MJD2955 (PNP) MJD3055 (NPN) Complementary Power Transistors DPAK For Surface Mount Applications http://onsemi.com Designed for general purpose amplifier and low speed switching applications. Features • Lead Formed for Surface Mount Applications in Plastic Sleeves • • • • • • • (No Suffix) Straight Lead Version in Plastic Sleeves (“−1” Suffix) Electrically Similar to MJE2955 and MJE3055 DC Current Gain Specified to 10 Amperes High Current Gain−Bandwidth Product − fT = 2.0 MHz (Min) @ IC = 500 mAdc Epoxy Meets UL 94 V−0 @ 0.125 in ESD Ratings: Human Body Model, 3B u 8000 V Machine Model, C u 400 V These are Pb−Free Packages SILICON POWER TRANSISTORS 10 AMPERES 60 VOLTS, 20 WATTS MARKING DIAGRAMS 4 1 2 3 DPAK CASE 369C STYLE 1 MAXIMUM RATINGS Rating Symbol Max Unit VCEO 60 Vdc Collector−Base Voltage VCB 70 Vdc Emitter−Base Voltage VEB 5 Vdc Collector Current IC 10 Adc Base Current IB 6 Adc Total Power Dissipation @ TC = 25°C Derate above 25°C PD{ 20 0.16 W W/°C Total Power Dissipation (Note1) @ TA = 25°C Derate above 25°C PD Operating and Storage Junction Temperature Range TJ, Tstg Collector−Emitter Voltage W 1.75 0.014 W/°C −55 to +150 °C 4 1 AYWW J xx55G 2 DPAK−3 CASE 369D STYLE 1 3 A Y WW Jxx55 G = Assembly Location = Year = Work Week = Device Code x = 29 or 30 = Pb−Free Package ORDERING INFORMATION THERMAL CHARACTERISTICS Characteristic AYWW J xx55G Symbol Max Unit Thermal Resistance, Junction−to−Case RqJC 6.25 °C/W Thermal Resistance, Junction−to−Ambient (Note1) RqJA 71.4 °C/W See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. †Safe Area Curves are indicated by Figure 1. Both limits are applicable and must be observed. 1. These ratings are applicable when surface mounted on the minimum pad sizes recommended. © Semiconductor Components Industries, LLC, 2011 January, 2011 − Rev. 10 1 Publication Order Number: MJD2955/D MJD2955 (PNP) MJD3055 (NPN) ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) Characteristic Symbol Min Max Unit Collector−Emitter Sustaining Voltage (Note 2) (IC = 30 mAdc, IB = 0) VCEO(sus) 60 − Vdc Collector Cutoff Current (VCE = 30 Vdc, IB = 0) ICEO − 50 mAdc Collector Cutoff Current (VCE = 70 Vdc, VEB(off) = 1.5 Vdc) (VCE = 70 Vdc, VEB(off) = 1.5 Vdc, TC = 150_C) ICEX − − 0.02 2 Collector Cutoff Current (VCB = 70 Vdc, IE = 0) (VCB = 70 Vdc, IE = 0, TC = 150_C) ICBO − − 0.02 2 Emitter Cutoff Current (VBE = 5 Vdc, IC = 0) IEBO − 0.5 20 5 100 − − − 1.1 8 OFF CHARACTERISTICS mAdc mAdc mAdc ON CHARACTERISTICS DC Current Gain (Note 2) (IC = 4 Adc, VCE = 4 Vdc) (IC = 10 Adc, VCE = 4 Vdc) hFE − Collector−Emitter Saturation Voltage (Note 2) (IC = 4 Adc, IB = 0.4 Adc) (IC = 10 Adc, IB = 3.3 Adc) VCE(sat) Vdc Base−Emitter On Voltage (Note 2) (IC = 4 Adc, VCE = 4 Vdc) VBE(on) − 1.8 Vdc fT 2 − MHz DYNAMIC CHARACTERISTICS Current−Gain − Bandwidth Product (IC = 500 mAdc, VCE = 10 Vdc, f = 500 kHz) 2. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2%. ORDERING INFORMATION Device Package Type Package MJD2955G DPAK (Pb−Free) 369C MJD2955−1G DPAK (Pb−Free) 369D MJD2955T4G DPAK (Pb−Free) MJD3055G DPAK (Pb−Free) MJD3055T4G DPAK (Pb−Free) Shipping† 75 Units / Rail 2500 Tape & Reel 369C 75 Units / Rail 2500 Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 2 MJD2955 (PNP) MJD3055 (NPN) TYPICAL CHARACTERISTICS PD, POWER DISSIPATION (WATTS) TA TC 2.5 25 2 20 TC 1.5 15 TA SURFACE MOUNT 1 10 0.5 5 0 0 25 50 75 100 125 150 T, TEMPERATURE (°C) Figure 1. Power Derating 2 500 100 VCE = 2 V 0.7 0.5 25°C -55°C 50 30 20 0.02 0.05 0.1 0.5 0.2 1 2 5 10 0 0.1 0.2 0.4 0.6 1 2 Figure 2. DC Current Gain Figure 3. Turn−On Time 4 6 5 TJ = 25°C VCC = 30 V IC/IB = 10 IB1 = IB2 3 2 TJ = 25°C 1 VBE(sat) @ IC/IB = 10 VBE @ VCE = 2 V 0.4 0.2 