IRF IRFP4332PBF Advanced process technology Datasheet

PD - 97100B
IRFP4332PbF
PDP SWITCH
Features
l Advanced Process Technology
l Key Parameters Optimized for PDP Sustain,
Energy Recovery and Pass Switch Applications
l Low E PULSE Rating to Reduce Power
Dissipation in PDP Sustain, Energy Recovery
and Pass Switch Applications
l Low Q G for Fast Response
l High Repetitive Peak Current Capability for
Reliable Operation
l Short Fall & Rise Times for Fast Switching
l175°C Operating Junction Temperature for
Improved Ruggedness
l Repetitive Avalanche Capability for Robustness
and Reliability
Key Parameters
VDS min
VDS (Avalanche) typ.
RDS(ON) typ. @ 10V
TJ max
250
300
29
175
V
V
m:
°C
D
D
G
G
S
D
S
TO-247AC
G
D
S
Gate
Drain
Source
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Max.
Parameter
VGS
ID @ TC = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
±30
V
57
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
40
IDM
Pulsed Drain Current
230
c
gh
Units
IRP @ TC = 100°C
Repetitive Peak Current
PD @TC = 25°C
Power Dissipation
PD @TC = 100°C
Power Dissipation
180
Linear Derating Factor
2.4
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
120
360
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
W
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
f
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
f
Typ.
–––
0.24
–––
Max.
0.42
–––
40
Units
°C/W
Notes  through † are on page 9
www.irf.com
1
12/15/09
IRFP4332PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
VGS = 0V, ID = 250µA
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 35A
BVDSS
Drain-to-Source Breakdown Voltage
250
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
170
–––
Static Drain-to-Source On-Resistance
–––
29
33
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-14
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
–––
–––
200
µA
VDS = 250V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
IGSS
e
VDS = VGS, ID = 250µA
VDS = 250V, VGS = 0V
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
100
–––
–––
S
VDS = 25V, ID = 35A
Qg
Total Gate Charge
–––
99
150
nC
VDD = 125V, ID = 35A, VGS = 10V
Qgd
Gate-to-Drain Charge
–––
35
–––
tst
Shoot Through Blocking Time
100
–––
–––
EPULSE
Energy per Pulse
–––
–––
520
920
–––
VGS = -20V
ns
Input Capacitance
–––
5860
–––
Coss
Output Capacitance
–––
530
–––
Crss
Reverse Transfer Capacitance
–––
130
–––
Coss eff.
Effective Output Capacitance
–––
360
–––
LD
Internal Drain Inductance
–––
5.0
–––
µJ
Internal Source Inductance
–––
13
VDS = 200V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.3µF, VGS = 15V
VDS = 200V, RG= 5.1Ω, TJ = 100°C
VGS = 0V
pF
VDS = 25V
ƒ = 1.0MHz,
VGS = 0V, VDS = 0V to 200V
Between lead,
nH
LS
VDD = 200V, VGS = 15V, RG= 4.7Ω
L = 220nH, C= 0.3µF, VGS = 15V
–––
Ciss
e
–––
D
6mm (0.25in.)
from package
G
and center of die contact
S
Avalanche Characteristics
Parameter
EAS
EAR
VDS(Avalanche)
IAS
d
Repetitive Avalanche Energy c
Repetitive Avalanche Voltagec
Avalanche Currentd
Single Pulse Avalanche Energy
Typ.
Max.
Units
–––
210
mJ
–––
36
mJ
300
–––
V
–––
35
A
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
ISM
Pulsed Source Current
c
MOSFET symbol
57
(Body Diode)
A
–––
–––
Diode Forward Voltage
–––
–––
showing the
230
integral reverse
1.3
V
p-n junction diode.
