ADS5542 SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 14-Bit, 80 MSPS Analog-To-Digital Converter FEATURES • • • • • • • • • 14-Bit Resolution 80 MSPS Sample Rate High SNR: 72.9 dBFS at 100 MHz fIN High SFDR: 88 dBc at 100 MHz fIN 2.3-VPP Differential Input Voltage Internal Voltage Reference 3.3-V Single-Supply Voltage Analog Power Dissipation: 545 mW Serial Programming Interface • • TQFP-64 PowerPAD™ Package Recommended Amplifiers: OPA695, OPA847, THS3201, THS3202, THS4503, THS4509, THS9001 APPLICATIONS • • • • • • Wireless Communication – Communication Receivers – Base Station Infrastructure Test and Measurement Instrumentation Single and Multichannel Digital Receivers Communication Instrumentation – Radar, Infrared Video and Imaging Medical Equipment DESCRIPTION The ADS5542 is a high-performance, 14-bit, 80 MSPS analog-to-digital converter (ADC). To provide a complete converter solution, it includes a high-bandwidth linear sample-and-hold stage (S&H) and internal reference. Designed for applications demanding the highest speed and highest dynamic performance in little space, the ADS5542 has excellent power consumption of 545 mW at 3.3-V single-supply voltage. This allows an even higher system integration density. The provided internal reference simplifies system design requirements. Parallel CMOS-compatible output ensures seamless interfacing with common logic. The ADS5542 is available in a 64-pin TQFP PowerPAD package over the industrial temperature range -40°C to 85°C. ADS5500 PRODUCT FAMILY 80 MSPS 105 MSPS 125 MSPS 12 Bit ADS5522 ADS5521 ADS5542 14 Bit ADS5542 ADS5541 ADS5500 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2004–2007, Texas Instruments Incorporated ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 AVDD DRVDD CLK+ CLK− Timing Circuitry 14-Bit Pipeline ADC Core VIN+ S&H VIN− CM Internal Reference CLKOUT Digital Error Correction D0 . . . D13 Output Control OVR DFS Control Logic Serial Programming Register AGND SEN SDATA ADS5542 SCLK DRGND This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ORDERING INFORMATION (1) PRODUCT PACKAGE-LEAD ADS5542 HTQFP-64 (2) PowerPAD (1) (2) PACKAGE DESIGNATOR SPECIFIED TEMPERATURE RANGE PACKAGE MARKING PAP –40°C to 85°C ADS5542I ORDERING NUMBER TRANSPORT MEDIA, QUANTITY ADS5542IPAP Tray, 160 ADS5542IPAPR Tape and Reel, 1000 For the most current product and ordering information, see the Package Option Addendum at the end of this data sheet. Thermal pad size: 3,5 mm × 3,5 mm (min), 4 mm x 4 mm (max). θJA = 21.47°C/W and θJC = 2.99°C/W, when used with 2 oz. copper trace and pad soldered directly to a JEDEC standard, four-layer, 3 in × 3 in PCB. ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) ADS5500 UNIT –0.3 to 3.7 V ±0.1 V –0.3 to minimum (AVDD + 0.3, 3.6) V Logic input to DRGND –0.3 to DRVDD V Digital data output to DRGND –0.3 to DRVDD V Operating temperature range –40 to 85 °C 105 °C –65 to 150 °C Supply Voltage AVDD to AGND, DRVDD to DRGND AGND to DRGND Analog input to AGND (2) (3) Junction temperature Storage temperature range (1) (2) (3) 2 Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. If the input signal can exceed 3.6 V, then a resistor greater than or equal to 25 Ω should be added in series with each of the analog input pins to support input voltages up to 3.8 V. For input voltages above 3.8 V, the device can only handle transients and the duty cycle of the overshoot should be limited to less than 5% for inputs up to 3.9 V. The overshoot duty cycle can be defined as the ratio of the total time of overshoot to the total intended device lifetime, expressed as a percentage. The total time of overshoot is the integrated time of all overshoot occurences over the lifetime of the device. Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 RECOMMENDED OPERATING CONDITIONS MIN TYP MAX UNIT Analog supply voltage, AVDD 3 3.3 3.6 V Output driver supply voltage, DRVDD 3 3.3 3.6 V SUPPLIES ANALOG INPUT Differential input range Input common-mode voltage, VCM 2.3 (1) 1.45 1.55 VPP 1.65 V DIGITAL OUTPUT Maximum output load 10 pF CLOCK INPUT ADCLK input sample rate (sine wave) 1/tC 2 Clock amplitude, sine wave, differential (2) 1 80 3 Clock duty cycle (3) VPP 50% Open free-air temperature range (1) (2) (3) MSPS –40 85 °C Input common-mode should be connected to CM. See Figure 47 for more information. See Figure 46 for more information. ELECTRICAL CHARACTERISTICS Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD = DRVDD = 3.3 V, sampling rate = 80 MSPS, 50% clock duty cycle, 3-VPP differential clock, and –1dBFS differential input, unless otherwise noted PARAMETER CONDITIONS MIN Resolution TYP MAX UNIT 12 Bits Analog Inputs Differential input range 2.3 VPP Differential input impedance See Figure 37 6.6 kΩ Differential input capacitance See Figure 37 4 pF 200 µA 750 MHz Analog input common-mode current (per input) Analog input bandwidth Source impedance = 50 Ω Voltage overload recovery time 4 Clock cycles Internal Reference Voltages Reference bottom voltage, VREFM 1.0 Reference top voltage, VREFP V 2.15 Reference error –4% ±0.6% V 4% 1.55 ±0.05 Common-mode voltage output, VCM V Dynamic DC Characteristics and Accuracy No missing codes Assured Differential nonlinearity error, DNL fIN = 10 MHz -0.9 0.5 1.1 LSB Integral nonlinearity error, INL fIN = 10 MHz –5 ±2 5 LSB ±1.5 11 Offset error -11 Offset temperature coefficient DC power-supply rejection ratio, DC PSRR Gain error ∆offset error/∆AVDD from AVDD = 3 V to AVDD = 3.6 V (1) -2 Gain temperature coefficient (1) mV 0.02 mV/°C 0.25 mV/V 0.3 –0.02 2 %FS ∆%/°C Gain error is specified by design and characterization; it is not tested in production. Submit Documentation Feedback 3 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 ELECTRICAL CHARACTERISTICS (continued) Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD = DRVDD = 3.3 V, sampling rate = 80 MSPS, 50% clock duty cycle, 3-VPP differential clock, and –1dBFS differential input, unless otherwise noted PARAMETER CONDITIONS MIN TYP 25°C to 85°C 72.7 74.3 Full temp range 71.5 74.0 25°C to 85°C 71.5 73.5 Full temp range 70.0 73 MAX UNIT Dynamic AC Characteristics fIN = 10 MHz fIN = 55 MHz Signal-to-noise ratio, SNR RMS output noise fIN = 70 MHz 73.7 fIN = 100 MHz 72.9 fIN = 150 MHz 71.9 fIN = 220 MHz 70.7 Input tied to common-mode