0.06 0.1 IC, COLLECTOR CURRENT (AMP) t, TIME (s) μ V, VOLTAGE (VOLTS) 0.6 td @ VBE(off) ≈ 5 V IC, COLLECTOR CURRENT (AMP) 1 0.8 0.1 0.03 0.02 1.4 1.2 tr 0.3 0.2 0.07 0.05 10 5 0.01 TJ = 25°C VCC = 30 V IC/IB = 10 1 TJ = 150°C t, TIME (s) μ hFE , DC CURRENT GAIN 300 200 ts 0.7 0.5 0.3 0.2 tf 0.1 VCE(sat) @ IC/IB = 10 0.2 0.3 0.5 1 2 3 5 0.07 0.05 0.06 0.1 10 0.2 0.4 0.6 1 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 4. “On” Voltages, MJD3055 Figure 5. Turn−Off Time http://onsemi.com 3 2 4 6 MJD2955 (PNP) MJD3055 (NPN) 2 TJ = 25°C 1.6 V, VOLTAGE (VOLTS) VCC +30 V 25 ms RC +11 V 0 1.2 SCOPE RB -9 V VBE(sat) @ IC/IB = 10 0.8 VBE @ VCE = 3 V D1 51 tr, tf ≤ 10 ns DUTY CYCLE = 1% -4 V 0.4 RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS VCE(sat) @ IC/IB = 10 0 0.1 0.2 0.3 0.5 1 2 3 IC, COLLECTOR CURRENT (AMP) D1 MUST BE FAST RECOVERY TYPE, eg: 1N5825 USED ABOVE IB ≈ 100 mA MSD6100 USED BELOW IB ≈ 100 mA 10 5 r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) Figure 6. “On” Voltages, MJD2955 1 0.7 0.5 Figure 7. Switching Time Test Circuit D = 0.5 0.3 0.2 0.2 0.1 0.07 0.05 0.05 0.02 0.01 0.03 0.02 P(pk) RqJC(t) = r(t) RqJC RqJC = 6.25°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) qJC(t) 0.1 t1 t2 DUTY CYCLE, D = t1/t2 SINGLE PULSE 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1 2 3 5 t, TIME (ms) 10 20 30 50 100 200 300 500 1k Figure 8. Thermal Response FORWARD BIAS SAFE OPERATING AREA INFORMATION IC, COLLECTOR CURRENT (AMP) 10 5 3 2 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC − VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 9 is based on TJ(pk) = 150_C; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided TJ(pk) v 150_C. TJ(pk) may be calculated from the data in Figure 8. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. 100ms 1 1ms 0.5 0.3 5ms 0.1 dc WIRE BOND LIMIT THERMAL LIMIT TC = 25°C (D = 0.1) SECOND BREAKDOWN LIMIT 0.05 0.03 0.02 0.01 0.6 500ms TJ = 150°C 1 2 20 4 6 10 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 40 60 Figure 9. Maximum Forward Bias Safe Operating Area http://onsemi.com 4 MJD2955 (PNP) MJD3055 (NPN) PACKAGE DIMENSIONS DPAK CASE 369C−01 ISSUE D A E b3 c2 B Z D 1 L4 A 4 L3 b2 e 2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. C H DETAIL A 3 c b 0.005 (0.13) M H C L2 GAUGE PLANE C L SEATING PLANE A1 L1 DETAIL A ROTATED 905 CW 2.58 0.101 5.80 0.228 3.0 0.118 1.6 0.063 INCHES MIN MAX 0.086 0.094 0.000 0.005 0.025 0.035 0.030 0.045 0.180 0.215 0.018 0.024 0.018 0.024 0.235 0.245 0.250 0.265 0.090 BSC 0.370 0.410 0.055 0.070 0.108 REF 0.020 BSC 0.035 0.050 −−− 0.040 0.155 −−− STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR SOLDERING FOOTPRINT* 6.20 0.244 DIM A A1 b b2 b3 c c2 D E e H L L1 L2 L3 L4 Z 6.172 0.243 SCALE 3:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 5 MILLIMETERS MIN MAX 2.18 2.38 0.00 0.13 0.63 0.89 0.76 1.14 4.57 5.46 0.46 0.61 0.46 0.61 5.97 6.22 6.35 6.73 2.29 BSC 9.40 10.41 1.40 1.78 2.74 REF 0.51 BSC 0.89 1.27 −−− 1.01 3.93 −−− MJD2955 (PNP) MJD3055 (NPN) PACKAGE DIMENSIONS DPAK−3 CASE 369D−01 ISSUE B C B V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. E R 4 Z A S 1 2 3 −T− SEATING PLANE K J F D G H 3 PL 0.13 (0.005) M DIM A B C D E F G H J K R S V Z INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.027 0.035 0.018 0.023 0.037 0.045 0.090 BSC 0.034 0.040 0.018 0.023 0.350 0.380 0.180 0.215 0.025 0.040 0.035 0.050 0.155 −−− MILLIMETERS MIN MAX 5.97 6.35 6.35 6.73 2.19 2.38 0.69 0.88 0.46 0.58 0.94 1.14 2.29 BSC 0.87 1.01 0.46 0.58 8.89 9.65 4.45 5.45 0.63 1.01 0.89 1.27 3.93 −−− STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR T ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MJD2955/D