual. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 27 EP7311 High-Performance, Low-Power System on Chip 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 nURESET nMEDCHG/nBROM nPOR BATOK nEXTPWR nBATCHG D[7] VSSIO A[7] D[8] A[8] D[9] A[9] D[10] A[10] D[11] VSSIO VDDIO A[11] D[12] A[12] D[13] A[13]\DRA[14] D[14] A[14]/DRA[13] D[15] A[15]/DRA[12] D[16] A[16]/DRA[11] D[17] A[17]/DRA[10] nTRST VSSIO VDDIO D[18] A[18/DRA[9] D[19] A[19]/DRA[8] D[20] A[20]/DRA[7] VSSIO D[21] A[21]/DRA[6] D[22] A[22]/DRA[5] D[23] A[23]/DRA[4] D[24] VSSIO VDDIO A[24]/DRA[3] HALFWORD 208-Pin LQFP Pin Diagram EP7311 208-Pin LQFP (Top View) 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 D[25] A[25]/DRA[2] D[26] A[26]/DRA[1] D[27] A[27]/DRA[0] VSSIO D[28] D[29] D[30] D[31] BUZ COL[0] COL[1] TCLK VDDIO COL[2] COL[3] COL[4] COL[5] COL[6] COL[7] FB[0] VSSIO FB[1] SMPCLK ADCOUT ADCCLK DRIVE[0] DRIVE[1] VDDIO VSSIO VDDCORE VSSCORE nADCCS ADCIN SSIRXFR SSIRXDA SSITXDA SSITXFR VSSIO SSICLK PD[0]/LEDFLSH PD[1] PD[2] PD[3] TMS VDDIO PD[4] PD[5] PD[6]/SDQM[0] PD[7]/SDQM[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 nCS[5] VDDIO VSSIO EXPCLK WORD WRITE/nSDRAS RUN/CLKEN EXPRDY TXD[2] RXD[2] TDI VSSIO PB[7] PB[6] PB[5] PB[4] PB[3] PB[2] PB[1] PB[0] VDDIO TDO PA[7] PA[6] PA[5] PA[4] PA[3] PA[2] PA[1] PA[0] LEDDRV TXD[1] VSSIO PHDIN CTS RXD[1] DCD DSR nTEST[1] nTEST[0] EINT[3] nEINT[2] nEINT[1] nEXTFIQ PE[2]/CLKSEL PE[1]BOOTSEL[1] PE[0]BOOTSEL[0] VSSRTC RTCOUT RTCIN VDDRTC N/C VDDOSC MOSCIN MOSCOUT VSSOSC WAKEUP nPWRFL A[6] D[6] A[5] D[5] VDDIO VSSIO A[4] D[4] A[3] D[3] A[2] VSSIO D[2] A[1] D[1] A[0] D[0] VSSCORE VDDCORE VSSIO VDDIO CL[2] CL[1] FRM M DD[3] DD[2] VSSIO DD[1] DD[0] nSDCS[1] nSDCS[0] SDQM[3] SDQM[2] VDDIO VSSIO SDCKE SDCLK nMWE/nSDWE nMOE/nSDCAS VSSIO nCS[0] nCS[1] nCS[2] nCS[3] nCS[4] Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram Note: 28 1. N/C should not be grounded but left as no connects. 2. Pin differences between the EP7211 and the EP7311 are bolded. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip 208-Pin LQFP Numeric Pin Listing Table T. 208-Pin LQFP Numeric Pin Listing (Continued) Table T. 208-Pin LQFP Numeric Pin Listing Pin No. Signal Type 38 DSR I 39 nTEST[1] I With p/u* 40 nTEST[0] I With p/u* 41 EINT[3] I 42 nEINT[2] I 43 nEINT[1] I 44 nEXTFIQ I 45 PE[2]/CLKSEL I/O 1 Input 46 PE[1]/ BOOTSEL[1] I/O 1 Input 47 PE[0]/ BOOTSEL[0] I/O 1 Input 48 VSSRTC RTC Gnd Input 49 RTCOUT O 1 Input 50 RTCIN I I/O 1 Input 51 VDDRTC RTC power PB[4] I/O 1 Input 52 N/C 17 PB[3] I/O 1 Input 53 PD[7]/SDQM[1] I/O 1 Low 18 PB[2] I/O 1 Input 54 PD[6]/SDQM[0] I/O 1 Low 19 PB[1]/PRDY2 I/O 1 Input 55 PD[5] I/O 1 Low 20 PB[0]/PRDY1 I/O 1 Input 56 PD[4] I/O 1 Low 21 VDDIO Pad Pwr 57 VDDIO Pad Pwr 22 TDO O 1 Three state 58 TMS I with p/u* 23 PA[7] I/O 1 Input 59 PD[3] I/O 1 Low 24 PA[6] I/O 1 Input 60 PD[2] I/O 1 Low 25 PA[5] I/O 1 Input 61 PD[1] I/O 1 Low 26 PA[4] I/O 1 Input 62 PD[0]/LEDFLSH I/O 1 Low 27 PA[3] I/O 1 Input 63 SSICLK I/O 1 Input 28 PA[2] I/O 1 Input 64 VSSIO Pad Gnd 29 PA[1] I/O 1 Input 65 SSITXFR I/O 1 Low 30 PA[0] I/O 1 Input 66 SSITXDA O 1 Low 31 LEDDRV O 1 Low 67 SSIRXDA I 32 TXD[1] O 1 High 68 SSIRXFR I/O 33 VSSIO Pad Gnd 1 High 69 ADCIN I 34 PHDIN I 70 nADCCS O 35 CTS I 71 VSSCORE Core Gnd 36 RXD[1] I 72 VDDCORE Core Pwr 37 DCD I 73 VSSIO Pad Gnd Pin No. Signal Type Strength Reset State 1 nCS[5] O 1 Low 2 VDDIO Pad Pwr 3 VSSIO Pad Gnd 4 EXPCLK I/O 1 5 WORD Out 1 Low 6 WRITE/nSDRAS Out 1 Low 7 RUN/CLKEN O 1 Low 8 EXPRDY I 1 9 TXD[2] O 1 10 RXD[2] I 11 TDI I 12 VSSIO Pad Gnd 13 PB[7] I/O 1 14 PB[6] I/O 15 PB[5] 16 DS506PP1 High with p/u* Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) Strength Reset State Input 1 High 29 EP7311 High-Performance, Low-Power System on Chip Table T. 208-Pin LQFP Numeric Pin Listing (Continued) Pin No. Signal Type 74 VDDIO Pad Pwr 75 DRIVE[1] I/O Strength Reset State 2 High / Low 76 DRIVE[0] I/O 2 High / Low 77 ADCCLK O 1 Low 78 ADCOUT O 1 Low 79 SMPCLK O 1 Low 80 FB[1] I 81 VSSIO Pad Gnd 82 FB[0] I 83 COL[7] O 1 High 84 COL[6] O 1 High 85 COL[5] O 1 High 86 COL[4] O 1 High 87 COL[3] O 1 High 88 COL[2] O 1 High 89 VDDIO Pad Pwr 90 TCLK I 91 COL[1] O 1 High 92 COL[0] O 1 High 93 BUZ O 1 Low 94 D[31] I/O 1 Low 95 D[30] I/O 1 Low 96 D[29] I/O 1 Low 97 D[28] I/O 1 Low 98 VSSIO Pad Gnd 99 A[27]/DRA[0] O 2 Low 100 D[27] I/O 1 Low 101 A[26]/DRA[1] O 2 Low 102 D[26] I/O 1 Low 103 A[25]/DRA[2] O 2 Low 104 D[25] I/O 1 Low 105 HALFWORD O 1 Low 106 A[24]/DRA[3] O 1 Low 107 VDDIO Pad Pwr — 108 VSSIO Pad Gnd — 109 D[24] I/O 1 Low 110 A[23]/DRA[4] O 1 Low 30 Table T. 208-Pin LQFP Numeric Pin Listing (Continued) Pin No. Signal Type Strength Reset State 111 D[23] I/O 1 Low 112 A[22]/DRA[5] O 1 Low 113 D[22] I/O 1 Low 114 A[21]/DRA[6] O 1 Low 115 D[21] I/O 1 Low 116 VSSIO Pad Gnd 117 A[20]/DRA[7] O 1 Low 118 D[20] I/O 1 Low 119 A[19]/DRA[8] O 1 Low 120 D[19] I/O 1 Low 121 A[18]/DRA[9] O 1 Low 122 D[18] I/O 1 Low 123 VDDIO Pad Pwr 124 VSSIO Pad Gnd 125 nTRST I 126 A[17]/DRA[10] O 1 Low 127 D[17] I/O 1 Low 128 A[16]/DRA[11] O 1 Low 129 D[16] I/O 1 Low 130 A[15]/DRA[12] O 1 Low 131 D[15] I/O 1 Low 132 A[14]/DRA[13] O 1 Low 133 D[14] I/O 1 Low 134 