Sony ICX279AK Diagonal 4.5mm (type 1/4) ccd image sensor for pal color video camera Datasheet

ICX279AK
Diagonal 4.5mm (Type 1/4) CCD Image Sensor for PAL Color Video Cameras
Description
The ICX279AK is an interline CCD solid-state
image sensor suitable for PAL color video cameras
with a diagonal 4.5mm (Type 1/4) system. Compared
with the current product ICX209AK, basic
characteristics such as sensitivity, smear and
dynamic range are improved drastically through the
adoption of EXview HAD CCDTM technology.
This chip features a field period readout system and
an electronic shutter with variable charge-storage time.
The package is a 10mm-square 14-pin DIP (Plastic).
EXview HAD CCD TM has different spectral
characteristics from the current CCD.
Features
• High sensitivity (+5dB compared with the ICX209AK)
• Low smear (–20dB compared with the ICX209AK)
• High D range (+2dB compared with the ICX209AK)
• Horizontal register: 3.3 to 5.0V drive
• Reset gate:
3.3 to 5.0V drive
• No voltage adjustment
(Reset gate and substrate bias are not adjusted.)
• High resolution, low smear and low dark current
• Excellent antiblooming characteristics
• Continuous variable-speed shutter
• Recommended range of exit pupil distance: –20 to –100mm
• Ye, Cy, Mg, and G complementary color mosaic filters on chip
14 pin DIP (Plastic)
Pin 1
2
V
12
3
Pin 8
H
40
Optical black position
(Top View)
Device Structure
• Interline CCD image sensor
• Image size:
Diagonal 4.5mm (Type 1/4)
• Number of effective pixels: 752 (H) × 582 (V) approx. 440K pixels
• Total number of pixels:
795 (H) × 596 (V) approx. 470K pixels
• Chip size:
4.43mm (H) ×3.69mm (V)
• Unit cell size:
4.85µm (H) × 4.65µm (V)
• Optical black:
Horizontal (H) direction: Front 3 pixels, rear 40 pixels
Vertical (V) direction:
Front 12 pixels, rear 2 pixels
• Number of dummy bits:
Horizontal 22
Vertical 1 (even fields only)
• Substrate material:
Silicon
TM
∗ EXview HAD CCD is a trademark of Sony Corporation.
EXview HAD CCD is a CCD that drastically improves light efficiency by including near infrared light region as a basic structure of
HAD (Hole-Accumulation-Diode) sensor.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E00Z51
ICX279AK
VOUT
GND
NC
Vφ1
Vφ2
Vφ3
Vφ4
Block Diagram and Pin Configuration
(Top View)
7
6
5
4
3
2
1
Vertical Register
Cy
Ye
Cy
Mg
G
Mg
G
Cy
Ye
Cy
Ye
Ye
G
Mg
G
Mg
Cy
Ye
Cy
Ye
Mg
G
Mg
G
Note)
Horizontal Register
9
10
11
12
13
14
φSUB
VL
RG
Hφ1
Hφ2
VDD
8
GND
Note)
: Photo sensor
Pin Description
Pin No. Symbol
Description
Pin No. Symbol
Description
1
Vφ4
Vertical register transfer clock
8
VDD
Supply voltage
2
Vφ3
Vertical register transfer clock
9
GND
GND
3
Vφ2
Vertical register transfer clock
10
φSUB
Substrate clock
4
Vφ1
Vertical register transfer clock
11
VL
Protective transistor bias
5
NC
12
RG
Reset gate clock
6
GND
GND
13
Hφ1
Horizontal register transfer clock
7
VOUT
Signal output
14
Hφ2
Horizontal register transfer clock
Absolute Maximum Ratings
Item
Against φSUB
Ratings
Unit
VDD, VOUT, RG – φSUB
–40 to +8
V
Vφ1, Vφ3 – φSUB
–50 to +15
V
Vφ2, Vφ4, VL – φSUB
–50 to +0.3
V
Hφ1, Hφ2, GND – φSUB
–40 to +0.3
V
–0.3 to +18
V
Vφ1, Vφ2, Vφ3, Vφ4 – GND
–10 to +18
V
Hφ1, Hφ2 – GND
–10 to +6
V
Vφ1, Vφ3 – VL
–0.3 to +28
V
Vφ2, Vφ4, Hφ1, Hφ2, GND – VL
–0.3 to +15
V
to +15
V
VDD, VOUT, RG – GND
Against GND
Against VL
Voltage difference between vertical clock input pins
Between input clock
pins
–5 to +5
V
–13 to +13
V
Storage temperature
–30 to +80
°C
Operating temperature
–10 to +60
°C
Hφ1 – Hφ2
Hφ1, Hφ2 – Vφ4
∗1 +24V (Max.) when clock width < 10µs, clock duty factor < 0.1%.
