TDK B39881B4314P810 Saw rx filter Datasheet

SAW Components
SAW Rx Filter
Automotive Telematics
Series/type:
Ordering code:
B4314
B39881B4314P810
Date:
Version:
January 12, 2012
2.0
 EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information
contained therein without EPCOS' prior express consent is prohibited.
EPCOS AG is a TDK Group Company.
SAW Components
B4314
SAW Rx Filter
881.5 MHz
Data sheet
Application
■ Low-loss RF filter for mobile telephone
Cellular systems, receive path (Rx)
2 3
0.575
0.25
bottom view
5
4
0.5 0.5
0.4
Package size 1.4 x 1.1 x 0.4 mm3
Package code QCS5P
RoHS compatible
Approximate weight 0.003 g
Package for Surface Mount Technology (SMT)
Ni, gold-plated terminals
AEC-Q200 qualified component family (operable
temperature range –40˚C to +85˚C)
■ Electrostatic Sensitive Device (ESD)
■
■
■
■
■
■
■
1
Features
0.325
■ Usable passband 25.0 MHz
■ No matching network required for operation at 50 Ω
side view
1.1
1.4
Pin configuration
■ 1
■ 4
■ 2,3,5
Input
Output
To be grounded
Please read cautions and warnings and
important notes at the end of this document.
2
January 12, 2012
top view
SAW Components
B4314
SAW Rx Filter
881.5 MHz
Data sheet
Characteristics
Temperature range for specification:
Terminating source impedance:
Terminating load impedance:
T = –40 ˚C to +85 ˚C
ZS =
50 Ω
ZL =
50 Ω
––
B4314
typ.
@ 25 ˚C
881.5
min.
Center frequency
fC
max.
––
MHz
Maximum insertion attenuation
869.0 ... 894.0
@fCarrier
871.4 ... 891.6
MHz αmax
MHz αWCDMA1)
––
––
2.0
1.9
2.6
2.3
dB
dB
Amplitude ripple (p-p)
869.0 ...
MHz ∆α
––
1.0
1.6
dB
MHz EVM
––
2.5
3.5
%
MHz
––
1.8
2.1
MHz
MHz αWCDMA1)
45
42
49
50
––
––
dB
dB
MHz
MHz
MHz
MHz
MHz
MHz
14
22
40
46
35
27
24
30
52
56
38
31
––
––
––
––
––
––
dB
dB
dB
dB
dB
dB
894.0
Error Vector Magnitude2)
@fCarrier
871.4 ... 891.6
VSWR
869.0
...
894.0
α
Attenuation
@fCarrier
1)
2)
50.0
826.4
...
...
826.4
846.6
910.0
914.0
950.0
1850.0
2000.0
3500.0
...
...
...
...
...
...
914.0
950.0
1850.0
2000.0
3500.0
4000.0
Attenuation of WCDMA signal (“Powertransferfunction”). Please refer to annotation on page (4).
Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141.
Please read cautions and warnings and
important notes at the end of this document.
3
January 12, 2012
SAW Components
B4314
SAW Rx Filter
881.5 MHz
Data sheet
Annotation for characteristics section
(1) Attenuation of WCDMA signal (“Powertransferfunction”, αWCDMA) is determined by
∞
∫∞ Sds 21 ( f )HRRC ( f – f Carrier )
2
df
fCarrier according to 3GPP TS 25.101 (e.g. for Passband, fCarrier ranges from 871.4 MHz (lowest
Tx channel) to 891.6 MHz (highest Tx channel)). HRRC(f) is the transfer function of the rootraised cosine transmit pulse shaping filter according to 3GPP TS 25.101 with the following normalization:
∞
∫∞ HRRC ( f )
2
df = 1
Maximum ratings
Operable temperature range
Storage temperature range
DC voltage
ESD voltage
Input power
1)
T
Tstg
VDC
VESD
PIN
–40/+85
–40/+85
0
1001)
15
˚C
˚C
V
V
dBm
machine model, 10 pulses
acc. to JESD22-A115A (machine model), 10 negative & 10 positive pulses.
Please read cautions and warnings and
important notes at the end of this document.
4
January 12, 2012
SAW Components
B4314
SAW Rx Filter
881.5 MHz
Data sheet
Transfer function (S21, Narrowband)
Transfer function (S21, Wideband)
Please read cautions and warnings and
important notes at the end of this document.
5
January 12, 2012
SAW Components
B4314
SAW Rx Filter
881.5 MHz
Data sheet
ESD protection of SAW filters
SAW filters are Electro Static Discharge sensitive devices. To reduce the probability of damages
caused by ESD, special matching topologies have to be applied.
In general, “ESD matching” has to be ensured at that filter port, where electrostatic discharge is
expected.
Electrostatic discharges predominantly appear at the antenna input of RF receivers. Therefore
only the input matching of the SAW filter has to be designed to short circuit or to block the ESD
pulse.