A[13]/DRA[14] O 1 Low 135 D[13] I/O 1 Low 136 A[12] O 1 Low 137 D[12] I/O 1 Low 138 A[11] O 1 Low 139 VDDIO Pad Pwr 140 VSSIO Pad Gnd 141 D[11] I/O 1 Low 142 A[10] O 1 Low 143 D[10] I/O 1 Low 144 A[9] O 1 Low 145 D[9] I/O 1 Low 146 A[8] O 1 Low 147 D[8] I/O 1 Low 148 A[7] O 1 Low Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table T. 208-Pin LQFP Numeric Pin Listing (Continued) Pin No. Signal Type Pin No. Signal Type Strength Reset State 149 VSSIO Pad Gnd 187 M O 1 Low 150 D[7] I/O 188 DD[3] I/O 1 Low 151 nBATCHG I 189 DD[2] I/O 1 Low 152 nEXTPWR I 190 VSSIO Pad Gnd 153 BATOK I 191 DD[1] I/O 1 Low 154 nPOR I 192 DD[0] I/O 1 Low 155 nMEDCHG/ nBROM I 193 nSDCS[1] O 1 High 194 nSDCS[0] O 1 High 156 nURESET I 195 SDQM[3] I/O 2 Low 157 VDDOSC Osc Pwr 196 SDQM[2] I/O 2 Low 158 MOSCIN Osc 197 VDDIO Pad Pwr 159 MOSCOUT Osc 198 VSSIO Pad Gnd 160 VSSOSC Osc Gnd 199 SDCKE I/O 2 Low 161 WAKEUP I 200 SDCLK I/O 2 Low 162 nPWRFL I 201 nMWE/nSDWE O 1 High 163 A[6] O 1 Low 202 nMOE/nSDCAS O 1 High 164 D[6] I/O 1 Low 203 VSSIO Pad Gnd 165 A[5] Out 1 Low 204 nCS[0] O 1 High 166 D[5] I/O 1 Low 205 nCS[1] O 1 High 167 VDDIO Pad Pwr 206 nCS[2] O 1 High 168 VSSIO Pad Gnd 207 nCS[3] O 1 High 169 A[4] O 1 Low 208 nCS[4] O 1 High 170 D[4] I/O 1 Low 171 A[3] O 2 Low 172 D[3] I/O 1 Low 173 A[2] O 2 Low 174 VSSIO Pad Gnd 175 D[2] I/O 1 Low 176 A[1] O 2 Low 177 D[1] I/O 1 Low 178 A[0] O 2 Low 179 D[0] I/O 1 Low 180 VSS CORE Core Gnd 181 VDD CORE Core Pwr 182 VSSIO Pad Gnd 183 VDDIO Pad Pwr 184 CL[2] O 1 Low 185 CL[1] O 1 Low 186 FRM O 1 Low DS506PP1 Strength 1 Reset State Table T. 208-Pin LQFP Numeric Pin Listing (Continued) Low Schmitt Schmitt Schmitt *With p/u’ means with internal pull-up on the pin. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 31 EP7311 High-Performance, Low-Power System on Chip 204-Ball TFBGA Package Characteristics 204-Ball TFBGA Package Specifications TOP VIEW BOTTOM VIEW Ø0.08 M C Ø0.15 M C A B A1 CORNER A1 CORNER Ø0.25~0.35(204X) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M C D E F G H J K L M 12.35 13±0.05 0.65 A B N P R T N P R T U V W Y U V W Y A 0.65 12.35 0.20 C 13±0.05 0.15(4X) C 0.10 C 0.53±0.05 B Ball Pitch : SEATING PLANE Ball Diameter : 0.20~0.30 C 1.20 MAX. 0.36 0.65 Substrate Thickness : 0.36 Mold Thickness : 0.3 0.53 Figure 17. 204-Ball TFBGA Package 32 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip 204-Ball TFBGA Pinout (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A VDDIO EXPCLK nCS3 nCS1 nMWE/ SDQM2 nSDCS1 nSDWE DD2 FRM CL1 GNDCOR E D1 A2 D4 A5 nPWRFL MOSCOUT GNDIO GNDIO B WORD nCS2 nMOE/ SDCKE nSDCS0 nSDCAS DD1 M CL2 D0 A1 D3 A4 D6 WAKEUP MOSCIN GNDIO GNDIO nURESET B DD0 DD3 VDDCO RE A0 D2 A3 D5 A6 GNDOS VDDOSC C GNDIO BATOK nPOR C GNDIO nBATCHG A7 D nMEDCHG nEXTPWR /nBROM D9 E C VDDIO nCS5 RUN/ EXPRDY VDDIO CLKEN nCS4 nCS0 SDCLK SDQM3 GNDIO A D PB7 RXD2 VDDIO E PB4 TXD2 WRITE/ nSDRAS F PB3 PB6 TDI D7 A8 D10 F G PB1/ PRDY2 PB2 PB5 D8 A9 D11 G H PA7 TDO PB0/ PRDY1 A10 D12 A12 H J PA4 PA5 PA6 A11 D13 A13/ DRA14 J K PA1 PA2 VDDIO D14 A14/ DRA13 D15 K PA3 VDDIO D16 A16/ DRA11 L PA0 A15/ DRA12 A17/ DRA10 nTEST1 PHDIN D17 D19 A18/ DRA9 N P EINT3 nEINT2 D18 A20/ DRA7 D20 P R nEXTFIQ PE2/ nTEST0 CLKSEL A19/ DRA8 D22 A21/ DRA6 R D21 D23 A22/ DRA5 T HALF WORD D24 A23/ DRA4 U L TXD1 LEDDRV M RXD1 N T DSR PE1/ BOOT SEL1 CTS PE0/ BOOT SEL0 DCD nEINT1 U GNDRTCRTCOUT RTCIN V VDDRTC GNDIO GNDIO PD7/ SDQM1 PD4 PD2 W GNDIO GNDIO GNDIO PD6/SD TMS QM0 PD1 Y GNDIO GNDIO GNDIO DS506PP1 PD5 PD3 SSICLK SSIRXDA nADCCS VDDIO ADCCLK COL7 nTRST M COL4 TCLK BUZ D29 A26/ DRA1 VDDIO VDDIO A24/ DRA3 V GNDCO DRIVE1 ADCOUT RE FB0 COL5 COL2 COL0 D30 A27/ DRA0 D26 VDDIO D25 W PD0/ VDDCO LED SSITXDA ADCIN DRIVE0 SMPLCK RE FLSH FB1 COL6 COL3 COL1 D31 D28 D27 A25/ DRA2 VDDIO Y SSITXFR SSIRXFR Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 33 EP7311 High-Performance, Low-Power System on Chip 204-Ball TFBGA Ball Listing The list is ordered by ball location. Table 21. 204-Ball TFBGA Ball Listing Ball Location Name † Strength Reset State Type Description Pad power Digital I/O power, 3.3 V I Expansion clock input A1 VDDIO A2 EXPCLK 1 A3 nCS[3] 1 High O Chip select 3 A4 nCS[1] 1 High O Chip select 1 A5 nMWE/nSDWE 1 High O ROM, expansion write enable/ SDRAM write enable control signal A6 SDQM[2] 2 Low O SDRAM byte lane mask A7 nSDCS[1] 1 High O SDRAM chip select 2 A8 DD[2] 1 Low O LCD serial display data A9 FRM 1 Low O LCD frame synchronization pulse A10 CL[1] 1 Low O LCD line clock A11 VSSCORE A12 D[1] 1 Low I/O Data I/O A13 A[2] 2 Low O System byte address A14 D[4] 1 Low I/O Data I/O A15 A[5] 1 Low O System byte address A16 nPWRFL I Power fail sense input A17 MOSCOUT O Main oscillator out A18 VSSIO Pad ground I/O ground A19 VSSIO Pad ground I/O ground A20 VSSIO Pad ground I/O ground B1 WORD B2 VDDIO B3 nCS[5] 1 Low O Chip select 5 B4 nCS[2] 1 High O Chip select 2 B5 nMOE/nSDCAS 1 High O ROM, expansion OP enable/SDRAM CAS control signal B6 SDCKE 2 Low O SDRAM clock enable output B7 nSDCS[0] 1 High O SDRAM chip select 0 34 Core ground 1 Low Core ground O Word access select output Pad power Digital I/O power, 3.3 V Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table 21. 