–2–
Remarks
∗1
ICX279AK
Bias Conditions
Item
Symbol
Min.
Typ.
Max.
Unit
Supply voltage
VDD
14.55
15.45
V
Protective transistor bias
VL
15.0
∗1
Substrate clock
φSUB
∗2
Reset gate clock
φRG
∗2
Remarks
∗1 VL setting is the VVL voltage of the vertical transfer clock waveform, or the same power supply as the VL
power supply for the V driver should be used.
∗2 Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated
within the CCD.
DC Characteristics
Item
Symbol
Supply current
Min.
IDD
Typ.
Max.
Unit
4
6
mA
Remarks
Clock Voltage Conditions
Item
Readout clock voltage
Vertical transfer clock
voltage
Horizontal transfer
clock voltage
Min.
Typ.
Max.
Unit
Waveform
diagram
VVT
14.55
15.0
15.45
V
1
VVH1, VVH2
–0.05
0
0.05
V
2
VVH3, VVH4
–0.2
0
0.05
V
2
VVL1, VVL2,
VVL3, VVL4
–8.0
–7.0
–6.5
V
2
VVL = (VVL3 + VVL4)/2
VφV
6.3
7.0
8.05
V
2
VφV = VVHn – VVLn (n = 1 to 4)
Symbol
VVH = (VVH1 + VVH2)/2
VVH3 – VVH
–0.25
0.1
V
2
VVH4 – VVH
–0.25
0.1
V
2
VVHH
0.3
V
2
High-level coupling
VVHL
0.3
V
2
High-level coupling
VVLH
0.3
V
2
Low-level coupling
VVLL
0.3
V
2
Low-level coupling
VφH
3.0
3.3
5.25
V
3
VHL
–0.05
0
0.05
V
3
3.0
3.3
5.5
V
4
Input through 0.1µF
capacitance
VRGLH – VRGLL
0.4
V
4
Low-level coupling
VRGL – VRGLm
0.5
V
4
Low-level coupling
23.5
V
5
VφRG
Reset gate clock
voltage
Remarks
Substrate clock voltage VφSUB
21.0
22.0
–3–
ICX279AK
Clock Equivalent Circuit Constant
Symbol
Item
Min.
Typ.
Max.
Unit Remarks
CφV1, CφV3
1200
pF
CφV2, CφV4
680
pF
CφV12, CφV34
220
pF
CφV23, CφV41
150
pF
CφV13
82
pF
CφV24
75
pF
Capacitance between horizontal transfer clock
and GND
CφH1, CφH2
22
pF
Capacitance between horizontal transfer clocks
CφHH
36
pF
Capacitance between reset gate clock and GND CφRG
5
pF
Capacitance between vertical transfer clock
and GND
Capacitance between vertical transfer clocks
Capacitance between substrate clock and GND
CφSUB
180
pF
Vertical transfer clock series resistor
R1, R2, R3, R4
82
Ω
Vertical transfer clock ground resistor
RGND
15
Ω
Horizontal transfer clock series resistor
RφH
12
Ω
Reset gate clock series resistor
RφRG
51
Ω
Vφ2
Vφ1
CφV12
R1
R2
RφH
RφH
Hφ1
CφV1
Hφ2
CφHH
CφV2
CφV41
CφV23
CφH1
CφH2
CφV13
CφV24
CφV4
R4
RGND
CφV3
R3
CφV34
Vφ4
Vφ3
Vertical transfer clock equivalent circuit
Horizontal transfer clock equivalent circuit
RφRG
RGφ
CφRG
Reset gate clock equivalent circuit
–4–
ICX279AK
Drive Clock Waveform Conditions
(1) Readout clock waveform
100%
90%
φM
VVT
φM
2
10%
0%
tr
twh
0V
tf
(2) Vertical transfer clock waveform
Vφ1
Vφ3
VVH1
VVHH
VVH
VVHH
VVHL
VVHL
VVHL
VVL1
VVHH
VVHH
VVH3
VVH
VVHL
VVL3
VVLH
VVLH
VVLL
VVLL
VVL
VVL
Vφ2
Vφ4
VVHH
VVHH
VVH
VVH
VVHH
VVHH
VVHL
VVHL
VVH2 VVHL
VVH4
VVLH
VVL2VVLH
VVLL
VVLL
VVL4
VVL
VVH = (VVH1 + VVH2)/2
VVL = (VVL3 + VVL4)/2
VφV = VVHn – VVLn (n = 1 to 4)
VVHL
–5–
VVL
ICX279AK
(3) Horizontal transfer clock waveform
tr
twh
tf
90%
VφH
twl
10%
VHL
(4) Reset gate clock waveform
tr
twh
tf
VRGH
twl
VφRG
Point A
RG waveform
VRGLH
VRGL
VRGLL
VRGLm
Hφ1 waveform
VφH/2 [V]
VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from
Point A in the above diagram until the rising edge of RG. In addition, VRGL is the average value of VRGLH and
VRGLL.