TJ = 25°C, IS = 35A, VGS = 0V
(Body Diode)
VSD
Conditions
e
trr
Reverse Recovery Time
–––
190
290
ns
TJ = 25°C, IF = 35A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
820
1230
nC
di/dt = 100A/µs
2
e
www.irf.com
IRFP4332PbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
100
BOTTOM
5.5V
10
100
1
1
10
BOTTOM
5.5V
10
≤ 60µs PULSE WIDTH
Tj = 25°C
0.1
≤ 60µs PULSE WIDTH
Tj = 175°C
1
100
0.1
1
VDS, Drain-to-Source Voltage (V)
100
Fig 2. Typical Output Characteristics
3.5
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current(Α)
10
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
TJ = 175°C
10
TJ = 25°C
1
0.1
VDS = 25V
≤ 60µs PULSE WIDTH
0.01
4.0
5.0
6.0
7.0
ID = 35A
VGS = 10V
3.0
2.5
2.0
1.5
1.0
0.5
0.0
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
1000
1000
L = 220nH
C = 0.3µF
100°C
25°C
L = 220nH
C = Variable
100°C
25°C
800
Energy per pulse (µJ)
800
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
600
400
600
400
200
200
0
0
150
160
170
180
190
200
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
100
110
120
130
140
150
160
170
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFP4332PbF
1000
1400
L = 220nH
C= 0.3µF
C= 0.2µF
C= 0.1µF
1000
ISD , Reverse Drain Current (A)
Energy per pulse (µJ)
1200
800
600
400
200
100
TJ = 175°C
10
1
TJ = 25°C
VGS = 0V
0
0.1
25
50
75
100
125
150
0.2
Temperature (°C)
Fig 7. Typical EPULSE vs.Temperature
10000
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
20
Coss = Cds + Cgd
Ciss
6000
4000
Coss
2000
Crss
1
1.0
1.2
ID= 35A
VDS = 200V
VDS = 125V
16
VDS = 50V
12
8
4
10
100
0
1000
40
80
120
160
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
60
1000
ID, Drain-to-Source Current (A)
50
ID, Drain Current (A)
0.8
0
0
40
30
20
10
0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1µsec
100
100µsec
10µsec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
25
50
75
100
125
150
175
TJ , Junction Temperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
0.6
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
8000
0.4
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
0.40
EAS, Single Pulse Avalanche Energy (mJ)
()
RDS (on), Drain-to -Source On Resistance Ω
IRFP4332PbF
ID = 35A
0.30
0.20
0.10
TJ = 125°C
TJ = 25°C
1000
I D
8.3A
13A
BOTTOM 35A
TOP
800
600
400
200
0.00
0
5
6
7
8
9
10
25
VGS, Gate-to-Source Voltage (V)
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 13. On-Resistance Vs. Gate Voltage
Fig 14. Maximum Avalanche Energy Vs. Temperature
180
5.0
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
160
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
50
4.0
ID = 250µA
3.0
2.0
140
120
100
80
60
40
20
1.0
0
-75 -50 -25
0
25
50
75
100 125 150 175
25
50
75
TJ , Temperature ( °C )
100
125
150
175
Case Temperature (°C)
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
Thermal Response ( ZthJC )
1
D = 0.50
0.1
0.20
0.10
τJ
0.05
0.01
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
Ci= τi/Ri
Ci= τi/Ri
τ2
τ3
τ3
τ
τι (sec)
0.069565 0.000074
0.172464 0.001546
0.178261 0.019117
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP4332PbF
Driver Gate Drive
D.U.T
ƒ
+
‚
-
-

*
RG
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
**
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
12V
Vgs
.2µF
.3µF
D.U.T.
+
V
- DS
VGS
Vgs(th)
3mA
IG
ID
Current Sampling Resistors
Fig 20a. Gate Charge Test Circuit
6
Qgs1 Qgs2
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFP4332PbF
A
RG
PULSE A
C
DRIVER
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
www.irf.com
7
IRFP4332PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
8
www.irf.com
IRFP4332PbF
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC Lead Option- 203
All dimensions in millimeters (inches)
Lead Assignments
1- Gate
2- Drain
3- Source
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.35mH, RG = 25Ω, IAS = 35A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
Half sine wave with duty cycle = 0.25, ton=1µsec.
† Applicable to Sustain and Energy Recovery applications.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/2009
www.irf.com
9
Similar pages