204-Ball TFBGA Ball Listing (Continued) Ball Location Name Strength Reset State Type † Description B8 DD[1] 1 Low O LCD serial display data B9 M 1 Low O LCD AC bias drive B10 CL[2] 1 Low 0 LCD pixel clock out B11 D[0] 1 Low I/O Data I/O B12 A[1] 2 Low O System byte address B13 D[3] 2 Low I/O Data I/O B14 A[4] 1 Low O System byte address B15 D[6] 1 Low I/O Data I/O B16 WAKEUP B17 MOSCIN B18 VSSIO Pad ground I/O ground B19 VSSIO Pad ground I/O ground B20 nURESET C1 RUN/CLKEN 1 C2 EXPRDY 1 C3 VDDIO C4 nCS[4] 1 High O Chip select 4 C5 nCS[0] 1 High O Chip select 0 C6 SDCLK 2 Low O SDRAM clock out C7 SDQM[3] 2 Low O SDRAM byte lane mask C8 DD[0] 1 Low O LCD serial display data C9 DD[3] 1 Low O LCD serial display data C10 VDDCORE Core power Digital core power, 2.5 V C11 A[0] 2 Low O System byte address C12 D[2] 1 Low I/O Data I/O C13 A[3] 2 Low O System byte address C14 D[5] 1 Low I/O Data I/O C15 A[6] 1 Low O System byte address C16 VSSOSC Oscillator ground PLL ground C17 VDDOSC Oscillator power Oscillator power in, 2.5V C18 VSSIO Pad ground C19 BATOK I DS506PP1 Schmitt Schmitt Low I System wake up input I Main oscillator input I User reset input 0 Run output / clock enable output I Expansion port ready input Pad power Digital I/O power, 3.3 V I/O ground Battery ok input Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 35 EP7311 High-Performance, Low-Power System on Chip Table 21. 204-Ball TFBGA Ball Listing (Continued) Ball Location Name † Strength Reset State Type Description I Power-on reset input I GPIO port B UART 2 receive data input C20 nPOR Schmitt D1 PB[7] 1 D2 RXD[2] I D3 VDDIO Pad power Digital I/O power, 3.3V D18 VSSIO Pad ground I/O ground D19 nBATCHG D20 A[7] 1 Low E1 PB[4] 1 Input E2 TXD[2] 1 E3 WRITE/nSDRAS 1 E18 Input ‡ I Battery changed sense input O System byte address I GPIO port B High O UART 2 transmit data output Low O Transfer direction / SDRAM RAS signal output nMEDCHG/nBROM I Media change interrupt input / internal ROM boot enable E19 nEXTPWR I External power supply sense input E20 D[9] 1 Low F1 PB[3] 1 Input F2 PB[6] 1 Input F3 TDI with p/u* F18 D[7] 1 Low I/O Data I/O F19 A[8] 1 Low O System byte address F20 D[10] 1 Low I/O Data I/O G1 PB[1] 1 Input ‡ I/O G2 PB[2] 1 Input ‡ I/O GPIO port B G3 PB[5] 1 Input ‡ I/O GPIO port B G18 D[8] 1 Input ‡ I/O Data I/O G19 A[9] 1 Low O System byte address G20 D[11] 1 Low I/O Data I/O H1 PA[7] 1 Input ‡ I/O GPIO port A H[2] TDO 1 Input ‡ O JTAG data out H[3] PB[0] 1 Input ‡ I/O GPIO port B H[18] A[10] 1 Low O System byte address 36 ‡ I/O Data I/O ‡ I/O GPIO port B ‡ I/O I GPIO port B JTAG data input Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table 21. 204-Ball TFBGA Ball Listing (Continued) Ball Location Name Strength Reset State Type † Description H19 D[12] 1 Low I/O Data I/O H20 A[12] 1 Low O System byte address J1 PA[4] 1 Input ‡ I/O GPIO port A J2 PA[5] 1 Input ‡ I/O GPIO port A J3 PA[6] 1 Input ‡ I/O GPIO port A J18 A[11] 1 Low O System byte address J19 D[13] 1 Low I/O Data I/O J20 A[13]/DRA[14] 1 Low O System byte address / SDRAM address K1 PA[1] 1 Input ‡ I/O GPIO port A K2 PA[2] 1 Input ‡ I/O GPIO port A K3 VDDIO K18 D[14] 1 Low I/O Data I/O K19 A[14]/DRA[13] 1 Low O System byte address / SDRAM address K20 D[15] 1 Low I/O Data I/O L1 TXD[1] 1 High O UART 1 transmit data out L2 LEDDRV 1 Low O IR LED drive L3 PA[3] 1 Input I/O GPIO port A L18 VDDIO L19 D[16] 1 Low I/O Data I/O L20 A[16]/DRA[11] 1 Low O System byte address / SDRAM address M1 RXD[1] I UART 1 receive data input M2 CTS I UART 1 clear to send input M3 PA[0] 1 Input M18 A[15]/DRA[12] 1 Low O System byte address / SDRAM address M19 A[17]/DRA[10] 1 Low O System byte address / SDRAM address M20 nTRST I JTAG async reset input N1 DSR I UART 1 data set ready input N2 nTEST[1] I Test mode select input N3 PHDIN I Photodiode input DS506PP1 Pad power ‡ Pad power With p/u* ‡ I/O Digital I/O power, 3.3V Digital I/O power, 3.3V GPIO port A Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 37 EP7311 High-Performance, Low-Power System on Chip Table 21. 204-Ball TFBGA Ball Listing (Continued) Ball Location Name Strength Reset State Type † Description N18 D[17] 1 Low I/O Data I/O N19 D[19] 1 Low I/O Data I/O N20 A[18]/DRA[9] 1 Low O System byte address / SDRAM address P1 EINT[3] I External interrupt P2 nEINT[2] I External interrupt input P3 DCD I UART 1 data carrier detect P18 D[18] 1 Low I/O Data I/O P19 A[20]/DRA[7] 1 Low O System byte address / SDRAM address P20 D[20] 1 Low I/O Data I/O R1 nEXTFIQ R2 PE[2]/CLKSEL R3 nTEST[0] R18 A[19]/DRA[8] 1 R19 D[22] R20 I 1 Input ‡ I/O External fast interrupt input GPIO port E / clock input mode select I Test mode select input Low O System byte address / SDRAM address 1 Low I/O Data I/O A[21]/DRA[6] 1 Low O System byte address / SDRAM address T1 PE[1]/BOOTSEL[1] 1 Input ‡ I/O GPIO port E / boot mode select T2 PE[0]/BOOTSEL[0] 1 Input ‡ I/O GPIO port E / boot mode select T3 nEINT[1] I External interrupt input T18 D[21] 1 Low I/O Data I/O T19 D[23] 1 Low I/O Data I/O T20 A[22]/DRA[5] 1 Low O System byte address / SDRAM address U1 VSSRTC RTC ground Real time clock ground U2 RTCOUT O Real time clock oscillator output U3 RTCIN I/O Real time clock oscillator input U18 HALFWORD 1 Low O Halfword access select output U19 D[24] 1 Low I/O Data I/O U20 A[23]/DRA[4] 1 Low O System byte address / SDRAM address V1 VDDRTC 38 With p/u* RTC power Real time clock power, 2.5V Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table 21. 