VRGL = (VRGLH + VRGLL)/2
Assuming VRGH is the minimum value during the interval twh, then:
VφRG = VRGH – VRGL
Negative overshoot level during the falling edge of RG is VRGLm.
(5) Substrate clock waveform
100%
90%
φM
VφSUB
10%
VSUB
0%
(A bias generated within the CCD)
tr
twh
–6–
φM
2
tf
ICX279AK
Clock Switching Characteristics
twh
Symbol
twl
tr
tf
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.
2.3 2.5
0.5
0.5
VT
Vertical transfer
clock
Vφ1, Vφ2,
Vφ3, Vφ4
Hφ1
26 28.5
26 28.5
6.5 9.5
6.5 9.5
Hφ2
26 28.5
26 28.5
6.5 9.5
6.5 9.5
During
Hφ1
parallel-serial
Hφ2
conversion
5.38
0.01
0.01
5.38
0.01
0.01
51
3
3
During
imaging
φRG
11
Substrate clock
φSUB
1.5 1.8
13
Remarks
During
readout
250 ns ∗1
15
Reset gate clock
Unit
µs
Readout clock
Horizontal
transfer clock
Item
0.5
ns ∗2
µs
ns
0.5
µs During drain
charge
∗1 When vertical transfer clock driver CXD1267AN is used.
∗2 When VφH = 3.0V. tf ≥ tr – 2ns, and the cross-point voltage (VCR) for the Hφ1 rising side of the Hφ1 and Hφ2
waveforms must be at least VφH/2 [V].
Item
Symbol
Horizontal transfer clock Hφ1, Hφ2
two
Min.
Typ.
22
26
Max.
Unit Remarks
ns
∗3
∗3 The overlap period for twh and twl of horizontal transfer clocks Hφ1 and Hφ2 is two.
–7–
ICX279AK
Image Sensor Characteristics
Item
(Ta = 25°C)
Symbol
Min.
Typ.
S
640
800
RMgG
0.93
1.35
2
RYeCy
1.15
1.53
2
Saturation signal
Ysat
900
Smear
Sm
Video signal shading
SHy
Sensitivity
Sensitivity ratio
Max.
Unit
Measurement method
mV
1
Remarks
mV
3
–100
dB
4
20
%
5
Zone 0 and I
25
%
5
Zone 0 to II'
∆Sr
10
%
6
∆Sb
10
%
6
Dark signal
Ydt
2
mV
7
Ta = 60°C
Dark signal shading
∆Ydt
1
mV
8
Ta = 60°C
Flicker Y
Fy
2
%
9
Flicker R-Y
Fcr
5
%
9
Flicker B-Y
Fcb
5
%
9
Line crawl R
Lcr
3
%
10
Line crawl G
Lcg
3
%
10
Line crawl B
Lcb
3
%
10
Line crawl W
Lcw
3
%
10
Lag
Lag
0.5
%
11
Uniformity between video
signal channels
–108
Ta = 60°C
Zone Definition of Video Signal Shading
752 (H)
12
12
8
H
8
V
10
H
8
Zone 0, I
582 (V)
6
Zone II, II'
V
10
Ignored region
Effective pixel region
Measurement System
[∗A]
CCD signal output
LPF1
[∗Y]
Y signal output
(3dB down 6.3MHz)
CCD
C.D.S
AMP
[∗C]
S/H
LPF2
S/H
Chroma signal output
(3dB down 1MHz)
Note) Adjust the amplifier gain so that the gain between [∗A] and [∗Y] , and between [∗A] and [∗C] equals 1.