Below three figures show recommended “ESD matching” topologies.
For wideband filters the high-pass ESD matching structure needs to be at least of 3rd order to
ensure a proper matching for any impedance value of antenna and SAW filter input. The required
component values have to be determined from case to case.
Cs3
Cs1
to output
matching
Lp2
Dp1
MLC1
Cs1
Fig. 1 MLC varistor plus ESD matching
Cs3
Lp2
to output
matching
Fig. 2 Suppressor diode plus ESD matching
In cases where minor ESD occur, following simplified “ESD matching” topologies can be used
alternatively.
Cs1
Cs3
to output
matching
Lp2
Fig. 3 3rd order high-pass structure for basic ESD protection
In all three figures the shunt inductor Lp2 could be replaced by a shorted microstrip with proper
length and width. If this configuration is possible depends on the operating frequency and
available pcb space.
Effectiveness of the applied ESD protection has to be checked according to relevant industry
standards or customer specific requirements
For further information, please refer to EPCOS Application report:
“ESD protection for SAW filters”.
This report can be found under www.epcos.com/rke.Click on “Applications Notes”.
Please read cautions and warnings and
important notes at the end of this document.
6
January 12, 2012
SAW Components
B4314
SAW Rx Filter
881.5 MHz
Data sheet
References
Type
B4314
Ordering code
B39881B4314P810
Marking and package
C61157-A8-A9
Packaging
F61074-V8212-Z000
Date codes
L_1126
S-parameters
B4314_NB.s2p, B4314_WB.s2p
See file header for port/pin assignment table.
Soldering profile
S_6001
RoHS compatible
defined as compatible with the following documents:
"DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL of 27 January 2003 on the restriction
of the use of certain hazardous substances in electrical and
electronic equipment. 2005/618/EC from April 18th, 2005,
amending Directive 2002/95/EC of the European Parliament
and of the Council for the purposes of establishing the maximum concentration values for certain hazardous substances in
electrical and electronic equipment."
Moldability
Before using in overmolding environment, please contact your
EPCOS sales office.
Matching coils
See Inductor pdf-catalog
http://www.tdk.co.jp/tefe02/coil.htm#aname1
and Data Library for circuit simulation
http://www.tdk.co.jp/etvcl/index.htm
For further information please contact your local EPCOS sales office or visit our webpage at
www.epcos.com .
Published by EPCOS AG
Systems, Acoustics, Waves Business Group
P.O. Box 80 17 09, 81617 Munich, GERMANY
 EPCOS AG 2012. This brochure replaces the previous edition.
For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or
the international Representatives.
Due to technical requirements components may contain dangerous substances. For information on
the type in question please also contact one of our Sales Offices.
Please read cautions and warnings and
important notes at the end of this document.
7
January 12, 2012
Important notes
The following applies to all products named in this publication:
1.
2.
3.
4.
5.
6.
7.
Some parts of this publication contain statements about the suitability of our products for
certain areas of application. These statements are based on our knowledge of typical
requirements that are often placed on our products in the areas of application concerned. We
nevertheless expressly point out that such statements cannot be regarded as binding
statements about the suitability of our products for a particular customer application.
As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar
with them than the customers themselves. For these reasons, it is always ultimately
incumbent on the customer to check and decide whether an EPCOS product with the
properties described in the product specification is suitable for use in a particular customer
application.
We also point out that in individual cases, a malfunction of electronic components or
failure before the end of their usual service life cannot be completely ruled out in the
current state of the art, even if they are operated as specified. In customer applications
requiring a very high level of operational safety and especially in customer applications in
which the malfunction or failure of an electronic component could endanger human life or
health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by
means of suitable design of the customer application or other action taken by the customer
(e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained
by third parties in the event of malfunction or failure of an electronic component.
The warnings, cautions and product-specific notes must be observed.
In order to satisfy certain technical requirements, some of the products described in this
publication may contain substances subject to restrictions in certain jurisdictions (e.g.
because they are classed as hazardous). Useful information on this will be found in our
Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more
detailed questions, please contact our sales offices.
We constantly strive to improve our products. Consequently, the products described in this
publication may change from time to time. The same is true of the corresponding product
specifications. Please check therefore to what extent product descriptions and specifications
contained in this publication are still applicable before or when you place an order.
We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be
available. The aforementioned does not apply in the case of individual agreements deviating
from the foregoing for customer-specific products.
Unless otherwise agreed in individual contracts, all orders are subject to the current
version of the “General Terms of Delivery for Products and Services in the Electrical
Industry” published by the German Electrical and Electronics Industry Association
(ZVEI).
The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DeltaCap,
DigiSiMic, DSSP, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC,
PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD,
SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks
registered or pending in Europe and in other countries. Further information will be found on
the Internet at www.epcos.com/trademarks.
8
January 12, 2012
Similar pages