204-Ball TFBGA Ball Listing (Continued) Ball Location Name † Strength Reset State Type Description V2 VSSIO Pad ground I/O ground V3 VSSIO Pad ground I/O ground V4 PD[7]/SDQM[1] 1 Low I/O GPIO port D / SDRAM byte lane mask V5 PD[4] 1 Low I/O GPIO port D V6 PD[2] 1 Low I/O GPIO port D V7 SSICLK 1 Input I/O DAI/CODEC/SSI2 serial clock V8 SSIRXDA I/O DAI/CODEC/SSI2 serial data input V9 nADCCS O SSI1 ADC chip select V10 VDDIO V11 ADCCLK 1 V12 COL[7] V13 COL[4] V14 TCLK V15 BUZ 1 V16 D[29] V17 A[26]/DRA[1] V18 VDDIO Pad power Digital I/O power, 3.3 V V19 VDDIO Pad power Digital I/O power, 3.3 V V20 A[24]/DRA[3] W1 VSSIO Pad ground I/O ground W2 VSSIO Pad ground I/O ground W3 VSSIO Pad ground I/O ground W4 PD[6]/SDQM[0] W5 TMS with p/u* W6 PD[1] 1 Low I/O GPIO port D W7 SSITXFR 1 Low I/O DAI/CODEC/SSI2 frame sync W8 SSIRXFR 1 Input I/O DAI/CODEC/SSI2 frame sync W9 VSSCORE W10 DRIVE[1] DS506PP1 1 ‡ High Pad power Digital I/O power, 3.3V Low O SSI1 ADC serial clock 1 High O Keyboard scanner column drive 1 High O Keyboard scanner column drive I JTAG clock Low O Buzzer drive output 1 Low I/O Data I/O 2 Low O System byte address / SDRAM address ‘ 1 Low Low ‡ O I/O GPIO port D / SDRAM byte lane mask I JTAG mode select Core Ground 2 High / Low System byte address / SDRAM address I/O Core Ground PWM drive output Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 39 EP7311 High-Performance, Low-Power System on Chip Table 21. 204-Ball TFBGA Ball Listing (Continued) Ball Location Name Strength Reset State Type 1 Low O SSI1 ADC serial data output I PWM feedback input † Description W11 ADCOUT W12 FB[0] W13 COL[5] 1 High O Keyboard scanner column drive W14 COL[2] 1 High O Keyboard scanner column drive W15 COL[0] 1 High O Keyboard scanner column drive W16 D[30] 1 Low I/O Data I/O W17 A[27]/DRA[0] 2 Low O System byte address / SDRAM address W18 D[26] 1 Low I/O Data I/O W19 VDDIO W20 D[25] Y1 VSSIO Pad ground I/O ground Y2 VSSIO Pad ground I/O ground Y3 VSSIO Pad ground I/O ground Y4 PD[5] 1 Low I/O GPIO port D Y5 PD[3] 1 Low I/O GPIO port D Y6 PD[0]/LEDFLSH 1 Low I/O GPIO port D / LED blinker output Y7 SSITXDA 1 Low O DAI/CODEC/SSI2 serial data output Y8 ADCIN I SSI1 ADC serial input Y9 VDDCORE Y10 DRIVE[0] 2 Input Y11 SMPCLK 1 Low Y12 FB[1] Y13 COL[6] 1 Y14 COL[3] Y15 Pad power 1 Low I/O Digital I/O power, 3.3V Data I/O Core power Digital core power, 2.5V I/O PWM drive output O SSI1 ADC sample clock I PWM feedback input High O Keyboard scanner column drive 1 High O Keyboard scanner column drive COL[1] 1 High O Keyboard scanner column drive Y16 D[31] 1 Low I/O Data I/O Y17 D[28] 1 Low I/O Data I/O Y18 D[27] 1 Low I/O Data I/O Y19 A[25]/DRA[2] 2 Low O System byte address / SDRAM address 40 ‡ Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table 21. 204-Ball TFBGA Ball Listing (Continued) Ball Location Y20 Reset State † Name Strength Type VDDIO Description Digital I/O power, 3.3V Pad power * “With p/u” means with internal pull-up of 100 KOhms on the pin. † ‡ Strength 1 = 4 ma Strength 2 = 12 ma Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions. 256-Ball PBGA Package Characteristics 256-Ball PBGA Package Specifications Figure 18. 256-Ball PBGA Package Note: 1) For pin locations see Table V. 2) Dimensions are in millimeters (inches), and controlling dimension is millimeter 3) Before beginning any new EP7311 design, contact Cirrus Logic for the latest package information. 256-Ball PBGA Pinout (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 A VDDIO nCS[4] nCS[1] SDCLK SDQM[3] DD[1] M VDDIO D[0] D[2] A[3] VDDIO A[6] B nCS[5] VDDIO nCS[3] nMOE/ nSDCAS VDDIO nSDCS[1] DD[2] CL[1] VDDCORE D[1] A[2] A[4] A[5] WAKEUP VDDIO nURESET B C VDDIO EXPCLK VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO VSSIO VDDIO VSSIO VSSIO nPOR nEXTPWR C D WRITE/ nSDRAS EXPRDY VSSIO VDDIO nCS[2] nMWE/ nSDWE nSDCS[0] CL[2] VSSRTC D[4] nPWRFL MOSCIN VDDIO VSSIO D[7] D[8] D E RXD[2] PB[7] TDI WORD VSSIO nCS[0] SDQM[2] FRM A[0] D[5] VSSOSC VSSIO nMEDCHG/ nBROM VDDIO D[9] D[10] E F PB[5] PB[3] VSSIO TXD[2] RUN/ CLKEN VSSIO SDCKE DD[3] A[1] D[6] VSSRTC BATOK nBATCHG VSSIO D[11] VDDIO F G PB[1] VDDIO TDO PB[4] PB[6] VSSRTC VSSRTC DD[0] D[3] VSSRTC A[7] A[8] A[9] VSSIO D[12] D[13] G H PA[7] PA[5] VSSIO PA[4] PA[6] PB[0] PB[2] VSSRTC VSSRTC A[10] A[11] A[12] A[13]/ DRA[14] VSSIO D[14] D[15] H J PA[3] PA[1] VSSIO PA[2] PA[0] TXD[1] CTS VSSRTC VSSRTC A[17]/ DRA[10] A[16]/ DRA[11] A[15]/ DRA[12] A[14]/ DRA[13] nTRST D[16] D[17] J PHDIN VSSIO DCD nTEST[1] EINT[3] VSSRTC ADCIN COL[4] TCLK D[20] D[19] D[18] VSSIO VDDIO VDDIO K DSR VDDIO nEINT[1] PE[2]/ CLKSEL VSSRTC COL[6] D[31] VSSRTC A[22]/ DRA[5] A[21]/ DRA[6] VSSIO A[18]/ DRA[9] A[19]/ DRA[8] L nEINT[2] VDDIO PE[0]/ BOOTSEL[0] TMS VDDIO SSITXFR DRIVE[1] FB[0] COL[0] D[27] VSSIO A[23]/ DRA[4] VDDIO A[20]/ DRA[7] D[21] M VDDIO PD[5] PD[2] SSIRXDA