–8–
ICX279AK
Image Sensor Characteristics Measurement Method
Measurement conditions
1) In the following measurements, the device drive conditions are at the typical values of the bias and clock
voltage conditions.
2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical
black level (OB) is used as the reference for the signal output, which is taken as the value of Y signal output
or chroma signal output of the measurement system.
Color coding of this image sensor & Composition of luminance (Y) and chroma (color difference) signals
Cy
Ye
Cy
Ye
G
Mg
G
Mg
Cy
Ye
Cy
Ye
Mg
G
Mg
G
A1
B
A2
As shown in the left figure, fields are read out. The charge is
mixed by pairs such as A1 and A2 in the A field. (pairs such
as B in the B field)
As a result, the sequence of charges output as signals from
the horizontal shift register (Hreg) is, for line A1, (G + Cy),
(Mg + Ye), (G + Cy), and (Mg + Ye).
Hreg
Color Coding Diagram
These signals are processed to form the Y signal and chroma (color difference) signal. The Y signal is formed
by adding adjacent signals, and the chroma signal is formed by subtracting adjacent signals. In other words,
the approximation:
Y = {(G + Cy) + (Mg + Ye)} × 1/2
= 1/2 {2B + 3G + 2R}
is used for the Y signal, and the approximation:
R – Y = {(Mg + Ye) – (G + Cy)}
= {2R – G}
is used for the chroma (color difference) signal. For line A2, the signals output from Hreg in sequence are
(Mg + Cy), (G + Ye), (Mg + Cy), (G + Ye).
The Y signal is formed from these signals as follows:
Y = {(G + Ye) + (Mg + Cy)} × 1/2
= 1/2 {2B + 3G + 2R}
This is balanced since it is formed in the same way as for line A1.
In a like manner, the chroma (color difference) signal is approximated as follows:
– (B – Y) = {(G + Ye) – (Mg + Cy)}
= – {2B – G}
In other words, the chroma signal can be retrieved according to the sequence of lines from R – Y and – (B – Y)
in alternation. This is also true for the B field.
–9–
ICX279AK
Definition of standard imaging conditions
1) Standard imaging condition I:
Use a pattern box (luminance 706cd/m2, color temperature of 3200K halogen source) as a subject. (Pattern
for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter
and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the
standard sensitivity testing luminous intensity.
2) Standard imaging condition II:
Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles.
Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted
to the value indicated in each testing item by the lens diaphragm.
3) Standard imaging condition III:
Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles.
Use a testing standard lens (exit pupil distance –33mm) with CM500S (t = 1.0mm) as an IR cut filter. The
luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.
1. Sensitivity
Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of
1/250s, measure the Y signal (Ys) at the center of the screen and substitute the value into the following
formula.
S = Ys × 250 [mV]
50
2. Sensitivity ratio
Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal
output is 200mV, and then measure the Mg signal output (SMg [mV]) and G signal output (SG [mV]), and Ye
signal output (SYe [mV]) and Cy signal output (SCy [mV]) at the center of the screen with frame readout
method. Substitute the values into the following formula.
RMgG = SMg/SG
RYeCy = SYe/SCy
3. Saturation signal
Set to standard imaging condition II. After adjusting the luminous intensity to 10 times the intensity with
average value of the Y signal output, 200mV, measure the minimum value of the Y signal.
4. Smear
Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity to
500 times the intensity with average value of the Y signal output, 200mV. When the readout clock is stopped
and the charge drain is executed by the electronic shutter at the respective H blankings, measure the
maximum value (YSm [mV]) of the Y signal output and substitute the value into the following formula.