fIN = 10 MHz 1.1 25°C 80 92 Full temp range 78 90 fIN = 55 MHz Spurious-free dynamic range, SFDR fIN = 70 MHz 25°C 80 87 Full temp range 78 86 88 fIN = 150 MHz 85 fIN = 220 MHz fIN = 70 MHz 80 92 Full temp range 78 90 25°C 80 87 Full temp range 78 86 88 fIN = 100 MHz 88 fIN = 150 MHz 85 fIN = 220 MHz 77 fIN = 10 MHz 25°C 80 89 Full temp range 78 88 25°C 80 85 Full temp range 78 83 fIN = 55 MHz Third-harmonic, HD3 fIN = 70 MHz fIN = 100 MHz 83 fIN = 150 MHz 80 25°C 88 fIN = 70 MHz 25°C 87 25°C to 85°C 72.2 73.8 Full temp range 71 73.5 25°C to 85°C 71 73.2 69.5 72.5 fIN = 55 MHz Signal-to-noise + distortion, SINAD 4 fIN = 70 MHz dBc 76 fIN = 10 MHz fIN = 10 MHz dBc 79 fIN = 220 MHz Worst-harmonic/spur (other than HD2 and HD3) dBc 77 25°C fIN = 55 MHz Second-harmonic, HD2 LSB 88 fIN = 100 MHz fIN = 10 MHz dBFS dBc 73.2 Full temp range fIN = 100 MHz 72.5 fIN = 150 MHz 71.8 fIN = 220 MHz 69.8 Submit Documentation Feedback dBFS ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 ELECTRICAL CHARACTERISTICS (continued) Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD = DRVDD = 3.3 V, sampling rate = 80 MSPS, 50% clock duty cycle, 3-VPP differential clock, and –1dBFS differential input, unless otherwise noted PARAMETER CONDITIONS fIN = 10 MHz MIN TYP 25°C 78 90 Full temp range 76 Effective number of bits, ENOB Two-tone intermodulation distortion, IMD AC power supply rejection ratio, ACPSRR fIN = 70 MHz UNIT 88 fIN = 55 MHz Total harmonic distortion, THD MAX 83.4 25°C 78 86 Full temp range 76 84 fIN = 100 MHz 83.4 fIN = 150 MHz 81.2 fIN = 220 MHz 75.8 fIN = 70 MHz 11.9 f = 10.1 MHz, 15.1 MHz (–7dBFS each tone) 93.8 f = 50.1 MHz, 55.1 MHz (–7dBFS each tone) 92.4 f = 148.1 MHz, 153.1 MHz (–7dBFS each tone) 92.6 Supply noise frequency ≤ 100 MHz dBc Bits dBFS 35 dB Power Supply Total supply current, ICC fIN = 70 MHz 204 230 mA Analog supply current, IAVDD fIN = 70 MHz 165 180 mA Output buffer supply current, IDRVDD fIN = 70 MHz 39 50 mA Analog only 545 594 Power dissipation Output buffer power with 10-pF load on digital output to ground 129 165 Standby power With Clocks running 180 250 mW mW DIGITAL CHARACTERISTICS Valid over full recommended operating temperature range, AVDD = DRVDD = 3.3 V, unless otherwise noted PARAMETER CONDITIONS MIN TYP MAX UNIT Digital Inputs VIH High-level input voltage 2.4 VIL Low-level input voltage 0.8 V IIH High-level input current 10 µA IIL Low-level input current –10 µA Input current for RESET Input capacitance V –20 µA 4 pF Digital Outputs VOL Low-level output voltage CLOAD = 10 pF VOH High-level output voltage CLOAD = 10 pF Output capacitance Submit Documentation Feedback 0.3 2.4 0.4 V 3 V 3 pF 5 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TIMING CHARACTERISTICS (1) (2) Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD = DRVDD = 3.3 V, sampling rate = 80 MSPS, 50% clock duty cycle, 3-VPP differential clock, and CLOAD = 10 pF, unless otherwise noted PARAMETER DESCRIPTION MIN TYP MAX UNIT Switching Specification tA Aperture delay Input CLK falling edge to data sampling point Aperture jitter (uncertainty) Uncertainty in sampling instant valid (3) 1 ns 300 fs ns tSETUP Data setup time Data to 50% of CLKOUT rising edge 3.2 4.2 tHOLD 50% of CLKOUT rising edge to data becoming invalid (3) 1.8 3.0 Data hold time ns tSTART Input clock to output data valid start (4) (5) Input clock rising edge to data valid start delay tEND Input clock to output data valid end Input clock rising edge to data valid end delay (4) (5) tJIT Output clock jitter Uncertainty in CLKOUT rising edge, peak-to-peak 210 315 psPP tr Output clock rise time Rise time of CLKOUT from 20% to 80% of DRVDD 2.5 2.8 ns tf Output clock fall time Fall time of CLKOUT from 80% to 20% of DRVDD 2.1 2.3 ns tPDI Input clock to output clock delay Input clock rising edge, zero crossing, to output clock rising edge 50% 8.0 8.9 ns tr Data rise time Data rise time measured from 20% to 80% of DRVDD 5.8 6.6 ns tf Data fall time Data fall time measured from 80% to 20% of DRVDD 4.4 5.3 Output enable(OE) to data output delay Time required for outputs to have stable timings with regard to input clock (6) after OE is activated 1000 Clock cycles Time to valid data after coming out of software power down 1000 Time to valid data after stopping and restarting the clock 1000 Clock cycles Wakeup time Latency (1) (2) (3) (4) (5) (6) 3.8 8.4 7.1 Time for a sample to propagate to the ADC outputs 5.0 11.0 ns 17.5 ns Clock cycles Timing parameters are ensured by design and characterization, and not tested in production. See Table 5 through Table 6 in the Application Information section for timing information at additional sampling frequencies. Data valid refers to 2 V for LOGIC HIGH and 0.8 V for LOGIC LOW. See the Output Information section for details on using the input clock for data capture. These specifications apply when the CLKOUT polarity is set to rising edge (according to Table 2). Add 1/2 clock period for the valid number for a falling edge CLKOUT polarity. Data outputs are available within a clock from assertion of OE; however, it takes 1000 clock cycles to ensure stable timing with respect to input clock. Analog Input Signal Sample N N + 1 N + 2 N + 3 N + 4 N + 14 N + 15 N + 16 N + 17 tA Input Clock tSTART Output Clock tPDI tsu Data Out (D0−D11) N − 17 N − 16 N − 15 tEND A. N − 14 N − 13 N−3 N−2 N−1 Data Invalid 17.5 Clock Cycles N th It is recommended that the loading at CLKOUT and all data lines are accurately matched to ensure that the above timing matches closely with the specified values. Figure 1. Timing Diagram 6 ns Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 RESET TIMING CHARACTERISTICS Typical values given at TA = 25°C, min and max specified over the full recommended operating temperature range, AVDD = DRVDD = 3.3 V, and 3-VPP differential clock, unless otherwise noted PARAMETER DESCRIPTION MIN TYP MAX UNIT Switching Specification t1 Power-on delay Delay from power-on of AVDD and DRVDD to RESET pulse active 10 ms t2 Reset pulse width t3 Register write delay Pulse width of active RESET signal 2 µs Delay from RESET disable to SEN active 2 Power-up time Delay from power-up of AVDD and DRVDD to output stable Power Supply (AVDD, DRVDD) µs 40 ms t1 10 ms t2 2 ms t3 2 ms SEN Active RESET (Pin 35) Figure 2. Reset Timing Diagram