ADCCLK SMPCLK COL[2] D[29] D[26] HALFWORD VSSIO D[22] D[23] N K LEDDRV L RXD[1] M nTEST[0] N nEXTFIQ P VSSRTC R PE[1]/ VSSIO BOOTSEL[1] 15 MOSCOUT VDDOSC 16 VSSIO A RTCOUT VSSIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO VDDIO VSSIO VSSIO VDDIO VSSIO D[24] VDDIO P VDDIO PD[4] PD[1] SSITXDA nADCCS VDDIO ADCOUT COL[7] COL[3] COL[1] D[30] A[27]/ DRA[0] A[25]/ DRA[2] VDDIO A[24]\ DRA[3] R PD[7]/ SDQM[1] PD[6]/ SDQM[0] PD[3] SSICLK FB[1] COL[5] VDDIO BUZ D[28] A[26]/ DRA[1] D[25] VSSIO T RTCIN T VDDRTC PD[0]/ VSSRTC LEDFLSH 14 DS506PP1 SSIRXFR VDDCORE DRIVE[0] Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 41 EP7311 High-Performance, Low-Power System on Chip 0.85 (0.034) ±0.05 (.002) 17.00 (0.669) ±0.20 (.008) Pin 1 Corner D1 0.40 (0.016) ±0.05 (.002) 15.00 (0.590) ±0.20 (.008) 30° TYP Pin 1 Indicator 17.00 (0.669) ±0.20 (.008) E1 15.00 (0.590) ±0.20 (.008) 2 Layer 0.36 (0.014) ±0.09 (0.004) TOP VIEW SIDE VIEW D 17.00 (0.669) Pin 1 Corner 1.00 (0.040) 1.00 (0.040) REF E 16 15 14 13 12 11 10 9 8 7 6 5 1.00 (0.040) REF 42 1 A B C D E F G H J K L M N P R T 1.00 (0.040) 0.50 R 3 Places 4 3 2 17.00 (0.669) BOTTOM VIEW JEDEC #: MO-151 Ball Diameter: 0.50 mm ± 0.10 mm 17 ¥ 17 ¥ 1.61 mm body Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip 256-Ball PBGA Ball Listing The list is ordered by ball location. Table V. 256-Ball PBGA Ball Listing (Continued) Table V. 256-Ball PBGA Ball Listing Ball Location Name Type A1 VDDIO Pad power nCS[4] O Chip select out A3 nCS[1] O Chip select out A4 SDCLK O SDRAM clock out A5 SDQM[3] O SDRAM byte lane mask A6 DD[1] O LCD serial display data M O A8 VDDIO Pad power Name Type Description C12 VDDIO Pad power Digital I/O power, 3.3V C13 VSSIO Pad ground I/O ground C14 VSSIO Pad ground I/O ground C15 nPOR I Power-on reset input C16 nEXTPWR I External power supply sense input D1 WRITE/nSDRAS O Transfer direction / SDRAM RAS signal output Digital I/O power, 3.3V A2 A7 Ball Location Description LCD AC bias drive D2 EXPRDY I Digital I/O power, 3.3V D3 VSSIO Pad ground I/O ground Digital I/O power, 3.3V Expansion port ready input A9 D[0] I/O Data I/O D4 VDDIO Pad power A10 D[2] I/O Data I/O D5 nCS[2] O Chip select out A11 A[3] O System byte address D6 nMWE/nSDWE O ROM, expansion write enable/ SDRAM write enable control signal A12 VDDIO Pad power D7 nSDCS[0] O SDRAM chip select out A13 A[6] O D8 CL[2] O LCD pixel clock out A14 MOSCOUT O A15 VDDOSC Oscillator power A16 VSSIO Pad ground B1 nCS[5] O B2 VDDIO Pad power B3 nCS[3] O B4 nMOE/nSDCAS O Digital I/O power, 3.3V System byte address Main oscillator out D9 VSSRTC D10 D[4] I/O I/O ground D11 nPWRFL I Power fail sense input Chip select out D12 MOSCIN I Main oscillator input I/O ground D13 VDDIO Pad power Digital I/O power, 3.3V Chip select out D14 VSSIO Pad ground I/O ground ROM, expansion OP enable/SDRAM CAS control signal D15 D[7] I/O Data I/O D16 D[8] I/O Data I/O E1 RXD[2] I UART 2 receive data input E2 PB[7] I GPIO port B E3 TDI I JTAG data input E4 WORD O Word access select output E5 VSSIO Pad ground E6 nCS[0] O E7 SDQM[2] O SDRAM byte lane mask E8 FRM O LCD frame synchronization pulse Oscillator power in, 2.5V B5 VDDIO Pad power Digital I/O power, 3.3V B6 nSDCS[1] O SDRAM chip select out B7 B8 DD[2] CL[1] B9 VDDCORE B10 D[1] B11 B12 A[2] A[4] O O LCD line clock Core power Digital core power, 2.5V I/O O O System byte address A[5] O System byte address I System wake up input B15 VDDIO Pad power B16 nURESET I C1 VDDIO Pad power Digital I/O power, 3.3V C2 EXPCLK I Expansion clock input C3 VSSIO Pad ground I/O ground C4 VDDIO Pad power Digital I/O power, 3.3V C5 VSSIO Pad ground I/O ground User reset input VSSIO Pad ground I/O ground C7 VSSIO Pad ground I/O ground C8 VDDIO Pad power Digital I/O power, 3.3V C9 VSSIO Pad ground I/O ground DS506PP1 VSSIO Pad ground E9 A[0] O System byte address E10 D[5] I/O Data I/O E11 VSSOSC Oscillator ground PLL ground E12 VSSIO Pad ground I/O ground E13 nMEDCHG/nBROM I E14 VDDIO Pad power Digital I/O power, 3.3V C6 C11 Chip select out System byte address WAKEUP Pad ground I/O ground Data I/O B14 VSSIO Data I/O LCD serial display data B13 C10 Core ground Real time clock ground Media change interrupt input / internal ROM boot enable Digital I/O power, 3.3V E15 D[9] I/O Data I/O E16 D[10] I/O Data I/O F1 PB[5] I GPIO port B F2 PB[3] I GPIO port B F3 VSSIO Pad ground F4 TXD[2] O UART 2 transmit data output F5 RUN/CLKEN O Run output / clock enable output F6 VSSIO Pad ground I/O ground I/O ground I/O ground Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) I/O ground 43 EP7311 High-Performance, Low-Power System on Chip Table V. 256-Ball PBGA Ball Listing (Continued) Table V. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Type F7 SDCKE O SDRAM clock enable output J7 CTS F8 DD[3] O LCD serial display data J8 VSSRTC RTC ground Real time clock ground RTC ground Real time clock ground 44 Description Ball Location Name Type I Description UART 1 clear to send input F9 A[1] O System byte address J9 VSSRTC F10 D[6] I/O Data I/O J10 A[17]/DRA[10] O System byte address / SDRAM address F11 VSSRTC RTC ground Real time clock ground J11 A[16]/DRA[11] O System byte address / SDRAM address F12 BATOK Battery ok input J12 A[15]/DRA[12] O System byte address / SDRAM address F13 nBATCHG I F14 VSSIO Pad ground I F15 D[11] I/O F16 VDDIO Pad power Battery changed sense input J13 A[14]/DRA[13] O System byte address / SDRAM address I/O ground J14 nTRST I JTAG async reset input Data I/O J15 D[16] I/O Data I/O Digital I/O power, 3.3V J16 D[17] I/O Data I/O G1 PB[1] I G2 VDDIO Pad power GPIO port B K1 LEDDRV O IR LED drivet Digital I/O power, 3.3V K2 PHDIN I Photodiode input G3 TDO O G4 PB[4] I JTAG data out K3 VSSIO Pad ground GPIO port B K4 DCD I UART 1 data carrier detect I GPIO port B I/O ground G5 PB[6] K5 nTEST[1] I Test mode select input G6 VSSRTC Core ground Real time clock ground K6 EINT[3] I External interrupt G7 VSSRTC RTC ground Real time clock ground K7 VSSRTC G8 DD[0] K8 ADCIN I RTC ground Real time clock ground O LCD serial display data SSI1 ADC serial input I/O Data I/O K9 COL[4] O Keyboard scanner column drive RTC ground Real time clock ground K10 TCLK I JTAG clock G9 D[3] G10 VSSRTC G11 A[7] O System byte address K11 D[20] I/O Data I/O G12 A[8] O System byte address K12 D[19] I/O Data I/O G13 A[9] O G14 VSSIO Pad ground System byte address K13 D[18] I/O I/O ground K14 VSSIO Pad ground I/O ground G15 D[12] G16 D[13] H1 PA[7] I H2 PA[5] I H3 VSSIO Pad ground H4 PA[4] I I/O Data I/O K15 VDDIO Pad power Digital I/O power, 3.3V I/O Data I/O K16 VDDIO Pad power Digital I/O power, 3.3V GPIO port A L1 RXD[1] I GPIO port A L2 DSR I I/O ground L3 VDDIO Pad power Digital I/O power, 3.3V GPIO port A L4 nEINT[1] I External interrupt input I GPIO port E / clock input mode select H5 PA[6] I GPIO port A L5 PE[2]/CLKSEL H6 PB[0] I GPIO port B L6 VSSRTC I GPIO port B L7 PD[0]/LEDFLSH L8 VSSRTC H7 PB[2] H8 VSSRTC RTC ground Real time clock ground RTC ground Real time clock ground Data I/O UART 1 receive data input UART 1 data set ready input RTC ground Real time clock ground I/O GPIO port D / LED blinker output Core ground Real time clock ground H9 VSSRTC L9 COL[6] O Keyboard scanner column drive H10 A[10] O System byte address L10 D[31] I/O Data I/O H11 A[11] O System byte address L11 VSSRTC H12 A[12] O System byte address L12 A[22]/DRA[5] H13 A[13]/DRA[14] O H14 VSSIO Pad ground H15 D[14] H16 D[15] J1 PA[3] J2 PA[1] J3 VSSIO Pad ground J4 PA[2] I RTC ground Real time clock ground O System byte address / SDRAM address System byte address / SDRAM address L13 A[21]/DRA[6] O I/O ground L14 VSSIO Pad ground I/O Data I/O L15 A[18]/DRA[9] O System byte address / SDRAM address I/O Data I/O L16 A[19]/DRA[8] O System byte address / SDRAM address I GPIO port A M1 nTEST[0] I Test mode select input I GPIO port A M2 nEINT[2] I External interrupt input I/O ground M3 VDDIO Pad power Digital I/O power, 3.3V GPIO port A M4 PE[0]/BOOTSEL[0] I J5 PA[0] I GPIO port A M5 TMS I J6 TXD[1] O UART 1 transmit data out M6 VDDIO Pad power Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) System byte address / SDRAM address I/O ground GPIO port E / Boot mode select JTAG mode select Digital I/O power, 3.3V DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table V. 256-Ball PBGA Ball Listing (Continued) Type Table V. 256-Ball PBGA Ball Listing (Continued) Ball Location Name Description Ball Location M7 SSITXFR I/O MCP/CODEC/SSI2 frame sync M8 DRIVE[1] I/O PWM drive output Name Type Description R7 VDDIO Pad power R8 ADCOUT O SSI1 ADC serial data output Digital I/O power, 3.3V M9 FB[0] I PWM feedback input R9 COL[7] O Keyboard scanner column drive M10 COL[0] O Keyboard scanner column drive R10 COL[3] O Keyboard scanner column drive M11 D[27] I/O Data I/O R11 COL[1] O Keyboard scanner column drive M12 VSSIO Pad ground I/O ground R12 D[30] I/O Data I/O M13 A[23]/DRA[4] O System byte address / SDRAM address M14 VDDIO Pad power M15 A[20]/DRA[7] M16 System byte address / SDRAM address R13 A[27]/DRA[0] O Digital I/O power, 3.3V R14 A[25]/DRA[2] O O System byte address / SDRAM address R15 VDDIO Pad power D[21] I/O Data I/O R16 A[24]/DRA[3] O N1 nEXTFIQ I External fast interrupt input T1 VDDRTC RTC power N2 PE[1]/BOOTSEL[1] I GPIO port E / boot mode select T2 PD[7]/SDQM[1] I/O N3 VSSIO Pad ground I/O ground T3 PD[6]/SDQM[0] I/O GPIO port D / SDRAM byte lane mask N4 VDDIO Pad power Digital I/O power, 3.3V T4 PD[3] I/O GPIO port D N5 PD[5] I/O GPIO port D T5 SSICLK I/O MCP/CODEC/SSI2 serial clock N6 PD[2] I/O GPIO port D T6 SSIRXFR – MCP/CODEC/SSI2 frame sync N7 SSIRXDA I/O MCP/CODEC/SSI2 serial data input T7 VDDCORE N8 ADCCLK O SSI1 ADC serial clock T8 DRIVE[0] System byte address / SDRAM address Digital I/O power, 3.3V System byte address / SDRAM address Real time clock power, 2.5V GPIO port D / SDRAM byte lane mask Core power Core power, 2.5V I/O PWM drive output N9 SMPCLK O SSI1 ADC sample clock T9 FB[1] I PWM feedback input N10 COL[2] O Keyboard scanner column drive T10 COL[5] O Keyboard scanner column drive N11 D[29] I/O Data I/O T11 VDDIO Pad power N12 D[26] I/O Data I/O T12 BUZ O Buzzer drive output N13 HALFWORD O Data I/O N14 VSSIO Pad ground N15 D[22] N16 D[23] Halfword access select output T13 D[28] I/O I/O ground T14 A[26]/DRA[1] O System byte address / SDRAM address