IRF IRF520VPBF Hexfetâ® power mosfet Datasheet

PD - 94819
IRF520VPbF
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
Optimized for SMPS Applications
Lead-Free
HEXFET® Power MOSFET
D
VDSS = 100V
RDS(on) = 0.165Ω
G
ID = 9.6A
S
Description
Advanced HEXFET® Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220 contribute
to its wide acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Max.
Units
9.6
6.8
37
44
0.29
± 20
9.2
4.4
7.0
-55 to + 175
A
W
W/°C
V
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
3.4
–––
62
°C/W
1
11/5/03
IRF520VPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
100
–––
–––
2.0
1.9
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.12
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
6.9
23
30
24
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
EAS
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Single Pulse Avalanche Energy
––– 560
–––
81
–––
10
––– 150
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
0.165
Ω
VGS = 10V, ID = 5.5A 4.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 50V, ID = 5.5A
25
VDS = 100V, VGS = 0V
µA
250
VDS = 80V, VGS = 0V, TJ = 150°C
100
VGS = 20V
nA
-100
VGS = -20V
22
ID = 9.2A
5.2
nC
VDS = 80V
7.0
VGS = 10V, See Fig. 6 and 13
–––
VDD = 50V
–––
ID = 9.2A
ns
–––
RG = 18Ω
–––
VGS = 10V, See Fig. 10 Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
44
mJ IAS = 9.2A, L = 1.0mH
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 9.6
showing the
A
G
integral reverse
37
––– –––
S
p-n junction diode.
––– ––– 1.2
V
TJ = 25°C, IS = 9.2A, VGS = 0V ––– 83 120
ns
TJ = 25°C, IF = 9.2A
––– 220 330
nC
di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
ISD ≤ 9.2A, di/dt ≤ 360A/µs, VDD ≤ V(BR)DSS,
Starting TJ = 25°C, L = 1.0mH
Pulse width ≤ 400µs; duty cycle ≤ 2%.
This is a typical value at device destruction and represents
max. junction temperature. ( See fig. 11 )
RG = 25Ω, IAS = 9.2A, VGS=10V (See Figure 12)
TJ ≤ 175°C
operation outside rated limits.
This is a calculated value limited to TJ = 175°C .
2
www.irf.com
IRF520VPbF
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
10
4.5V
20µs PULSE WIDTH
TJ = 175 ° C
1
100
1
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.5
TJ = 25 ° C
TJ = 175 ° C
10
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
100
1
4.0
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
9.0
ID = 9.2A
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20 0
VGS = 10V
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF520VPbF
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
800
Coss = Cds + Cgd
600
Ciss
400
200
Coss
20
VGS , Gate-to-Source Voltage (V)
1000
1
16
12
8
4
10
0
100
FOR TEST CIRCUIT
SEE FIGURE 13
4
8
100
ID, Drain-to-Source Current (A)
100
TJ = 175 ° C
10
1
TJ = 25 ° C
V GS = 0 V
0.6
0.8
1.0
1.2
12
16
20
24
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
0.1
0.4
0
QG , Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
ISD , Reverse Drain Current (A)
VDS = 80V
VDS = 50V
VDS = 20V
Crss
0
1.4
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
ID = 9.2A
1.6
OPERATION IN THIS AREA
LIMITED BY R DS(on)
10
100µsec
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF520VPbF
10.0
VDS
VGS
ID , Drain Current (A)
8.0
D.U.T.
RG
6.0
RD
+
-VDD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
4.0
Fig 10a. Switching Time Test Circuit
2.0
VDS
90%
0.0
25
50
75
100
125
150
175
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.01
0.00001
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
15V
L
VDS
D.U.T
RG
VGS
20V
IAS
tp
DRIVER
+
V
- DD
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
IRF520VPbF
80
ID
3.8A
6.5A
9.2A
TOP
BOTTOM
60
40
20
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
VGS
QGS
D.U.T.
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRF520VPbF
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T*
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
-
-
+
RG
• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D=
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 14. For N-channel HEXFET® power MOSFETs
www.irf.com
7
IRF520VPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- EMITTER
3- SOURCE
4 - DRAIN
HEXFET
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
ASSEMBLED O N WW 19, 1997
IN THE ASSEMBLY LINE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INTERNATIO NAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/03
8
www.irf.com
Similar pages