SERIAL PROGRAMMING INTERFACE CHARACTERISTICS The ADS5542 has a three-wire serial interface. The ADS5542 latches serial data SDATA on the falling edge of serial clock SCLK when SEN is active. • Serial shift of bits is enabled when SEN is low. SCLK shifts serial data at the falling edge. • Minimum width of data stream for a valid loading is 16 clocks. • Data is loaded at every 16th SCLK falling edge while SEN is low. • In case the word length exceeds a multiple of 16 bits, the excess bits are ignored. • Data can be loaded in multiples of 16-bit words within a single active SEN pulse. • The first 4-bit nibble is the address of the register while the last 12 bits are the register contents. A3 SDATA A2 A1 A0 D11 D10 ADDRESS D9 D0 DATA MSB Figure 3. DATA Communication is 2-Byte, MSB First Submit Documentation Feedback 7 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 tSLOADS SEN tSLOADH tWSCLK tWSCLK tSCLK SCLK tsu(D) SDATA th(D) MSB LSB MSB LSB 16 x M Figure 4. Serial Programming Interface Timing Diagram Table 1. Serial Programming Interface Timing Characteristics (1) SYMBOL PARAMETER tSCLK SCLK period tWSCLK SCLK duty cycle MIN (1) TYP (1) MAX (1) 50% 75% 50 25% UNIT ns tSLOADS SEN to SCLK setup time 8 ns tSLOADH SCLK to SEN hold time 6 ns tDS Data setup time 8 ns tDH Data hold time 6 ns Min, typ, and max values are characterized, but not production tested. Table 2. Serial Register Table (1) A3 A2 A1 A0 D11 D10 D9 TP<1> TP<0> D8 D7 D6 D5 D4 D3 D2 D1 D0 DESCRIPTION Test Mode 1 1 1 0 0 0 0 0 0 0 0 0 0 0 X 0 Normal mode of operation 1 1 1 0 0 0 1 0 0 0 0 0 0 0 X 0 All outputs forced to 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 X 0 All outputs forced to 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 X 0 Each output bit toggles between 0 and 1. PDN (2) (3) Power Down 1 1 1 1 0 0 0 0 0 0 0 0 0 0 X 0 Normal mode of operation 1 1 1 1 1 0 0 0 0 0 0 0 0 0 X 0 Device is put in power-down (low-current) mode. (1) (2) (3) The register contents default to the appropriate setting for normal operation up on RESET. The patterns given are applicable to the straight offset binary output format. If two's complement output format is selected, the test mode outputs will be the binary two's complement equivalent of these patterns as described in the Output Information section. While each bit toggles between 1 and 0 in this mode, there is no assured phase relationship between the data bits D0 through D13. For example, when D0 is a 1, D1 in not assured to be a 0, and vice versa. Table 3. Data Format Select (DFS) Table DFS-PIN VOLTAGE (VDFS) 2 V DFS t 12 CLOCK OUTPUT POLARITY Straight Binary Data valid on rising edge 4 12 5 AV DD t V DFS t 12 AV DD Two's Complement Data valid on rising edge 7 12 8 AV DD t V DFS t 12 AV DD Straight Binary Data valid on falling edge Two's Complement Data valid on falling edge V DFS u 8 AV DD DATA FORMAT 10 12 AV DD Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 PIN CONFIGURATION 54 53 52 51 50 DRVDD 55 DRGND 56 D4 57 D5 58 D7 59 D6 60 D8 D10 61 D9 D11 62 DRGND D12 63 DRVDD D13 (MSB) 64 DRGND OVR PAP PACKAGE (TOP VIEW) 49 DRGND 1 48 DRGND SCLK 2 47 D3 SDATA 3 46 D2 SEN 4 45 D1 AVDD 5 44 D0 (LSB) AGND 6 43 CLKOUT AVDD 7 42 DRGND AGND 8 AVDD 9 ADS5542 PowerPAD 41 OE 40 DFS 19 20 21 22 23 24 25 26 27 28 29 30 31 32 AGND 18 IREF 17 REFM 33 AVDD REFP AGND 16 AVDD 34 AVDD AGND AVDD 15 AGND 35 RESET AVDD AGND 14 AVDD 36 AGND AGND AGND 13 AVDD 37 AVDD AGND AGND 12 INM 38 AGND INP CLKM 11 AGND 39 AVDD CM CLKP 10 Submit Documentation Feedback 9 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 PIN CONFIGURATION (continued) PIN ASSIGNMENTS TERMINAL NO. OF PINS I/O AVDD 5, 7, 9, 15, 22, 24, 26, 28, 33, 34, 37, 39 12 I Analog power supply AGND 6, 8, 12–14, 16, 18, 21, 23, 25, 27, 32, 36, 38 14 I Analog ground (PowerPAD is connected to analog ground.) DRVDD 49, 58 2 I Output driver power supply DRGND 1, 42, 48, 50, 57, 59 6 I Output driver ground INP 19 1 I Differential analog input (positive) INM 20 1 I Differential analog input (negative) REFP 29 1 O Reference voltage (positive); 1-µF capacitor in series with a 1-Ω resistor to GND REFM 30 1 O Reference voltage (negative); 1-µF capacitor in series with a 1-Ω resistor to GND IREF 31 1 I Current set; 56.2-kΩ resistor to GND; do not connect capacitors CM 17 1 O Common-mode output voltage RESET 35 1 I Reset (active high), Internal 200-kΩ resistor to AVDD (1) OE 41 1 I Output enable (active high) (2) DFS 40 1 I Data format and clock out polarity select (3) (2) CLKP 10 1 I Data converter differential input clock (positive) CLKM 11 1 I Data converter differential input clock (negative) SEN 4 1 I Serial interface chip select (2) SDATA 3 1 I Serial interface data (2) SCLK 2 1 I Serial interface clock (2) 44-47, 51-56, 60-63 14 O Parallel data output OVR 64 1 O Over-range indicator bit CLKOUT 43 1 O CMOS clock out in sync with data NAME NO. D0 (LSB) to D13 (MSB) (1) (2) (3) 10 DESCRIPTION If unused, the RESET pin should be tied to AGND. See the serial programmine interface section for details. Pins OE, DFS, SEN, SDATA, and SCLK have internal clamping diodes to the DRVDD supply. Any external circuit driving these pins must also run off the same supply voltage as DRVDD. Table 3defines the voltage levels for each mode selectable via the DFS pin. Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 DEFINITION OF SPECIFICATIONS Offset Error Analog Bandwidth The analog input frequency at which the power of the fundamental is reduced by 3 dB with respect to the low frequency value. Aperture Delay The delay in time between the falling edge of the input sampling clock and the actual time at which the sampling occurs. Aperture Uncertainty (Jitter) The sample-to-sample variation in aperture delay. Clock Pulse Width/Duty Cycle The duty cycle of a clock signal is the ratio of the time the clock signal remains at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a percentage. A perfect differential sine wave clock results in a 50% duty cycle. Maximum Conversion Rate The maximum sampling rate at which certified operation is given. All parametric testing is performed at this sampling rate unless otherwise noted. Minimum Conversion Rate The minimum sampling rate at which the ADC functions. Differential Nonlinearity (DNL) An ideal ADC exhibits code transitions at analog