I/O Data I/O T15 D[25] I/O Data I/O I/O Data I/O T16 VSSIO Pad ground P1 VSSRTC P2 RTCOUT O P3 VSSIO Pad ground I/O ground P4 VSSIO Pad ground I/O ground P5 VDDIO Pad power Digital I/O power, 3.3V P6 VSSIO Pad ground I/O ground P7 VSSIO Pad ground I/O ground P8 VDDIO Pad power Digital I/O power, 3.3V I/O ground RTC ground Real time clock ground Real time clock oscillator output P9 VSSIO Pad ground I/O ground P10 VDDIO Pad power Digital I/O power, 3.3V P11 VSSIO Pad ground I/O ground P12 VSSIO Pad ground I/O ground P13 VDDIO Pad power Digital I/O power P14 VSSIO Pad ground P15 D[24] I/O P16 VDDIO Pad power I/O ground Data I/O Digital I/O power, 3.3V R1 RTCIN I/O R2 VDDIO Pad power R3 PD[4] I/O GPIO port D R4 PD[1] I/O GPIO port D R5 SSITXDA O MCP/CODEC/SSI2 serial data output R6 nADCCS O SSI1 ADC chip select DS506PP1 Digital I/O power, 3.3V Real time clock oscillator input Digital I/O power, 3.3V Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 45 EP7311 High-Performance, Low-Power System on Chip JTAG Boundary Scan Signal Ordering Table W. JTAG Boundary Scan Signal Ordering 46 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 1 B3 B1 nCS[5] O 1 4 A2 C2 EXPCLK I/O 3 5 B1 E4 WORD O 6 6 E3 D1 WRITE/nSDRAS O 8 7 C1 F5 RUN/CLKEN O 10 8 C2 D2 EXPRDY I 13 9 E2 F4 TXD2 O 14 10 D2 E1 RXD2 I 16 13 F3 E2 PB[7] I/O 17 14 D1 G5 PB[6] I/O 20 15 F2 F1 PB[5] I/O 23 16 G3 G4 PB[4] I/O 26 17 E1 F2 PB[3] I/O 29 18 F1 H7 PB[2] I/O 32 19 G2 G1 PB[1]/PRDY2 I/O 35 20 G1 H6 PB[0]/PRDY1 I/O 38 23 H3 H1 PA[7] I/O 41 24 H1 H5 PA[6] I/O 44 25 J3 H2 PA[5] I/O 47 26 J2 H4 PA[4] I/O 50 27 J1 J1 PA[3] I/O 53 28 L3 J4 PA[2] I/O 56 29 K2 J2 PA[1] I/O 59 30 K1 J5 PA[0] I/O 62 31 M3 K1 LEDDRV O 65 32 L2 J6 TXD1 O 67 34 L1 K2 PHDIN I 69 35 N3 J7 CTS I 70 36 M2 L1 RXD1 I 71 37 M1 K4 DCD I 72 38 P3 L2 DSR I 73 39 N1 K5 nTEST1 I 74 40 N2 M1 nTEST0 I 75 41 R3 K6 EINT3 I 76 42 P1 M2 nEINT2 I 77 43 P2 L4 nEINT1 I 78 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table W. JTAG Boundary Scan Signal Ordering (Continued) DS506PP1 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 44 T3 N1 nEXTFIQ I 79 45 R1 L5 PE[2]/CLKSEL I/O 80 46 R2 N2 PE[1]/BOOTSEL1 I/O 83 47 T1 M4 PE[0]/BOOTSEL0 I/O 86 53 T2 T2 PD[7]/SDQM[1] I/O 89 54 V4 T3 PD[6/SDQM[0]] I/O 92 55 W4 N5 PD[5] I/O 95 56 Y4 R3 PD[4] I/O 98 59 V5 T4 PD[3] I/O 101 60 W5 N6 PD[2] I/O 104 61 Y5 R4 PD[1] I/O 107 62 V6 L7 PD[0]/LEDFLSH O 110 68 W6 T6 SSIRXFR I/O 122 69 Y6 K8 ADCIN I 125 70 W8 R6 nADCCS O 126 75 Y8 M8 DRIVE1 I/O 128 76 V9 T8 DRIVE0 I/O 131 77 W10 N8 ADCCLK O 134 78 Y10 R8 ADCOUT O 136 79 V11 N9 SMPCLK O 138 80 W11 T9 FB1 I 140 82 Y11 M9 FB0 I 141 83 Y12 R9 COL7 O 142 84 W12 L9 COL6 O 144 85 V12 T10 COL5 O 146 86 Y13 K9 COL4 O 148 87 W13 R10 COL3 O 150 88 V13 N10 COL2 O 152 91 Y14 R11 COL1 O 154 92 W14 M10 COL0 O 156 93 A1 T12 BUZ O 158 94 V14 L10 D[31] I/O 160 95 Y15 R12 D[30] I/O 163 96 W15 N11 D[29] I/O 166 97 V15 T13 D[28] I/O 169 99 Y16 R13 A[27]/DRA[0] Out 172 100 W16 M11 D[27] I/O 174 101 V16 T14 A[26]/DRA[1] O 177 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 47 EP7311 High-Performance, Low-Power System on Chip Table W. JTAG Boundary Scan Signal Ordering (Continued) 48 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 102 Y17 N12 D[26] I/O 179 103 W17 R14 A[25]/DRA[2] O 182 104 Y18 T15 D[25] I/O 184 105 V17 N13 HALFWORD O 187 106 W18 R16 A[24]/DRA[3] O 189 109 Y19 P15 D[24] I/O 191 110 W20 M13 A[23]/DRA[4] O 194 111 U18 N16 D[23] I/O 196 112 V20 L12 A[22]/DRA[5] O 199 113 U19 N15 D[22] I/O 201 114 U20 L13 A[21]/DRA[6] O 204 115 T19 M16 D[21] I/O 206 117 T20 M15 A[20]/DRA[7] O 209 118 R19 K11 D[20] I/O 211 119 R20 L16 A[19]/DRA[8] O 214 120 T18 K12 D[19] I/O 216 121 P19 L15 A[18]/DRA[9] O 219 122 P20 K13 D[18] I/O 221 126 R18 J10 A[17]/DRA[10] O 224 127 N19 J16 D[17] I/O 226 128 N20 J11 A[16]/DRA[11] O 229 129 P18 J15 D[16] I/O 231 130 M19 J12 A[15]/DRA[12] O 234 131 N18 H16 D[15] I/O 236 132 L20 J13 A[14]/DRA[13] O 239 133 L19 H15 D[14] I/O 241 134 M18 H13 A[13]/DRA[14] O 244 135 K20 G16 D[13] I/O 246 136 K19 H12 A[12] O 249 137 K18 G15 D[12] I/O 251 138 J20 H11 A[11] O 254 141 J19 F15 D[11] I/O 256 142 H20 H10 A[10] O 259 143 H19 E16 D[10] I/O 261 144 J18 G13 A[9] O 264 145 K3 E15 D[9] I/O 266 146 Y3 G12 A[8] O 269 147 G20 D16 D[8] I/O 271 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip Table W. JTAG Boundary Scan Signal Ordering (Continued) DS506PP1 LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 148 H18 G11 A[7] O 274 150 F20 D15 D[7] I/O 276 151 G19 F13 nBATCHG I 279 152 E20 C16 nEXTPWR I 280 153 F19 F12 BATOK I 281 154 G18 C15 nPOR I 282 155 D20 E13 nMEDCHG/nBROM I 283 156 F18 B16 nURESET I 284 161 D19 B14 WAKEUP I 285 162 E19 D11 nPWRFL I 286 163 C19 A13 A[6] O 287 164 C20 F10 D[6] I/O 289 165 E18 B13 A[5] O 292 166 B20 E10 D[5] I/O 294 169 B16 B12 A[4] O 297 170 A16 D10 D[4] I/O 299 171 C15 A11 A[3] O 302 172 B15 G9 D[3] I/O 304 173 A15 B11 A[2] O 307 175 C14 A10 D[2] I/O 309 176 B14 F9 A[1] O 312 177 A14 B10 D[1] I/O 314 178 C13 E9 A[0] O 317 179 B13 A9 D[0] I/O 319 184 A13 D8 CL2 O 322 185 C12 B8 CL1 O 324 186 B12 E8 FRM O 326 187 A12 A7 M O 328 188 C11 F8 DD[3] I/O 330 189 B11 B7 DD[2] I/O 333 191 B10 A6 DD[1] I/O 336 192 A10 G8 DD[0] I/O 339 193 A9 B6 nSDCS[1] O 342 194 B9 D7 nSDCS[0] O 344 195 C9 A5 SDQM[3] I/O 346 196 A8 E7 SDQM[2] I/O 349 199 B8 F7 SDCKE I/O 352 200 C8 A4 SDCLK I/O 355 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 49 EP7311 High-Performance, Low-Power System on Chip Table W. JTAG Boundary Scan Signal Ordering (Continued) LQFP Pin No. TFBGA Ball PBGA Ball Signal Type Position 201 A7 D6 nMWE/nSDWE O 358 202 B7 B4 nMOE/nSDCAS O 360 204 C7 E6 nCS[0] O 362 205 A6 A3 nCS[1] O 364 206 B6 D5 nCS[2] O 366 207 C6 B3 nCS[3] O 368 208 A5 A2 nCS[4] O 370 1) See EP7311 Users’ Manual for pin naming / functionality. 