Sm = 20 × log
YSm × 1 × 1
500
10
200
[dB] (1/10V method conversion value)
– 10 –
ICX279AK
5. Video signal shading
Set to standard imaging condition III. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity
so that the average value of the Y signal output is 200mV. Then measure the maximum (Ymax [mV]) and
minimum (Ymin [mV]) values of the Y signal and substitute the values into the following formula.
SHy = (Ymax – Ymin)/200 × 100 [%]
6. Uniformity between video signal channels
Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal
output is 200mV, and then measure the maximum (Crmax, Cbmax [mV]) and minimum (Crmin, Cbmin
[mV]) values of the R – Y and B – Y channels of the chroma signal and substitute the values into the
following formula.
∆Sr = | (Crmax – Crmin)/200 | × 100 [%]
∆Sb = | (Cbmax – Cbmin)/200 | × 100 [%]
7. Dark signal
Measure the average value of the Y signal output (Ydt [mV]) with the device ambient temperature 60°C and
the device in the light-obstructed state, using the horizontal idle transfer level as a reference.
8. Dark signal shading
After measuring 7, measure the maximum (Ydmax [mV]) and minimum (Ydmin [mV]) values of the Y signal
output and substitute the values into the following formula.
∆Ydt = Ydmax – Ydmin [mV]
9. Flicker
1) Fy
Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal
output is 200mV, and then measure the difference in the signal level between fields (∆Yf [mV]). Then
substitute the value into the following formula.
Fy = (∆Yf/200) × 100 [%]
2) Fcr, Fcb
Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal
output is 200mV, insert an R or B filter, and then measure both the difference in the signal level between
fields of the chroma signal (∆Cr, ∆Cb) as well as the average value of the chroma signal output (CAr, CAb).
Substitute the values into the following formula.
Fci = (∆Ci/CAi) × 100 [%] (i = r, b)
– 11 –
ICX279AK
10. Line crawls
Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the Y signal
output is 200mV, and then insert a white subject and R, G, and B filters and measure the difference
between Y signal lines for the same field (∆Ylw, ∆Ylr, ∆Ylg, ∆Ylb [mV]). Substitute the values into the
following formula.
Lci = (∆Yli/200) × 100 [%] (i = w, r, g, b)
11. Lag
Adjust the Y signal output value generated by strobe light to 200mV. After setting the strobe light so that it
strobes with the following timing, measure the residual signal (Ylag). Substitute the value into the following
formula.
Lag = (Ylag/200) × 100 [%]
FLD
V1
Light
Strobe light
timing
Y signal output 200mV
Output
– 12 –
Ylag (lag)
Drive Circuit
15V
1
20
2
19
3
18
XSUB
4
17
XV2
5
100k
0.1
1/35V
–7.0V
16
CXD1267AN
XV1
6
XSG1
7
14
XV3
8
13
XSG2
9
12
XV4
10
11
3.3/16V
15
22/16V
– 13 –
1
2
3
4
5
6
7
Vφ4
Vφ3
Vφ2
Vφ1
NC
GND
VOUT
22/20V
GND
VDD
VL
8
RG
9
Hφ1
14 13 12 11 10
Hφ2
φSUB
ICX279
(BOTTOM VIEW)
100
2SK523
CCD OUT
3.9k
Hφ2
2200p
Hφ1
1M
0.01
3.3/20V
0.1
RG
ICX279AK
ICX279AK
Spectral Sensitivity Characteristics (excludes both lens characteristics and light source characteristics)
1.0
Ye
Relative Response
0.8
G
Cy
0.6
0.4
Mg
0.2
0
400
450
500
550
600
650
700
Wave Length [nm]
Sensor Readout Clock Timing Chart
V1
2.6
V2
Odd Field
V3
V4
33.6
1.5
2.6 2.6 2.6
0.2
V1
V2
Even Field
V3
V4
Unit: µs
– 14 –
Drive Timing Chart (Vertical Sync)
FLD
VD
BLK
340
335
330
325
320
315
310
25
20
15
10
625
1
2
3
4
5
620
HD
– 15 –
V1
V2
V3
V4
CCD
OUT
581
582
2 4 6
1 3 5
2 4 6
1 3 5
582
581
1 3 5
2 4 6
1 3 5
2 4 6
ICX279AK
Drive Timing Chart (Horizontal Sync)
HD
BLK
H1
20
10
20
22
1
2
3
1
2
3
10
1
2
3
5
40
30
20
10
3
5
750
752
1
745
H2
– 16 –
RG
V1
V2
V3
V4
SUB
ICX279AK
ICX279AK
Notes on Handling
1) Static charge prevention
CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following
protective measures.
a) Either handle bare handed or use non-chargeable gloves, clothes or material.
Also use conductive shoes.
b) When handling directly use an earth band.
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
d) Ionized air is recommended for discharge when handling CCD image sensor.
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.
2) Soldering
a) Make sure the package temperature does not exceed 80°C.
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W
soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering
tool, use a thermal controller of the zero cross On/Off type and connect it to ground.
3) Dust and dirt protection
Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and
dirt. Clean glass plates with the following operation as required, and use them.
a) Perform all assembly operations in a clean room (class 1000 or less).
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should
dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized
air is recommended.)
c) Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass.
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when
moving to a room with great temperature differences.
e) When a protective tape is applied before shipping, just before use remove the tape applied for
electrostatic protection. Do not reuse the tape.
4) Installing (attaching)
a) Remain within the following limits when applying a static load to the package. Do not apply any load
more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to
limited portions. (This may cause cracks in the package.)
Cover glass
50N
50N
1.2Nm
Plastic package
Compressive strength
Torsional strength
– 17 –
ICX279AK
b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the
package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for
installation, use either an elastic load, such as a spring plate, or an adhesive.
c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated
voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area,
and indicated values should be transferred to the other locations as a precaution.
d) The notch of the package is used for directional index, and that can not be used for reference of fixing.
In addition, the cover glass and seal resin may overlap with the notch of the package.
e) If the lead bend repeatedly and the metal, etc., clash or rub against the package, the dust may be
generated by the fragments of resin.
f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyano-acrylate
instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference)
5) Others
a) Do not expose to strong light (sun rays) for long periods, color filters will be discolored. When high
luminance objects are imaged with the exposure level control by electronic-iris, the luminance of the
image-plane may become excessive and discolor of the color filter will possibly be accelerated. In such
a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the poweroff mode should be properly arranged. For continuous using under cruel condition exceeding the normal
using condition, consult our company.
b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or
usage in such conditions.
c) The brown stain may be seen on the bottom or side of the package. But this does not affect the CCD
characteristics.
d) This package has 2 kinds of internal structure. However, their package outline, optical size, and strength
are the same.
Structure A
Structure B
Package
Chip
Metal plate
(lead frame)
Cross section of
lead frame
The cross section of lead frame can be seen on the side of the package for structure A.
– 18 –
Package Outline
Unit: mm
14 pin DIP (400mil)
0˚ to 9˚
A
5.0
2.5
C
10.16
8.9
10.0 ± 0.1
1.7
8.9
10.0 ± 0.1
7
7
2.5
7.0
– 19 –
1.0
B'
2.6
~
1
0.25
1
3.35 ± 0.15
7.0
2.5
V
14
8
H
0.5
~
D
5.0
~
B
1.0
8
1.7
14
1. “A” is the center of the effective image area.
2. The two points “B” of the package are the horizontal reference.
The point “B'” of the package is the vertical reference.
3. The bottom “C” of the package, and the top of the cover glass “D” are the height reference.
4. The center of the effective image area relative to “B” and “B'” is (H, V) = (5.0, 5.0) ± 0.15mm.
0.3
0.46
1.27
0.3
M
PACKAGE STRUCTURE
1.27
3.5 ± 0.3
5. The rotation angle of the effective image area relative to H and V is ± 1˚.
6. The height from the bottom “C” to the effective image area is 1.41 ± 0.10mm.
The height from the top of the cover glass “D” to the effective image area is 1.94 ± 0.15mm.
7. The tilt of the effective image area relative to the bottom “C” is less than 25µm.
The tilt of the effective image area relative to the top “D” of the cover glass is less than 25µm.
8. The thickness of the cover glass is 0.75mm, and the refractive index is 1.5.
Plastic
LEAD TREATMENT
GOLD PLATING
LEAD MATERIAL
42 ALLOY
PACKAGE MASS
0.60g
DRAWING NUMBER
AS-D3-01(E)
9. The notch of the package is used only for directional index, that must not be used for reference
of fixing.
ICX279AK
Sony Corporation
PACKAGE MATERIAL
Similar pages