input values spaced exactly 1LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs. Integral Nonlinearity (INL) The offset error is the difference, given in number of LSBs, between the ADC's actual average idle channel output code and the ideal average idle channel output code. This quantity is often mapped into mV. Temperature Drift The temperature drift coefficient (with respect to gain error and offset error) specifies the change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation of the parameter across the TMIN to TMAX range by the difference (TMAX – TMIN). Signal-to-Noise Ratio (SNR) SNR is the ratio of the power of the fundamental (PS) to the noise floor power (PN), excluding the power at dc and the first eight harmonics. P SNR + 10Log 10 S PN SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference or dBFS (dB to Full-Scale) when the power of the fundamental is extrapolated to the converter's full-scale range. Signal-to-Noise and Distortion (SINAD) SINAD is the ratio of the power of the fundamental (PS) to the power of all the other spectral components including noise (PN) and distortion (PD), but excluding dc. PS SINAD + 10Log 10 PN ) PD (1) The INL is the deviation of the ADC's transfer function from a best fit line determined by a least squares curve fit of that transfer function, measured in units of LSBs. SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference or dBFS (dB to full-scale) when the power of the fundamental is extrapolated to the converter's full-scale range. Gain Error Effective Number of Bits (ENOB) The gain error is the deviation of the ADC's actual input full-scale range from its ideal value. The gain error is given as a percentage of the ideal input full-scale range. Gain error does not account for variations in the internal reference voltages (see the Electrical Specifications section for limits on the variation of VREFP and VREFM). The ENOB is a measure of a converter's performance as compared to the theoretical limit based on quantization noise. ENOB + SINAD * 1.76 6.02 Submit Documentation Feedback 11 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 Total Harmonic Distortion (THD) Two-Tone Intermodulation Distortion (IMD3) THD is the ratio of the power of the fundamental (PS) to the power of the first eight harmonics (PD). P THD + 10Log 10 S PD IMD3 is the ratio of the power of the fundamental (at frequencies f1 and f2) to the power of the worst spectral component at either frequency 2f1 – f2 or 2f2 – f1. IMD3 is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB to Full-Scale) when the power of the fundamental is extrapolated to the converter's full-scale range. THD is typically given in units of dBc (dB to carrier). Spurious-Free Dynamic Range (SFDR) The ratio of the power of the fundamental to the highest other spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier). DC Power Supply Rejection Ration (DC PSRR) The DC PSSR is the ratio of the change in offset error to a change in analog supply voltage. The DC PSRR is typically given in units of mV/V. Reference Error The reference error is the variation of the actual reference voltage (VREFP - VREFM) from its ideal value. The reference error is typically given as a percentage. Voltage Overload Recovery Time The voltage overload recovery time is defined as the time required for the ADC to recover to within 1% of the full-scale range in response to an input voltage overload of 10% beyond the full-scale range. 12 Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TYPICAL CHARACTERISTICS Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = –1dBFS, sampling rate = 80 MSPS and 3-V differential clock, unless otherwise noted SPECTRAL PERFORMANCE (FFT for 4 MHz Input Signal) SPECTRAL PERFORMANCE (FFT for 16 MHz Input Signal) 0 0 SFDR = 92.1dBc SNR = 74.0dBFS THD = 88.4dBc SINAD = 73.9dBFS −40 −60 −80 −100 −60 −80 −120 0 5 10 15 20 25 30 35 0 40 5 10 15 20 25 30 f − Frequency − MHz f − Frequency − MHz Figure 5. Figure 6. SPECTRAL PERFORMANCE (FFT for 55 MHz Input Signal) SPECTRAL PERFORMANCE (FFT for 70 MHz Input Signal) 0 35 40 0 −40 −60 −80 SFDR = 89.3dBc SNR = 73.4dBFS THD = 86.8dBc SINAD = 73.2dBFS −20 Magnitude − dB SFDR = 87.5dBc SNR = 73.6dBFS THD = 83.4dBc SINAD = 73.2dBFS −20 Magnitude − dB −40 −100 −120 −100 −40 −60 −80 −100 −120 −120 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 f − Frequency − MHz f − Frequency − MHz Figure 7. Figure 8. SPECTRAL PERFORMANCE (FFT for 100 MHz Input Signal) SPECTRAL PERFORMANCE (FFT for 125 MHz Input Signal) 0 35 40 35 40 0 −40 −60 −80 −100 SFDR = 83.9dBc SNR = 72.7dBFS THD = 81.5dBc SINAD = 72.2dBFS −20 Magnitude − dB SFDR = 87.2dBc SNR = 72.8dBFS THD = 83.4dBc SINAD = 72.5dBFS −20 Magnitude − dB SFDR = 92.0dBc SNR = 73.6dBFS THD = 88.2dBc SINAD = 73.5dBFS −20 Magnitude − dB Magnitude − dB −20 −40 −60 −80 −100 −120 −120 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 f − Frequency − MHz f − Frequency − MHz Figure 9. Figure 10. Submit Documentation Feedback 30 13 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TYPICAL CHARACTERISTICS (continued) Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = –1dBFS, sampling rate = 80 MSPS and 3-V differential clock, unless otherwise noted SPECTRAL PERFORMANCE (FFT for 150 MHz Input Signal) SPECTRAL PERFORMANCE (FFT for 220 MHz Input Signal) 0 0 Magnitude − dB −20 −40 −60 −80 SFDR = 78.4dBc SNR = 70.7dBFS THD = 75.8dBc SINAD = 69.8dBFS −20 Magnitude − dB SFDR = 88.6dBc SNR = 71.9dBFS THD = 81.2dBc SINAD = 71.8dBFS −100 −40 −60 −80 −100 −120 −120 0 5 10 15 20 25 30 35 40 0 5 25 Figure 12. 30 35 40 TWO-TONE INTERMODULATION 0 −40 −60 −80 f1 = 10.1MHz (−7dBFS) f2 = 15.1MHz (−7dBFS) 2−Tone SFDR = 92.8dBc −20 Magnitude − dB SFDR = 68.4dBc SNR = 68.5dBFS THD = 68.2dBc SINAD = 65.8dBFS −20 Magnitude − dB 20 Figure 11. 