2) For each pad, the JTAG connection ordering is input, output, then enable as applicable. 50 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip CONVENTIONS Table X. Acronyms and Abbreviations (Continued) Acronym/ Abbreviation This section presents acronyms, abbreviations, units of measurement, and conventions used in this data sheet. Acronyms and Abbreviations Table X lists abbreviations and acronyms used in this data sheet. Table X. Acronyms and Abbreviations Acronym/ Abbreviation Definition TAP test access port TLB translation lookaside buffer UART universal asynchronous receiver Units of Measurement Table Y. Unit of Measurement Definition Symbol Unit of Measure A/D analog-to-digital ADC analog-to-digital converter °C degree Celsius CODEC coder / decoder fs sample frequency D/A digital-to-analog Hz hertz (cycle per second) DMA direct-memory access kbps kilobits per second EPB embedded peripheral bus KB kilobyte (1,024 bytes) FCS frame check sequence kHz kilohertz FIFO first in / first out kΩ kilohm FIQ fast interrupt request Mbps megabits (1,048,576 bits) per second GPIO general purpose I/O MB megabyte (1,048,576 bytes) ICT in circuit test MBps megabytes per second IR infrared MHz megahertz (1,000 kilohertz) IRQ standard interrupt request µA microampere IrDA Infrared Data Association µF microfarad JTAG Joint Test Action Group µW microwatt LCD liquid crystal display µs microsecond (1,000 nanoseconds) LED light-emitting diode mA milliampere LQFP low profile quad flat pack mW milliwatt LSB least significant bit ms millisecond (1,000 microseconds) MIPS millions of instructions per second ns nanosecond MMU memory management unit V volt MSB most significant bit W watt PBGA plastic ball grid array PCB printed circuit board PDA personal digital assistant PLL phase locked loop p/u pull-up resistor RISC reduced instruction set computer RTC Real-Time Clock SIR slow (9600–115.2 kbps) infrared SRAM static random access memory SSI synchronous serial interface DS506PP1 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 51 EP7311 High-Performance, Low-Power System on Chip General Conventions Pin Description Conventions Hexadecimal numbers are presented with all letters in uppercase and a lowercase “h” appended or with a 0x at the beginning. For example, 0x14 and 03CAh are hexadecimal numbers. Binary numbers are enclosed in single quotation marks when in text (for example, ‘11’ designates a binary number). Numbers not indicated by an “h”, 0x or quotation marks are decimal. Abbreviations used for signal directions are listed in Table Z. Registers are referred to by acronym, with bits listed in brackets separated by a colon (:) (for example, CODR[7:0]), and are described in the EP7311 User’s Manual. The use of “TBD” indicates values that are “to be determined,” “n/a” designates “not available,” and “n/c” indicates a pin that is a “no connect.” 52 Table Z. Pin Description Conventions Abbreviation Direction I Input O Output I/O Input or Output Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1 EP7311 High-Performance, Low-Power System on Chip ORDERING INFORMATION The order number for the device is: EP7311 — CV — C Revision † Package Type: V = Low Profile Quad Flat Pack B = Plastic Ball Grid Array (17 mm x 17 mm) R = Reduced Ball Grid Array (13 mm x 13 mm) Part Number Product Line: Embedded Processor Note: DS506PP1 Temperature Range: C = Commercial E = Extended Operating Version I = Industrial Operating Version Contact Cirrus Logic for up-to-date information on revisions. Go to the Cirrus Logic Internet site at http://cirrus.com/corporate/contacts to find contact information for your local sales representative. Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) 53 EP7311 High-Performance, Low-Power System on Chip Contacting Cirrus Logic Support For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at: http://www.cirrus.com/corporate/contacts/sales.cfm IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export license and/or quota needs to be obtained from the competent authorities of the Chinese Government if any of the products or technologies described in this material is subject to the PRC Foreign Trade Law and is to be exported or taken out of the PRC. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, the Cirrus Logic logo designs, Maverick, and MaverickKey are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. LINUX is a registered trademark of Linus Torvalds. 54 Copyright Cirrus Logic, Inc. 2003 (All Rights Reserved) DS506PP1