0 −100 −40 −60 −80 −100 −120 −120 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 f − Frequency − MHz f − Frequency − MHz Figure 13. Figure 14. TWO-TONE INTERMODULATION 30 35 40 35 40 TWO-TONE INTERMODULATION 0 0 f1 = 45.1MHz (−7dBFS) f2 = 50.1MHz (−7dBFS) 2−Tone SFDR = 91.6dBc −20 f1 = 50.1MHz (−7dBFS) f2 = 55.1MHz (−7dBFS) 2−Tone SFDR = 91.4dBc −20 −40 Magnitude − dB Magnitude − dB 15 f − Frequency − MHz SPECTRAL PERFORMANCE (FFT for 300 MHz Input Signal) −60 −80 −100 −40 −60 −80 −100 −120 −120 0 14 10 f − Frequency − MHz 5 10 15 20 25 30 35 40 0 5 10 15 20 25 f − Frequency − MHz f − Frequency − MHz Figure 15. Figure 16. Submit Documentation Feedback 30 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TYPICAL CHARACTERISTICS (continued) Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = –1dBFS, sampling rate = 80 MSPS and 3-V differential clock, unless otherwise noted DIFFERENTIAL NONLINEARITY INTEGRAL NONLINEARITY 1.0 2.0 f IN = 10MHz AIN = −0.5dBFS 0.8 0.6 1.0 INL − LSB DNL − LSB 0.4 0.2 0 −0.2 −0.4 0.5 0 −0.5 −1.0 −0.6 −1.5 −0.8 −1.0 −2.0 0 2048 4096 6144 8192 10240 12288 14336 16384 0 2048 4096 Figure 17. Figure 18. SPURIOUS-FREE DYNAMIC RANGE vs INPUT FREQUENCY SIGNAL-TO-NOISE RATIO vs INPUT FREQUENCY 75 90 74 SNR − dBFS 95 85 80 75 70 73 72 71 70 69 65 68 60 67 0 50 100 150 200 250 300 0 50 Frequency − MHz 100 150 200 250 300 Frequency − MHz Figure 19. Figure 20. AC PERFORMANCE vs ANALOG SUPPLY VOLTAGE AC PERFORMANCE vs ANALOG SUPPLY VOLTAGE 100 98 fIN = 150MHz SFDR − dBc SFDR − dBc 8192 10240 12288 14336 16384 Code 76 95 90 SFDR 85 fIN = 70MHz 94 SFDR 90 86 82 72 SNR − dBFS 80 SNR − dBFS 6144 Code 100 SFDR − dBc f IN = 10MHz AIN = −0.5dBFS 1.5 SNR 70 65 60 48 SNR 74 70 66 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.0 3.1 3.2 3.3 3.4 AVDD − Analog Supply Voltage − V AVDD − Analog Supply Voltage − V Figure 21. Figure 22. Submit Documentation Feedback 3.5 3.6 15 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TYPICAL CHARACTERISTICS (continued) Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = –1dBFS, sampling rate = 80 MSPS and 3-V differential clock, unless otherwise noted AC PERFORMANCE vs DIGITAL SUPPLY VOLTAGE AC PERFORMANCE vs DIGITAL SUPPLY VOLTAGE 95 fIN = 150MHz SFDR SFDR − dBc SFDR − dBc 95 90 85 85 80 75 SNR − dBFS SNR − dBFS 80 fIN = 70MHz SFDR 90 SNR 70 65 SNR 75 70 65 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.0 3.1 3.2 3.3 3.4 3.5 DVDD − Digital Supply Voltage − V DVDD − Digital Supply Voltage − V Figure 23. Figure 24. POWER DISSIPATION vs SAMPLE RATE POWER DISSIPATION vs SAMPLE RATE 0.75 0.75 fIN = 70MHz fIN = 150MHz 0.70 Power Dissipation − W Power Dissipation − W 0.70 0.65 0.60 0.55 0.50 0.45 20 30 40 50 60 70 80 0.55 0.50 10 40 50 60 Figure 25. Figure 26. AC PERFORMANCE vs TEMPERATURE AC PERFORMANCE vs INPUT AMPLITUDE f IN = 70MHz AC Performance − dB SFDR 90 85 80 SNR 75 70 65 60 −15 30 Sample Rate − MSPS 95 −40 20 Sample Rate − MSPS 100 SFDR − dBc 0.60 0.40 10 SNR − dBFS 0.65 0.45 0.40 +10 +35 +60 +85 70 100 90 SNR (dBFS) 80 70 60 50 40 SFDR (dBc) 30 20 SNR (dBc) 10 0 −10 fIN = 70MHz −20 −30 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 Temperature − _C Input Amplitude − dBFS Figure 27. 16 3.6 Figure 28. Submit Documentation Feedback 80 0 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TYPICAL CHARACTERISTICS (continued) Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = –1dBFS, sampling rate = 80 MSPS and 3-V differential clock, unless otherwise noted AC PERFORMANCE vs INPUT AMPLITUDE 100 90 SNR (dBFS) 80 70 60 50 40 SFDR (dBc) 30 20 SNR (dBc) 10 0 −10 −20 fIN = 150MHz −30 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 90 70 60 50 40 30 SFDR (dBc) 20 10 SNR (dBc) 0 −10 −20 fIN = 220MHz −30 −100 −90 −80 −70 −60 −50 −40 Input Amplitude − dBFS Figure 29. Figure 30. OUTPUT NOISE HISTOGRAM AC PERFORMANCE vs CLOCK AMPLITUDE −10 0 SFDR − dBc 95 35 30 25 20 fIN = 70MHz 90 SFDR 85 SNR − dBFS 80 15 10 8215 75 SNR 70 65 8216 8214 8212 8213 8210 8211 8208 8209 8207 8205 8206 8203 0 8204 5 0 0.5 1.0 1.5 2.0 2.5 3.0 Differential Clock Amplitude − V Code Figure 31. Figure 32. WCDMA CARRIER AC PERFORMANCE vs CLOCK DUTY CYCLE 0 100 SFDR − dBc fS = 76.8MSPS fIN = 170MHz −20 −40 −60 fIN = 20MHz SFDR 95 90 85 −80 SNR − dBFS Amplitude − dB −30 −20 Input Amplitude − dBFS 40 Occurrence − % SNR (dBFS) 80 AC Performance − dB AC Performance − dB AC PERFORMANCE vs INPUT AMPLITUDE −100 −120 −140 80 75 SNR 70 65 0 5 10 15 20 25 30 35 40 40 45 50 f − Frequency − MHz Clock Duty Cycle − % Figure 33. Figure 34. Submit Documentation Feedback 55 60 17 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TYPICAL CHARACTERISTICS Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, and 3-V differential clock, unless otherwise noted SIGNAL-TO-NOISE RATIO (SNR) 74 100 70 74 69 90 72 73 80 71 72 60 70 74 69 50 68 71 73 72 66 70 40 69 68 66 65 67 30 66 74 71 20 72 73 68 70 64 65 67 69 66 63 10 50 100 150 200 Input Frequency (MHz) Figure 35. 18 64 Submit Documentation Feedback 250 300 62 SNR (dBFS) Sampling Rate (MSPS) 70 70 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 TYPICAL CHARACTERISTICS (continued) Typical values given at TA = 25°C, AVDD = DRVDD = 3.3 V, differential input amplitude = -1dBFS, and 3-V differential clock, unless otherwise noted SPURIOUS-FREE DYNAMIC RANGE (SFDR) 87 81 85 85 90 87 79 87 Sampling Rate (MSPS) 80 87 60 71 73 79 87 85 85 87 89 85 69 77 81 83 85 71 77 81 85 40 87 75 81 75 79 87 30 69 71 83 80 73 85 91 91 79 75 83 89 87 50 81 85 91 20 85 85 89 70 90 67 75 87 91 81 81 SFDR (dBc) 100 73 77 87 70 85 89 75 81 85 81 83 79 73 77 71 10 50 100 150 200 Input Frequency (MHz) 250 65 300 Figure 36. Submit Documentation Feedback 19 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 APPLICATION INFORMATION THEORY OF OPERATION The ADS5542 is a low-power, 14-bit, 80 MSPS, CMOS, switched capacitor, pipeline ADC that operates from a single 3.3-V supply. The conversion process is initiated by a falling edge of the external input clock. Once the signal is captured by the input S&H, the input sample is sequentially converted by a series of small resolution stages, with the outputs combined in a digital correction logic block. Both the rising and the falling clock edges are used to propagate the sample through the pipeline every half clock cycle. This process results in a datalatency of 17.5 clock cycles, after which the output data is available as a 14-bit parallel word, coded in either straight offset binary or binary two's complement format. INPUT CONFIGURATION The analog input for the ADS5542 consists of a differential sample-and-hold architecture implemented using the switched capacitor technique shown in Figure 37. S3a L1 R1a C1a INP S1a CP1 CP3 S2 R3 CA L2 R1b INM S1b C1b VINCM 1V CP2 CP4 L1, L2: 6 nH − 10 nH effective R1a, R1b: 5W − 8W C1a, C1b: 2.2 pF − 2.6 pF CP1, CP2: 2.5 pF − 3.5 pF CP3, CP4: 1.2 pF − 1.8 pF CA: 0.8 pF − 1.2 pF R3: 80 W − 120 W Swithches: S1a, S1b: On Resistance: 35 W − 50 W S2: On Resistance: 7.5 W − 15 W S3a, S3b: On Resistance: 40 W − 60 W All switches OFF Resistance: 10 GW A. All Switches are ON in sampling phase which is approximately one half of a clock period. Figure 37. Analog Input Stage 20 S3b Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 This differential input topology produces a high level of ac-performance for high sampling rates. It also results in a very high usable input bandwidth, especially important for high intermediate-frequency (IF) or undersampling applications. The ADS5542 requires each of the analog inputs (INP, INM) to be externally biased around the common-mode level of the internal circuitry (CM, pin 17). For a full-scale differential input, each of the differential lines of the input signal (pins 19 and 20) swings symmetrically between CM + 0.575 V and CM – 0.575 V. This means that each input is driven with a signal of up to CM ± 0.575 V, so that each input has a maximum differential signal of 1.15 VPP for a total differential input signal swing of 2.3 VPP. The maximum swing is determined by the two reference voltages, the top reference (REFP, pin 29), and the bottom reference (REFM, pin 30). The ADS5542 obtains optimum performance when the analog inputs are driven differentially. The circuit shown in Figure 38 shows one possible configuration using an RF transformer. R0 50 W Z0 50 W 25 W INP 1:1 R 50 W 25 W AC Signal Source ADS5542 INM ADT1−1WT CM 10 W 1nF 0.1mF Figure 38. Transformer Input to Convert Single-Ended Signal to Differential Signal The single-ended signal is fed to the primary winding of an RF transformer. Since the input signal must be biased around the common-mode voltage of the internal circuitry, the common-mode voltage (VCM) from the ADS5542 is connected to the center-tap of the secondary winding. To ensure a steady low-noise VCM reference, best performance is obtained when the CM (pin 17) output is filtered to ground with 0.1 µF and 0.001-µF low-inductance capacitors. Output VCM (pin 17) is designed to directly drive the ADC input. When providing a custom CM level, be aware that the input structure of the ADC sinks a common-mode current in the order of 400 µA (200 µA per input) at 80 MSPS. Equation 2 describes the dependency of the common-mode current and the sampling frequency: 400mA f S (in MSPS) 80 MSPS (2) Where: fS > 2MSPS. This equation helps to design the output capability and impedance of the driving circuit accordingly. When it is necessary to buffer or apply a gain to the incoming analog signal, it is possible to combine single-ended operational amplifiers with an RF transformer, or to use a differential input/output amplifier without a transformer, to drive the input of the ADS5542. Texas Instruments offers a wide selection of single-ended operational amplifiers (including the THS3201, THS3202, OPA695, and OPA847) that can be selected depending on the application. An RF gain block amplifier, such as Texas Instruments THS9001, can also be used with an RF transformer for high input frequency applications. The THS4503 is a recommended differential input/output amplifier. Table 4 lists the recommended amplifiers. When using single-ended operational amplifiers (such as the THS3201, THS3202, OPA695, or OPA847) to provide gain, a three-amplifier circuit is recommended with one amplifier driving the primary of an RF transformer and one amplifier in each of the legs of the secondary driving the two differential inputs of the ADS5542. These three amplifier circuits minimize even-order harmonics. For high frequency inputs, an RF gain block amplifier can be used to drive a transformer primary; in this case, the transformer secondary connections can drive the input of the ADS5542 directly, as shown in Figure 38, or with the addition of the filter circuit shown in Figure 39. Submit Documentation Feedback 21 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 Figure 39 illustrates how RIN and CIN can be placed to isolate the signal source from the switching inputs of the ADC and to implement a low-pass RC filter to limit the input noise in the ADC. It is recommended that these components be included in the ADS5542 circuit layout when any of the amplifier circuits discussed previously are used. The components allow fine-tuning of the circuit performance. Any mismatch between the differential lines of the ADS5542 input produces a degradation in performance at high input frequencies, mainly characterized by an increase in the even-order harmonics. In this case, special care should be taken to keep as much electrical symmetry as possible between both inputs. Another possible configuration for lower-frequency signals is the use of differential input/output amplifiers that can simplify the driver circuit for applications requiring dc-coupling of the input. Flexible in their configurations (see Figure 40), such amplifiers can be used for single-ended-to-differential conversion signal amplification. Table 4. Recommended Amplifiers to Drive the Input of the ADS5542 INPUT SIGNAL FREQUENCY RECOMMENDED AMPLIFIER TYPE OF AMPLIFIER DC to 20 MHz THS4503 Differential In/Out Amp No DC to 50 MHz OPA847 Operational Amp Yes DC to 100 MHz THS4509 Differential In/Out Amp No OPA695 Operational Amp Yes THS3201 Operational Amp Yes THS3202 Operational Amp Yes THS9001 RF Gain Block Yes 10 MHz to 120 MHz Over 100 MHz USE WITH TRANSFORMER? +5V -5V RS 100 W VIN 0.1mF RIN 1:1 OPA695 INP RT 100 W 1000pF R1 400 W 25 W CIN ADS5542 INM RIN CM 25 W AV = 8V/V (18dB) R2 57.5 W 10 W 0.1mF Figure 39. Converting a Single-Ended Input Signal to a Differential Signal Using an RF Transformer RS RG RF +5V RT +3.3V 10mF 0.1mF RIN VOCM 1mF RIN THS4503 10mF INP ADS5542 14-Bit / 80 MSPS INM CM 0.1mF 10 W RG -5V RF 0.1mF Figure 40. Using the THS4503 with the ADS5542 22 Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 POWER-SUPPLY SEQUENCE The preferred power-up sequence is to ramp AVDD first, followed by DRVDD, including a simultaneous ramp of AVDD and DRVDD. In the event that DRVDD ramps up first in the system, care must be taken to ensure that AVDD ramps up within 10 ms. Optionally, it is recommended to put a 2-kΩ resistor from REFP (pin 29) to AVDD as shown in Figure 41. This helps to make the device more robust to power supply ramp-up timings. 28 AVDD 29 REFP 2 kW 1W 1 mF Figure 41. POWER-DOWN The device enters power-down in one of two ways: either by reducing the clock speed or by setting the PDN bit throught the serial programming interface. Using the reduced clock speed, power-down may be initiated for clock frequency below 2 MSPS. The exact frequency at which the power down occurs varies from device to device. Using the serial interface PDN bit to power down the device places the outputs in a high-impedance state and only the internal reference remains on to reduce the power-up time. The power-down mode reduces power dissipation to approximately 180 mW. REFERENCE CIRCUIT The ADS5542 has built-in internal reference generation, requiring no external circuitry on the printed circuit board (PCB). For optimum performance, it is best to connect both REFP and REFM to ground with a 1-µF decoupling capacitor (the 1-Ω resistor shown in Figure 42 is optional). In addition, an external 56.2-kΩ resistor should be connected from IREF (pin 31) to AGND to set the proper current for the operation of the ADC, as shown in Figure 42. No capacitor should be connected between pin 31 and ground; only the 56.2-kΩ resistor should be used. 1W 29 R EF P 30 R EF M 31 IR EF 1 mF 1W 1 mF 56.2 kW Figure 42. REFP, REFM, and IREF Connections for Optimum Performance Submit Documentation Feedback 23 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 CLOCK INPUT The ADS5542 clock input can be driven with either a differential clock signal or a single-ended clock input, with little or no difference in performance between both configurations. The common-mode voltage of the clock inputs is set internally to CM (pin 17) using internal 5-kΩ resistors that connect CLKP (pin 10) and CLKM (pin 11) to CM (pin 17), as shown in Figure 43. CM CM 5 kW 5 kW CLKM CLKP 6 pF 3 pF 3 pF Figure 43. Clock Inputs When driven with a single-ended CMOS clock input, it is best to connect CLKM (pin 11) to ground with a 0.01-µF capacitor, while CLKP is ac-coupled with a 0.01-µF capacitor to the clock source, as shown in Figure 44. Square Wave or Sine Wave (3VPP) 0.01mF CLKP ADS5542 CLKM 0.01mF Figure 44. AC-Coupled, Single-Ended Clock Input The ADS5542 clock input can also be driven differentially, reducing susceptibility to common-mode noise. In this case, it is best to connect both clock inputs to the differential input clock signal with 0.01-µF capacitors, as shown in Figure 45. 0.01mF CLKP Differential Square Wave or Sine Wave (3VPP) ADS5542 0.01mF CLKM Figure 45. AC-Coupled, Differential Clock Input For high input frequency sampling, it is recommended to use a clock source with low jitter. Additionally, the internal ADC core uses both edges of the clock for the conversion process. This means that, ideally, a 50% duty cycle should be provided. Figure 46 shows the performance variation of the ADC versus clock duty cycle. 24 Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 SFDR − dBc 100 fIN = 20MHz 95 SFDR 90 85 SNR − dBFS 80 75 SNR 70 65 60 35 40 45 50 55 60 65 Clock Duty Cycle − % Figure 46. AC Performance vs Clock Duty Cycle Bandpass filtering of the source can help produce a 50% duty cycle clock and reduce the effect of jitter. When using a sinusoidal clock, the clock jitter further improves as the amplitude is increased. In that sense, using a differential clock allows for the use of larger amplitudes without exceeding the supply rails and absolute maximum ratings of the ADC clock input. Figure 47 shows the performance variation of the device versus input clock amplitude. For detailed clocking schemes based on transformer or PECL-level clocks, see the ADS55xxEVM User's Guide (SLWU010), available for download from www.ti.com. SFDR − dBc 95 fIN = 70MHz 90 SFDR 85 SNR − dBFS 80 75 SNR 70 65 60 0 0.5 1.0 1.5 2.0 2.5 3.0 Differential Clock Amplitude − V Figure 47. AC Performance vs Clock Amplitude OUTPUT INFORMATION The ADC provides 14 data outputs (D13 to D0, with D13 being the MSB and D0 the LSB), a data-ready signal (CLKOUT, pin 43), and an out-of-range indicator (OVR, pin 64) that equals one when the output reaches the full-scale limits. Two different output formats (straight offset binary or two's complement) and two different output clock polarities (latching output data on rising or falling edge of the output clock) can be selected by setting DFS (pin 40) to one of four different voltages. Table 3 details the four modes. In addition, output enable control (OE, pin 41, active high) is provided to put the outputs into a high-impedance state. Submit Documentation Feedback 25 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 In the event of an input voltage overdrive, the digital outputs go to the appropriate full scale level. For a positive overdrive, the output code is 0x3FFF in straight offset binary output format, and 0x1FFF in 2's complement output format. For a negative input overdrive, the output code is 0x0000 in straight offset binary output format and 0x2000 in two's complement output format. These outputs to an overdrive signal are ensured through design and characterization The output circuitry of the ADS5542, by design, minimizes the noise produced by the data switching transients, and, in particular, its coupling to the ADC analog circuitry. Output D4 (pin 51) senses the load capacitance and adjusts the drive capability of all the output pins of the ADC to maintain the same output slew rate described in the timing diagram of Figure 1. Care should be taken to ensure that all output lines (including CLKOUT) have nearly the same load as D4 (pin 51). This circuit also reduces the sensitivity of the output timing versus supply voltage or temperature. Placing external resistors in series with the outputs is not recommended. The timing characteristics of the digital outputs change for sampling rates below the 80 MSPS maximum sampling frequency. Table 5 and Table 6 show the values of various timing parameters for lower sampling frequenies. To use the input clock as the data capture clock, it is necessary to delay the input clock by a delay, td, that results in the desired setup or hold time. Use either of the following equations to calculate the value of td. Desired setup time = td – tSTART Desired hold time = tEND – td Table 5. Timing Characteristics at Additional Sampling Frequencies tSETUP (ns) tHOLD (ns) tSTART (ns) tEND (ns) tr (ns) tf (ns) fS (MSPS) MIN TYP MIN TYP TYP MAX MIN TYP TYP MAX TYP MAX 65 4.3 5.7 2 3 2.8 4.5 8.3 11.8 6.6 7.2 5.5 6.4 40 8.5 11 2.6 3.5 –1 1.5 8.9 14.5 7.5 8 7.3 7.8 20 17 25.7 2.5 4.7 –9.8 2 9.5 21.6 7.5 8 7.6 8 10 27 51 4 6.5 -30 -3 11.5 31 2 284 370 8 19 185 320 515 576 50 82 75 150 MAX MAX MIN MAX MIN MIN Table 6. Timing Characteristics at Additional Sampling Frequencies fS (MSPS) CLKOUT, Rise Time tr (ns) MIN TYP MAX 65 3.1 40 4.8 20 CLKOUT Jitter, Peak-to-Peak tJIT (ps) CLKOUT, Fall Time tf (ns) MIN TYP MAX 3.5 2.6 5.3 4 8.3 9.5 31 52 MIN Input-to-Output Clock Delay tPDI (ns) TYP MAX MIN 2.9 260 380 7.8 8.5 9.4 4.4 445 650 9.5 10.4 11.4 7.6 8.2 800 1200 13 15.5 18 16 20.7 25.5 36 65 2610 4400 537 551 567 10 2 TYP MAX SERIAL PROGRAMMING INTERFACE The ADS5542 has internal registers for the programming of some of the modes described in the previous sections. The registers should be reset after power-up by applying a 2 us (minimum) high pulse on RESET (pin 35); this also resets the entire ADC and sets the data outputs to low. This pin has a 200-kΩ internal pullup resistor to AVDD. The programming is done through a three-wire interface. The timing diagram and serial register setting in the Serial Programing Interface section describe the programming of this register. Table 2 shows the different modes and the bit values to be written to the register to enable them. Note that some of these modes may modify the standard operation of the device and possibly vary the performance with respect to the typical data shown in this data sheet. 26 Submit Documentation Feedback ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 Applying a RESET signal is absolutely essential to set the internal registers to their default states for normal operation. If the hardware RESET function is not used in the system, the RESET pin must be tied to ground and it is necessary to write the default values to the internal registers through the serial programming interface. The following registers must be written in this order. Write 9000h (Address 9, Data 000) Write A000h (Address A, Data 000) Write B000h (Address B, Data 000) Write C000h (Address C, Data 000) Write D000h (Address D, Data 000) Write E000h (Address E, Data 804) Write 0000h (Address 0, Data 000) Write 1000h (Address 1, Data 000) Write F000h (Address F, Data 000) NOTE: This procedure is only required if a RESET pulse is not provided to the device. PowerPAD PACKAGE The PowerPAD package is a thermally enhanced standard size IC package designed to eliminate the use of bulky heatsinks and slugs traditionally used in thermal packages. This package can be easily mounted using standard printed circuit board (PCB) assembly techniques and can be removed and replaced using standard repair procedures. The PowerPAD package is designed so that the lead frame die pad (or thermal pad) is exposed on the bottom of the IC. This provides a low thermal resistance path between the die and the exterior of the package. The thermal pad on the bottom of the IC can then be soldered directly to the printed circuit board (PCB), using the PCB as a heatsink. Assembly Process 1. Prepare the PCB top-side etch pattern including etch for the leads as well as the thermal pad as illustrated in the Mechanical Data section. The recommended thermal pad dimension is 8 mm x 8 mm. 2. Place a 5-by-5 array of thermal vias in the thermal pad area. These holes should be 13 mils in diameter. The small size prevents wicking of the solder through the holes. 3. It is recommended to place a small number of 25 mil diameter holes under the package, but outside the thermal pad area to provide an additional heat path. 4. Connect all holes (both those inside and outside the thermal pad area) to an internal copper plane (such as a ground plane). 5. Do not use the typical web or spoke via connection pattern when connecting the thermal vias to the ground plane. The spoke pattern increases the thermal resistance to the ground plane. 6. The top-side solder mask should leave exposed the terminals of the package and the thermal pad area. 7. Cover the entire bottom side of the PowerPAD vias to prevent solder wicking. 8. Apply solder paste to the exposed thermal pad area and all of the package terminals. For more detailed information regarding the PowerPAD package and its thermal properties, see either the application brief SLMA004B (PowerPAD Made Easy) or technical brief SLMA002 (PowerPAD Thermally Enhanced Package). Submit Documentation Feedback 27 ADS5542 www.ti.com SBAS308D – MAY 2004 – REVISED FEBRUARY 2007 Table 7. Revision History Added notes regarding the input voltage overstress requirements in the absolute maximum ratings table Changed minimum recommended sampling rate to 2 MSPS. Added timing parameters - output clock jitter, wakeup time, output clock rise and fall time, Tpdi and timings across Fs. Clarified output capture test modes. Pin table info added - RESET pin, note on OE, SEN, SDATA and SCLK pins Updated the definitions section. Removed the input voltage stress section - notes added in absolute maximum ratings table Updated the Power Down section to reflect the newly specified 2 MSPS minimum sampling rate. Note added in Power supply sequence section for robust power supply ramp-up. Note on mandatory RESET added Rev D Added min/max specs for Offset and Gain errors. 28 Submit Documentation Feedback PACKAGE OPTION ADDENDUM www.ti.com 21-Mar-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Qty Drawing Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) ADS5542IPAP ACTIVE HTQFP PAP 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 ADS5542I ADS5542IPAPG4 ACTIVE HTQFP PAP 64 160 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 ADS5542I ADS5542IPAPR OBSOLETE HTQFP PAP 64 TBD Call TI Call TI -40 to 85 ADS5542I ADS5542IPAPRG4 OBSOLETE HTQFP PAP 64 TBD Call TI Call TI -40 to 85 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Only one of markings shown within the brackets will appear on the physical device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 Samples IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated