Product Folder Order Now Technical Documents Tools & Software Support & Community TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 TMS320F28004x Piccolo™ Microcontrollers 1 Device Overview 1.1 Features 1 • TMS320C28x 32-Bit CPU – 100 MHz – IEEE 754 Single-Precision Floating-Point Unit (FPU) – Trigonometric Math Unit (TMU) – 3×-Cycle to 4×-Cycle Improvement for Common Trigonometric Functions Versus Software Libraries – 13-Cycle Park Transform – Viterbi/Complex Math Unit (VCU-I) – Ten Hardware Breakpoints • Programmable Control Law Accelerator (CLA) – 100 MHz – IEEE 754 Single-Precision Floating-Point Instructions – Executes Code Independently of Main CPU • On-Chip Memory – 256KB (128KW) of Flash (ECC-Protected) Across Two Independent Banks – 100KB (50KW) of RAM (ECC-Protected or Parity-Protected) – Dual-Zone Security Supporting Third-Party Development – Unique Identification Number • Clock and System Control – Two Internal Zero-Pin 10-MHz Oscillators – On-Chip Crystal Oscillator and External Clock Input – Windowed Watchdog Timer Module – Missing Clock Detection Circuitry • 1.2-V Core, 3.3-V I/O Design – Internal VREG or DC-DC for 1.2-V Generation Allows for Single-Supply Designs – Brownout Reset (BOR) Circuit • System Peripherals – 6-Channel Direct Memory Access (DMA) Controller – 40 Individually Programmable Multiplexed General-Purpose Input/Output (GPIO) Pins – 21 Digital Inputs on Analog Pins – Enhanced Peripheral Interrupt Expansion (ePIE) Module – Multiple Low-Power Mode (LPM) Support With External Wakeup – Embedded Real-Time Analysis and Diagnostic (ERAD) 1 • Communications Peripherals – One Power Management Bus (PMBus) Interface – One Inter-Integrated Circuit (I2C) Interface (Pin-Bootable) – Two Controller Area Network (CAN) Bus Ports (Pin-Bootable) – Two Serial Peripheral Interface (SPI) Ports (Pin-Bootable) – Two Serial Communication Interfaces (SCIs) (Pin-Bootable) – One Local Interconnect Network (LIN) – One Fast Serial Interface (FSI) With a Transmitter and Receiver • Analog System – Three 3.45-MSPS, 12-Bit Analog-to-Digital Converters (ADCs) – Up to 21 External Channels – Four Integrated Post-Processing Blocks (PPBs) per ADC – Seven Windowed Comparators (CMPSS) With 12-Bit Reference Digital-to-Analog Converters (DACs) – Digital Glitch Filters – Two 12-Bit Buffered DAC Outputs – Seven Programmable Gain Amplifiers (PGAs) – Programmable Gain Settings: 3, 6, 12, 24 – Programmable Output Filtering • Enhanced Control Peripherals – 16 ePWM Channels With High-Resolution Capability (150-ps Resolution) – Integrated Dead-Band Support With High Resolution – Integrated Hardware Trip Zones (TZs) – Seven Enhanced Capture (eCAP) Modules – High-Resolution Capture (HRCAP) Available on Two Modules – Two Enhanced Quadrature Encoder Pulse (eQEP) Modules With Support for CW/CCW Operation Modes – Four Sigma-Delta Filter Module (SDFM) Input Channels (Two Parallel Filters per Channel) – Standard SDFM Data Filtering – Comparator Filter for Fast Action for Overvalue or Undervalue Condition • Configurable Logic Block (CLB) – Augments Existing Peripheral Capability – Supports Position Manager Solutions An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 • InstaSPIN-FOC™ – Sensorless Field-oriented Control (FOC) With FAST™ Software Encoder – Library in On-chip ROM Memory • Package Options: – 100-Pin Low-Profile Quad Flatpack (LQFP) [PZ Suffix] – 64-Pin LQFP [PM Suffix] – 56-Pin Very Thin Quad Flatpack No-Lead (VQFN) [RSH Suffix] 1.2 • • • • • 2 www.ti.com • Temperature Options: – S: –40°C to 125°C Junction – Q: –40ºC to 125ºC Free-Air (AEC Q100 Qualification for Automotive Applications) Applications Appliances Building Automation Electric Vehicle/Hybrid Electric Vehicle (EV/HEV) Powertrain Factory Automation Grid Infrastructure Device Overview • • • • • • Industrial Transport Medical, Healthcare, and Fitness Motor Drives Power Delivery Telecom Infrastructure Test and Measurement Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 1.3 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Description The Piccolo™ TMS320F28004x (F28004x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device. The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal processing performance. The C28x CPU is further boosted by the new TMU extended instruction set, which enables fast execution of algorithms with trigonometric operations commonly found in transforms and torque loop calculations; and the VCU-I extended instruction set, which reduces the latency for complex math operations commonly found in encoded applications. The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent 32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own dedicated memory resources and it can directly access the key peripherals that are required in a typical control system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware task-switching. The F28004x supports up to 256KB (128KW) of flash memory divided into two 128KB (64KW) banks, which enables programming and execution in parallel. Up to 100KB (50KW) of on-chip SRAM is also available in blocks of 4KB (2KW) and 16KB (8KW) for efficient system partitioning. Flash ECC, SRAM ECC/parity, and dual-zone security are also supported. High-performance analog blocks are integrated on the F28004x MCU to further enable system consolidation. Three separate 12-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. Seven PGAs on the analog front end enable on-chip voltage scaling before conversion. Seven analog comparator modules provide continuous monitoring of input voltage levels for trip conditions. The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system. The built-in 4-channel SDFM allows for seamless integration of an oversampling sigma-delta modulator across an isolation barrier. Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C, LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of applications. New to the C2000™ platform is the fully compliant PMBus. Additionally, in an industry first, the FSI enables high-speed, robust communication to complement the rich set of peripherals that are embedded in the device. A specially enabled device variant, TMS320F28004xC, allows access to the Configurable Logic Block (CLB) for additional interfacing features and allows access to the secure ROM, which includes a library to enable InstaSPIN-FOC™. See Device Comparison for more information. The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system analysis capabilities of the device by providing additional hardware breakpoints and counters for profiling. Device Overview Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 3 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Device Information (1) PACKAGE BODY SIZE TMS320F280049PZ PART NUMBER LQFP (100) 14.0 mm × 14.0 mm TMS320F280049CPZ LQFP (100) 14.0 mm × 14.0 mm TMS320F280045PZ LQFP (100) 14.0 mm × 14.0 mm TMS320F280041PZ LQFP (100) 14.0 mm × 14.0 mm TMS320F280041CPZ LQFP (100) 14.0 mm × 14.0 mm TMS320F280049PM LQFP (64) 10.0 mm × 10.0 mm TMS320F280049CPM LQFP (64) 10.0 mm × 10.0 mm TMS320F280048PM LQFP (64) 10.0 mm × 10.0 mm TMS320F280048CPM LQFP (64) 10.0 mm × 10.0 mm TMS320F280045PM LQFP (64) 10.0 mm × 10.0 mm TMS320F280041PM LQFP (64) 10.0 mm × 10.0 mm TMS320F280041CPM LQFP (64) 10.0 mm × 10.0 mm TMS320F280040PM LQFP (64) 10.0 mm × 10.0 mm TMS320F280040CPM LQFP (64) 10.0 mm × 10.0 mm TMS320F280049RSH VQFN (56) 7.0 mm × 7.0 mm TMS320F280049CRSH VQFN (56) 7.0 mm × 7.0 mm TMS320F280045RSH VQFN (56) 7.0 mm × 7.0 mm TMS320F280041RSH VQFN (56) 7.0 mm × 7.0 mm TMS320F280041CRSH VQFN (56) 7.0 mm × 7.0 mm (1) 4 For more information on these devices, see Mechanical, Packaging, and Orderable Information. Device Overview Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 1.4 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Functional Block Diagram Figure 1-1 shows the CPU system and associated peripherals. C28x RAM - ECC M0 - 1KW (2KB) M1 - 1KW (2KB) C28x TMU+FPU+VCU-I CPU Timer0 CPU Timer1 CPU Timer2 C28x ROM Boot - 64KW (128KB) Secure - 32KW (64KB) 10 MHz INTOSC1, INTOSC2 10–20 MHz Crystal Oscillator PLL Missing Clock Detect PF1 8x ePWM 7x eCAP (2 HRCAP Channels) 2x eQEP CLA to CPU - 128W CLA CPU to CLA - 128W (Type 2) Flash - ECC Flash BANK0 - 16 Sectors 64KW (128KB) Flash BANK1 - 16 Sectors 64KW (128KB) DCSM OTP ePIE (16 Hi-Res Channels) CLA MSG RAM - Parity PF3 Result 7x CMPSS Config. 3x 12-Bit ADC 2x Buffered DAC 7x PGA (CW/CCW Support) CLA ROM Data 4KW (8KB) Program 48KW (96KB) Local Shared RAM - Parity 16KW (32KB) LS0–LS7 8x (2KW [4KB]) Global Shared RAM - Parity 32KW (64KB) DMA GS0–GS3 4x (8KW [16KB]) PF4 (6 Channels) PF2 PF7 PF8 PF9 Data Config. GPIO 1x PMBUS 2x CAN 1x LIN 2x SCI XBAR 1x FSI RX 2x SPI 1x FSI TX 4x SD Filters 1x I2C NMI Watchdog Windowed Watchdog Copyright © 2017, Texas Instruments Incorporated Figure 1-1. Functional Block Diagram Device Overview Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 5 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table of Contents 1 2 3 Device Overview ......................................... 1 5 6.1 1.2 Applications ........................................... 2 1.3 Description ............................................ 3 1.4 Functional Block Diagram ............................ 5 ......................... ............................................ 6.4 Identification........................................ 6.5 Bus Architecture – Peripheral Connectivity ........ 6.6 C28x Processor .................................... 6.7 Control Law Accelerator (CLA) .................... 6.8 Direct Memory Access (DMA) ..................... 6.9 Boot ROM and Peripheral Booting................. 6.10 Watchdog .......................................... 6.11 Configurable Logic Block (CLB) ................... Applications, Implementation, and Layout ...... 7.1 TI Design or Reference Design .................... Device and Documentation Support .............. Revision History ......................................... 7 Device Comparison .................................... 10 Related Products .................................... 12 Terminal Configuration and Functions ............ 13 4.1 Pin Diagrams ........................................ 13 4.2 Pin Attributes ........................................ 17 4.3 Signal Descriptions .................................. 30 4.4 Pin Multiplexing...................................... 41 4.5 Pins With Internal Pullup and Pulldown ............. 52 4.6 Connections for Unused Pins ....................... 53 7 8 Specifications ........................................... 54 5.1 ........................ 54 ESD Ratings – Commercial ......................... 55 ESD Ratings – Automotive .......................... 55 Recommended Operating Conditions ............... 56 Power Consumption Summary ...................... 57 Electrical Characteristics ............................ 63 Thermal Resistance Characteristics ................ 64 System .............................................. 66 Analog Peripherals .................................. 95 Control Peripherals ................................ 128 Communications Peripherals ...................... 148 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 Table of Contents 9 Overview ........................................... 181 6.2 Functional Block Diagram 182 6.3 Memory 183 190 191 192 195 197 198 203 203 204 204 205 8.1 Device and Development Support Tool Nomenclature ...................................... 205 8.2 Tools and Software ................................ 206 8.3 Documentation Support ............................ 208 8.4 Related Links 8.5 Community Resources............................. 209 8.6 Trademarks ........................................ 209 8.7 Electrostatic Discharge Caution 8.8 Glossary............................................ 209 Absolute Maximum Ratings 5.2 6 Detailed Description.................................. 181 Features .............................................. 1 3.1 4 6 1.1 ...................................... ................... 209 209 Mechanical, Packaging, and Orderable Information ............................................. 210 9.1 Packaging Information ............................. 210 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 2 Revision History Changes from October 7, 2017 to December 15, 2017 (from B Revision (October 2017) to C Revision) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Page Global: TMS320F280049, TMS320F280049C, TMS320F280048, TMS320F280048C, TMS320F280045, TMS320F280041, TMS320F280041C, TMS320F280040, and TMS320F280040C are now fully qualified production devices. See Device and Development Support Tool Nomenclature. ............................................ 1 Global: Removed STANDBY low-power mode. ................................................................................. 1 Global: Removed TMS320F280049M and InstaSPIN-MOTION™. ........................................................... 1 Section 1.1 (Features): Updated section. ......................................................................................... 1 Section 1.3 (Description): Added paragraph about Embedded Real-Time Analysis and Diagnostic (ERAD) module. . 3 Figure 4-4 (56-Pin RSH Very Thin Quad Flatpack No-Lead (Top View)): Updated figure. ............................... 16 Table 4-1 (Pin Attributes): Added "PAD" to "56 RSH" column of VSS. ...................................................... 17 Table 4-4 (Power and Ground): Added "PAD" to "56 RSH" column of VSS. ............................................... 30 Section 5 (Specifications): Updated ESD Ratings – Commercial. ............................................................ 54 Section 5: Updated ESD Ratings – Automotive. ................................................................................ 54 Section 5: Updated Recommended Operating Conditions. .................................................................... 54 Section 5: Updated Electrical Characteristics .................................................................................. 54 Figure 5-1 (Supply Voltages): Added figure. .................................................................................... 56 Section 5.5 (Power Consumption Summary): Removed STANDBY low-power mode. .................................... 57 Section 5.8.1.2 (Internal 1.2-V Switching Regulator (DC-DC)): Removed "Internal Switching Regulator Characteristics" table. Power efficiency is now listed in Section 5.6. ........................................................ 66 Section 5.8.1.3 (Power Sequencing): Removed "Supply Ramp Rate" table. Supply ramp rate is now listed in Section 5.4. .......................................................................................................................... 68 Section 5.8.1.4 (Power-On Reset (POR)): Updated section. ................................................................. 68 Section 5.8.1.5 (Brownout Reset (BOR)): Added section. .................................................................... 68 Table 5-19 (XCLKOUT Switching Characteristics): Moved f(XCO) parameter from Output Clock Frequency table to this table. Removed Output Clock Frequency table. ........................................................................... 75 Section 5.8.3.3 (Input Clocks and PLLs): Updated description of the single-ended 3.3-V external clock. .............. 76 Table 5-25 (Flash Parameters): Updated table. ................................................................................ 80 Section 5.8.8 (Low-Power Modes): Removed STANDBY low-power mode. ............................................... 91 Table 5-39 (Analog Pins and Internal Connections): Updated COMPARATOR SUBSYSTEM (MUX) columns. ..... 100 Section 5.9.1.1.1 (Signal Mode): Added section. .............................................................................. 105 Table 5-43 (ADC Characteristics): Updated MIN and MAX values of Gain Error (External reference). ............... 106 Section 5.9.1.2.2 (ADC Timing Diagrams): Updated section. ............................................................... 111 Table 5-46 (ADC Timing Parameters): Added table. ......................................................................... 112 Section 5.9.2.1 (PGA Electrical Data and Timing): Added PGA Operating Conditions. ................................. 114 Table 5-49 (PGA Characteristics): Updated table. ............................................................................ 114 Section 5.9.2.1.1 (PGA Typical Characteristics Graphs): Added section................................................... 115 Section 5.9.4 (Buffered Digital-to-Analog Converter (DAC)): Updated section. .......................................... 117 Section 5.9.4.1 (Buffered DAC Electrical Data and Timing): Added Buffered DAC Operating Conditions. ........... 118 Table 5-52 (Buffered DAC Electrical Characteristics): Updated table. ..................................................... 118 Section 5.9.4.1.1 (Buffered DAC Illustrative Graphs): Added section. ..................................................... 119 Section 5.9.4.1.2 (Buffered DAC Typical Characteristics Graphs): Added section. ...................................... 121 Section 5.9.5.1.1 (CMPSS Illustrative Graphs): Added section. ............................................................ 126 Table 5-63 (eQEP Timing Requirements): Changed "Synchronous" to "Asynchronous/Synchronous". ............... 143 Table 5-63: Added footnote about limitations in the asynchronous mode. ................................................ 143 Section 5.11.2.1 (I2C Electrical Data and Timing): Added NOTE about meeting I2C protocol timing specifications. 152 Section 5.11.5.1.1 (Non-High-Speed Master Mode Timings): Updated parametric tables. ............................. 161 Section 5.11.5.1.2 (Non-High-Speed Slave Mode Timings): Updated parametric tables. ............................... 164 Section 5.11.5.1.3 (High-Speed Master Mode Timings): Updated parametric tables. ................................... 166 Section 5.11.5.1.4 (High-Speed Slave Mode Timings): Updated parametric tables. .................................... 169 Figure 5-83 (FSITX CPU Interface): Changed "VBUS" to "Register Interface". .......................................... 174 Figure 5-84 (FSITX Block Diagram): Changed "VBUS Interface" to "Register Interface". .............................. 175 Table 5-82 (FSITX Switching Characteristics): Updated table. ............................................................. 176 Table 5-81 (FSITX GPIO Mux Groups): Added table. ....................................................................... 176 Figure 5-85 (FSITX Timings): Updated figure. ................................................................................ 176 Figure 5-86 (FSIRX CPU Interface): Changed "VBUS" to "Register Interface". .......................................... 177 Figure 5-87 (FSIRX Block Diagram): Changed "VBUS Interface" to "Register Interface". .............................. 178 Table 5-83 (FSIRX Timing Requirements): Updated table. ................................................................. 179 Revision History Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 7 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 • • • • • • • • 8 www.ti.com Table 5-84 (FSITX SPI Mode Switching Characteristics): Updated table. ................................................ Table 6-4 (Peripheral Registers Memory Map): Updated REGISTER, STRUCTURE NAME, START ADDRESS, and END ADDRESS columns of ERAD registers in Peripheral Frame 6. ................................................. Table 6-7 (Device Identification Registers): Added UID_UNIQUE. ........................................................ Section 6.6.1 (Embedded Real-Time Analysis and Diagnostic (ERAD)): Added section. ............................... Section 6.10 (Watchdog): Added section. ..................................................................................... Section 7 (Applications, Implementation, and Layout): Added section. .................................................... Section 8.2 (Tools and Software): Added "Models" section. ................................................................ Section 8.3 (Documentation Support): Updated section. .................................................................... Revision History 180 186 190 192 203 204 206 208 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Changes from August 23, 2017 to October 6, 2017 (from A Revision (August 2017) to B Revision) • • • Page Table 4-1 (Pin Attributes): Updated "64 PM" column and "64 PMQ" column. .............................................. 17 Table 4-3 (Digital Signals): Updated "64 PM" column and "64 PMQ" column. ............................................. 30 Table 4-7 (Digital Signals by GPIO): Updated "64 PM" column and "64 PMQ" column. .................................. 41 Revision History Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 9 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 3 Device Comparison Table 3-1 lists the features of the TMS320F28004x devices. Table 3-1. Device Comparison F280049 F280049C FEATURE(1) F280048 F280048C F280045 F280041 F280041C F280040 F280040C PROCESSOR AND ACCELERATORS C28x Frequency (MHz) 100 FPU Yes VCU-I Yes TMU – Type 0 CLA – Type 2 Yes Available Yes Frequency (MHz) 100 No – 6-Channel DMA – Type 0 Yes MEMORY Flash 256KB (128KW) Dedicated and Local Shared RAM RAM 128KB (64KW) 36KB (18KW) Global Shared RAM 64KB (32KW) TOTAL RAM 100KB (50KW) Code security for on-chip flash, RAM, and OTP blocks Yes Boot ROM Yes User-configurable DCSM OTP 4KB (2KW) SYSTEM(2) Configurable Logic Block (CLB) F280049C F280048C – F280041C F280040C InstaSPIN-FOC™ F280049C F280048C – F280041C F280040C 32-bit CPU timers 3 Watchdog timers 1 Nonmaskable Interrupt Watchdog (NMIWD) timers 1 Crystal oscillator/External clock input 1 0-pin internal oscillator GPIO pins AIO inputs 2 100-pin PZ 40 – 40 40 – 64-pin PM 26 24 26 26 24 56-pin RSH 25 – 25 25 – 100-pin PZ 21 64-pin PM 14 56-pin RSH 12 External interrupts 10 Device Comparison 5 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 3-1. Device Comparison (continued) F280049 F280049C FEATURE(1) F280048 F280048C F280045 F280041 F280041C F280040 F280040C ANALOG PERIPHERALS Number of ADCs ADC 12-bit ADC channels (single-ended) 3 MSPS 3.45 Conversion Time (ns)(3) 300 100-pin PZ 21 64-pin PM 14 56-pin RSH 12 Temperature sensor 1 Buffered DAC 2 100-pin PZ CMPSS (each CMPSS has two 64-pin PM comparators and two internal DACs) 56-pin RSH 7 100-pin PZ 7 64-pin PM 5 PGAs (Gain Settings: 3, 6, 12, 24) 6 5 56-pin RSH 4 CONTROL PERIPHERALS(4) eCAP/HRCAP modules – Type 1 7 (2 with HRCAP capability) ePWM/HRPWM channels – Type 4 eQEP modules – Type 1 SDFM channels – Type 1 16 100-pin PZ 2 64-pin PM 1 56-pin RSH 1 100-pin PZ 4 64-pin PM 3 56-pin RSH 3 COMMUNICATION PERIPHERALS(4) CAN – Type 0 2 I2C – Type 1 1 SCI – Type 0 2 SPI – Type 2 2 LIN – Type 1 1 PMBus – Type 0 1 FSI – Type 0 1 PACKAGE OPTIONS, TEMPERATURE, AND QUALIFICATION Junction Temperature (TJ) Free-Air Temperature (TA) S: –40°C to 125°C (5) Q: –40°C to 125°C 100-pin PZ – 100-pin PZ 100-pin PZ – 64-pin PM – 64-pin PM 64-pin PM – 56-pin RSH – 56-pin RSH 56-pin RSH – 100-pin PZ 64-pin PM – 100-pin PZ 64-pin PM (1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time Control Peripherals Reference Guide. (2) For more information about InstaSPIN-FOC™ devices, see Section 8.3 for a list of InstaSPIN Technical Reference Manuals. (3) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion. (4) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to the largest package offered within a part number. See Section 4 to identify which peripheral instances are accessible on pins in the smaller package. (5) The letter Q refers to AEC Q100 qualification for automotive applications. Device Comparison Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 11 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 3.1 www.ti.com Related Products For information about other devices in this family of products, see the following links: TMS320F2837xD Dual-Core Delfino™ Microcontrollers The Delfino™ TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and converters; digital power; transportation; and power line communications. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The integrated analog and control peripherals also let designers consolidate control architectures and eliminate multiprocessor use in high-end systems. TMS320F2837xS Single-Core Delfino™ Microcontrollers The Delfino™ TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and converters; digital power; transportation; and power line communications. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives. TMS320F2807x Piccolo™ Microcontrollers The TMS320F2807x microcontroller platform is part of the Piccolo™ family and is suited for advanced closed-loop control applications such as industrial drives and servo motor control; solar inverters and converters; digital power; transportation; and power line communications. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives. TMS320F2833x Delfino™ Microcontrollers The TMS320F28335, TMS320F28334, and TMS320F28332 devices, members of the TMS320C28x/ Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control applications. TMS320F2823x Delfino™ Digital Signal Controllers The TMS320F28235, TMS320F28234, and TMS320F28232 devices, members of the TMS320C28x/ Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control applications. TMS320C2834x Delfino™ Microcontrollers The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI's existing F2833x high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time control applications. 12 Device Comparison Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 4 Terminal Configuration and Functions 4.1 Pin Diagrams GPIO4 GPIO8 VREGENZ VSS VDD VDDIO X1 GPIO18_X2 GPIO58 GPIO57 GPIO56 GPIO32 GPIO35/TDI TMS GPIO37/TDO TCK GPIO27 GPIO26 GPIO25 GPIO24 GPIO17 GPIO16 GPIO33 GPIO11 GPIO12 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 Figure 4-1 shows the pin assignments on the 100-pin PZ Low-Profile Quad Flatpack. Figure 4-2 shows the pin assignments on the 64-Pin PM Low-Profile Quad Flatpack. Figure 4-3 shows the pin assignments on the 64-Pin PM Low-Profile Quad Flatpack for the Q-temperature device. Figure 4-4 shows the pin assignments on the 56-Pin RSH Very Thin Quad Flatpack No-Lead. PGA7_GND GPIO40 85 41 B0 VSS 86 40 A10,B1,C10,PGA7_OF VDD 87 39 B4,C8,PGA4_OF VDDIO 88 38 A9 GPIO5 89 37 A8,PGA6_OF GPIO9 90 36 A4,B8,PGA2_OF GPIO39 91 35 A5 GPIO59 92 34 VDDA GPIO10 93 33 VSSA GPIO34 94 32 PGA2_GND,PGA4_GND,PGA6_GND GPIO15 95 31 C3,PGA4_IN GPIO14 96 30 PGA2_IN GPIO6 97 29 C1 GPIO30 98 28 C5,PGA6_IN GPIO31 99 27 VREFLOA GPIO29 100 26 VREFLOB,VREFLOC VREFHIA VREFHIB,VREFHIC A0,B15,C15,DACA_OUT A1,DACB_OUT C2 PGA3_IN C0 PGA1_IN C4 PGA5_IN PGA3_GND PGA1_GND PGA5_GND VSSA VDDA A3 A2,B6,PGA1_OF B3,VDAC B2,C6,PGA3_OF A6,PGA5_OF VSS VDD VDDIO XRSn GPIO28 A. 25 42 24 84 23 PGA7_IN GPIO7 22 43 21 83 20 C14 GPIO22_VFBSW 19 44 18 82 17 VSS VSS_SW 16 45 15 81 14 VDD GPIO23_VSW 13 46 12 80 11 VDDIO VDDIO_SW 10 47 9 79 8 FLT2 GPIO0 7 48 6 78 5 FLT1 GPIO1 4 GPIO13 49 3 50 77 2 76 GPIO2 1 GPIO3 Not to scale Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name. Figure 4-1. 100-Pin PZ Low-Profile Quad Flatpack (Top View) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 13 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C GPIO4 GPIO8 VREGENZ VSS VDD VDDIO X1 GPIO18_X2 GPIO32 GPIO35/TDI TMS GPIO37/TDO TCK GPIO24 GPIO17 GPIO16 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 www.ti.com 48 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 VDDIO_SW 53 28 VDDIO GPIO23_VSW 54 27 VDD VSS_SW 55 26 VSS GPIO22_VFBSW 56 25 A10,B1,C10,PGA7_OF GPIO7 57 24 B4,C8,PGA4_OF VSS 58 23 A4,B8,PGA2_OF VDD 59 22 VDDA VDDIO 60 21 VSSA GPIO5 61 20 PGA2_GND,PGA4_GND,PGA6_GND GPIO9 62 19 C3,PGA4_IN GPIO10 63 18 C1,PGA2_IN GPIO6 64 17 VREFLOA,VREFLOB,VREFLOC VREFHIA,VREFHIB,VREFHIC A0,B15,C15,DACA_OUT A1,DACB_OUT C2,PGA3_IN C0,PGA1_IN C4,PGA5_IN PGA1_GND,PGA3_GND,PGA5_GND A2,B6,PGA1_OF B3,VDAC B2,C6,PGA3_OF A6,PGA5_OF VSS VDD XRSn GPIO28 GPIO29 A. 16 GPIO13 15 29 14 52 13 GPIO0 12 GPIO12 11 30 10 51 9 GPIO1 8 GPIO11 7 31 6 50 5 GPIO2 4 GPIO33 3 32 2 49 1 GPIO3 Not to scale Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name. Figure 4-2. F280049/C/M, F280045, F280041/C 64-Pin PM Low-Profile Quad Flatpack (Top View) 14 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C GPIO4 GPIO8 VREGENZ VSS VDD VDDIO X1 GPIO18_X2 GPIO32 GPIO35/TDI TMS GPIO37/TDO TCK GPIO24 GPIO17 GPIO16 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 48 www.ti.com VDDIO_SW 53 28 VDDIO GPIO23_VSW 54 27 VDD VSS_SW 55 26 VSS GPIO22_VFBSW 56 25 A10,B1,C10,PGA7_OF GPIO7 57 24 B4,C8,PGA4_OF VSS 58 23 A4,B8,PGA2_OF VDD 59 22 VDDA VDDIO 60 21 VSSA GPIO5 61 20 PGA2_GND,PGA4_GND,PGA6_GND GPIO9 62 19 C3,PGA4_IN GPIO10 63 18 C1,PGA2_IN GPIO6 64 17 VREFLOA,VREFLOB,VREFLOC VREFHIA,VREFHIB,VREFHIC A0,B15,C15,DACA_OUT A1,DACB_OUT C2,PGA3_IN C0,PGA1_IN C4,PGA5_IN PGA1_GND,PGA3_GND,PGA5_GND A2,B6,PGA1_OF B3,VDAC B2,C6,PGA3_OF A6,PGA5_OF VSS VDD XRSn GPIO28 GPIO29 A. 16 FLT2 15 29 14 52 13 GPIO0 12 FLT1 11 30 10 51 9 GPIO1 8 GPIO11 7 31 6 50 5 GPIO2 4 GPIO33 3 32 2 49 1 GPIO3 Not to scale Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name. Figure 4-3. F280048/C, F280040/C 64-Pin PM Low-Profile Quad Flatpack — Q-Temperature (Top View) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 15 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C GPIO8 VDD VDDIO X1 GPIO18_X2 GPIO32 GPIO35/TDI TMS GPIO37/TDO TCK GPIO24 GPIO17 GPIO16 GPIO33 41 40 39 38 37 36 35 34 33 32 31 30 29 www.ti.com 42 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 GPIO4 43 28 GPIO11 GPIO3 44 27 GPIO12 GPIO2 45 26 GPIO13 GPIO1 46 25 VDDIO GPIO0 47 24 VDD VDDIO_SW 48 23 A10,B1,C10,PGA7_OF GPIO23_VSW 49 22 B4,C8,PGA4_OF VSS_SW 50 21 A4,B8,PGA2_OF GPIO22_VFBSW 51 20 VDDA GPIO7 52 19 VSSA VDD 53 18 PGA2_GND,PGA4_GND,PGA6_GND VDDIO 54 17 C3,PGA4_IN GPIO5 55 16 C1,PGA2_IN GPIO9 56 15 VREFLOA,VREFLOB,VREFLOC A. B. 14 VREFHIA,VREFHIB,VREFHIC 9 PGA1_GND,PGA3_GND,PGA5_GND 13 8 A2,B6,PGA1_OF A0,B15,C15,DACA_OUT 7 B3,VDAC 12 6 B2,C6,PGA3_OF A1,DACB_OUT 5 VDD 11 4 XRSn C2,PGA3_IN 3 GPIO28 10 2 GPIO29 C0,PGA1_IN 1 GPIO6 VSS Not to scale Only the GPIO function is shown on GPIO terminals. See Section 4.3 for the complete, muxed signal name. This figure shows the top view of the 56-pin RSH package. The terminals are actually on the bottom side of the package. See Section 9 for the 56-pin RSH mechanical drawing. Figure 4-4. 56-Pin RSH Very Thin Quad Flatpack No-Lead (Top View) 16 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 4.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Pin Attributes Table 4-1. Pin Attributes SIGNAL NAME MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION ANALOG A0 I ADC-A Input 0 B15 I ADC-B Input 15 C15 I ADC-C Input 15 DACA_OUT 23 15 15 13 O Buffered DAC-A Output AIO231 I Digital Input-231 on ADC Pin A1 I ADC-A Input 1 O Buffered DAC-B Output AIO232 I Digital Input-232 on ADC Pin A10 I ADC-A Input 10 B1 I ADC-B Input 1 C10 I ADC-C Input 10 O PGA-7 Output Filter (Optional) CMP7_HP0 I CMPSS-7 High Comparator Positive Input 0 CMP7_LP0 I CMPSS-7 Low Comparator Positive Input 0 AIO230 I Digital Input-230 on ADC Pin A2 I ADC-A Input 2 B6 I ADC-B Input 6 PGA1_OF O PGA-1 Output Filter (Optional) DACB_OUT PGA7_OF 22 40 CMP1_HP0 9 14 25 9 14 25 9 12 23 8 I CMPSS-1 High Comparator Positive Input 0 CMP1_LP0 I CMPSS-1 Low Comparator Positive Input 0 AIO224 I Digital Input-224 on ADC Pin A3 I ADC-A Input 3 CMP1_HP3 I CMPSS-1 High Comparator Positive Input 3 CMP1_HN0 I CMPSS-1 High Comparator Negative Input 0 I CMPSS-1 Low Comparator Positive Input 3 CMP1_LN0 I CMPSS-1 Low Comparator Negative Input 0 AIO233 I Digital Input-233 on ADC Pin A4 I ADC-A Input 4 B8 I ADC-B Input 8 PGA2_OF O PGA-2 Output Filter (Optional) I CMPSS-2 High Comparator Positive Input 0 CMP2_LP0 I CMPSS-2 Low Comparator Positive Input 0 AIO225 I Digital Input-225 on ADC Pin A5 I ADC-A Input 5 CMP2_HP3 I CMPSS-2 High Comparator Positive Input 3 I CMPSS-2 High Comparator Negative Input 0 I CMPSS-2 Low Comparator Positive Input 3 CMP2_LN0 I CMPSS-2 Low Comparator Negative Input 0 AIO234 I Digital Input-234 on ADC Pin A6 I ADC-A Input 6 PGA5_OF O PGA-5 Output Filter (Optional) I CMPSS-5 High Comparator Positive Input 0 CMP5_LP0 I CMPSS-5 Low Comparator Positive Input 0 AIO228 I Digital Input-228 on ADC Pin CMP1_LP3 CMP2_HP0 CMP2_HN0 CMP2_LP3 CMP5_HP0 10 36 23 23 35 6 6 6 21 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 17 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION A8 I ADC-A Input 8 PGA6_OF O PGA-6 Output Filter (Optional) I CMPSS-6 High Comparator Positive Input 0 CMP6_LP0 I CMPSS-6 Low Comparator Positive Input 0 AIO229 I Digital Input-229 on ADC Pin A9 I ADC-A Input 9 CMP6_HP3 I CMPSS-6 High Comparator Positive Input 3 I CMPSS-6 High Comparator Negative Input 0 I CMPSS-6 Low Comparator Positive Input 3 CMP6_LN0 I CMPSS-6 Low Comparator Negative Input 0 AIO236 I Digital Input-236 on ADC Pin B0 I ADC-B Input 0 CMP7_HP3 I CMPSS-7 High Comparator Positive Input 3 I CMPSS-7 High Comparator Negative Input 0 I CMPSS-7 Low Comparator Positive Input 3 CMP7_LN0 I CMPSS-7 Low Comparator Negative Input 0 AIO241 I Digital Input-241 on ADC Pin B2 I ADC-B Input 2 C6 I ADC-C Input 6 PGA3_OF O PGA-3 Output Filter (Optional) CMP6_HP0 CMP6_HN0 CMP6_LP3 CMP7_HN0 CMP7_LP3 CMP3_HP0 37 38 41 7 7 7 6 I CMPSS-3 High Comparator Positive Input 0 CMP3_LP0 I CMPSS-3 Low Comparator Positive Input 0 AIO226 I Digital Input-226 on ADC Pin B3 I ADC-B Input 3 I Optional external reference voltage for on-chip DACs. There is a 100-pF capacitor to VSSA on this pin whether used for ADC input or DAC reference which cannot be disabled. If this pin is being used as a reference for the on-chip DACs, place at least a 1-µF capacitor on this pin. VDAC CMP3_HP3 8 8 8 7 I CMPSS-3 High Comparator Positive Input 3 CMP3_HN0 I CMPSS-3 High Comparator Negative Input 0 CMP3_LP3 I CMPSS-3 Low Comparator Positive Input 3 CMP3_LN0 I CMPSS-3 Low Comparator Negative Input 0 AIO242 I Digital Input-242 on ADC Pin B4 I ADC-B Input 4 C8 I ADC-C Input 8 PGA4_OF O PGA-4 Output Filter (Optional) CMP4_HP0 39 24 24 22 I CMPSS-4 High Comparator Positive Input 0 CMP4_LP0 I CMPSS-4 Low Comparator Positive Input 0 AIO227 I Digital Input-227 on ADC Pin C0 I ADC-C Input 0 CMP1_HP1 I CMPSS-1 High Comparator Positive Input 1 CMP1_HN1 I CMPSS-1 High Comparator Negative Input 1 I CMPSS-1 Low Comparator Positive Input 1 CMP1_LN1 I CMPSS-1 Low Comparator Negative Input 1 AIO237 I Digital Input-237 on ADC Pin CMP1_LP1 18 19 Terminal Configuration and Functions 12 12 10 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION C1 I ADC-C Input 1 CMP2_HP1 I CMPSS-2 High Comparator Positive Input 1 CMP2_HN1 I CMPSS-2 High Comparator Negative Input 1 CMP2_LP1 29 18 18 16 I CMPSS-2 Low Comparator Positive Input 1 CMP2_LN1 I CMPSS-2 Low Comparator Negative Input 1 AIO238 I Digital Input-238 on ADC Pin C14 I ADC-C Input 14 CMP7_HP1 I CMPSS-7 High Comparator Positive Input 1 CMP7_HN1 I CMPSS-7 High Comparator Negative Input 1 I CMPSS-7 Low Comparator Positive Input 1 CMP7_LN1 I CMPSS-7 Low Comparator Negative Input 1 AIO246 I Digital Input-246 on ADC Pin C2 I ADC-C Input 2 CMP3_HP1 I CMPSS-3 High Comparator Positive Input 1 CMP3_HN1 I CMPSS-3 High Comparator Negative Input 1 I CMPSS-3 Low Comparator Positive Input 1 CMP3_LN1 I CMPSS-3 Low Comparator Negative Input 1 AIO244 I Digital Input-244 on ADC Pin C3 I ADC-C Input 3 CMP4_HP1 I CMPSS-4 High Comparator Positive Input 1 I CMPSS-4 High Comparator Negative Input 1 I CMPSS-4 Low Comparator Positive Input 1 CMP4_LN1 I CMPSS-4 Low Comparator Negative Input 1 AIO245 I Digital Input-245 on ADC Pin C4 I ADC-C Input 4 CMP5_HP1 I CMPSS-5 High Comparator Positive Input 1 CMP5_HN1 I CMPSS-5 High Comparator Negative Input 1 CMP7_LP1 CMP3_LP1 CMP4_HN1 CMP4_LP1 CMP5_LP1 44 21 31 17 13 19 11 13 19 11 17 11 I CMPSS-5 Low Comparator Positive Input 1 CMP5_LN1 I CMPSS-5 Low Comparator Negative Input 1 AIO239 I Digital Input-239 on ADC Pin C5 I ADC-C Input 5 CMP6_HP1 I CMPSS-6 High Comparator Positive Input 1 CMP6_HN1 I CMPSS-6 High Comparator Negative Input 1 CMP6_LP1 28 I CMPSS-6 Low Comparator Positive Input 1 CMP6_LN1 I CMPSS-6 Low Comparator Negative Input 1 AIO240 I Digital Input-240 on ADC Pin I PGA-1 Ground I PGA-1 Input I CMPSS-1 High Comparator Positive Input 2 I CMPSS-1 Low Comparator Positive Input 2 I PGA-2 Ground I PGA-2 Input I CMPSS-2 High Comparator Positive Input 2 I CMPSS-2 Low Comparator Positive Input 2 I PGA-3 Ground PGA1_GND 14 10 10 9 18 12 12 10 PGA1_IN CMP1_HP2 CMP1_LP2 PGA2_GND 32 20 20 18 PGA2_IN CMP2_HP2 30 18 18 16 15 10 10 9 CMP2_LP2 PGA3_GND Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 19 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH 20 13 13 11 PIN TYPE PGA3_IN CMP3_HP2 CMP3_LP2 PGA4_GND 32 20 20 18 PGA4_IN CMP4_HP2 31 19 19 17 CMP4_LP2 PGA5_GND 13 10 10 9 PGA5_IN CMP5_HP2 16 11 11 32 20 20 CMP5_LP2 PGA6_GND 18 PGA6_IN CMP6_HP2 28 CMP6_LP2 PGA7_GND 42 PGA7_IN CMP7_HP2 43 CMP7_LP2 VREFHIA 25 VREFHIB 24 16 16 16 16 14 14 DESCRIPTION I PGA-3 Input I CMPSS-3 High Comparator Positive Input 2 I CMPSS-3 Low Comparator Positive Input 2 I PGA-4 Ground I PGA-4 Input I CMPSS-4 High Comparator Positive Input 2 I CMPSS-4 Low Comparator Positive Input 2 I PGA-5 Ground I PGA-5 Input I CMPSS-5 High Comparator Positive Input 2 I CMPSS-5 Low Comparator Positive Input 2 I PGA-6 Ground I PGA-6 Input I CMPSS-6 High Comparator Positive Input 2 I CMPSS-6 Low Comparator Positive Input 2 I PGA-7 Ground I PGA-7 Input I CMPSS-7 High Comparator Positive Input 2 I CMPSS-7 Low Comparator Positive Input 2 I/O ADC-A High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHIA and VREFLOA pins. Do not load this pin externally in either internal or external reference mode. I/O ADC-B High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHIB and VREFLOB pins. Do not load this pin externally in either internal or external reference mode. ADC-C High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHIC and VREFLOC pins. Do not load this pin externally in either internal or external reference mode. VREFHIC 24 16 16 14 I/O VREFLOA 27 17 17 15 I ADC-A Low Reference VREFLOB 26 17 17 15 I ADC-B Low Reference VREFLOC 26 17 17 15 I ADC-C Low Reference GPIO GPIO0 0, 4, 8, 12 EPWM1_A 1 I2CA_SDA 6 GPIO1 52 52 47 1 I2CA_SCL 6 I/O General-Purpose Input Output 0 O ePWM-1 Output A I/OD 0, 4, 8, 12 EPWM1_B 20 79 78 Terminal Configuration and Functions 51 51 46 I2C-A Open-Drain Bidirectional Data I/O General-Purpose Input Output 1 O ePWM-1 Output B I/OD I2C-A Open-Drain Bidirectional Clock Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes (continued) SIGNAL NAME GPIO2 MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 2 EPWM2_A 1 O ePWM-2 Output A OUTPUTXBAR1 5 O Output X-BAR Output 1 PMBUSA_SDA 6 SCIA_TX 9 O SCI-A Transmit Data FSIRXA_D1 10 I FSIRX-A Optional Additional Data Input 0, 4, 8, 12 I/O General-Purpose Input Output 3 1 O ePWM-2 Output B 2, 5 O Output X-BAR Output 2 GPIO3 EPWM2_B OUTPUTXBAR2 77 49 50 49 45 44 I/OD I/OD PMBus-A Open-Drain Bidirectional Data PMBUSA_SCL 6 SPIA_CLK 7 I/O SCIA_RX 9 I SCI-A Receive Data FSIRXA_D0 10 I FSIRX-A Primary Data Input GPIO4 76 50 PMBus-A Open-Drain Bidirectional Clock SPI-A Clock 0, 4, 8, 12 I/O General-Purpose Input Output 4 EPWM3_A 1 O ePWM-3 Output A OUTPUTXBAR3 5 O Output X-BAR Output 3 CANA_TX 6 O CAN-A Transmit FSIRX-A Input Clock FSIRXA_CLK 75 48 48 43 10 I 0, 4, 8, 12 I/O General-Purpose Input Output 5 EPWM3_B 1 O ePWM-3 Output B OUTPUTXBAR3 3 O Output X-BAR Output 3 CANA_RX 6 I CAN-A Receive SPIA_STE 7 GPIO5 FSITXA_D1 89 61 61 55 I/O SPI-A Slave Transmit Enable (STE) 9 O FSITX-A Optional Additional Data Output 0, 4, 8, 12 I/O General-Purpose Input Output 6 EPWM4_A 1 O ePWM-4 Output A OUTPUTXBAR4 2 O Output X-BAR Output 4 SYNCOUT 3 O External ePWM Synchronization Pulse EQEP1_A 5 I eQEP-1 Input A CANB_TX 6 O CAN-B Transmit SPIB_SOMI 7 I/O SPI-B Slave Out, Master In (SOMI) FSITXA_D0 9 O FSITX-A Primary Data Output 0, 4, 8, 12 I/O General-Purpose Input Output 7 EPWM4_B 1 O ePWM-4 Output B OUTPUTXBAR5 3 O Output X-BAR Output 5 EQEP1_B 5 I eQEP-1 Input B CANB_RX 6 I CAN-B Receive SPIB_SIMO 7 I/O SPI-B Slave In, Master Out (SIMO) FSITXA_CLK 9 O FSITX-A Output Clock GPIO6 GPIO7 97 84 64 57 64 57 1 52 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 21 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes (continued) SIGNAL NAME GPIO8 MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 8 EPWM5_A 1 O ePWM-5 Output A CANB_TX 2 O CAN-B Transmit ADCSOCAO 3 O ADC Start of Conversion A Output for External ADC (from ePWM modules) EQEP1_STROBE 5 I/O eQEP-1 Strobe SCIA_TX 6 O SCI-A Transmit Data SPIA_SIMO 7 I/O SPI-A Slave In, Master Out (SIMO) I2CA_SCL 9 I/OD FSITXA_D1 10 O FSITX-A Optional Additional Data Output GPIO9 74 47 47 42 I2C-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 9 EPWM5_B 1 O ePWM-5 Output B SCIB_TX 2 O SCI-B Transmit Data OUTPUTXBAR6 3 O Output X-BAR Output 6 EQEP1_INDEX 5 I/O eQEP-1 Index SCIA_RX 6 I SPIA_CLK 7 I/O SPI-A Clock FSITXA_D0 90 62 62 56 SCI-A Receive Data 10 O FSITX-A Primary Data Output 0, 4, 8, 12 I/O General-Purpose Input Output 10 EPWM6_A 1 O ePWM-6 Output A CANB_RX 2 I CAN-B Receive ADCSOCBO 3 O ADC Start of Conversion B Output for External ADC (from ePWM modules) EQEP1_A 5 I eQEP-1 Input A SCIB_TX 6 O SCI-B Transmit Data SPIA_SOMI 7 I/O SPI-A Slave Out, Master In (SOMI) I2CA_SDA 9 I/OD I2C-A Open-Drain Bidirectional Data GPIO10 FSITXA_CLK GPIO11 EPWM6_B SCIB_RX 93 63 63 10 O FSITX-A Output Clock 0, 4, 8, 12 I/O General-Purpose Input Output 11 1 O ePWM-6 Output B 2, 6 I SCI-B Receive Data O Output X-BAR Output 7 5 I eQEP-1 Input B 7 I/O OUTPUTXBAR7 3 EQEP1_B SPIA_STE FSIRXA_D1 52 31 31 28 SPI-A Slave Transmit Enable (STE) 9 I 0, 4, 8, 12 I/O General-Purpose Input Output 12 EPWM7_A 1 O ePWM-7 Output A CANB_TX 2 EQEP1_STROBE 5 SCIB_TX GPIO12 FSIRX-A Optional Additional Data Input O CAN-B Transmit I/O eQEP-1 Strobe 6 O SCI-B Transmit Data PMBUSA_CTL 7 I PMBus-A Control Signal FSIRXA_D0 9 I FSIRX-A Primary Data Input 22 51 Terminal Configuration and Functions 30 27 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes (continued) SIGNAL NAME GPIO13 MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 13 EPWM7_B 1 O ePWM-7 Output B CANB_RX 2 I CAN-B Receive EQEP1_INDEX 5 SCIB_RX 6 I PMBUSA_ALERT 7 I/OD FSIRXA_CLK 9 I GPIO14 50 29 26 I/O eQEP-1 Index SCI-B Receive Data PMBus-A Open-Drain Bidirectional Alert Signal FSIRX-A Input Clock 0, 4, 8, 12 I/O General-Purpose Input Output 14 EPWM8_A 1 O ePWM-8 Output A SCIB_TX 2 O SCI-B Transmit Data OUTPUTXBAR3 6 O Output X-BAR Output 3 PMBUSA_SDA 7 I/OD SPIB_CLK 9 I/O EQEP2_A 96 PMBus-A Open-Drain Bidirectional Data SPI-B Clock 10 I 0, 4, 8, 12 I/O General-Purpose Input Output 15 EPWM8_B 1 O ePWM-8 Output B SCIB_RX 2 I SCI-B Receive Data OUTPUTXBAR4 6 O Output X-BAR Output 4 PMBUSA_SCL 7 I/OD SPIB_STE 9 I/O GPIO15 EQEP2_B 95 eQEP-2 Input A PMBus-A Open-Drain Bidirectional Clock SPI-B Slave Transmit Enable (STE) 10 I 0, 4, 8, 12 I/O General-Purpose Input Output 16 SPIA_SIMO 1 I/O SPI-A Slave In, Master Out (SIMO) CANB_TX 2 O CAN-B Transmit OUTPUTXBAR7 3 O Output X-BAR Output 7 EPWM5_A 5 O ePWM-5 Output A SCIA_TX 6 O SCI-A Transmit Data SD1_D1 7 I SDFM-1 Channel 1 Data Input EQEP1_STROBE 9 I/O PMBUSA_SCL 10 I/OD XCLKOUT 11 O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. 0, 4, 8, 12 I/O General-Purpose Input Output 17 SPIA_SOMI 1 I/O SPI-A Slave Out, Master In (SOMI) CANB_RX 2 I CAN-B Receive OUTPUTXBAR8 3 O Output X-BAR Output 8 EPWM5_B 5 O ePWM-5 Output B SCIA_RX 6 I SCI-A Receive Data SD1_C1 7 I SDFM-1 Channel 1 Clock Input EQEP1_INDEX 9 I/O PMBUSA_SDA 10 I/OD GPIO16 GPIO17 54 55 33 34 33 34 30 31 eQEP-2 Input B eQEP-1 Strobe PMBus-A Open-Drain Bidirectional Clock eQEP-1 Index PMBus-A Open-Drain Bidirectional Data Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 23 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 18. This pin and its digital mux options can only be used when the system is clocked by INTOSC and X1 has an external pulldown resistor (recommended 1 kΩ). SPIA_CLK 1 I/O SPI-A Clock SCIB_TX 2 O SCI-B Transmit Data CANA_RX 3 I CAN-A Receive EPWM6_A 5 O ePWM-6 Output A I2CA_SCL 6 I/OD SD1_D2 7 I SDFM-1 Channel 2 Data Input EQEP2_A 9 I eQEP-2 Input A PMBUSA_CTL 10 I PMBus-A Control Signal XCLKOUT 11 O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. GPIO18_X2 X2 68 41 41 38 I2C-A Open-Drain Bidirectional Clock ALT I/O Crystal oscillator output GPIO20 0 I/O General-Purpose Input Output 20 GPIO21 0 I/O General-Purpose Input Output 21 GPIO22_VFBSW 0, 4, 8, 12 I/O General-Purpose Input Output 22. If the internal DC-DC regulator is not used, this can be configured as GeneralPurpose Input Output 22. EQEP1_STROBE 1 I/O eQEP-1 Strobe SCIB_TX 3 O SCI-B Transmit Data SPIB_CLK 6 I/O SPI-B Clock SD1_D4 7 I SDFM-1 Channel 4 Data Input LINA_TX 9 O LIN-A Transmit VFBSW ALT - Internal DC-DC regulator feedback signal. If the internal DCDC regulator is used, tie this pin to the node where L(VSW) connects to the VDD rail (as close as possible to the device). I/O General-Purpose Input Output 23. If the internal DC-DC regulator is not used, this pin can be configured as GeneralPurpose Input Output 23. This pin has an internal capacitance of approximately 100 pF. TI Recommends using an alternate GPIO, or using this pin only for applications which do not require a fast switching response. GPIO23_VSW VSW GPIO24 0 83 81 56 54 56 54 51 49 ALT - Switching output of the internal DC-DC regulator 0, 4, 8, 12 I/O General-Purpose Input Output 24 OUTPUTXBAR1 1 O Output X-BAR Output 1 EQEP2_A 2 I eQEP-2 Input A EPWM8_A 5 O ePWM-8 Output A SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) SD1_D1 7 I PMBUSA_SCL 10 I/OD SCIA_TX 11 O SCI-A Transmit Data ERRORSTS 13 O Error Status Output. This signal requires an external pullup. 24 56 Terminal Configuration and Functions 35 35 32 SDFM-1 Channel 1 Data Input PMBus-A Open-Drain Bidirectional Clock Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes (continued) SIGNAL NAME GPIO25 MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 25 OUTPUTXBAR2 1 O Output X-BAR Output 2 EQEP2_B 2 I eQEP-2 Input B SPIB_SOMI 6 SD1_C1 7 FSITXA_D1 PMBUSA_SDA SCIA_RX I/O 57 SPI-B Slave Out, Master In (SOMI) I SDFM-1 Channel 1 Clock Input 9 O FSITX-A Optional Additional Data Output 10 I/OD PMBus-A Open-Drain Bidirectional Data 11 I 0, 4, 8, 12 I/O General-Purpose Input Output 26 OUTPUTXBAR3 1, 5 O Output X-BAR Output 3 EQEP2_INDEX 2 I/O eQEP-2 Index SPIB_CLK 6 I/O SPI-B Clock SD1_D2 7 GPIO26 58 SCI-A Receive Data I SDFM-1 Channel 2 Data Input FSITXA_D0 9 O FSITX-A Primary Data Output PMBUSA_CTL 10 I PMBus-A Control Signal I2CA_SDA 11 I/OD 0, 4, 8, 12 I/O General-Purpose Input Output 27 GPIO27 OUTPUTXBAR4 I2C-A Open-Drain Bidirectional Data 1, 5 O Output X-BAR Output 4 EQEP2_STROBE 2 I/O eQEP-2 Strobe SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD1_C2 7 I SDFM-1 Channel 2 Clock Input FSITXA_CLK 9 O FSITX-A Output Clock PMBUSA_ALERT 10 I/OD PMBus-A Open-Drain Bidirectional Alert Signal I2C-A Open-Drain Bidirectional Clock I2CA_SCL 59 11 I/OD 0, 4, 8, 12 I/O SCIA_RX 1 I SCI-A Receive Data EPWM7_A 3 O ePWM-7 Output A OUTPUTXBAR5 5 O Output X-BAR Output 5 EQEP1_A 6 I eQEP-1 Input A SD1_D3 7 I SDFM-1 Channel 3 Data Input GPIO28 1 2 2 3 General-Purpose Input Output 28 EQEP2_STROBE 9 I/O eQEP-2 Strobe LINA_TX 10 O LIN-A Transmit SPIB_CLK 11 I/O SPI-B Clock ERRORSTS 13 O Error Status Output. This signal requires an external pullup. GPIO29 0, 4, 8, 12 I/O General-Purpose Input Output 29 SCIA_TX 1 O SCI-A Transmit Data EPWM7_B 3 O ePWM-7 Output B OUTPUTXBAR6 5 O Output X-BAR Output 6 EQEP1_B 6 I eQEP-1 Input B SD1_C3 7 I SDFM-1 Channel 3 Clock Input 100 1 1 2 EQEP2_INDEX 9 I/O eQEP-2 Index LINA_RX 10 I LIN-A Receive SPIB_STE 11 I/O SPI-B Slave Transmit Enable (STE) ERRORSTS 13 O Error Status Output. This signal requires an external pullup. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 25 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes (continued) SIGNAL NAME GPIO30 MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O CANA_RX 1 I SPIB_SIMO 3 I/O SPI-B Slave In, Master Out (SIMO) OUTPUTXBAR7 5 O Output X-BAR Output 7 EQEP1_STROBE 6 I/O eQEP-1 Strobe SD1_D4 7 I GPIO31 0, 4, 8, 12 I/O General-Purpose Input Output 31 98 General-Purpose Input Output 30 CAN-A Receive SDFM-1 Channel 4 Data Input CANA_TX 1 O CAN-A Transmit SPIB_SOMI 3 I/O SPI-B Slave Out, Master In (SOMI) OUTPUTXBAR8 5 O Output X-BAR Output 8 EQEP1_INDEX 6 I/O eQEP-1 Index SD1_C4 7 I SDFM-1 Channel 4 Clock Input FSIRXA_D1 9 I FSIRX-A Optional Additional Data Input GPIO32 99 0, 4, 8, 12 I/O I2CA_SDA 1 I/OD SPIB_CLK 3 I/O SPI-B Clock EPWM8_B 5 O ePWM-8 Output B LINA_TX 6 O LIN-A Transmit SD1_D3 7 I SDFM-1 Channel 3 Data Input FSIRXA_D0 9 I FSIRX-A Primary Data Input CANA_TX 64 40 40 37 General-Purpose Input Output 32 I2C-A Open-Drain Bidirectional Data 10 O CAN-A Transmit 0, 4, 8, 12 I/O General-Purpose Input Output 33 I2CA_SCL 1 I/OD SPIB_STE 3 I/O SPI-B Slave Transmit Enable (STE) OUTPUTXBAR4 5 O Output X-BAR Output 4 LINA_RX 6 I LIN-A Receive SD1_C3 7 I SDFM-1 Channel 3 Clock Input FSIRXA_CLK 9 I FSIRX-A Input Clock CANA_RX 10 I CAN-A Receive 0, 4, 8, 12 I/O General-Purpose Input Output 34 O Output X-BAR Output 1 GPIO33 GPIO34 53 32 32 29 OUTPUTXBAR1 1 PMBUSA_SDA 6 I/OD 0, 4, 8, 12 I/O GPIO35 94 I2C-A Open-Drain Bidirectional Clock PMBus-A Open-Drain Bidirectional Data General-Purpose Input Output 35 SCIA_RX 1 I I2CA_SDA 3 I/OD CANA_RX 5 I PMBUSA_SCL 6 I/OD LINA_RX 7 I LIN-A Receive EQEP1_A 9 I eQEP-1 Input A PMBUSA_CTL 10 I PMBus-A Control Signal I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. TDI 26 63 15 Terminal Configuration and Functions 39 39 36 SCI-A Receive Data I2C-A Open-Drain Bidirectional Data CAN-A Receive PMBus-A Open-Drain Bidirectional Clock Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes (continued) SIGNAL NAME GPIO37 MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 37 OUTPUTXBAR2 1 O Output X-BAR Output 2 I2CA_SCL 3 I/OD SCIA_TX 5 O SCI-A Transmit Data CANA_TX 6 O CAN-A Transmit LINA_TX 7 O LIN-A Transmit EQEP1_B 9 I eQEP-1 Input B PMBUSA_ALERT 10 TDO 61 0, 4, 8, 12 CANB_RX 6 FSIRXA_CLK 7 GPIO40 37 34 I/OD 15 GPIO39 37 91 PMBus-A Open-Drain Bidirectional Alert Signal O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. I/O General-Purpose Input Output 39 I CAN-B Receive I FSIRX-A Input Clock 0, 4, 8, 12 I/O PMBUSA_SDA 6 I/OD FSIRXA_D0 7 SCIB_TX 9 EQEP1_A GPIO41 85 I2C-A Open-Drain Bidirectional Clock General-Purpose Input Output 40 PMBus-A Open-Drain Bidirectional Data I FSIRX-A Primary Data Input O SCI-B Transmit Data 10 I eQEP-1 Input A 0 I/O General-Purpose Input Output 41 GPIO42 0 I/O General-Purpose Input Output 42 GPIO43 0 I/O General-Purpose Input Output 43 GPIO44 0 I/O General-Purpose Input Output 44 GPIO45 0 I/O General-Purpose Input Output 45 GPIO46 0 I/O General-Purpose Input Output 46 GPIO47 0 I/O General-Purpose Input Output 47 GPIO48 0 I/O General-Purpose Input Output 48 GPIO49 0 I/O General-Purpose Input Output 49 GPIO50 0 I/O General-Purpose Input Output 50 GPIO51 0 I/O General-Purpose Input Output 51 GPIO52 0 I/O General-Purpose Input Output 52 GPIO53 0 I/O General-Purpose Input Output 53 GPIO54 0 I/O General-Purpose Input Output 54 GPIO55 0 I/O General-Purpose Input Output 55 GPIO56 0, 4, 8, 12 I/O General-Purpose Input Output 56 SPIA_CLK 1 I/O SPI-A Clock EQEP2_STROBE 5 I/O eQEP-2 Strobe SCIB_TX 6 O SCI-B Transmit Data SD1_D3 7 I SDFM-1 Channel 3 Data Input SPIB_SIMO 9 I/O EQEP1_A 11 I 65 SPI-B Slave In, Master Out (SIMO) eQEP-1 Input A Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 27 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes (continued) SIGNAL NAME GPIO57 MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 57 SPIA_STE 1 I/O SPI-A Slave Transmit Enable (STE) EQEP2_INDEX 5 I/O eQEP-2 Index SCIB_RX 6 I SCI-B Receive Data SD1_C3 7 I SDFM-1 Channel 3 Clock Input SPIB_SOMI 9 I/O EQEP1_B 11 I GPIO58 66 SPI-B Slave Out, Master In (SOMI) eQEP-1 Input B 0, 4, 8, 12 I/O General-Purpose Input Output 58 OUTPUTXBAR1 5 O Output X-BAR Output 1 SPIB_CLK 6 I/O SPI-B Clock SD1_D4 7 I SDFM-1 Channel 4 Data Input LINA_TX 9 O LIN-A Transmit CANB_TX 10 O CAN-B Transmit EQEP1_STROBE 67 11 I/O eQEP-1 Strobe 0, 4, 8, 12 I/O General-Purpose Input Output 59 OUTPUTXBAR2 5 O Output X-BAR Output 2 SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD1_C4 7 I SDFM-1 Channel 4 Clock Input LINA_RX 9 I LIN-A Receive CANB_RX 10 I CAN-B Receive EQEP1_INDEX 11 GPIO59 92 I/O eQEP-1 Index TEST, JTAG, VOLTAGE REGULATOR, AND RESET FLT1 49 30 FLT2 48 29 TCK 60 36 36 TMS 62 38 38 VREGENZ 73 46 46 X1 XRSn 28 69 2 Terminal Configuration and Functions 42 3 42 3 33 35 39 4 I/O Flash test pin 1. Reserved for TI. Must be left unconnected. I/O Flash test pin 2. Reserved for TI. Must be left unconnected. I JTAG test clock with internal pullup. I JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. I Internal voltage regulator enable with internal pulldown. Tie directly to VSS (low) to enable the internal VREG. Tie directly to VDDIO (high) to use an external supply. I/O Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. I/OD Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. The output buffer of this pin is an open-drain with an internal pullup. If this pin is driven by an external device, TI recommends using an open-drain device. Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 64 PMQ 64 PM 56 RSH PIN TYPE DESCRIPTION POWER AND GROUND 1.2-V Digital Logic Power Pins. TI recommends placing a decoupling capacitor near each VDD pin with a minimum total capacitance of approximately 20 µF. When not using the internal voltage regulator, the exact value of the decoupling capacitance should be determined by your system voltage regulation solution. VDD 4, 46, 71, 87 4, 27, 44, 59 4, 27, 44, 59 5, 24, 41, 53 VDDA 11, 34 22 22 20 VDDIO 3, 47, 70, 88 28, 43, 60 28, 43, 60 25, 40, 54 80 53 53 48 VSS 5, 45, 72, 86 5, 26, 45, 58 5, 26, 45, 58 PAD Digital Ground VSSA 12, 33 21 21 19 Analog Ground 82 55 55 50 Internal DC-DC regulator ground. If the internal DC-DC regulator is not used, this pin must be treated as a VSS pin. VDDIO_SW VSS_SW 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor to VSSA on each pin. 3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF decoupling capacitor on each pin. Supply pin for the internal DC-DC regulator. If the internal DC-DC regulator is used, a bulk input capacitance of 20-µF should be placed on this pin. If the internal DC-DC regulator is not used, this pin should be treated as a VDDIO pin. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 29 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 4.3 www.ti.com Signal Descriptions 4.3.1 Analog Signals Table 4-2. Analog Signals SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH A0 ADC-A Input 0 I 23 15 15 13 A1 ADC-A Input 1 I 22 14 14 12 A2 ADC-A Input 2 I 9 9 9 8 A3 ADC-A Input 3 I 10 A4 ADC-A Input 4 I 36 23 23 21 A5 ADC-A Input 5 I 35 A6 ADC-A Input 6 I 6 6 6 A8 ADC-A Input 8 I 37 A9 ADC-A Input 9 I 38 A10 ADC-A Input 10 I 40 25 25 AIO224 Digital Input-224 on ADC Pin I 9 9 9 8 AIO225 Digital Input-225 on ADC Pin I 36 23 23 21 AIO226 Digital Input-226 on ADC Pin I 7 7 7 6 AIO227 Digital Input-227 on ADC Pin I 39 24 24 22 AIO228 Digital Input-228 on ADC Pin I 6 6 6 AIO229 Digital Input-229 on ADC Pin I 37 AIO230 Digital Input-230 on ADC Pin I 40 25 25 23 AIO231 Digital Input-231 on ADC Pin I 23 15 15 13 AIO232 Digital Input-232 on ADC Pin I 22 14 14 12 AIO233 Digital Input-233 on ADC Pin I 10 AIO234 Digital Input-234 on ADC Pin I 35 AIO236 Digital Input-236 on ADC Pin I 38 AIO237 Digital Input-237 on ADC Pin I 19 12 12 10 AIO238 Digital Input-238 on ADC Pin I 29 18 18 16 AIO239 Digital Input-239 on ADC Pin I 17 11 11 AIO240 Digital Input-240 on ADC Pin I 28 AIO241 Digital Input-241 on ADC Pin I 41 AIO242 Digital Input-242 on ADC Pin I 8 8 8 7 AIO244 Digital Input-244 on ADC Pin I 21 13 13 11 AIO245 Digital Input-245 on ADC Pin I 31 19 19 17 AIO246 Digital Input-246 on ADC Pin I 44 B0 ADC-B Input 0 I 41 B1 ADC-B Input 1 I 40 25 25 23 B2 ADC-B Input 2 I 7 7 7 6 B3 ADC-B Input 3 I 8 8 8 7 B4 ADC-B Input 4 I 39 24 24 22 B6 ADC-B Input 6 I 9 9 9 8 B8 ADC-B Input 8 I 36 23 23 21 B15 ADC-B Input 15 I 23 15 15 13 C0 ADC-C Input 0 I 19 12 12 10 C1 ADC-C Input 1 I 29 18 18 16 C2 ADC-C Input 2 I 21 13 13 11 C3 ADC-C Input 3 I 31 19 19 17 30 Terminal Configuration and Functions 23 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-2. Analog Signals (continued) SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 11 11 56 RSH C4 ADC-C Input 4 I 17 C5 ADC-C Input 5 I 28 C6 ADC-C Input 6 I 7 7 7 6 C8 ADC-C Input 8 I 39 24 24 22 C10 ADC-C Input 10 I 40 25 25 23 C14 ADC-C Input 14 I 44 C15 ADC-C Input 15 I 23 15 15 13 CMP1_HN0 CMPSS-1 High Comparator Negative Input 0 I 10 CMP1_HN1 CMPSS-1 High Comparator Negative Input 1 I 19 12 12 10 CMP1_HP0 CMPSS-1 High Comparator Positive Input 0 I 9 9 9 8 CMP1_HP1 CMPSS-1 High Comparator Positive Input 1 I 19 12 12 10 CMP1_HP2 CMPSS-1 High Comparator Positive Input 2 I 18 12 12 10 CMP1_HP3 CMPSS-1 High Comparator Positive Input 3 I 10 CMP1_LN0 CMPSS-1 Low Comparator Negative Input 0 I 10 CMP1_LN1 CMPSS-1 Low Comparator Negative Input 1 I 19 12 12 10 CMP1_LP0 CMPSS-1 Low Comparator Positive Input 0 I 9 9 9 8 CMP1_LP1 CMPSS-1 Low Comparator Positive Input 1 I 19 12 12 10 CMP1_LP2 CMPSS-1 Low Comparator Positive Input 2 I 18 12 12 10 CMP1_LP3 CMPSS-1 Low Comparator Positive Input 3 I 10 CMP2_HN0 CMPSS-2 High Comparator Negative Input 0 I 35 CMP2_HN1 CMPSS-2 High Comparator Negative Input 1 I 29 18 18 16 CMP2_HP0 CMPSS-2 High Comparator Positive Input 0 I 36 23 23 21 CMP2_HP1 CMPSS-2 High Comparator Positive Input 1 I 29 18 18 16 CMP2_HP2 CMPSS-2 High Comparator Positive Input 2 I 30 18 18 16 CMP2_HP3 CMPSS-2 High Comparator Positive Input 3 I 35 CMP2_LN0 CMPSS-2 Low Comparator Negative Input 0 I 35 CMP2_LN1 CMPSS-2 Low Comparator Negative Input 1 I 29 18 18 16 CMP2_LP0 CMPSS-2 Low Comparator Positive Input 0 I 36 23 23 21 CMP2_LP1 CMPSS-2 Low Comparator Positive Input 1 I 29 18 18 16 CMP2_LP2 CMPSS-2 Low Comparator Positive Input 2 I 30 18 18 16 CMP2_LP3 CMPSS-2 Low Comparator Positive Input 3 I 35 CMP3_HN0 CMPSS-3 High Comparator Negative Input 0 I 8 8 8 7 CMP3_HN1 CMPSS-3 High Comparator Negative Input 1 I 21 13 13 11 CMP3_HP0 CMPSS-3 High Comparator Positive Input 0 I 7 7 7 6 CMP3_HP1 CMPSS-3 High Comparator Positive Input 1 I 21 13 13 11 CMP3_HP2 CMPSS-3 High Comparator Positive Input 2 I 20 13 13 11 CMP3_HP3 CMPSS-3 High Comparator Positive Input 3 I 8 8 8 7 CMP3_LN0 CMPSS-3 Low Comparator Negative Input 0 I 8 8 8 7 CMP3_LN1 CMPSS-3 Low Comparator Negative Input 1 I 21 13 13 11 CMP3_LP0 CMPSS-3 Low Comparator Positive Input 0 I 7 7 7 6 CMP3_LP1 CMPSS-3 Low Comparator Positive Input 1 I 21 13 13 11 CMP3_LP2 CMPSS-3 Low Comparator Positive Input 2 I 20 13 13 11 CMP3_LP3 CMPSS-3 Low Comparator Positive Input 3 I 8 8 8 7 CMP4_HN1 CMPSS-4 High Comparator Negative Input 1 I 31 19 19 17 CMP4_HP0 CMPSS-4 High Comparator Positive Input 0 I 39 24 24 22 CMP4_HP1 CMPSS-4 High Comparator Positive Input 1 I 31 19 19 17 CMP4_HP2 CMPSS-4 High Comparator Positive Input 2 I 31 19 19 17 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 31 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-2. Analog Signals (continued) SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH CMP4_LN1 CMPSS-4 Low Comparator Negative Input 1 I 31 19 19 17 CMP4_LP0 CMPSS-4 Low Comparator Positive Input 0 I 39 24 24 22 CMP4_LP1 CMPSS-4 Low Comparator Positive Input 1 I 31 19 19 17 CMP4_LP2 CMPSS-4 Low Comparator Positive Input 2 I 31 19 19 17 CMP5_HN1 CMPSS-5 High Comparator Negative Input 1 I 17 11 11 CMP5_HP0 CMPSS-5 High Comparator Positive Input 0 I 6 6 6 CMP5_HP1 CMPSS-5 High Comparator Positive Input 1 I 17 11 11 CMP5_HP2 CMPSS-5 High Comparator Positive Input 2 I 16 11 11 CMP5_LN1 CMPSS-5 Low Comparator Negative Input 1 I 17 11 11 CMP5_LP0 CMPSS-5 Low Comparator Positive Input 0 I 6 6 6 CMP5_LP1 CMPSS-5 Low Comparator Positive Input 1 I 17 11 11 CMP5_LP2 CMPSS-5 Low Comparator Positive Input 2 I 16 11 11 CMP6_HN0 CMPSS-6 High Comparator Negative Input 0 I 38 CMP6_HN1 CMPSS-6 High Comparator Negative Input 1 I 28 CMP6_HP0 CMPSS-6 High Comparator Positive Input 0 I 37 CMP6_HP1 CMPSS-6 High Comparator Positive Input 1 I 28 CMP6_HP2 CMPSS-6 High Comparator Positive Input 2 I 28 CMP6_HP3 CMPSS-6 High Comparator Positive Input 3 I 38 CMP6_LN0 CMPSS-6 Low Comparator Negative Input 0 I 38 CMP6_LN1 CMPSS-6 Low Comparator Negative Input 1 I 28 CMP6_LP0 CMPSS-6 Low Comparator Positive Input 0 I 37 CMP6_LP1 CMPSS-6 Low Comparator Positive Input 1 I 28 CMP6_LP2 CMPSS-6 Low Comparator Positive Input 2 I 28 CMP6_LP3 CMPSS-6 Low Comparator Positive Input 3 I 38 CMP7_HN0 CMPSS-7 High Comparator Negative Input 0 I 41 CMP7_HN1 CMPSS-7 High Comparator Negative Input 1 I 44 CMP7_HP0 CMPSS-7 High Comparator Positive Input 0 I 40 25 25 23 CMP7_HP1 CMPSS-7 High Comparator Positive Input 1 I 44 CMP7_HP2 CMPSS-7 High Comparator Positive Input 2 I 43 CMP7_HP3 CMPSS-7 High Comparator Positive Input 3 I 41 CMP7_LN0 CMPSS-7 Low Comparator Negative Input 0 I 41 CMP7_LN1 CMPSS-7 Low Comparator Negative Input 1 I 44 CMP7_LP0 CMPSS-7 Low Comparator Positive Input 0 I 40 25 25 23 CMP7_LP1 CMPSS-7 Low Comparator Positive Input 1 I 44 CMP7_LP2 CMPSS-7 Low Comparator Positive Input 2 I 43 CMP7_LP3 CMPSS-7 Low Comparator Positive Input 3 I 41 DACA_OUT Buffered DAC-A Output O 23 15 15 13 DACB_OUT Buffered DAC-B Output O 22 14 14 12 PGA1_GND PGA-1 Ground I 14 10 10 9 PGA1_IN PGA-1 Input I 18 12 12 10 PGA1_OF PGA-1 Output Filter (Optional) O 9 9 9 8 PGA2_GND PGA-2 Ground I 32 20 20 18 PGA2_IN PGA-2 Input I 30 18 18 16 PGA2_OF PGA-2 Output Filter (Optional) O 36 23 23 21 PGA3_GND PGA-3 Ground I 15 10 10 9 PGA3_IN PGA-3 Input I 20 13 13 11 PGA3_OF PGA-3 Output Filter (Optional) O 7 7 7 6 32 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-2. Analog Signals (continued) SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH PGA4_GND PGA-4 Ground I 32 20 20 18 PGA4_IN PGA-4 Input I 31 19 19 17 PGA4_OF PGA-4 Output Filter (Optional) O 39 24 24 22 PGA5_GND PGA-5 Ground I 13 10 10 9 PGA5_IN PGA-5 Input I 16 11 11 PGA5_OF PGA-5 Output Filter (Optional) O 6 6 6 PGA6_GND PGA-6 Ground I 32 20 20 18 PGA6_IN PGA-6 Input I 28 PGA6_OF PGA-6 Output Filter (Optional) O 37 PGA7_GND PGA-7 Ground I 42 PGA7_IN PGA-7 Input I 43 PGA7_OF PGA-7 Output Filter (Optional) O 40 25 25 23 VDAC Optional external reference voltage for onchip DACs. There is a 100-pF capacitor to VSSA on this pin whether used for ADC input or DAC reference which cannot be disabled. If this pin is being used as a reference for the on-chip DACs, place at least a 1-µF capacitor on this pin. I 8 8 8 7 VREFHIA ADC-A High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHIA and VREFLOA pins. Do not load this pin externally in either internal or external reference mode. I/O 25 16 16 14 VREFHIB ADC-B High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHIB and VREFLOB pins. Do not load this pin externally in either internal or external reference mode. I/O 24 16 16 14 VREFHIC ADC-C High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHIC and VREFLOC pins. Do not load this pin externally in either internal or external reference mode. I/O 24 16 16 14 VREFLOA ADC-A Low Reference I 27 17 17 15 VREFLOB ADC-B Low Reference I 26 17 17 15 VREFLOC ADC-C Low Reference I 26 17 17 15 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 33 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 4.3.2 www.ti.com Digital Signals Table 4-3. Digital Signals SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH 42 ADCSOCAO ADC Start of Conversion A Output for External ADC (from ePWM modules) O 8 74 47 47 ADCSOCBO ADC Start of Conversion B Output for External ADC (from ePWM modules) O 10 93 63 63 CANA_RX CAN-A Receive I 18, 30, 33, 35, 5 53, 63, 68, 89, 98 32, 39, 41, 61 32, 39, 41, 61 29, 36, 38, 55 CANA_TX CAN-A Transmit O 31, 32, 37, 4 61, 64, 75, 99 37, 40, 48 37, 40, 48 34, 37, 43 CANB_RX CAN-B Receive I 10, 13, 17, 39, 59, 7 50, 55, 84, 91, 92, 93 34, 57, 63 29, 34, 57, 63 26, 31, 52 CANB_TX CAN-B Transmit O 12, 16, 58, 6, 8 51, 54, 67, 74, 97 33, 47, 64 30, 33, 47, 64 1, 27, 30, 42 EPWM1_A ePWM-1 Output A O 0 79 52 52 47 EPWM1_B ePWM-1 Output B O 1 78 51 51 46 EPWM2_A ePWM-2 Output A O 2 77 50 50 45 EPWM2_B ePWM-2 Output B O 3 76 49 49 44 EPWM3_A ePWM-3 Output A O 4 75 48 48 43 EPWM3_B ePWM-3 Output B O 5 89 61 61 55 EPWM4_A ePWM-4 Output A O 6 97 64 64 1 EPWM4_B ePWM-4 Output B O 7 84 57 57 52 EPWM5_A ePWM-5 Output A O 16, 8 54, 74 33, 47 33, 47 30, 42 EPWM5_B ePWM-5 Output B O 17, 9 55, 90 34, 62 34, 62 31, 56 EPWM6_A ePWM-6 Output A O 10, 18 68, 93 41, 63 41, 63 38 EPWM6_B ePWM-6 Output B O 11 52 31 31 28 EPWM7_A ePWM-7 Output A O 12, 28 1, 51 2 2, 30 27, 3 EPWM7_B ePWM-7 Output B O 13, 29 100, 50 1 1, 29 2, 26 EPWM8_A ePWM-8 Output A O 14, 24 56, 96 35 35 32 EPWM8_B ePWM-8 Output B O 15, 32 64, 95 40 40 37 EQEP1_A eQEP-1 Input A I 10, 28, 35, 40, 56, 6 1, 63, 65, 85, 93, 97 2, 39, 63, 64 2, 39, 63, 64 1, 3, 36 EQEP1_B eQEP-1 Input B I 11, 29, 37, 57, 7 100, 52, 61, 66, 84 1, 31, 37, 57 1, 31, 37, 57 2, 28, 34, 52 EQEP1_INDEX eQEP-1 Index I/O 13, 17, 31, 59, 9 50, 55, 90, 92, 99 34, 62 29, 34, 62 26, 31, 56 EQEP1_STROBE eQEP-1 Strobe I/O 12, 16, 22, 30, 58, 8 51, 54, 67, 74, 83, 98 33, 47, 56 30, 33, 47, 56 27, 30, 42, 51 EQEP2_A eQEP-2 Input A I 14, 18, 24 56, 68, 96 35, 41 35, 41 32, 38 EQEP2_B eQEP-2 Input B I 15, 25 57, 95 EQEP2_INDEX eQEP-2 Index I/O 26, 29, 57 100, 58, 66 1 1 2 EQEP2_STROBE eQEP-2 Strobe I/O 27, 28, 56 1, 59, 65 2 2 3 34 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-3. Digital Signals (continued) SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH ERRORSTS Error Status Output. This signal requires an external pullup. O 24, 28, 29 1, 100, 56 1, 2, 35 1, 2, 35 2, 3, 32 FSIRXA_CLK FSIRX-A Input Clock I 13, 33, 39, 4 50, 53, 75, 91 32, 48 29, 32, 48 26, 29, 43 FSIRXA_D0 FSIRX-A Primary Data Input I 12, 3, 32, 40 51, 64, 76, 85 40, 49 30, 40, 49 27, 37, 44 FSIRXA_D1 FSIRX-A Optional Additional Data Input I 11, 2, 31 52, 77, 99 31, 50 31, 50 28, 45 FSITXA_CLK FSITX-A Output Clock O 10, 27, 7 59, 84, 93 57, 63 57, 63 52 FSITXA_D0 FSITX-A Primary Data Output O 26, 6, 9 58, 90, 97 62, 64 62, 64 1, 56 FSITXA_D1 FSITX-A Optional Additional Data Output O 25, 5, 8 57, 74, 89 47, 61 47, 61 42, 55 GPIO0 General-Purpose Input Output 0 I/O 0 79 52 52 47 GPIO1 General-Purpose Input Output 1 I/O 1 78 51 51 46 GPIO2 General-Purpose Input Output 2 I/O 2 77 50 50 45 GPIO3 General-Purpose Input Output 3 I/O 3 76 49 49 44 GPIO4 General-Purpose Input Output 4 I/O 4 75 48 48 43 GPIO5 General-Purpose Input Output 5 I/O 5 89 61 61 55 GPIO6 General-Purpose Input Output 6 I/O 6 97 64 64 1 GPIO7 General-Purpose Input Output 7 I/O 7 84 57 57 52 GPIO8 General-Purpose Input Output 8 I/O 8 74 47 47 42 GPIO9 General-Purpose Input Output 9 I/O 9 90 62 62 56 GPIO10 General-Purpose Input Output 10 I/O 10 93 63 63 GPIO11 General-Purpose Input Output 11 I/O 11 52 31 31 28 GPIO12 General-Purpose Input Output 12 I/O 12 51 30 27 GPIO13 General-Purpose Input Output 13 I/O 13 50 29 26 GPIO14 General-Purpose Input Output 14 I/O 14 96 GPIO15 General-Purpose Input Output 15 I/O 15 95 GPIO16 General-Purpose Input Output 16 I/O 16 54 33 33 30 GPIO17 General-Purpose Input Output 17 I/O 17 55 34 34 31 GPIO18_X2 General-Purpose Input Output 18. This pin and its digital mux options can only be used when the system is clocked by INTOSC and X1 has an external pulldown resistor (recommended 1 kΩ). I/O 18 68 41 41 38 GPIO20 General-Purpose Input Output 20 I/O 20 GPIO21 General-Purpose Input Output 21 I/O 21 GPIO22_VFBSW General-Purpose Input Output 22. If the internal DC-DC regulator is not used, this can be configured as General-Purpose Input Output 22. I/O 22 83 56 56 51 GPIO23_VSW General-Purpose Input Output 23. If the internal DC-DC regulator is not used, this pin can be configured as General-Purpose Input Output 23. This pin has an internal capacitance of approximately 100 pF. TI Recommends using an alternate GPIO, or using this pin only for applications which do not require a fast switching response. I/O 23 81 54 54 49 GPIO24 General-Purpose Input Output 24 I/O 24 56 35 35 32 GPIO25 General-Purpose Input Output 25 I/O 25 57 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 35 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-3. Digital Signals (continued) SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH GPIO26 General-Purpose Input Output 26 I/O 26 58 GPIO27 General-Purpose Input Output 27 I/O 27 59 GPIO28 General-Purpose Input Output 28 I/O 28 1 2 2 3 GPIO29 General-Purpose Input Output 29 I/O 29 100 1 1 2 GPIO30 General-Purpose Input Output 30 I/O 30 98 GPIO31 General-Purpose Input Output 31 I/O 31 99 GPIO32 General-Purpose Input Output 32 I/O 32 64 40 40 37 GPIO33 General-Purpose Input Output 33 I/O 33 53 32 32 29 GPIO34 General-Purpose Input Output 34 I/O 34 94 GPIO35 General-Purpose Input Output 35 I/O 35 63 39 39 36 GPIO37 General-Purpose Input Output 37 I/O 37 61 37 37 34 GPIO39 General-Purpose Input Output 39 I/O 39 91 GPIO40 General-Purpose Input Output 40 I/O 40 85 GPIO41 General-Purpose Input Output 41 I/O 41 GPIO42 General-Purpose Input Output 42 I/O 42 GPIO43 General-Purpose Input Output 43 I/O 43 GPIO44 General-Purpose Input Output 44 I/O 44 GPIO45 General-Purpose Input Output 45 I/O 45 GPIO46 General-Purpose Input Output 46 I/O 46 GPIO47 General-Purpose Input Output 47 I/O 47 GPIO48 General-Purpose Input Output 48 I/O 48 GPIO49 General-Purpose Input Output 49 I/O 49 GPIO50 General-Purpose Input Output 50 I/O 50 GPIO51 General-Purpose Input Output 51 I/O 51 GPIO52 General-Purpose Input Output 52 I/O 52 GPIO53 General-Purpose Input Output 53 I/O 53 GPIO54 General-Purpose Input Output 54 I/O 54 GPIO55 General-Purpose Input Output 55 I/O 55 GPIO56 General-Purpose Input Output 56 I/O 56 65 GPIO57 General-Purpose Input Output 57 I/O 57 66 GPIO58 General-Purpose Input Output 58 I/O 58 67 GPIO59 General-Purpose Input Output 59 I/O 59 92 53, 59, 61, 68, 74, 78 32, 37, 41, 47, 51 32, 37, 41, 47, 51 29, 34, 38, 42, 46 I2CA_SCL I2C-A Open-Drain Bidirectional Clock I/OD 1, 18, 27, 33, 37, 8 I2CA_SDA I2C-A Open-Drain Bidirectional Data I/OD 0, 10, 26, 32, 35 58, 63, 64, 79, 93 39, 40, 52, 63 39, 40, 52, 63 36, 37, 47 LINA_RX LIN-A Receive I 29, 33, 35, 59 100, 53, 63, 92 1, 32, 39 1, 32, 39 2, 29, 36 LINA_TX LIN-A Transmit O 22, 28, 32, 37, 58 1, 61, 64, 67, 83 2, 37, 40, 56 2, 37, 40, 56 3, 34, 37, 51 OUTPUTXBAR1 Output X-BAR Output 1 O 2, 24, 34, 58 56, 67, 77, 94 35, 50 35, 50 32, 45 OUTPUTXBAR2 Output X-BAR Output 2 O 25, 3, 37, 59 57, 61, 76, 92 37, 49 37, 49 34, 44 OUTPUTXBAR3 Output X-BAR Output 3 O 14, 26, 4, 5 58, 75, 89, 96 48, 61 48, 61 43, 55 36 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-3. Digital Signals (continued) SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH OUTPUTXBAR4 Output X-BAR Output 4 O 15, 27, 33, 6 53, 59, 95, 97 32, 64 32, 64 1, 29 OUTPUTXBAR5 Output X-BAR Output 5 O 28, 7 1, 84 2, 57 2, 57 3, 52 OUTPUTXBAR6 Output X-BAR Output 6 O 29, 9 100, 90 1, 62 1, 62 2, 56 52, 54, 98 31, 33 31, 33 28, 30 OUTPUTXBAR7 Output X-BAR Output 7 O 11, 16, 30 OUTPUTXBAR8 Output X-BAR Output 8 O 17, 31 55, 99 34 34 31 PMBUSA_ALERT PMBus-A Open-Drain Bidirectional Alert Signal I/OD 13, 27, 37 50, 59, 61 37 29, 37 26, 34 PMBUSA_CTL PMBus-A Control Signal I 12, 18, 26, 35 51, 58, 63, 68 39, 41 30, 39, 41 27, 36, 38 PMBUSA_SCL PMBus-A Open-Drain Bidirectional Clock I/OD 15, 16, 24, 3, 35 54, 56, 63, 76, 95 33, 35, 39, 49 33, 35, 39, 49 30, 32, 36, 44 PMBUSA_SDA PMBus-A Open-Drain Bidirectional Data I/OD 14, 17, 2, 25, 34, 40 55, 57, 77, 85, 94, 96 34, 50 34, 50 31, 45 SCIA_RX SCI-A Receive Data I 17, 25, 28, 3, 35, 9 1, 55, 57, 63, 76, 90 2, 34, 39, 49, 62 2, 34, 39, 49, 62 3, 31, 36, 44, 56 SCIA_TX SCI-A Transmit Data O 16, 2, 24, 29, 37, 8 100, 54, 56, 61, 74, 77 1, 33, 35, 37, 47, 50 1, 33, 35, 37, 47, 50 2, 30, 32, 34, 42, 45 SCIB_RX SCI-B Receive Data I 11, 13, 15, 57 50, 52, 66, 95 31 29, 31 26, 28 SCIB_TX SCI-B Transmit Data O 10, 12, 14, 18, 22, 40, 56, 9 51, 65, 68, 83, 85, 90, 93, 96 41, 56, 62, 63 30, 41, 56, 62, 63 27, 38, 51, 56 SD1_C1 SDFM-1 Channel 1 Clock Input I 17, 25 55, 57 34 34 31 SD1_C2 SDFM-1 Channel 2 Clock Input I 27 59 SD1_C3 SDFM-1 Channel 3 Clock Input I 29, 33, 57 100, 53, 66 1, 32 1, 32 2, 29 SD1_C4 SDFM-1 Channel 4 Clock Input I 31, 59 92, 99 SD1_D1 SDFM-1 Channel 1 Data Input I 16, 24 54, 56 33, 35 33, 35 30, 32 SD1_D2 SDFM-1 Channel 2 Data Input I 18, 26 58, 68 41 41 38 SD1_D3 SDFM-1 Channel 3 Data Input I 28, 32, 56 1, 64, 65 2, 40 2, 40 3, 37 SD1_D4 SDFM-1 Channel 4 Data Input I 22, 30, 58 67, 83, 98 56 56 51 SPIA_CLK SPI-A Clock I/O 18, 3, 56, 9 65, 68, 76, 90 41, 49, 62 41, 49, 62 38, 44, 56 SPIA_SIMO SPI-A Slave In, Master Out (SIMO) I/O 16, 8 54, 74 33, 47 33, 47 30, 42 SPIA_SOMI SPI-A Slave Out, Master In (SOMI) I/O 10, 17 55, 93 34, 63 34, 63 31 52, 66, 89 31, 61 31, 61 28, 55 SPIA_STE SPI-A Slave Transmit Enable (STE) I/O 11, 5, 57 SPIB_CLK SPI-B Clock I/O 14, 22, 26, 28, 32, 58 1, 58, 64, 67, 83, 96 2, 40, 56 2, 40, 56 3, 37, 51 SPIB_SIMO SPI-B Slave In, Master Out (SIMO) I/O 24, 30, 56, 7 56, 65, 84, 98 35, 57 35, 57 32, 52 SPIB_SOMI SPI-B Slave Out, Master In (SOMI) I/O 25, 31, 57, 6 57, 66, 97, 99 64 64 1 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 37 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-3. Digital Signals (continued) SIGNAL NAME DESCRIPTION PIN TYPE GPIO 100 PZ 64 PMQ 64 PM 56 RSH SPIB_STE SPI-B Slave Transmit Enable (STE) I/O 15, 27, 29, 33, 59 100, 53, 59, 92, 95 1, 32 1, 32 2, 29 SYNCOUT External ePWM Synchronization Pulse O 6 97 64 64 1 TDI JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. I 35 63 39 39 36 TDO JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. O 37 61 37 37 34 VFBSW Internal DC-DC regulator feedback signal. If the internal DC-DC regulator is used, tie this pin to the node where L(VSW) connects to the VDD rail (as close as possible to the device). - 22 83 56 56 51 VSW Switching output of the internal DC-DC regulator - 23 81 54 54 49 X2 Crystal oscillator output I/O 18 68 41 41 38 XCLKOUT External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. O 16, 18 54, 68 33, 41 33, 41 30, 38 38 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 4.3.3 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Power and Ground Table 4-4. Power and Ground 100 PZ 64 PMQ 64 PM 56 RSH VDD 1.2-V Digital Logic Power Pins. TI recommends placing a decoupling capacitor near each VDD pin with a minimum total capacitance of approximately 20 µF. When not using the internal voltage regulator, the exact value of the decoupling capacitance should be determined by your system voltage regulation solution. 4, 46, 71, 87 27, 4, 44, 59 27, 4, 44, 59 24, 41, 5, 53 VDDA 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor to VSSA on each pin. 11, 34 22 22 20 VDDIO 3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF decoupling capacitor on each pin. 3, 47, 70, 88 28, 43, 60 28, 43, 60 25, 40, 54 VDDIO_SW Supply pin for the internal DC-DC regulator. If the internal DC-DC regulator is used, a bulk input capacitance of 20-µF should be placed on this pin. If the internal DC-DC regulator is not used, this pin should be treated as a VDDIO pin. 80 53 53 48 VSS Digital Ground 45, 5, 72, 86 26, 45, 5, 58 26, 45, 5, 58 PAD VSSA Analog Ground 12, 33 21 21 19 VSS_SW Internal DC-DC regulator ground. If the internal DC-DC regulator is not used, this pin must be treated as a VSS pin. 82 55 55 50 SIGNAL NAME DESCRIPTION PIN TYPE GPIO Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 39 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 4.3.4 www.ti.com Test, JTAG, Voltage Regulator, and Reset Table 4-5. Test, JTAG, Voltage Regulator, and Reset DESCRIPTION PIN TYPE 100 PZ 64 PMQ FLT1 Flash test pin 1. Reserved for TI. Must be left unconnected. I/O 49 30 FLT2 Flash test pin 2. Reserved for TI. Must be left unconnected. I/O 48 29 TCK JTAG test clock with internal pullup. I 60 TMS JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. I VREGENZ Internal voltage regulator enable with internal pulldown. Tie directly to VSS (low) to enable the internal VREG. Tie directly to VDDIO (high) to use an external supply. X1 Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. XRSn Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. The output buffer of this pin is an open-drain with an internal pullup. If this pin is driven by an external device, TI recommends using an open-drain device. SIGNAL NAME 40 Terminal Configuration and Functions GPIO 64 PM 56 RSH 36 36 33 62 38 38 35 I 73 46 46 I/O 69 42 42 39 I/OD 2 3 3 4 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 4.4 4.4.1 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Pin Multiplexing GPIO Muxed Pins Table 4-6 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except GPIO35 and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns that are not shown and blank cells are reserved GPIO Mux settings. NOTE GPIO20, GPIO21, and GPIO41 to GPIO55 are not available on any packages. Boot ROM enables pullups on these pins. For more details, see Section 4.5. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 41 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-6. GPIO Muxed Pins 0, 4, 8, 12 1 GPIO0 EPWM1_A GPIO1 EPWM1_B GPIO2 EPWM2_A GPIO3 EPWM2_B GPIO4 EPWM3_A GPIO5 EPWM3_B GPIO6 EPWM4_A GPIO7 EPWM4_B GPIO8 EPWM5_A GPIO9 EPWM5_B GPIO10 EPWM6_A GPIO11 GPIO12 2 3 5 6 7 9 10 SCIA_TX FSIRXA_D1 SPIA_CLK SCIA_RX 11 13 15 I2CA_SDA I2CA_SCL OUTPUTXBAR2 OUTPUTXBAR1 PMBUSA_SDA OUTPUTXBAR2 PMBUSA_SCL OUTPUTXBAR3 CANA_TX OUTPUTXBAR3 FSIRXA_D0 FSIRXA_CLK CANA_RX SPIA_STE SYNCOUT EQEP1_A CANB_TX SPIB_SOMI FSITXA_D0 OUTPUTXBAR5 EQEP1_B CANB_RX SPIB_SIMO FSITXA_CLK CANB_TX ADCSOCAO EQEP1_STROBE SCIA_TX SPIA_SIMO I2CA_SCL FSITXA_D1 SCIB_TX OUTPUTXBAR6 EQEP1_INDEX SCIA_RX SPIA_CLK CANB_RX ADCSOCBO EQEP1_A SCIB_TX SPIA_SOMI I2CA_SDA FSITXA_CLK EPWM6_B SCIB_RX OUTPUTXBAR7 EQEP1_B SCIB_RX SPIA_STE FSIRXA_D1 EPWM7_A CANB_TX EQEP1_STROBE SCIB_TX PMBUSA_CTL FSIRXA_D0 GPIO13 EPWM7_B CANB_RX EQEP1_INDEX SCIB_RX PMBUSA_ALERT FSIRXA_CLK GPIO14 EPWM8_A SCIB_TX OUTPUTXBAR3 PMBUSA_SDA SPIB_CLK GPIO15 EPWM8_B SCIB_RX OUTPUTXBAR4 PMBUSA_SCL SPIB_STE EQEP2_B GPIO16 SPIA_SIMO CANB_TX OUTPUTXBAR7 EPWM5_A SCIA_TX SD1_D1 EQEP1_STROBE PMBUSA_SCL GPIO17 SPIA_SOMI CANB_RX OUTPUTXBAR8 EPWM5_B SCIA_RX SD1_C1 EQEP1_INDEX PMBUSA_SDA GPIO18_X2 SPIA_CLK SCIB_TX CANA_RX EPWM6_A I2CA_SCL SD1_D2 EQEP2_A PMBUSA_CTL SPIB_CLK SD1_D4 LINA_TX SPIB_SIMO SD1_D1 SPIB_SOMI SD1_C1 OUTPUTXBAR4 FSITXA_D1 FSITXA_D0 EQEP2_A XCLKOUT XCLKOUT GPIO20 GPIO21 GPIO22_VFBSW EQEP1_STROBE SCIB_TX GPIO23_VSW GPIO24 OUTPUTXBAR1 EQEP2_A GPIO25 OUTPUTXBAR2 EQEP2_B EPWM8_A PMBUSA_SCL SCIA_TX PMBUSA_SDA SCIA_RX GPIO26 OUTPUTXBAR3 EQEP2_INDEX OUTPUTXBAR3 SPIB_CLK SD1_D2 GPIO27 OUTPUTXBAR4 EQEP2_STROBE OUTPUTXBAR4 SPIB_STE SD1_C2 FSITXA_D0 PMBUSA_CTL I2CA_SDA FSITXA_CLK PMBUSA_ALERT GPIO28 SCIA_RX EPWM7_A OUTPUTXBAR5 EQEP1_A SD1_D3 I2CA_SCL EQEP2_STROBE LINA_TX SPIB_CLK GPIO29 SCIA_TX EPWM7_B OUTPUTXBAR6 EQEP1_B SD1_C3 ERRORSTS EQEP2_INDEX LINA_RX SPIB_STE GPIO30 CANA_RX SPIB_SIMO OUTPUTXBAR7 EQEP1_STROBE SD1_D4 ERRORSTS GPIO31 CANA_TX SPIB_SOMI OUTPUTXBAR8 EQEP1_INDEX SD1_C4 GPIO32 I2CA_SDA SPIB_CLK EPWM8_B LINA_TX SD1_D3 FSIRXA_D0 CANA_TX GPIO33 I2CA_SCL SPIB_STE OUTPUTXBAR4 LINA_RX SD1_C3 FSIRXA_CLK CANA_RX GPIO34 OUTPUTXBAR1 GPIO35 SCIA_RX I2CA_SDA CANA_RX PMBUSA_SCL LINA_RX EQEP1_A PMBUSA_CTL TDI GPIO37 OUTPUTXBAR2 I2CA_SCL SCIA_TX CANA_TX LINA_TX EQEP1_B PMBUSA_ALERT TDO GPIO39 CANB_RX FSIRXA_CLK GPIO40 PMBUSA_SDA FSIRXA_D0 SCIB_TX EQEP1_A FSITXA_D1 ERRORSTS FSIRXA_D1 PMBUSA_SDA GPIO41 42 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-6. GPIO Muxed Pins (continued) 0, 4, 8, 12 1 2 3 5 6 7 9 10 11 13 15 GPIO42 GPIO43 GPIO44 GPIO45 GPIO46 GPIO47 GPIO48 GPIO49 GPIO50 GPIO51 GPIO52 GPIO53 GPIO54 GPIO55 GPIO56 SPIA_CLK EQEP2_STROBE SCIB_TX SD1_D3 SPIB_SIMO GPIO57 SPIA_STE EQEP2_INDEX SCIB_RX SD1_C3 SPIB_SOMI EQEP1_A GPIO58 OUTPUTXBAR1 SPIB_CLK SD1_D4 LINA_TX CANB_TX EQEP1_STROBE GPIO59 OUTPUTXBAR2 SPIB_STE SD1_C4 LINA_RX CANB_RX EQEP1_INDEX EQEP1_B Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 43 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-7 lists all muxed signals available and the respective GPIO within each package. Table 4-7. Digital Signals by GPIO SIGNAL NAME PIN TYPE DESCRIPTION 100 PZ 64 PMQ 64 PM 56 RSH ADCSOCAO O ADC Start of Conversion A Output for External ADC (from ePWM modules) GPIO8 GPIO8 GPIO8 GPIO8 ADCSOCBO O ADC Start of Conversion B Output for External ADC (from ePWM modules) GPIO10 GPIO10 GPIO10 CAN-A Receive GPIO5 GPIO18_ X2 GPIO30 GPIO33 GPIO35/T DI GPIO5 GPIO18_ X2 GPIO33 GPIO35/T DI GPIO5 GPIO18_ X2 GPIO33 GPIO35/T DI GPIO5 GPIO18_ X2 GPIO33 GPIO35/T DI CAN-A Transmit GPIO4 GPIO31 GPIO32 GPIO37/T DO GPIO4 GPIO32 GPIO37/T DO GPIO4 GPIO32 GPIO37/T DO GPIO4 GPIO32 GPIO37/T DO CAN-B Receive GPIO7 GPIO10 GPIO13 GPIO17 GPIO39 GPIO59 GPIO7 GPIO10 GPIO17 GPIO7 GPIO10 GPIO13 GPIO17 GPIO7 GPIO13 GPIO17 GPIO6 GPIO8 GPIO16 GPIO6 GPIO8 GPIO12 GPIO16 GPIO6 GPIO8 GPIO12 GPIO16 CANA_RX CANA_TX CANB_RX I O I CANB_TX O CAN-B Transmit GPIO6 GPIO8 GPIO12 GPIO16 GPIO58 EPWM1_A O ePWM-1 Output A GPIO0 GPIO0 GPIO0 GPIO0 EPWM1_B O ePWM-1 Output B GPIO1 GPIO1 GPIO1 GPIO1 EPWM2_A O ePWM-2 Output A GPIO2 GPIO2 GPIO2 GPIO2 EPWM2_B O ePWM-2 Output B GPIO3 GPIO3 GPIO3 GPIO3 EPWM3_A O ePWM-3 Output A GPIO4 GPIO4 GPIO4 GPIO4 EPWM3_B O ePWM-3 Output B GPIO5 GPIO5 GPIO5 GPIO5 EPWM4_A O ePWM-4 Output A GPIO6 GPIO6 GPIO6 GPIO6 EPWM4_B O ePWM-4 Output B GPIO7 GPIO7 GPIO7 GPIO7 GPIO8 GPIO16 GPIO8 GPIO16 GPIO8 GPIO16 EPWM5_A O ePWM-5 Output A GPIO8 GPIO16 EPWM5_B O ePWM-5 Output B GPIO9 GPIO17 GPIO9 GPIO17 GPIO9 GPIO17 GPIO9 GPIO17 EPWM6_A O ePWM-6 Output A GPIO10 GPIO18_ X2 GPIO10 GPIO18_ X2 GPIO10 GPIO18_ X2 GPIO18_ X2 EPWM6_B O ePWM-6 Output B GPIO11 GPIO11 GPIO11 GPIO11 GPIO28 GPIO12 GPIO28 GPIO12 GPIO28 EPWM7_A O ePWM-7 Output A GPIO12 GPIO28 EPWM7_B O ePWM-7 Output B GPIO13 GPIO29 GPIO29 GPIO13 GPIO29 GPIO13 GPIO29 EPWM8_A O ePWM-8 Output A GPIO14 GPIO24 GPIO24 GPIO24 GPIO24 EPWM8_B O ePWM-8 Output B GPIO15 GPIO32 GPIO32 GPIO32 GPIO32 44 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-7. Digital Signals by GPIO (continued) SIGNAL NAME 100 PZ 64 PMQ 64 PM 56 RSH eQEP-1 Input A GPIO6 GPIO10 GPIO28 GPIO35/T DI GPIO40 GPIO56 GPIO6 GPIO10 GPIO28 GPIO35/T DI GPIO6 GPIO10 GPIO28 GPIO35/T DI GPIO6 GPIO28 GPIO35/T DI eQEP-1 Input B GPIO7 GPIO11 GPIO29 GPIO37/T DO GPIO57 GPIO7 GPIO11 GPIO29 GPIO37/T DO GPIO7 GPIO11 GPIO29 GPIO37/T DO GPIO7 GPIO11 GPIO29 GPIO37/T DO eQEP-1 Index GPIO9 GPIO13 GPIO17 GPIO31 GPIO59 GPIO9 GPIO17 GPIO9 GPIO13 GPIO17 GPIO9 GPIO13 GPIO17 I/O eQEP-1 Strobe GPIO8 GPIO12 GPIO16 GPIO22_ VFBSW GPIO30 GPIO58 GPIO8 GPIO16 GPIO22_ VFBSW GPIO8 GPIO12 GPIO16 GPIO22_ VFBSW GPIO8 GPIO12 GPIO16 GPIO22_ VFBSW EQEP2_A I eQEP-2 Input A GPIO14 GPIO18_ X2 GPIO24 GPIO18_ X2 GPIO24 GPIO18_ X2 GPIO24 GPIO18_ X2 GPIO24 EQEP2_B I eQEP-2 Input B GPIO15 GPIO25 EQEP1_A PIN TYPE I EQEP1_B I EQEP1_INDEX EQEP1_STROBE I/O DESCRIPTION EQEP2_INDEX I/O eQEP-2 Index GPIO26 GPIO29 GPIO57 GPIO29 GPIO29 GPIO29 EQEP2_STROBE I/O eQEP-2 Strobe GPIO27 GPIO28 GPIO56 GPIO28 GPIO28 GPIO28 ERRORSTS O Error Status Output. This signal requires an external pullup. GPIO24 GPIO28 GPIO29 GPIO24 GPIO28 GPIO29 GPIO24 GPIO28 GPIO29 GPIO24 GPIO28 GPIO29 FSIRXA_CLK I FSIRX-A Input Clock GPIO4 GPIO13 GPIO33 GPIO39 GPIO4 GPIO33 GPIO4 GPIO13 GPIO33 GPIO4 GPIO13 GPIO33 FSIRXA_D0 I FSIRX-A Primary Data Input GPIO3 GPIO12 GPIO32 GPIO40 GPIO3 GPIO32 GPIO3 GPIO12 GPIO32 GPIO3 GPIO12 GPIO32 FSIRXA_D1 I FSIRX-A Optional Additional Data Input GPIO2 GPIO11 GPIO31 GPIO2 GPIO11 GPIO2 GPIO11 GPIO2 GPIO11 FSITXA_CLK O FSITX-A Output Clock GPIO7 GPIO10 GPIO27 GPIO7 GPIO10 GPIO7 GPIO10 GPIO7 FSITXA_D0 O FSITX-A Primary Data Output GPIO6 GPIO9 GPIO26 GPIO6 GPIO9 GPIO6 GPIO9 GPIO6 GPIO9 FSITXA_D1 O FSITX-A Optional Additional Data Output GPIO5 GPIO8 GPIO25 GPIO5 GPIO8 GPIO5 GPIO8 GPIO5 GPIO8 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 45 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-7. Digital Signals by GPIO (continued) SIGNAL NAME I2CA_SCL PIN TYPE I/OD I2CA_SDA I/OD LINA_RX I LINA_TX O OUTPUTXBAR1 OUTPUTXBAR2 O O DESCRIPTION 100 PZ 64 PMQ 64 PM 56 RSH I2C-A Open-Drain Bidirectional Clock GPIO1 GPIO8 GPIO18_ X2 GPIO27 GPIO33 GPIO37/T DO GPIO1 GPIO8 GPIO18_ X2 GPIO33 GPIO37/T DO GPIO1 GPIO8 GPIO18_ X2 GPIO33 GPIO37/T DO GPIO1 GPIO8 GPIO18_ X2 GPIO33 GPIO37/T DO I2C-A Open-Drain Bidirectional Data GPIO0 GPIO10 GPIO26 GPIO32 GPIO35/T DI GPIO0 GPIO10 GPIO32 GPIO35/T DI GPIO0 GPIO10 GPIO32 GPIO35/T DI GPIO0 GPIO32 GPIO35/T DI LIN-A Receive GPIO29 GPIO33 GPIO35/T DI GPIO59 GPIO29 GPIO33 GPIO35/T DI GPIO29 GPIO33 GPIO35/T DI GPIO29 GPIO33 GPIO35/T DI LIN-A Transmit GPIO22_ VFBSW GPIO28 GPIO32 GPIO37/T DO GPIO58 GPIO22_ VFBSW GPIO28 GPIO32 GPIO37/T DO GPIO22_ VFBSW GPIO28 GPIO32 GPIO37/T DO GPIO22_ VFBSW GPIO28 GPIO32 GPIO37/T DO Output X-BAR Output 1 GPIO2 GPIO24 GPIO34 GPIO58 GPIO2 GPIO24 GPIO2 GPIO24 GPIO2 GPIO24 Output X-BAR Output 2 GPIO3 GPIO25 GPIO37/T DO GPIO59 GPIO3 GPIO37/T DO GPIO3 GPIO37/T DO GPIO3 GPIO37/T DO GPIO4 GPIO5 GPIO4 GPIO5 GPIO4 GPIO5 OUTPUTXBAR3 O Output X-BAR Output 3 GPIO4 GPIO5 GPIO14 GPIO26 OUTPUTXBAR4 O Output X-BAR Output 4 GPIO6 GPIO15 GPIO27 GPIO33 GPIO6 GPIO33 GPIO6 GPIO33 GPIO6 GPIO33 OUTPUTXBAR5 O Output X-BAR Output 5 GPIO7 GPIO28 GPIO7 GPIO28 GPIO7 GPIO28 GPIO7 GPIO28 OUTPUTXBAR6 O Output X-BAR Output 6 GPIO9 GPIO29 GPIO9 GPIO29 GPIO9 GPIO29 GPIO9 GPIO29 OUTPUTXBAR7 O Output X-BAR Output 7 GPIO11 GPIO16 GPIO30 GPIO11 GPIO16 GPIO11 GPIO16 GPIO11 GPIO16 OUTPUTXBAR8 O Output X-BAR Output 8 GPIO17 GPIO31 GPIO17 GPIO17 GPIO17 PMBus-A Open-Drain Bidirectional Alert Signal GPIO13 GPIO27 GPIO37/T DO GPIO37/T DO GPIO13 GPIO37/T DO GPIO13 GPIO37/T DO PMBus-A Control Signal GPIO12 GPIO18_ X2 GPIO26 GPIO35/T DI GPIO18_ X2 GPIO35/T DI GPIO12 GPIO18_ X2 GPIO35/T DI GPIO12 GPIO18_ X2 GPIO35/T DI PMBUSA_ALERT PMBUSA_CTL 46 I/OD I Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 4-7. Digital Signals by GPIO (continued) SIGNAL NAME PMBUSA_SCL PMBUSA_SDA SCIA_RX SCIA_TX SCIB_RX PIN TYPE I/OD I/OD I O I DESCRIPTION 100 PZ 64 PMQ 64 PM 56 RSH PMBus-A Open-Drain Bidirectional Clock GPIO3 GPIO15 GPIO16 GPIO24 GPIO35/T DI GPIO3 GPIO16 GPIO24 GPIO35/T DI GPIO3 GPIO16 GPIO24 GPIO35/T DI GPIO3 GPIO16 GPIO24 GPIO35/T DI PMBus-A Open-Drain Bidirectional Data GPIO2 GPIO14 GPIO17 GPIO25 GPIO34 GPIO40 GPIO2 GPIO17 GPIO2 GPIO17 GPIO2 GPIO17 SCI-A Receive Data GPIO3 GPIO9 GPIO17 GPIO25 GPIO28 GPIO35/T DI GPIO3 GPIO9 GPIO17 GPIO28 GPIO35/T DI GPIO3 GPIO9 GPIO17 GPIO28 GPIO35/T DI GPIO3 GPIO9 GPIO17 GPIO28 GPIO35/T DI SCI-A Transmit Data GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/T DO GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/T DO GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/T DO GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/T DO SCI-B Receive Data GPIO11 GPIO13 GPIO15 GPIO57 GPIO11 GPIO11 GPIO13 GPIO11 GPIO13 GPIO9 GPIO10 GPIO18_ X2 GPIO22_ VFBSW GPIO9 GPIO10 GPIO12 GPIO18_ X2 GPIO22_ VFBSW GPIO9 GPIO12 GPIO18_ X2 GPIO22_ VFBSW GPIO17 GPIO17 GPIO17 GPIO29 GPIO33 GPIO29 GPIO33 GPIO29 GPIO33 SCIB_TX O SCI-B Transmit Data GPIO9 GPIO10 GPIO12 GPIO14 GPIO18_ X2 GPIO22_ VFBSW GPIO40 GPIO56 SD1_C1 I SDFM-1 Channel 1 Clock Input GPIO17 GPIO25 SD1_C2 I SDFM-1 Channel 2 Clock Input GPIO27 SD1_C3 I SDFM-1 Channel 3 Clock Input GPIO29 GPIO33 GPIO57 SD1_C4 I SDFM-1 Channel 4 Clock Input GPIO31 GPIO59 SD1_D1 I SDFM-1 Channel 1 Data Input GPIO16 GPIO24 GPIO16 GPIO24 GPIO16 GPIO24 GPIO16 GPIO24 SD1_D2 I SDFM-1 Channel 2 Data Input GPIO18_ X2 GPIO26 GPIO18_ X2 GPIO18_ X2 GPIO18_ X2 SD1_D3 I SDFM-1 Channel 3 Data Input GPIO28 GPIO32 GPIO56 GPIO28 GPIO32 GPIO28 GPIO32 GPIO28 GPIO32 SD1_D4 I SDFM-1 Channel 4 Data Input GPIO22_ VFBSW GPIO30 GPIO58 GPIO22_ VFBSW GPIO22_ VFBSW GPIO22_ VFBSW Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 47 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-7. Digital Signals by GPIO (continued) SIGNAL NAME PIN TYPE DESCRIPTION 100 PZ 64 PMQ 64 PM 56 RSH GPIO3 GPIO9 GPIO18_ X2 GPIO3 GPIO9 GPIO18_ X2 GPIO3 GPIO9 GPIO18_ X2 SPIA_CLK I/O SPI-A Clock GPIO3 GPIO9 GPIO18_ X2 GPIO56 SPIA_SIMO I/O SPI-A Slave In, Master Out (SIMO) GPIO8 GPIO16 GPIO8 GPIO16 GPIO8 GPIO16 GPIO8 GPIO16 SPIA_SOMI I/O SPI-A Slave Out, Master In (SOMI) GPIO10 GPIO17 GPIO10 GPIO17 GPIO10 GPIO17 GPIO17 SPIA_STE I/O SPI-A Slave Transmit Enable (STE) GPIO5 GPIO11 GPIO57 GPIO5 GPIO11 GPIO5 GPIO11 GPIO5 GPIO11 SPI-B Clock GPIO14 GPIO22_ VFBSW GPIO26 GPIO28 GPIO32 GPIO58 GPIO22_ VFBSW GPIO28 GPIO32 GPIO22_ VFBSW GPIO28 GPIO32 GPIO22_ VFBSW GPIO28 GPIO32 SPI-B Slave In, Master Out (SIMO) GPIO7 GPIO24 GPIO30 GPIO56 GPIO7 GPIO24 GPIO7 GPIO24 GPIO7 GPIO24 SPI-B Slave Out, Master In (SOMI) GPIO6 GPIO25 GPIO31 GPIO57 GPIO6 GPIO6 GPIO6 GPIO29 GPIO33 GPIO29 GPIO33 GPIO29 GPIO33 SPIB_CLK I/O SPIB_SIMO SPIB_SOMI I/O I/O SPIB_STE I/O SPI-B Slave Transmit Enable (STE) GPIO15 GPIO27 GPIO29 GPIO33 GPIO59 SYNCOUT O External ePWM Synchronization Pulse GPIO6 GPIO6 GPIO6 GPIO6 I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. GPIO35/T DI GPIO35/T DI GPIO35/T DI GPIO35/T DI TDO O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. GPIO37/T DO GPIO37/T DO GPIO37/T DO GPIO37/T DO VFBSW - Internal DC-DC regulator feedback signal. If the internal DC-DC regulator is used, tie this pin to the node where L(VSW) connects to the VDD rail (as close as possible to the device). GPIO22_ VFBSW GPIO22_ VFBSW GPIO22_ VFBSW GPIO22_ VFBSW VSW - Switching output of the internal DC-DC regulator GPIO23_ VSW GPIO23_ VSW GPIO23_ VSW GPIO23_ VSW TDI X2 I/O Crystal oscillator output GPIO18_ X2 GPIO18_ X2 GPIO18_ X2 GPIO18_ X2 XCLKOUT O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. GPIO16 GPIO18_ X2 GPIO16 GPIO18_ X2 GPIO16 GPIO18_ X2 GPIO16 GPIO18_ X2 48 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 4.4.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Digital Inputs on ADC Pins (AIOs) GPIOs on port H (GPIO224–GPIO255) are multiplexed with analog pins. These are also referred to as AIOs. These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation. NOTE If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if adjacent channels are being used for analog functions. 4.4.3 GPIO Input X-BAR The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs, ePWMs, and external interrupts (see Figure 4-5). Table 4-8 lists the input X-BAR destinations. For details on configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. GPIO0 GPIOx Asynchronous Synchronous Sync. + Qual. eCAP1 eCAP2 eCAP3 eCAP4 eCAP5 eCAP6 eCAP7 Input X-BAR INPUT16 INPUT15 INPUT14 INPUT13 INPUT12 INPUT11 INPUT10 INPUT9 INPUT8 INPUT7 INPUT6 INPUT5 INPUT4 INPUT3 INPUT2 INPUT1 Other Sources INPUT[16:1] 127:16 15:0 TZ1,TRIP1 TZ2,TRIP2 TZ3,TRIP3 TRIP6 CPU PIE CLA XINT1 XINT2 XINT3 XINT4 XINT5 TRIP4 TRIP5 ePWM X-BAR TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 ePWM Modules Other Sources ADC ADCEXTSOC EXTSYNCIN1 EXTSYNCIN2 ePWM and eCAP Sync Chain Other Sources Output X-BAR Figure 4-5. Input X-BAR Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 49 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-8. Input X-BAR Destinations INPUT 50 DESTINATIONS INPUT1 eCAPx, ePWM X-BAR, ePWM[TZ1,TRIP1], Output X-BAR INPUT2 eCAPx, ePWM X-BAR, ePWM[TZ2,TRIP2], Output X-BAR INPUT3 eCAPx, ePWM X-BAR, ePWM[TZ3,TRIP3], Output X-BAR INPUT4 eCAPx, ePWM X-BAR, XINT1, Output X-BAR INPUT5 eCAPx, ePWM X-BAR, XINT2, ADCEXTSOC, EXTSYNCIN1, Output X-BAR INPUT6 eCAPx, ePWM X-BAR, XINT3, ePWM[TRIP6], EXTSYNCIN2, Output X-BAR INPUT7 eCAPx, ePWM X-BAR INPUT8 eCAPx, ePWM X-BAR INPUT9 eCAPx, ePWM X-BAR INPUT10 eCAPx, ePWM X-BAR INPUT11 eCAPx, ePWM X-BAR INPUT12 eCAPx, ePWM X-BAR INPUT13 eCAPx, ePWM X-BAR, XINT4 INPUT14 eCAPx, ePWM X-BAR, XINT5 INPUT15 eCAPx INPUT16 eCAPx Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 4.4.4 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 GPIO Output X-BAR and ePWM X-BAR The Output X-BAR has eight outputs which are routed to the GPIO module. The ePWM X-BAR has eight outputs which are routed to each ePWM module. Figure 4-6 shows the sources for both the Output X-BAR and ePWM X-BAR. For details on the Output X-BAR and ePWM X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. CTRIPOUTH CTRIPOUTL (Output X-BAR only) CMPSSx CTRIPH CTRIPL ePWM and eCAP Sync Chain EXTSYNCOUT ADCSOCAO Select Ckt ADCSOCAO ADCSOCBO Select Ckt ADCSOCBO eCAPx ECAPxOUT ADCx EVT1 EVT2 EVT3 EVT4 Input X-BAR CLAHALT (ePWM X-BAR only) Output X-BAR INPUT1-6 INPUT7-14 (ePWM X-BAR only) OUTPUT1 OUTPUT2 OUTPUT3 OUTPUT4 OUTPUT5 OUTPUT6 OUTPUT7 OUTPUT8 GPIO Mux TRIP4 TRIP5 ePWM X-BAR TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 All ePWM Modules CLAHALT FLT1.COMPH FLT1.COMPL X-BAR Flags (shared) SDFMx FLT4.COMPH FLT4.COMPL Figure 4-6. Output X-BAR and ePWM X-BAR Sources Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 51 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 4.5 www.ti.com Pins With Internal Pullup and Pulldown Some pins on the device have internal pullups or pulldowns. Table 4-9 lists the pull direction and when it is active. The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a particular package. Other pins noted in Table 4-9 with pullups and pulldowns are always on and cannot be disabled. Table 4-9. Pins With Internal Pullup and Pulldown RESET (XRSn = 0) DEVICE BOOT APPLICATION Pullup disabled Pullup disabled (1) Application defined PIN GPIOx (including AIOs) GPIO35/TDI Pullup disabled GPIO37/TDO Pullup disabled TCK Pullup active VREGENZ Pulldown active XRSn Pullup active Other pins 52 Application defined Pullup active TMS (1) Application defined No pullup or pulldown present Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM. Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 4.6 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Connections for Unused Pins For applications that do not need to use all functions of the device, Table 4-10 lists acceptable conditioning for any unused pins. When multiple options are listed in Table 4-10, any option is acceptable. Pins not listed in Table 4-10 must be connected according to Section 4. Table 4-10. Connections for Unused Pins SIGNAL NAME ACCEPTABLE PRACTICE ANALOG Analog input pins with DACx_OUT • • No Connect Tie to VSSA through 4.7-kΩ or larger resistor Analog input pins with PGAx_OUTF • • No Connect Tie to VSSA through 4.7-kΩ or larger resistor Analog input pins (except for DACx_OUT and PGAx_OUTF) • • • No Connect Tie to VSSA Tie to VSSA through resistor PGAx_GND Tie to VSSA VREFHIx Tie to VDDA VREFLOx Tie to VSSA DIGITAL FLT1 (Flash Test pin 1) • • No Connect Tie to VSS through 4.7-kΩ or larger resistor FLT2 (Flash Test pin 2) • • No Connect Tie to VSS through 4.7-kΩ or larger resistor GPIOx • • • Input mode with internal pullup enabled Input mode with external pullup or pulldown resistor Output mode with internal pullup disabled GPIO35/TDI When TDI mux option is selected (default), the GPIO is in Input mode. • Internal pullup enabled • External pullup resistor GPIO37/TDO When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity; otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer. • Internal pullup enabled • External pullup resistor TCK • • TMS Pullup resistor VREGENZ Tie to VDDIO if internal regulator is not used X1 Tie to VSS X2 No Connect VDD All VDD pins must be connected per Section 4.3. VDDA If a dedicated analog supply is not used, tie to VDDIO. VDDIO All VDDIO pins must be connected per Section 4.3. VDDIO_SW Must always be tied to VDDIO VSS All VSS pins must be connected to board ground. VSS_SW Tie to VSS VSSA If an analog ground is not used, tie to VSS. No Connect Pullup resistor POWER AND GROUND Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 53 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5 Specifications 5.1 Absolute Maximum Ratings (1) (2) over operating free-air temperature range (unless otherwise noted) Supply voltage MIN MAX VDDIO with respect to VSS –0.3 4.6 VDDA with respect to VSSA –0.3 4.6 VDD with respect to VSS –0.3 1.5 Voltage difference between VDDIO and VDDIO_SW pins UNIT V ±0.3 V Input voltage VIN (3.3 V) –0.3 4.6 V Output voltage VO –0.3 4.6 V Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO) –20 20 Analog input (per pin), IIKANALOG (VIN < VSSA or VIN > VDDA) –20 20 Total for all inputs, IIKTOTAL (VIN < VSS/VSSA or VIN > VDDIO/VDDA) –20 20 Output current Digital output (per pin), IOUT –20 20 mA Free-Air temperature TA –40 125 °C Operating junction temperature TJ –40 150 °C Tstg –65 150 °C Input clamp current Storage temperature (1) (2) (3) 54 (3) mA Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.4 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, unless otherwise noted. Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see the IC Package Thermal Metrics Application Report (SPRA953). Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 ESD Ratings – Commercial VALUE UNIT F28004x in 100-pin PZ package (S temperature range) V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 V F28004x in 64-pin PM package (S temperature range) V(ESD) Electrostatic discharge (ESD) V F28004x in 56-pin RSH package (S temperature range) V(ESD) (1) (2) Electrostatic discharge (ESD) V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 5.3 ESD Ratings – Automotive VALUE UNIT F28004x in 100-pin PZ package (Q temperature range) V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002 (1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 100-pin PZ: 1, 25, 26, 50, 51, 75, 76, 100 ±750 Human body model (HBM), per AEC Q100-002 (1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 64-pin PM: 1, 16, 17, 32, 33, 48, 49, 64 ±750 V F28004x in 64-pin PM package (Q temperature range) V(ESD) (1) Electrostatic discharge V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 55 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.4 www.ti.com Recommended Operating Conditions Device supply voltage, VDDIO and VDDA Internal BOR enabled (1) MIN NOM MAX VBOR-VDDIO(MAX) + VBOR-GB (2) 3.3 3.63 2.8 3.3 3.63 1.14 1.2 1.32 Internal BOR disabled Device supply voltage, VDD UNIT V V Device ground, VSS 0 V Analog ground, VSSA 0 V SRSUPPLY Supply ramp rate of VDDIO, VDD, VDDA with respect to VSS. (3) tVDDIO-RAMP VDDIO supply ramp time from 1 V to VBOR-VDDIO(MAX) VBOR-GB VDDIO BOR guard band (4) Junction temperature, TJ S version (5) Free-Air temperature, TA Q version (5) (AEC Q100 qualification) (1) (2) (3) (4) (5) 105 V/s 10 ms –40 125 °C –40 125 °C 0.1 V Internal BOR is enabled by default. The VDDIO BOR voltage (VBOR-VDDIO[MAX]) in Electrical Characteristics determines the lower voltage bound for device operation. TI recommends that system designers budget an additional guard band (VBOR-GB) as shown in Figure 5-1. Supply ramp rate faster than this can trigger the on-chip ESD protection. TI recommends VBOR-GB to avoid BOR resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to prevent activation of the BOR during normal device operation. The value of VBOR-GB is a system-level design consideration; the voltage listed here is typical for many applications. Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded Processors for more information. 3.63 V +10% 3.3 V 0% 3.1 V –6.1% 3.0 V –9.1% Recommended System Voltage Regulator Range F28004x VDDIO Operating Range VBOR-GB BOR Guard Band VBOR-VDDIO Internal BOR Threshold 2.81 V 2.80 V –14.8% –15.1% Copyright © 2017, Texas Instruments Incorporated Figure 5-1. Supply Voltages 56 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.5 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Power Consumption Summary Current values listed in this section are representative for the test conditions given and not the absolute maximum possible. The actual device currents in an application will vary with application code and pin configurations. Table 5-1 lists the system current consumption values for an external supply. Table 5-2 lists the system current consumption values for the internal VREG. Table 5-3 lists the system current consumption values for the DCDC. See Section 5.5.1 for a detailed description of the test case run while measuring the current consumption in operating mode. Table 5-1. System Current Consumption (External Supply) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 61 90 mA 26 45 mA 12 30 mA 18 40 mA 1.2 4 mA 0.9 1.2 mA 0.9 20 mA 0.8 4 mA 0.2 0.5 mA 40 70 mA 33 75 mA 0.1 2.5 mA OPERATING MODE IDD VDD current consumption during operational usage IDDIO VDDIO current consumption during operational usage IDDA VDDA current consumption during operational usage See Section 5.5.1. IDLE MODE VDD current consumption while device is in Idle mode IDD IDDIO VDDIO current consumption while device is in Idle mode IDDA VDDA current consumption while device is in Idle mode • • • CPU is in IDLE mode Flash is powered down XCLKOUT is turned off HALT MODE VDD current consumption while device is in Halt mode IDD IDDIO VDDIO current consumption while device is in Halt mode IDDA VDDA current consumption while device is in Halt mode • • • CPU is in HALT mode Flash is powered down XCLKOUT is turned off FLASH ERASE/PROGRAM IDD VDD Current consumption during Erase/Program cycle (1) IDDIO VDDIO Current consumption during Erase/Program cycle (1) IDDA VDDA Current consumption during Erase/Program cycle • • • • • (1) CPU is running from Flash, performing Erase and Program on the unused sector. VREG is disabled. SYSCLK is running at 100 MHz. I/Os are inputs with pullups enabled. Peripheral clocks are turned OFF. Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 57 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-2. System Current Consumption (Internal VREG) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 86 113 mA 12 30 mA OPERATING MODE VDDIO current consumption during operational usage IDDIO VDDA current consumption during operational usage IDDA See Section 5.5.1. IDLE MODE IDDIO VDDIO current consumption while device is in Idle mode IDDA VDDA current consumption while device is in Idle mode • • • CPU is in IDLE mode Flash is powered down XCLKOUT is turned off 19.2 36 mA 0.9 1.2 mA • • • CPU is in HALT mode Flash is powered down XCLKOUT is turned off 1.7 18 mA 0.2 0.5 mA • CPU is running from Flash, performing Erase and Program on the unused sector. Internal VREG is enabled. SYSCLK is running at 100 MHz. I/Os are inputs with pullups enabled. Peripheral clocks are turned OFF. 72 106 mA 0.1 2.5 mA HALT MODE IDDIO VDDIO current consumption while device is in Halt mode IDDA VDDA current consumption while device is in Halt mode FLASH ERASE/PROGRAM IDDIO VDDIO current consumption during Erase/Program cycle (1) IDDA VDDA current consumption during Erase/Program cycle • • • • (1) 58 Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-3. System Current Consumption (DCDC) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 52 70 mA 12 25 mA OPERATING MODE VDDIO current consumption during operational usage IDDIO VDDA current consumption during operational usage IDDA See Section 5.5.1. IDLE MODE IDDIO VDDIO current consumption while device is in Idle mode IDDA VDDA current consumption while device is in Idle mode • • • CPU is in IDLE mode Flash is powered down XCLKOUT is turned off 9.2 28 mA 0.9 1.5 mA • • • CPU is in HALT mode Flash is powered down XCLKOUT is turned off 1.7 17 mA 0.2 1.5 mA • CPU is running from Flash, performing Erase and Program on the unused sector. DCDC is enabled. SYSCLK is running at 100 MHz. I/Os are inputs with pullups enabled. Peripheral clocks are turned OFF. 60 85 mA 0.25 2.5 mA HALT MODE IDDIO VDDIO current consumption while device is in Halt mode IDDA VDDA current consumption while device is in Halt mode FLASH ERASE/PROGRAM IDDIO VDDIO current consumption during Erase/Program cycle (1) IDDA VDDA current consumption during Erase/Program cycle • • • • (1) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 59 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.5.1 www.ti.com Operating Mode Test Description Table 5-1, Table 5-2, and Table 5-3 list the current consumption values for the operational mode of the device. The operational mode provides an estimation of what an application might encounter. The test case run to achieve the values shown does the following in a loop. Peripherals that are not on the following list have had their clocks disabled. • Code is executing from RAM. • FLASH is read and kept in active state. • No external components are driven by I/O pins. • All of the communication peripherals are exercised: SPI-A to SPI-C; SCI-A to SCI-C; I2C-A; CAN-A to CAN-C; LIN-A; PMBUS-A; and FSI-A. • ePWM-1 to ePWM-3 generate a 5-MHz output on 6 pins. • ePWM-4 to ePWM-7 are in HRPWM mode and generating 25 MHz on 6 pins. • CPU timers are active. • CPU does FIR16 calculations. • DMA does continuous 32-bit transfers. • CLA-1 is executing a 1024-point DFT in a background task. • All ADCs perform continuous conversions. • All DACs vary voltage at the loop frequency ~11 kHz. • All PGAs are enabled. • All CMPSSs generate a square wave with a 100-kHz frequency. • SDFM peripheral clock is enabled. • eCAP-1 to eCAP-7 are in APWM mode, toggling at 250 kHz. • All eQEP watchdogs are enabled and counting. • System watchdog is enabled and counting. 60 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.5.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Current Consumption Graphs Figure 5-2, Figure 5-3, and Figure 5-4 show a typical representation of the relationship between frequency and current consumption on the device. The operational test from Table 5-1 was run across frequency at VNOM and room temperature. Actual results will vary based on the system implementation and conditions. Leakage current on the VDD core supply will increase with operating temperature in an exponential manner as seen in Figure 5-5. The current consumption in HALT mode is primarily leakage current as there is no active switching if the internal oscillator has been powered down. 100 65 60 55 50 45 40 35 30 25 20 15 10 5 0 IDD IDDIO IDDA 60 40 20 0 0 10 20 30 40 50 60 70 80 90 Frequency (MHz) 0 100 10 20 30 40 50 60 70 80 90 Frequency (MHz) D001 100 D002 Figure 5-3. Current Versus Frequency — Internal VREG Figure 5-2. Current Versus Frequency — External Supply 55 22 50 20 IDDIO IDDA 45 18 16 40 IDD (mA) Current (mA) IDDIO IDDA 80 Current (mA) Current (mA) Figure 5-5 shows the typical leakage current across temperature. The device was placed into HALT mode under nominal voltage conditions. 35 30 25 20 14 12 10 8 6 15 4 10 2 5 0 10 20 30 40 50 60 70 80 90 Frequency (MHz) Figure 5-4. Current Versus Frequency — DCDC 100 D003 0 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (qC) D004 Figure 5-5. Halt Current Versus Temperature (ºC) Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 160 61 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.5.3 www.ti.com Reducing Current Consumption All C2000™ microcontrollers provide some methods to reduce the device current consumption: • Either of the two low-power modes—IDLE and HALT—could be entered to reduce the current consumption even further during idle periods in the application. • The flash module may be powered down if the code is run from RAM. • Disable the pullups on pins that assume an output function. • Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be achieved by turning off the clock to any peripheral that is not used in a given application. Table 5-4 lists the typical current consumption value per peripheral at 100-MHz SYSCLK. Table 5-4. Typical IDD Current Reduction per Disabled Peripheral (at 100-MHz SYSCLK) (1) PERIPHERAL 0.8 CAN 1.1 CLA 0.4 CLB 1.1 CMPSS (2) 0.4 CPU TIMER 0.1 (2) 0.2 DAC DMA 0.5 eCAP1 to eCAP5 eCAP6 to eCAP7 0.4 0.7 eQEP 0.1 FSI 0.7 HRPWM 0.8 I2C 0.3 0.4 PGA (2) 0.2 PMBUS 0.3 SCI 0.2 SDFM 0.9 SPI 0.2 DCC 0.1 PLL at 100 MHz 22.9 (1) (2) (3) Specifications 0.1 (3) ePWM LIN 62 IDD CURRENT REDUCTION (mA) ADC (2) All peripherals are disabled upon reset. Use the PCLKCRx register to individually enable peripherals. For peripherals with multiple instances, the current quoted is for a single module. This current represents the current drawn by the digital portion of the each module. eCAP6 and eCAP7 can also be configured as HRCAP. Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.6 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Electrical Characteristics over recommended operating conditions (unless otherwise noted) TEST CONDITIONS PARAMETER MIN TYP MAX UNIT Digital and Analog IO IOH = IOH MIN VDDIO * 0.8 IOH = –100 μA VDDIO – 0.2 VOH High-level output voltage VOL Low-level output voltage IOH High-level output source current for all output pins IOL Low-level output sink current for all output pins ROH High-level output impedance for all output pins 70 Ω ROL Low-level output impedance for all output pins 70 Ω VIH High-level input voltage (3.3 V) 2.0 VDDIO + 0.3 VIL Low-level input voltage (3.3 V) VSS – 0.3 0.8 VHYSTERESIS Input hysteresis IPULLDOWN Input current IPULLUP Input current Pin leakage IOL = IOL MAX 0.4 IOL = 100 µA 0.2 –4 4 Digital inputs with pullup enabled (1) VDDIO = 3.3 V VIN = 0 V 160 Analog inputs with pullup enabled (1) VDDA = 3.3 V VIN = 0 V 160 All GPIOs except GPIO23_VSW Pullups and outputs disabled 0 V ≤ VIN ≤ VDDIO µA 2 45 0.1 Analog drivers disabled 0 V ≤ VIN ≤ VDDA 2 µA 11 0.25 All digital GPIOs except GPIO23_VSW Input capacitance V µA PGAx_OF CI V mV 100 ADCINB3/VDAC mA 150 VDDIO = 3.3 V VIN = VDDIO Analog pins (except ADCINB3/VDAC and PGAx_OF) V mA Inputs with pulldown (1) GPIO23_VSW ILEAK V 2 GPIO23_VSW pF 100 Analog pins (2) VREG, DC-DC, and BOR VBOR-VDDIO VDDIO brownout reset voltage VVREG Internal voltage regulator output Internal VREG On 1.2 V VDC-DC Internal switching regulator output Internal DC-DC On 1.2 V Efficiency Power efficiency of internal DC-DC switching regulator (1) (2) 2.81 3.0 V 80% See Table 4-9 for a list of pins with a pullup or pulldown. The analog pins are specified separately; see Table 5-45. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 63 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.7 www.ti.com Thermal Resistance Characteristics 5.7.1 PZ Package °C/W (1) AIR FLOW (lfm) (2) RΘJC Junction-to-case thermal resistance 7.6 N/A RΘJB Junction-to-board thermal resistance 24.2 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 46.1 0 37.3 150 34.8 250 32.6 500 0.2 0 0.4 150 0.4 250 0.6 500 RΘJMA Junction-to-moving air thermal resistance PsiJT Junction-to-package top PsiJB (1) (2) Junction-to-board 23.8 0 22.8 150 22.4 250 21.9 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute 5.7.2 PM Package °C/W (1) AIR FLOW (lfm) (2) RΘJC Junction-to-case thermal resistance 12.4 N/A RΘJB Junction-to-board thermal resistance 25.6 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 51.8 0 42.2 150 39.4 250 36.5 500 RΘJMA Junction-to-moving air thermal resistance PsiJT Junction-to-package top PsiJB (1) (2) 64 Junction-to-board 0.5 0 0.9 150 1.1 250 1.4 500 25.1 0 23.8 150 23.4 250 22.7 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.7.3 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 RSH Package °C/W (1) AIR FLOW (lfm) (2) RΘJC Junction-to-case thermal resistance 11.9 N/A RΘJB Junction-to-board thermal resistance 3.3 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 25.8 0 17.4 150 RΘJMA Junction-to-moving air thermal resistance 15.1 250 13.4 500 PsiJT Junction-to-package top PsiJB Junction-to-board RΘJC, bottom Junction-to-bottom case thermal resistance (1) (2) 0.2 0 0.3 150 0.4 250 0.4 500 3.3 0 3.2 150 3.2 250 3.2 500 0.7 0 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 65 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8 www.ti.com System 5.8.1 Power Management TMS320F28004x MCUs can be configured to operate with one of three options to supply the required 1.2 V to the core (VDD): • An external supply (not available for 56-pin RSH package configurations) • Internal 1.2-V LDO Voltage Regulator (VREG) • Internal 1.2-V Switching Regulator (DC-DC) The system requirements will dictate which supply option best suits the application. NOTE The same system voltage regulator must be used to drive both VDDIO and VDDIO_SW. 5.8.1.1 Internal 1.2-V LDO Voltage Regulator (VREG) The internal VREG is supplied by VDDIO and generates the 1.2 V required to power the VDD pins. Enable this functionality by pulling the VREGENZ pin low to VSS. The smaller pin-count packages may not include the VREGENZ pin; therefore, the internal VREG is always enabled and, as such, is the required supply source for the VDD pins. Review the description of VREGENZ in Table 4-5 to determine package configuration. Although the internal VREG eliminates the need to use an external power supply for VDD, decoupling capacitors are required on each VDD pin for VREG stability. There are two recommended capacitor configurations (described in the list that follows) for the VDD rail when using the internal VREG. The signal description for VDD can be found in Table 4-4. • Configuration 1: Place a small decoupling capacitor to VSS on each pin as close to the device as possible. In addition, a bulk capacitance must be placed on the VDD node to VSS (one 20-µF capacitor or two parallel 10-µF capacitors). • Configuration 2: Distribute the total capacitance to VSS evenly across all VDD pins (total capacitance divided by four VDD pins). 5.8.1.2 Internal 1.2-V Switching Regulator (DC-DC) The internal DC-DC regulator offers increased efficiency over the LDO for converting 3.3 V to 1.2 V. The internal DC-DC regulator is supplied by the VDDIO_SW pin and generates the 1.2 V required to power the VDD pins. To use the internal switching regulator, the core domain must power up initially using the internal LDO VREG supply (tie the VREGENZ pin low to VSS) and then transition to the DC-DC regulator through application software by setting the DCDCEN bit in the DCDCCTL register. The DC-DC regulator also requires external components (inductor, input capacitance, and output capacitance). The output of internal DC-DC regulator is not internally fed to the VDD rail and requires an external connection. Figure 5-6 shows the schematic implementation. LVSW F28004x VIN VDDIO_SW VDD VSW VFBSW CVDDIO_SW VSS_SW VDD CVDD_DECAP(A) VSS_SW VSS VSS_SW CVDD VSS VSS Copyright © 2017, Texas Instruments Incorporated A. One decoupling capacitor per each of the four VDD pins Figure 5-6. DC-DC Circuit Schematic 66 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 The VDDIO_SW supply pin (VIN) requires a 3.3-V level voltage. A total input capacitance (CVDDIO_SW) of 20 µF is required on VDDIO_SW. Due to the capacitor specification requirements detailed in Table 5-6, two parallel 10-µF capacitors in parallel is the recommended configuration. Decoupling capacitors of 100 nF should also be placed on each VDD pin as close to the device as possible. Table 5-5. DC-DC Inductor (LVSW) Specifications Requirements VALUE AND VARIATION VALUE AT SATURATION DCR RATED CURRENT SATURATION CURRENT TEMPERATURE 2.2 µH ± 20% 1.54 µH ± 20% 80 mΩ ± 25% >1000 mA >600 mA –40°C to 125°C Table 5-6. DC-DC Capacitor (CVDDIO_SW and CVDD) Specifications Requirements VALUE AND VARIATION AT 0 V VALUE AT 1.2 V VALUE AT 125°C ESR RATED VOLTAGE TEMPERATURE 10 µF ± 20% 10 µF ± 20% 8 µF ± 20% <10 mΩ 4 V or 6.3 V –40°C to 125°C Table 5-7. DC-DC Circuit Component Values COMPONENT Inductor MIN NOM MAX UNIT NOTES 1.76 2.2 2.64 µH 20% variance Input capacitor 8 10 12 µF 20% varaince, two such capacitors in parallel Output capacitor 8 10 12 µF 20% varaince, two such capacitors in parallel 5.8.1.2.1 PCB Layout and Component Guidelines For optimal performance the application board layout and component selection is important. The list that follows is a high-level guideline for laying out the DC-DC circuit. • TI recommends star-connecting VDDIO_SW and VDDIO to the same 3.3-V supply. • All external components should be placed as close to the pins as possible. • The loop formed by the VDDIO_SW, input capacitor (CVDDIO_SW), and VSS_SW must be as short as possible. • The feedback trace must be as short as possible and kept away from any noise source such as the switching output (VSW). • It is necessary to have a separate island or surgical cut in the ground plane for the input cap (CVDDIO_SW) and VSS_SW. • A VDD plane is recommended for connecting the VDD node to the LVSW-CVDD point to minimize parasitic resistance and inductance. Table 5-8. Recommended External Components MIN CVDDIO Bulk capacitance on VDDIO CVDDIO_DECAP Decoupling capacitor on each VDDIO pin CVDDA Capacitor on VDDA pins CVDDIO_SW Capacitor on VDDIO_SW pin CVDD Bulk capacitance on VDD CVDD_DECAP Decoupling capacitor on each VDD pin (1) (2) (3) Based on External Supply IC Requirements (1) TYP µF 0.1 µF 2.2 µF 20 For LDO-only operation 0.1 For LDO-only operation (3) For DC-DC operation (2) For LDO-only operation (3) µF 20 12 20 27 0.1 0.1 UNIT 0.1 For DC-DC operation (2) For DC-DC operation (2) MAX 6.75 µF µF Bulk capacitance on this supply should be based on supply IC requirements. See Section 5.8.1.2 for details. See Section 5.8.1.1 for details. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 67 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-8. Recommended External Components (continued) MIN LVSW Inductor between VSW pin and VDD node for DC-DC RLVSW-DCR Allowed DCR for LVSW ISAT-LVSW LVSW saturation current 5.8.1.3 TYP MAX UNIT 2.2 µH 80 mΩ 600 mA Power Sequencing An external power supply must be used to supply 3.3 V to VDDIO, VDDIO_SW, and VDDA. TI recommends powering up VDDIO, VDDIO_SW, and VDDA together and keeping them within 0.3 V of each other during operation. Before powering the device, no voltage larger than 0.3 V above VDDIO can be applied to any digital pin, and no voltage larger than 0.3 V above VDDA can be applied to any analog pin. The VREFHI voltage should not exceed VDDA at any time. An external supply can be used to supply 1.2 V to the VDD pins when VREGENZ is pulled high to VDDIO. When using an external source to supply VDD, the voltage on VDDIO must be greater than VDD or no less than 0.3 V below VDD at all times. When using the internal VREG, the power sequence is handled internally. 5.8.1.4 Power-On Reset (POR) An internal power-on reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance state during power up. The POR is in control and forces XRSn low internally until the voltage on VDDIO crosses the POR threshold. When the voltage crosses the POR threshold, the internal brownout-reset (BOR) circuit takes control and holds the device in reset until the voltage crosses the BOR threshold (for internal BOR details, see Section 5.8.1.5). 5.8.1.5 Brownout Reset (BOR) An internal BOR circuit monitors the VDDIO rail for dips in voltage which result in the supply voltage dropping out of operational range. When the VDDIO voltage drops below the BOR threshold, the device is forced into reset, and XRSn is pulled low. XRSn will remain in reset until the voltage returns to the operational range. The BOR is enabled by default. To disable the BOR, set the BORLVMONDIS bit in the VMONCTL register. The internal BOR circuit monitors only the VDDIO rail. See Section 5.6 for BOR characteristics. External supply voltage supervisor (SVS) devices can be used to monitor the voltage on the 3.3-V and 1.2-V rails and to drive XRSn low if supplies fall outside operational specifications. 68 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.8.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Reset Timing XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on reset (POR). During power up, the POR circuit drives the XRSn pin low. A watchdog or NMI watchdog reset will also drive the pin low. An external circuit may drive the pin to assert a device reset. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. Figure 5-7 shows the recommended reset circuit. VDDIO 2.2 kW to 10 kW XRSn Optional Reset source £100 nF Figure 5-7. Reset Circuit 5.8.2.1 Reset Sources Table 5-9 summarizes the various reset signals and their effect on the device. Table 5-9. Reset Signals CPU CORE RESET (C28x, FPU, VCU) PERIPHERALS RESET JTAG/ DEBUG LOGIC RESET I/Os XRSn OUTPUT POR Yes Yes Yes Hi-Z Yes XRSn Pin Yes Yes Yes Hi-Z – WDRS Yes Yes Yes Hi-Z Yes NMIWDRS Yes Yes Yes Hi-Z Yes SYSRS (Debugger Reset) Yes Yes No Hi-Z No SCCRESET Yes Yes Yes Hi-Z No RESET SOURCE Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 69 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com The parameter th(boot-mode) must account for a reset initiated from any of these sources. See the Resets section of the System Control chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. CAUTION Some reset sources are internally driven by the device. Some of these sources will drive XRSn low, use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by other devices in the system. The boot configuration has a provision for changing the boot pins in OTP; for more details, see the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. 70 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.8.2.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Reset Electrical Data and Timing Table 5-10 lists the reset (XRSn) timing requirements. Table 5-11 lists the reset (XRSn) switching characteristics. Figure 5-8 shows the power-on reset. Figure 5-9 shows the warm reset. Table 5-10. Reset (XRSn) Timing Requirements MIN MAX UNIT th(boot-mode) Hold time for boot-mode pins 1.5 ms tw(RSL2) Pulse duration, XRSn low on warm reset 3.2 µs Table 5-11. Reset (XRSn) Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN tw(RSL1) Pulse duration, XRSn driven low by device after supplies are stable tw(WDRS) Pulse duration, reset pulse generated by watchdog TYP MAX UNIT 100 512tc(OSCCLK) µs cycles VDDIO, VDDA (3.3 V) VDD (1.2 V) tw(RSL1) (A) XRSn Boot ROM CPU Execution Phase User-code th(boot-mode)(B) Boot-Mode Pins GPIO pins as input Boot-ROM execution starts I/O Pins User-code dependent Peripheral/GPIO function Based on boot code GPIO pins as input (pullups are disabled) User-code dependent A. B. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see Table 4-1. On-chip POR logic will hold this pin low until the supplies are in a valid range. After reset from any source (see Section 5.8.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 5-8. Power-on Reset Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 71 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com tw(RSL2) XRSn User Code CPU Execution Phase User Code Boot ROM Boot-ROM execution starts (initiated by any reset source) Boot-Mode Pins Peripheral/GPIO Function GPIO Pins as Input th(boot-mode)(A) Peripheral/GPIO Function User-Code Execution Starts I/O Pins GPIO Pins as Input (Pullups are Disabled) User-Code Dependent User-Code Dependent A. After reset from any source (see Section 5.8.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 5-9. Warm Reset 5.8.3 Clock Specifications 5.8.3.1 Clock Sources Table 5-12 lists three possible clock sources. Figure 5-10 shows the clocking system. Figure 5-11 shows the system PLL. Table 5-12. Possible Reference Clock Sources CLOCK SOURCE MODULES CLOCKED COMMENTS INTOSC1 Can be used to provide clock for: • Watchdog block • Main PLL • CPU-Timer 2 Internal oscillator 1. Zero-pin overhead 10-MHz internal oscillator. INTOSC2 (1) Can be used to provide clock for: • Main PLL • CPU-Timer 2 Internal oscillator 2. Zero-pin overhead 10-MHz internal oscillator. X1 (XTAL) Can be used to provide clock for: • Main PLL • CPU-Timer 2 External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1 pin. (1) 72 On reset, internal oscillator 2 (INTOSC2) is the default clock source for the system PLL (OSCCLK). Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 INTOSC1 INTOSC2 CLKSRCCTL1 SYSPLLCTL1 OSCCLK X1 (XTAL) System PLL To watchdog timer PLLSYSCLK To NMIWD CPUCLK To local memories SYSCLK To ePIE, RAMs, GPIOs, and DCSM PERx.SYSCLK To peripherals PERx.LSPCLK To SCIs and SPIs CAN Bit Clock To CANs SYSCLKDIVSEL SYSCLK Divider PLLRAWCLK WDCLK SYSCLK CPU One per SYSCLK peripheral PCLKCRx One per LSPCLK peripheral LOSPCP PCLKCRx LSP Divider LSPCLK One per CAN module CLKSRCCTL2 Figure 5-10. Clocking System OSCCLK PLL VCO /ODIV /1 to /8 fPLLRAWCLK /NF /1 to /127.75 PLLRAWCLK (f OSCCLK ) u NF ODIV NF = IMULT + FMULT/4 Figure 5-11. System PLL Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 73 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.3.2 www.ti.com Clock Frequencies, Requirements, and Characteristics This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of the internal clocks, and the frequency and switching characteristics of the output clock. 5.8.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times Table 5-13 lists the frequency requirements for the input clocks. Table 5-14 lists the X1 input level characteristics when using an external clock source. Table 5-15 lists the XTAL oscillator characteristics. Table 5-16 lists the X1 timing requirements. Table 5-17 lists the PLL lock times for the Main PLL. Table 5-13. Input Clock Frequency f(XTAL) Frequency, X1/X2, from external crystal or resonator f(X1) MIN MAX UNIT 10 20 MHz Frequency, X1, from external oscillator (PLL enabled) 2 20 Frequency, X1, from external oscillator (PLL disabled) 2 100 MHz Table 5-14. X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal) over recommended operating conditions (unless otherwise noted) PARAMETER X1 VIL Valid low-level input voltage X1 VIH Valid high-level input voltage MIN MAX –0.3 0.3 * VDDIO UNIT V 0.7 * VDDIO VDDIO + 0.3 V Table 5-15. XTAL Oscillator Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN X1 VIL Valid low-level input voltage X1 VIH Valid high-level input voltage TYP MAX UNIT –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V Table 5-16. X1 Timing Requirements MIN MAX tf(X1) Fall time, X1 tr(X1) Rise time, X1 tw(X1L) Pulse duration, X1 low as a percentage of tc(X1) 45% 55% tw(X1H) Pulse duration, X1 high as a percentage of tc(X1) 45% 55% NOM MAX UNIT 6 ns 6 ns Table 5-17. PLL Lock Times MIN t(PLL) 74 Lock time, Main PLL Specifications 25.5 µs + 1024 * tc(OSCCLK) UNIT µs Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.3.2.2 Internal Clock Frequencies Table 5-18 provides the clock frequencies for the internal clocks. Table 5-18. Internal Clock Frequencies MIN f(SYSCLK) Frequency, device (system) clock tc(SYSCLK) Period, device (system) clock f(VCO) Frequency, PLL VCO (before output divider) f(PLLRAWCLK) Frequency, system PLL output (before SYSCLK divider) f(PLL) f(LSP) tc(LSPCLK) Period, LSPCLK f(OSCCLK) Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or X1) f(HRPWM) Frequency, HRPWMCLK (1) MAX UNIT 2 NOM 100 MHz 10 500 ns 120 400 MHz 15 200 MHz Frequency, PLLSYSCLK 2 100 MHz Frequency, LSPCLK (1) 2 100 MHz 10 500 ns See respective clock 60 MHz 100 MHz Lower LSPCLK will reduce device power consumption. The default at reset is SYSCLK/4. 5.8.3.2.3 Output Clock Frequency and Switching Characteristics Table 5-19 lists the switching characteristics of the output clock, XCLKOUT. Table 5-19. XCLKOUT Switching Characteristics (1) (2) over recommended operating conditions (unless otherwise noted) PARAMETER MIN MAX UNIT tf(XCO) Fall time, XCLKOUT 5 ns tr(XCO) Rise time, XCLKOUT 5 ns tw(XCOL) Pulse duration, XCLKOUT low H–2 H+2 ns tw(XCOH) Pulse duration, XCLKOUT high H–2 H+2 ns f(XCO) Frequency, XCLKOUT (1) (2) 50 MHz A load of 40 pF is assumed for these parameters. H = 0.5tc(XCO) Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 75 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.3.3 www.ti.com Input Clocks and PLLs NOTE GPIO18* and its mux options can be used only when the system is clocked by INTOSC and X1 has an external pulldown resistor. In addition to the internal 0-pin oscillators, three types of external clock sources are supported: • A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in Figure 5-12, with the XTALCR.SE bit set to 1. Microcontroller GPIO18* VSS X1 Not available as a GPIO when X1 is used as a clock +3.3 V VDD X2 Out 3.3-V Oscillator Gnd • Figure 5-12. Single-ended 3.3-V External Clock An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to VSS as shown in Figure 5-13. Microcontroller GPIO18* VSS • 76 X1 X2 Figure 5-13. External Crystal An external resonator. The resonator should be connected across X1 and X2 with its ground connected to VSS as shown in Figure 5-14. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Microcontroller GPIO18* VSS X1 X2 Figure 5-14. External Resonator Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 77 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.3.4 www.ti.com Crystal Oscillator When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to prevent overdriving the crystal (drive level can be found in the crystal data sheet). In higher-frequency applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should be as small as possible because the size of the resistance affects start-up time (smaller RD = faster startup time). TI recommends that the crystal manufacturer characterize the crystal with the application board. Table 5-20 lists the crystal oscillator parameters. Table 5-21 lists the crystal equivalent series resistance (ESR) requirements. Table 5-22 lists the crystal oscillator electrical characteristics. Table 5-20. Crystal Oscillator Parameters CL1, CL2 Load capacitance C0 Crystal shunt capacitance MIN MAX 12 24 UNIT pF 7 pF Table 5-21. Crystal Equivalent Series Resistance (ESR) Requirements (1) (2) CRYSTAL FREQUENCY (MHz) MAXIMUM ESR (Ω) (CL1 = CL2 = 12 pF) MAXIMUM ESR (Ω) (CL1 = CL2 = 24 pF) 10 55 110 12 50 95 14 50 90 16 45 75 18 45 65 20 45 50 (1) (2) Crystal shunt capacitance (C0) should be less than or equal to 7 pF. ESR = Negative Resistance/3 Table 5-22. Crystal Oscillator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER Start-up time (1) Crystal drive level (DL) (1) 78 TEST CONDITIONS f = 20 MHz ESR MAX = 50 Ω CL1 = CL2 = 24 pF C0 = 7 pF MIN TYP MAX 2 UNIT ms 1 mW Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the application with the chosen crystal. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.8.3.5 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Internal Oscillators To reduce production board costs and application development time, all F28004x devices contain two independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are enabled at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the system reference clock (OSCCLK). Table 5-23 provides the electrical characteristics of the internal oscillators to determine if this module meets the clocking requirements of the application. Table 5-23. INTOSC Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER Frequency, INTOSC1 and INTOSC2 fINTOSC fINTOSC-STABILITY Frequency stability at room temperature 30°C, Nominal VDD Frequency stability over VDD 30°C Frequency stability tINT0SC-ST TEST CONDITIONS Start-up and settling time MIN TYP MAX UNIT 9.7 10 10.3 MHz ±0.1% ±0.2% –3% 3% 20 µs Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 79 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.4 www.ti.com Flash Parameters Table 5-24 lists the minimum required Flash wait states with different clock sources and frequencies. Table 5-24. Minimum Required Flash Wait States with Different Clock Sources and Frequencies (1) EXTERNAL OSCILLATOR OR CRYSTAL CPUCLK (MHz) FLASH READ OR EXECUTE 97 < CPUCLK ≤ 100 80 < CPUCLK ≤ 97 77 < CPUCLK ≤ 80 60 < CPUCLK ≤ 77 58 < CPUCLK ≤ 60 40 < CPUCLK ≤ 58 38 < CPUCLK ≤ 40 20 < CPUCLK ≤ 38 19 < CPUCLK ≤ 20 CPUCLK ≤ 19 (1) (2) INTOSC1 OR INTOSC2 PROGRAM, ERASE, BANK SLEEP, OR PUMP SLEEP FLASH READ OR EXECUTE 4 4 3 3 2 2 1 1 0 0 PROGRAM, ERASE, BANK SLEEP, OR PUMP SLEEP (2) 5 4 4 3 3 2 2 1 1 0 Minimum required FRDCNTL[RWAIT]. PROGRAM, ERASE, or SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges indicated. Any wait state FRDCNTL[RWAIT] change must be made before beginning a PROGRAM, ERASE, or SLEEP mode operation. This setting impacts both flash banks. Applications which perform simultaneous READ of one bank and PROGRAM or ERASE of the other bank must use the higher RWAIT setting during the PROGRAM or ERASE operation or use a clock source or frequency with a common wait state setting. The F28004x devices have an improved 128-bit prefetch buffer that provides high flash code execution efficiency across wait states. Figure 5-15 and Figure 5-16 illustrate typical efficiency across wait-state settings compared to previous-generation devices with a 64-bit prefetch buffer. Wait-state execution efficiency with a prefetch buffer will depend on how many branches are present in application software. Two examples of linear code and if-then-else code are provided. 100% 100% 95% 90% Efficiency (%) Efficiency (%) 90% 80% 70% 60% Flash with 64-Bit Prefetch Flash with 128-Bit Prefetch 50% 80% 75% Flash with 64-Bit Prefetch Flash with 128-Bit Prefetch 70% 65% 40% 60% 30% 55% 0 1 2 3 Wait State 4 5 D005 Figure 5-15. Application Code With Heavy 32-Bit Floating-Point Math Instructions 80 85% Specifications 0 1 2 3 4 Wait State 5 D006 Figure 5-16. Application Code With 16-Bit If-Else Instructions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-25 lists the Flash parameters. Table 5-25. Flash Parameters PARAMETER Program Time (1) EraseTime (2) at < 25 cycles EraseTime (2) MIN TYP MAX 150 300 µs 8KB sector 50 100 ms 8KB sector 15 100 ms 8KB sector 120 128 data bits + 16 ECC bits at 20K cycles Nwec Write/Erase Cycles tretention Data retention duration at TJ = 85oC (1) (2) UNIT 4000 ms 20000 cycles 20 years Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM: • Code that uses flash API to program the flash • Flash API itself • Flash data to be programmed In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for programming. The transfer time will significantly vary depending on the speed of the emulator used. Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does. Erase time includes Erase verify by the CPU and does not involve any data transfer. Erase time includes Erase verify by the CPU. NOTE The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word may only be programmed once per write/erase cycle. The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128bit word may only be programmed once. The exceptions are: 1. The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be programmed together, and may be programmed 1 bit at a time as required by the DCSM operation. 2. The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time on a 64-bit boundary to separate it from Zx-PSWDLOCK, which must only be programmed once. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 81 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.5 www.ti.com Emulation/JTAG The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port has four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG has two pins: TMS and TCK. Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise, each signal should be buffered. Additionally, for most emulator operations at 10 MHz, no series resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω resistors should be placed in series on each JTAG signal. The PD (Power Detect) terminal of the emulator header should be connected to the board's 3.3-V supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back to the RTCK input terminal of the header (to sense clock continuity by the emulator). This MCU does not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should always be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to 4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used. Header terminal RESET is an open-drain output from the emulator header that enables board components to be reset through emulator commands (available only through the 20-pin header). Figure 5-17 shows how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 5-18 shows how to connect to the 20-pin JTAG header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not used and should be grounded. For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints for C28x in CCS. For more information about JTAG emulation, see the XDS Target Connection Guide. NOTE JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is disabled by default. If this pin is used as JTAG TDI, the internal pullup should be enabled or an external pullup added on the board to avoid a floating input. In the cJTAG option, this pin can be used as GPIO. JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this pin floating. The internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. In the cJTAG option, this pin can be used as GPIO. 82 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Distance between the header and the target should be less than 6 inches (15.24 cm). 3.3 V 4.7 kΩ 1 TMS TMS TRST TDI TDIS PD KEY 2 3.3 V 10 kΩ 3 (A) TDI MCU 3.3 V 100 Ω 3.3 V 5 4 GND 6 10 kΩ (A) TDO TDO GND 9 RTCK GND 10 TCK GND 12 11 TCK 4.7 kΩ 3.3 V A. 7 8 4.7 kΩ 13 EMU0 EMU1 14 3.3 V TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead. Figure 5-17. Connecting to the 14-Pin JTAG Header Distance between the header and the target should be less than 6 inches (15.24 cm). 3.3 V 4.7 kΩ TMS 1 3.3 V 10 kΩ 3 (A) MCU TDI 3.3 V 100 Ω 3.3V 10 kΩ 5 7 (A) TDO 9 11 TCK 4.7 kΩ TRST TDI TDIS PD KEY TDO GND RTCK GND TCK GND 2 4 8 10 12 EMU0 15 RESET GND 16 17 EMU2 EMU3 18 19 A low pulse from the emulator can be tied with other reset sources to reset the board. GND EMU4 GND 20 Open Drain EMU1 GND 6 13 3.3 V A. TMS 4.7 kΩ 14 3.3 V GND TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead. Figure 5-18. Connecting to the 20-Pin JTAG Header Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 83 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.5.1 www.ti.com JTAG Electrical Data and Timing Table 5-26 lists the JTAG timing requirements. Table 5-27 lists the JTAG switching characteristics. Figure 5-19 shows the JTAG timing. Table 5-26. JTAG Timing Requirements NO. MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 66.66 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 26.66 ns 1b tw(TCKL) Pulse duration, TCK low (40% of tc) 26.66 ns tsu(TDI-TCKH) Input setup time, TDI valid to TCK high 13 tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 13 th(TCKH-TDI) Input hold time, TDI valid from TCK high 7 th(TCKH-TMS) Input hold time, TMS valid from TCK high 7 3 4 ns ns Table 5-27. JTAG Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. 2 PARAMETER td(TCKL-TDO) Delay time, TCK low to TDO valid MIN MAX 6 25 UNIT ns 1 1a 1b TCK 2 TDO 3 4 TDI/TMS Figure 5-19. JTAG Timing 84 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.8.5.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 cJTAG Electrical Data and Timing Table 5-28 lists the cJTAG timing requirements. Table 5-29 lists the cJTAG switching characteristics. Figure 5-20 shows the cJTAG timing. Table 5-28. cJTAG Timing Requirements NO. MIN 1 tc(TCK) Cycle time, TCK 1a tw(TCKH) 1b tw(TCKL) 3 4 MAX UNIT 100 ns Pulse duration, TCK high (40% of tc) 40 ns Pulse duration, TCK low (40% of tc) 40 ns tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 15 ns tsu(TMS-TCKL) Input setup time, TMS valid to TCK low 15 ns th(TCKH-TMS) Input hold time, TMS valid from TCK high 2 ns th(TCKL-TMS) Input hold time, TMS valid from TCK low 2 ns Table 5-29. cJTAG Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER 2 td(TCKL-TMS) Delay time, TCK low to TMS valid 5 tdis(TCKH-TMS) Delay time, TCK high to TMS disable MIN MAX UNIT 6 20 ns 20 ns 1 1a TCK TMS 1b 3 4 TMS Input 3 4 TMS Input 2 5 TMS Output Figure 5-20. cJTAG Timing Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 85 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.6 www.ti.com GPIO Electrical Data and Timing The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to filter unwanted noise glitches. The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADCs, eCAPs, ePWMs, and external interrupts. For more details, see the X-BAR chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. 5.8.6.1 GPIO – Output Timing Table 5-30 lists the general-purpose output switching characteristics. Figure 5-21 shows the generalpurpose output timing. Table 5-30. General-Purpose Output Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN tr(GPIO) Rise time, GPIO switching low to high All GPIOs except GPIO23_VSW tf(GPIO) Fall time, GPIO switching high to low All GPIOs except GPIO23_VSW fGPIO Toggling frequency, all GPIOs except GPIO23_VSW (1) MAX UNIT 8 (1) ns 8 (1) ns 25 MHz Rise time and fall time vary with load. These values assume a 40-pF load. GPIO tf(GPIO) tr(GPIO) Figure 5-21. General-Purpose Output Timing 86 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.8.6.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 GPIO – Input Timing Table 5-31 lists the general-purpose input timing requirements. Figure 5-22 shows the sampling mode. Table 5-31. General-Purpose Input Timing Requirements MIN tw(SP) Sampling period tw(IQSW) Input qualifier sampling window tw(GPI) (1) (2) (2) QUALPRD = 0 1tc(SYSCLK) QUALPRD ≠ 0 2tc(SYSCLK) * QUALPRD MAX UNIT cycles tw(SP) * (n (1) – 1) Synchronous mode Pulse duration, GPIO low/high cycles 2tc(SYSCLK) With input qualifier cycles tw(IQSW) + tw(SP) + 1tc(SYSCLK) "n" represents the number of qualification samples as defined by GPxQSELn register. For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal. (A) GPIO Signal GPxQSELn = 1,0 (6 samples) 1 1 0 0 0 0 0 0 0 1 tw(SP) 0 0 0 1 1 1 1 Sampling Window 1 1 1 1 Sampling Period determined by GPxCTRL[QUALPRD] tw(IQSW) 1 (SYSCLK cycle * 2 * QUALPRD) * 5 (B) (C) SYSCLK QUALPRD = 1 (SYSCLK/2) (D) Output From Qualifier A. B. C. D. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled). The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition. Figure 5-22. Sampling Mode Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 87 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.6.3 www.ti.com Sampling Window Width for Input Signals The following section summarizes the sampling window width for input signals for various input qualifier configurations. Sampling frequency denotes how often a signal is sampled with respect to SYSCLK. Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0 Sampling frequency = SYSCLK, if QUALPRD = 0 Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0 In the previous equations, SYSCLK cycle indicates the time period of SYSCLK. Sampling period = SYSCLK cycle, if QUALPRD = 0 In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the signal. This is determined by the value written to GPxQSELn register. Case 1: Qualification using 3 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0 Case 2: Qualification using 6 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0 Figure 5-23 shows the general-purpose input timing. SYSCLK GPIOxn tw(GPI) Figure 5-23. General-Purpose Input Timing 88 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.8.7 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Interrupts The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected directly to CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt signals through the enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to sixteen peripheral interrupts into each CPU interrupt line. It also expands the vector table to allow each interrupt to have its own ISR. This allows the CPU to support a large number of peripherals. An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its own enable and flag registers. This system allows the CPU to handle one interrupt while others are pending, implement and prioritize nested interrupts in software, and disable interrupts during certain critical tasks. Figure 5-24 shows the interrupt architecture for this device. TIMER0 LPMINT LPM Logic TINT0 W AKEINT NMI NMI module WD W DINT CPU GPIO0 GPIO1 ... ... GPIOx INPUTXBAR4 Input X-BAR INPUTXBAR5 INPUTXBAR6 INPUTXBAR13 INPUTXBAR14 XINT1 Control XINT2 Control XINT3 Control XINT4 Control XINT5 Control INT1 to INT12 ePIE TIMER1 TIMER2 TINT1 TINT2 INT13 INT14 Peripherals See ePIE Table. Figure 5-24. Device Interrupt Architecture Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 89 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.7.1 www.ti.com External Interrupt (XINT) Electrical Data and Timing Table 5-32 lists the external interrupt timing requirements. Table 5-33 lists the external interrupt switching characteristics. Figure 5-25 shows the external interrupt timing. Table 5-32. External Interrupt Timing Requirements (1) MIN tw(INT) (1) Pulse duration, INT input low/high Synchronous 2tc(SYSCLK) With qualifier tw(IQSW) + tw(SP) + 1tc(SYSCLK) MAX UNIT cycles For an explanation of the input qualifier parameters, see Table 5-31. Table 5-33. External Interrupt Switching Characteristics (1) over recommended operating conditions (unless otherwise noted) PARAMETER td(INT) Delay time, INT low/high to interrupt-vector fetch (2) (1) (2) MIN MAX UNIT tw(IQSW) + 14tc(SYSCLK) tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles For an explanation of the input qualifier parameters, see Table 5-31. This assumes that the ISR is in a single-cycle memory. tw(INT) XINT1, XINT2, XINT3, XINT4, XINT5 td(INT) Address bus (internal) Interrupt Vector Figure 5-25. External Interrupt Timing 90 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.8.8 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Low-Power Modes This device has HALT and IDLE as two clock-gating low-power modes. STANDBY mode is not supported on this device. See the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata for more details. Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low Power Modes section of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. 5.8.8.1 Clock-Gating Low-Power Modes IDLE and HALT modes on this device are similar to those on other C28x devices. Table 5-34 describes the effect on the system when any of the clock-gating low-power modes are entered. Table 5-34. Effect of Clock-Gating Low-Power Modes on the Device MODULES/ CLOCK DOMAIN IDLE HALT SYSCLK Active Gated CPUCLK Gated Gated Clock to modules connected to PERx.SYSCLK Active Gated WDCLK Active Gated if CLKSRCCTL1.WDHALTI = 0 PLL Powered Software must power down PLL before entering HALT. INTOSC1 Powered Powered down if CLKSRCCTL1.WDHALTI = 0 INTOSC2 Powered Powered down if CLKSRCCTL1.WDHALTI = 0 Flash (1) Powered Powered XTAL (2) Powered Powered (1) (2) The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the application. For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1. This can be done at any time during the application if the XTAL is not required. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 91 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.8.8.2 www.ti.com Low-Power Mode Wake-up Timing Table 5-35 lists the IDLE mode timing requirements, Table 5-36 lists the switching characteristics, and Figure 5-26 shows the timing diagram for IDLE mode. Table 5-35. IDLE Mode Timing Requirements (1) MIN tw(WAKE) (1) Pulse duration, external wake-up signal Without input qualifier With input qualifier MAX 2tc(SYSCLK) UNIT cycles 2tc(SYSCLK) + tw(IQSW) For an explanation of the input qualifier parameters, see Table 5-31. Table 5-36. IDLE Mode Switching Characteristics (1) over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS Delay time, external wake signal to program execution resume td(WAKE-IDLE) MIN MAX • Wake up from flash – Flash module in active state Without input qualifier • Wake up from flash – Flash module in sleep state Without input qualifier 40tc(SYSCLK) With input qualifier With input qualifier 40tc(SYSCLK) + tw(WAKE) 6700tc(SYSCLK) (3) (1) (2) (3) Wake up from RAM cycles 6700tc(SYSCLK) (3) + tw(WAKE) Without input qualifier • UNIT (2) 25tc(SYSCLK) With input qualifier 25tc(SYSCLK) + tw(WAKE) For an explanation of the input qualifier parameters, see Table 5-31. This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency. This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash/OTP and Pump Power Modes and Wakeup section of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. td(WAKE-IDLE) Address/Data (internal) XCLKOUT tw(WAKE) WAKE A. (A) WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. Figure 5-26. IDLE Entry and Exit Timing Diagram 92 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-37 lists the HALT mode timing requirements, Table 5-38 lists the switching characteristics, and Figure 5-27 shows the timing diagram for HALT mode. Table 5-37. HALT Mode Timing Requirements MIN MAX UNIT tw(WAKE-GPIO) Pulse duration, GPIO wake-up signal (1) toscst + 2tc(OSCCLK) cycles tw(WAKE-XRS) Pulse duration, XRSn wake-up signal (1) toscst + 8tc(OSCCLK) cycles (1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/layout external to the device. See Table 5-22 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK, see Section 5.8.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is powered externally to the device. Table 5-38. HALT Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(IDLE-XCOS) Delay time, IDLE instruction executed to XCLKOUT stop MIN MAX UNIT 16tc(INTOSC1) cycles Delay time, external wake signal end to CPU program execution resume • Wake up from flash – Flash module in active state • Wake up from flash – Flash module in sleep state • Wake up from RAM td(WAKE-HALT) (1) 75tc(OSCCLK) cycles 17500tc(OSCCLK) (1) 75tc(OSCCLK) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash/OTP and Pump Power Modes and Wakeup section of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 93 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com (C) (A) (B) Device Status (F) (D)(E) HALT (G) HALT Flushing Pipeline Normal Execution GPIOn td(WAKE-HALT) tw(WAKE-GPIO) OSCCLK Oscillator Start-up Time XCLKOUT td(IDLE-XCOS) A. B. C. D. E. F. G. H. IDLE instruction is executed to put the device into HALT mode. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be taken to maintain a low noise environment before entering and during HALT mode. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now exited. Normal operation resumes. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock. Figure 5-27. HALT Entry and Exit Timing Diagram 94 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.9 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Analog Peripherals The analog subsystem module is described in this section. The analog modules on this device include the ADC, PGA, temperature sensor, buffered DAC, and CMPSS. The analog subsystem has the following features: • Flexible voltage references – The ADCs are referenced to VREFHIx and VREFLOx pins. • VREFHIx pin voltage can be driven in externally or can be generated by an internal bandgap voltage reference. • The internal voltage reference range can be selected to be 0 V to 3.3 V or 0 V to 2.5 V. • The buffered DACs are referenced to VREFHIx and VREFLOx. – Alternately, these DACs can be referenced to the VDAC pin and VSSA. • The comparator DACs are referenced to VDDA and VSSA. – Alternately, these DACs can be referenced to the VDAC pin and VSSA. • Flexible pin usage – Buffered DAC outputs, comparator subsystem inputs, PGA functions, and digital inputs are multiplexed with ADC inputs – Internal connection to VREFLO on all ADCs for offset self-calibration Figure 5-28 shows the Analog Subsystem Block Diagram for the 100-pin PZ LQFP. Figure 5-29 shows the Analog Subsystem Block Diagram for the 64-pin PM LQFP. Figure 5-30 shows the Analog Subsystem Block Diagram for the 56-pin RSH VQFN. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 95 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com VREFHIA VREFHIB VREFLOA VREFLOB CMP1_HP CMP1_HN VREFHI VDAC Comparator Subsystem 1 Digital Filter VDDA or VDAC CTRIP1H CTRIPOUT1H DAC12 A0/B15/C15/DACA_OUT A1/DACB_OUT DACREFSEL Misc. Analog Temp Sensor AIO AIO AIO Analog Group 1 A3 A2/B6/PGA1_OF C0 PGA1_IN PGA1_GND 12-bit Buffered DAC-A DACA_OUT PGA1 Vref CMPSS1 Input MUX Input MUX ADC Inputs A0 to A15 CMPSS3 Input MUX AIO AIO AIO PGA2 CMPSS2 Input MUX C3/PGA4_IN 12-bits CTRIP3H CTRIPOUT3H Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 Digital Filter CTRIP4H CTRIPOUT4H VDDA or VDAC DAC12 DACREFSEL DAC12 12-bit Buffered DAC-B DACB_OUT ANAREFBSEL REFLO CTRIP5H CTRIPOUT5H DAC12 DAC12 Digital Filter CTRIP5L CTRIPOUT5L Comparator Subsystem 6 Digital Filter CTRIP6H CTRIPOUT6H VDDA or VDAC REFHI Input MUX DAC12 ADC-B 12-bits Comparator Subsystem 5 Digital Filter CMP5_LN CMP5_LP CMP6_HP CMP6_HN ADC Inputs B0 to B15 CTRIP4L CTRIPOUT4L VDDA or VDAC Reference Circuit B Vref Digital Filter CMP4_LN CMP4_LP CMP5_HP CMP5_HN Analog Group 6 C5/PGA6_IN Comparator Subsystem 3 Digital Filter VDDA or VDAC DAC12 VDAC AIO AIO AIO A9 A8/PGA6_OF CTRIP2L CTRIPOUT2L CMP3_LN CMP3_LP CMP4_HP CMP4_HN PGA4 CMPSS4 Input MUX Digital Filter DAC12 ADC-A VREFHI Analog Group 4 B4/C8/PGA4_OF DAC12 CMP2_LN CMP2_LP REFLO Analog Interconnect Analog Group 2 A5 A4/B8/PGA2_OF C1 PGA2_IN PGA2_GND/ PGA4_GND/ PGA6_GND/ CTRIP2H CTRIPOUT2H REFHI PGA3 CMPSS5 Input MUX Comparator Subsystem 2 Digital Filter VDDA or VDAC DAC12 CMP3_HP CMP3_HN AIO AIO AIO PGA5 CTRIP1L CTRIPOUT1L REFLO Analog Group 5 A6/PGA5_OF C4 PGA5_IN PGA5_GND CMP2_HP CMP2_HN ANAREFASEL AIO AIO AIO AIO AIO AIO Digital Filter Reference Circuit A Analog Group 3 B3/VDAC B2/C6/PGA3_OF C2 PGA3_IN PGA3_GND DAC12 CMP1_LN CMP1_LP DAC12 Digital Filter CTRIP6L CTRIPOUT6L Comparator Subsystem 7 Digital Filter CTRIP7H CTRIPOUT7H CMP6_LN CMP6_LP REFLO AIO AIO AIO CMP7_HP CMP7_HN PGA6 CMPSS6 Input MUX VDDA or VDAC DAC12 DAC12 CMP7_LN CMP7_LP Analog Group 7 CTRIP7L CTRIPOUT7L AIO AIO AIO PGA7 CMPSS7 Input MUX REFHI ADC Inputs C0 to C15 CMPSS Inputs Input MUX B0 A10/B1/C10/PGA7_OF C14 PGA7_IN PGA7_GND Digital Filter ADC-C 12-bits REFLO Copyright © 2017, Texas Instruments Incorporated Figure 5-28. Analog Subsystem Block Diagram (100-Pin PZ LQFP) 96 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 VREFHIA VREFLOA CMP1_HP CMP1_HN VREFHI VDAC Comparator Subsystem 1 Digital Filter VDDA or VDAC CTRIP1H CTRIPOUT1H DAC12 A0/B15/C15/DACA_OUT A1/DACB_OUT DACREFSEL Misc. Analog Temp Sensor AIO AIO AIO DACA_OUT Analog Group 1 Vref CMPSS1 Input MUX ADC Inputs A0 to A15 CMPSS3 Input MUX CMPSS5 Input MUX Analog Group 2 AIO AIO AIO A4/B8/PGA2_OF C1/PGA2_IN PGA2_GND/ PGA4_GND/ PGA6_GND/ PGA2 CMPSS2 Input MUX DAC12 Digital Filter CTRIP2L CTRIPOUT2L Comparator Subsystem 3 Digital Filter VDDA or VDAC CTRIP3H CTRIPOUT3H 12-bits DAC12 CMP4_HP CMP4_HN VREFHI Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 Digital Filter VDDA or VDAC CTRIP4H CTRIPOUT4H CMP3_LN CMP3_LP VDAC DAC12 DACREFSEL DAC12 12-bit Buffered DAC-B DACB_OUT Digital Filter CTRIP4L CTRIPOUT4L Comparator Subsystem 5 Digital Filter CTRIP5H CTRIPOUT5H CMP4_LN CMP4_LP CMP5_HP CMP5_HN VDDA or VDAC DAC12 DAC12 Digital Filter CTRIP5L CTRIPOUT5L Comparator Subsystem 7 Digital Filter CTRIP7H CTRIPOUT7H CMP5_LN CMP5_LP Analog Group 4 AIO AIO AIO B4/C8/PGA4_OF C3/PGA4_IN DAC12 REFLO Analog Interconnect C4/PGA5_IN CTRIP2H CTRIPOUT2H DAC12 ADC-A Analog Group 5 PGA5 Comparator Subsystem 2 Digital Filter VDDA or VDAC REFHI PGA3 AIO AIO AIO CTRIP1L CTRIPOUT1L CMP2_LN CMP2_LP CMP3_HP CMP3_HN AIO AIO AIO A6/PGA5_OF Digital Filter REFLO Analog Group 3 Input MUX C2/PGA3_IN CMP2_HP CMP2_HN ANAREFASEL PGA1 B3/VDAC B2/C6/PGA3_OF DAC12 Reference Circuit A AIO AIO AIO A2/B6/PGA1_OF C0/PGA1_IN PGA1_GND/ PGA3_GND/ PGA5_GND/ 12-bit Buffered DAC-A CMP1_LN CMP1_LP PGA4 REFHI ADC Inputs B0 to B15 Input MUX CMPSS4 Input MUX ADC-B 12-bits REFLO CMP7_HP PGA6(A) VDDA or VDAC DAC12 DAC12 CMP7_LP Analog Group 7 A10/B1/C10 Digital Filter CTRIP7L CTRIPOUT7L AIO AIO AIO REFHI ADC Inputs C0 to C15 CMPSS Inputs Input MUX CMPSS7 Input MUX ADC-C 12-bits REFLO Copyright © 2017, Texas Instruments Incorporated A. This PGA has no input/output connections on this package, but should be enabled and disabled at the same time as other PGAs with a shared PGA ground. Figure 5-29. Analog Subsystem Block Diagram (64-Pin PM LQFP) Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 97 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com VREFHIA VREFLOA CMP1_HP CMP1_HN VREFHI VDAC Comparator Subsystem 1 Digital Filter VDDA or VDAC CTRIP1H CTRIPOUT1H DAC12 A0/B15/C15/DACA_OUT A1/DACB_OUT DACREFSEL Misc. Analog Temp Sensor AIO AIO AIO DACA_OUT Analog Group 1 Vref CMPSS1 Input MUX ADC Inputs A0 to A15 CMPSS3 Input MUX DAC12 CMPSS2 Input MUX CTRIP2L CTRIPOUT2L Comparator Subsystem 3 Digital Filter VDDA or VDAC CTRIP3H CTRIPOUT3H 12-bits DAC12 VREFHI Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 Digital Filter VDDA or VDAC CTRIP4H CTRIPOUT4H CMP3_LN CMP3_LP VDAC DAC12 DACREFSEL DAC12 12-bit Buffered DAC-B DACB_OUT Digital Filter CTRIP4L CTRIPOUT4L Comparator Subsystem 7 Digital Filter CTRIP7H CTRIPOUT7H CMP4_LN CMP4_LP Analog Group 4 AIO AIO AIO B4/C8/PGA4_OF C3/PGA4_IN Analog Interconnect AIO AIO AIO PGA2 Digital Filter DAC12 ADC-A CMP4_HP CMP4_HN C1/PGA2_IN PGA2_GND/ PGA4_GND/ PGA6_GND/ CTRIP2H CTRIPOUT2H DAC12 REFLO Analog Group 2 Comparator Subsystem 2 Digital Filter VDDA or VDAC REFHI PGA3 A4/B8/PGA2_OF CTRIP1L CTRIPOUT1L CMP2_LN CMP2_LP CMP3_HP CMP3_HN AIO AIO AIO PGA5(A) Digital Filter REFLO Analog Group 3 Input MUX C2/PGA3_IN CMP2_HP CMP2_HN ANAREFASEL PGA1 B3/VDAC B2/C6/PGA3_OF DAC12 Reference Circuit A AIO AIO AIO A2/B6/PGA1_OF C0/PGA1_IN PGA1_GND/ PGA3_GND/ PGA5_GND/ 12-bit Buffered DAC-A CMP1_LN CMP1_LP PGA4 REFHI ADC Inputs B0 to B15 Input MUX CMPSS4 Input MUX ADC-B 12-bits REFLO CMP7_HP PGA6(A) VDDA or VDAC DAC12 DAC12 CMP7_LP Analog Group 7 A10/B1/C10 Digital Filter CTRIP7L CTRIPOUT7L AIO AIO AIO REFHI ADC Inputs C0 to C15 CMPSS Inputs Input MUX CMPSS7 Input MUX ADC-C 12-bits REFLO Copyright © 2017, Texas Instruments Incorporated A. This PGA has no input/output connections on this package, but should be enabled and disabled at the same time as other PGAs with a shared PGA ground. Figure 5-30. Analog Subsystem Block Diagram (56-Pin RSH VQFN) 98 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Figure 5-31 shows the analog group connections. See Table 5-39 for the specific connections for each group for each package. Table 5-40 provides descriptions of the analog signals. CMPSSx Input MUX CMPxHPMX PGAx_OF CMPx_HP0 Gx_ADCC CMPx_HP1 PGAx_IN CMPx_HP2 Gx_ADCAB CMPx_HP3 CMPx_HP4 0 1 CMPx_HP 2 3 4 CMPx_HN0 0 Gx_ADCC CMPx_HN1 1 Gx_ADCAB CMPx_LN0 0 Gx_ADCC CMPx_LN1 1 PGAx_OF CMPx_LP0 Gx_ADCC CMPx_LP1 PGAx_IN CMPx_LP2 Gx_ADCAB CMPx_LP3 CMPx_HN CMPxLNMX CMPx_LN To CMPSSx CMPxHNMX Gx_ADCAB CMPxLPMX CMPx_LP4 0 1 2 CMPx_LP 3 4 Gx_ADCAB Gx_ADCAB (B) AIO PGAx_OF PGAx_OF AIO(B) Gx_ADCC PGACTL[FILTRESSEL] (A) (B) AIO RFILTER (C) To ADCs To Device Pins Gx_ADCC VDDA PGAx_IN + PGACTL[PGAEN] PGAx PGAx_OUT ± VSSA RGND ROUT PGAx_GND PGACTL[GAIN] A. B. C. On lower pin-count packages, the input to Gx_ADCC will share a pin with the PGA input. If the PGA input is unused, then the ADCC input can allow the pin to be used as an ADC input, a negative comparator input, or a digital input. AIOs support digital input mode only. The PGA RFILTER path is not available on some device revisions. See the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata for more information. Figure 5-31. Analog Group Connections Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 99 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-39. Analog Pins and Internal Connections PACKAGE PIN NAME ALWAYS CONNECTED (NO MUX) COMPARATOR SUBSYSTEM (MUX) GROUP NAME 100 PZ VREFHIA - VREFHIB - VREFHIC - VREFLOA - VREFLOB - VREFLOC - 64 PM 56 RSH 16 14 17 15 ADCA ADCB ADCC PGA DAC HIGH POSITIVE HIGH NEGATIVE LOW POSITIVE HPMXSEL = 3 HNMXSEL = 0 LPMXSEL = 3 LOW NEGATIVE AIO INPUT LNMXSEL = 0 AIO233 25 24 27 A13 B13 26 C13 Analog Group 1 A3 G1_ADCAB 10 A2/B6/PGA1_OF PGA1_OF 9 C0 G1_ADCC 19 PGA1_IN PGA1_IN 18 PGA1_GND PGA1_GND 14 - PGA1_OUT (1) CMP1 A3 9 8 A2 B6 PGA1_OF HPMXSEL = 0 C0 12 HPMXSEL = 1 HNMXSEL = 1 LPMXSEL = 1 9 HPMXSEL = 2 LPMXSEL = 2 B7 PGA1_OUT HPMXSEL = 4 LPMXSEL = 4 Analog Group 2 G2_ADCAB 35 A4/B8/PGA2_OF PGA2_OF 36 C1 G2_ADCC 29 PGA2_IN PGA2_IN 30 PGA2_GND PGA2_GND 32 - PGA2_OUT (1) 21 A4 HPMXSEL = 3 B8 PGA2_OF HPMXSEL = 1 LPMXSEL = 3 18 HNMXSEL = 1 LPMXSEL = 1 HPMXSEL = 2 LPMXSEL = 2 B9 PGA2_OUT HPMXSEL = 4 LPMXSEL = 4 Analog Group 3 G3_ADCAB 8 8 7 B3 B2/C6/PGA3_OF PGA3_OF 7 7 6 B2 C2 G3_ADCC 21 PGA3_IN PGA3_IN 20 PGA3_GND PGA3_GND 15 - PGA3_OUT (1) VDAC C6 PGA3_OF C2 HPMXSEL = 3 HNMXSEL = 0 HPMXSEL = 0 HPMXSEL = 1 LPMXSEL = 3 G4_ADCAB B4/C8/PGA4_OF PGA4_OF PGA3_IN 9 HNMXSEL = 1 LPMXSEL = 1 C3 G4_ADCC PGA4_IN PGA4_IN PGA3_OUT HPMXSEL = 2 LPMXSEL = 2 HPMXSEL = 4 LPMXSEL = 4 PGA4_GND PGA4_GND - PGA4_OUT (1) (1) 100 19 22 B4 C8 PGA4_OF 20 HNMXSEL = 0 HPMXSEL = 0 HPMXSEL = 1 LPMXSEL = 3 LNMXSEL = 0 AIO243 LPMXSEL = 0 HNMXSEL = 1 LPMXSEL = 1 AIO227 LNMXSEL = 1 AIO245 17 PGA4_IN 32 AIO244 CMP4 HPMXSEL = 3 C3 31 AIO226 LNMXSEL = 1 PGA3_GND C7 B5 24 AIO242 11 B10 39 LNMXSEL = 0 LPMXSEL = 0 Analog Group 4 B5 AIO238 CMP3 B3/VDAC 10 AIO225 LNMXSEL = 1 PGA2_GND A12 13 AIO234 LPMXSEL = 0 16 PGA2_IN 20 HNMXSEL = 0 HPMXSEL = 0 C1 18 LNMXSEL = 0 CMP2 A5 23 AIO237 PGA1_GND A11 A5 AIO224 LNMXSEL = 1 10 PGA1_IN 10 LPMXSEL = 0 18 HPMXSEL = 2 LPMXSEL = 2 HPMXSEL = 4 LPMXSEL = 4 PGA4_GND B11 C9 PGA4_OUT Internal connection only; does not come to a device pin. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-39. Analog Pins and Internal Connections (continued) PACKAGE PIN NAME ALWAYS CONNECTED (NO MUX) COMPARATOR SUBSYSTEM (MUX) GROUP NAME 100 PZ 64 PM 56 RSH ADCA ADCB ADCC PGA DAC HIGH POSITIVE HIGH NEGATIVE LOW POSITIVE HPMXSEL = 3 HNMXSEL = 0 LPMXSEL = 3 Analog Group 5 A7 G5_ADCAB A6/PGA5_OF PGA5_OF 6 C4 G5_ADCC 17 PGA5_IN PGA5_IN 16 PGA5_GND PGA5_GND 13 - PGA5_OUT (1) AIO INPUT LNMXSEL = 0 AIO235 CMP5 A7 6 LOW NEGATIVE A6 PGA5_OF HPMXSEL = 0 C4 HPMXSEL = 1 LPMXSEL = 0 HNMXSEL = 1 LPMXSEL = 1 AIO228 LNMXSEL = 1 AIO239 LNMXSEL = 0 AIO236 11 PGA5_IN 10 9 HPMXSEL = 2 LPMXSEL = 2 HPMXSEL = 4 LPMXSEL = 4 PGA5_GND A14 PGA5_OUT Analog Group 6 CMP6 A9 G6_ADCAB 38 A9 A8/PGA6_OF PGA6_OF 37 A8 C5 G6_ADCC PGA6_IN PGA6_IN PGA6_GND PGA6_GND - PGA6_OUT (1) HPMXSEL = 3 PGA6_OF HNMXSEL = 0 HPMXSEL = 0 C5 HPMXSEL = 1 LPMXSEL = 3 LPMXSEL = 0 HNMXSEL = 1 LPMXSEL = 1 AIO229 LNMXSEL = 1 AIO240 LNMXSEL = 0 AIO241 28 PGA6_IN 32 20 18 HPMXSEL = 2 LPMXSEL = 2 HPMXSEL = 4 LPMXSEL = 4 PGA6_GND A15 PGA6_OUT Analog Group 7 B0 G7_ADCAB 41 A10/B1/C10/PGA7_OF PGA7_OF (2) 40 C14 G7_ADCC 44 PGA7_IN PGA7_IN 43 PGA7_GND PGA7_GND 42 - PGA7_OUT (1) CMP7 B0 25 23 A10 B1 HPMXSEL = 3 C10 PGA7_OF HNMXSEL = 0 HPMXSEL = 0 C14 HPMXSEL = 1 PGA7_IN LPMXSEL = 3 LPMXSEL = 0 HNMXSEL = 1 LPMXSEL = 1 HPMXSEL = 2 LPMXSEL = 2 HPMXSEL = 4 LPMXSEL = 4 AIO230 LNMXSEL = 1 AIO246 PGA7_GND B12 C11 PGA7_OUT Other Analog A0/B15/C15/DACA_OUT 23 15 13 A0 A1/DACB_OUT 22 14 12 A1 B15 C12 - (2) C15 DACA_OUT AIO231 DACB_OUT AIO232 C12 TempSensor (1) AIO247 B14 PGA functionality not available on 64-pin and 56-pin packages. Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Specifications 101 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-40. Analog Signal Descriptions SIGNAL NAME DESCRIPTION AIOx Digital input on ADC pin Ax ADC A Input Bx ADC B Input Cx ADC C Input CMPx_DACH Comparator subsystem high DAC output CMPx_DACL Comparator subsystem low DAC output CMPx_HNy Comparator subsystem high comparator negative input CMPx_HPy Comparator subsystem high comparator positive input CMPx_LNy Comparator subsystem low comparator negative input CMPx_LPy Comparator subsystem low comparator positive input DACx_OUT Buffered DAC Output PGAx_GND PGA Ground PGAx_IN PGA Input PGAx_OF PGA Output for filter PGAx_OUT PGA Output to internal ADC TempSensor Internal temperature sensor VDAC Optional external reference voltage for on-chip DACs. There is a 100-pF capacitor to VSSA on this pin whether used for ADC input or DAC reference which cannot be disabled. If this pin is used as a reference for the onchip DACs, place at least a 1-µF capacitor on this pin. 102 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.9.1 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Analog-to-Digital Converter (ADC) The ADC module described here is a successive approximation (SAR) style ADC with resolution of 12 bits. This section refers to the analog circuits of the converter as the “core,” and includes the channelselect MUX, the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other analog support circuits. The digital circuits of the converter are referred to as the “wrapper” and include logic for programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses, post-processing circuits, and interfaces to other on-chip modules. Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual). Each ADC has the following features: • Resolution of 12 bits • Ratiometric external reference set by VREFHI/VREFLO • Selectable internal reference of 2.5 V or 3.3 V • Single-ended signaling • Input multiplexer with up to 16 channels • 16 configurable SOCs • 16 individually addressable result registers • Multiple trigger sources – S/W: software immediate start – All ePWMs: ADCSOC A or B – GPIO XINT2 – CPU Timers 0/1/2 – ADCINT1/2 • Four flexible PIE interrupts • Burst-mode triggering option • Four post-processing blocks, each with: – Saturating offset calibration – Error from setpoint calculation – High, low, and zero-crossing compare, with interrupt and ePWM trip capability – Trigger-to-sample delay capture NOTE Not every channel may be pinned out from all ADCs. See Section 4 to determine which channels are available. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 103 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com The block diagram for the ADC core and ADC wrapper are shown in Figure 5-32. Analog-to-Digital Core Analog-to-Digital Wrapper Logic SOC Arbitration & Control ADCSOC [15:0] ACQPS u DOUT1 xV 2 IN- SOCxSTART[15:0] xV 1 IN+ EOCx[15:0] [15:0] CHSEL ADCCOUNTER TRIGGER[15:0] SOC Delay Timestamp Converter S/H Circuit ... RESULT Trigger Timestamp - + ADCRESULT 0±15 Regs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... ADCIN0 ADCIN1 ADCIN2 ADCIN3 ADCIN4 ADCIN5 ADCIN6 ADCIN7 ADCIN8 ADCIN9 ADCIN10 ADCIN11 ADCIN12 ADCIN13 ADCIN14 ADCIN15 TRIGSEL SOCx (0-15) [15:0] Triggers Input Circuit CHSEL ADCPPBxOFFCAL saturate ADCPPBxOFFREF + ADCPPBxRESULT ADCEVT VREFHI CONFIG Bandgap Reference Circuit 1.65-V Output (3.3-V Range) or 2.5-V Output (2.5-V Range) 1 Event Logic ADCEVTINT Post Processing Block (1-4) 0 Interrupt Block (1-4) ADCINT1-4 VREFLO Analog System Control ANAREFSEL ANAREFx2PSSEL Reference Voltage Levels Figure 5-32. ADC Module Block Diagram 104 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.9.1.1 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 ADC Configurability Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC module. Table 5-41 summarizes the basic ADC options and their level of configurability. Table 5-41. ADC Options and Configuration Levels OPTIONS CONFIGURABILITY Clock Per module (1) Resolution Not configurable (12-bit resolution only) Signal mode Not configurable (single-ended signal mode only) Reference voltage source Per module Trigger source Per SOC (1) Converted channel Per SOC Acquisition window duration Per SOC (1) EOC location Per module Burst mode Per module (1) (1) Writing these values differently to different ADC modules could cause the ADCs to operate asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously, see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. 5.9.1.1.1 Signal Mode The ADC supports single-ended signaling. In single-ended mode, the input voltage to the converter is sampled through a single pin (ADCINx), referenced to VREFLO. Figure 5-33 shows the single-ended signaling mode. VREFHI Pin Voltage VREFHI ADCINx ADCINx ADC VREFHI/2 VREFLO VREFLO (VSSA) 2n - 1 Digital Output ADC Vin 0 Figure 5-33. Single-ended Signaling Mode Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 105 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.1.2 www.ti.com ADC Electrical Data and Timing Table 5-42 lists the ADC operating conditions. Table 5-43 lists the ADC electrical characteristics. Table 5-42. ADC Operating Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ADCCLK (derived from PERx.SYSCLK) TYP 5 Sample rate 100-MHz SYSCLK Sample window duration (set by ACQPS and PERx.SYSCLK) (1) With 50 Ω or less Rs VREFHI VREFLO VREFHI - VREFLO Conversion range Internal reference = 3.3 V Conversion range Internal reference = 2.5 V Conversion range External reference (1) MIN MAX UNIT 50 MHz 3.45 75 MSPS ns 2.4 2.5 or 3.0 VDDA V VSSA 2.4 VSSA VSSA V 3.3 VDDA V 3.3 V 0 2.5 V VREFLO VREFHI V 0 The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation. NOTE The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this level, the VREF internal to the device may be disturbed, which can impact results for other ADC or DAC inputs using the same VREF. 106 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-43. ADC Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General ADCCLK Conversion Cycles Power Up Time VREFHI input current 100-MHz SYSCLK 10.1 11 ADCCLKs External Reference mode 500 µs Internal Reference mode 5000 µs Internal Reference mode, when switching between 2.5-V range and 3.3-V range. 5000 µs (1) 130 µA Internal Reference Capacitor Value (2) 2.2 µF External Reference Capacitor Value (2) 2.2 µF DC Characteristics Gain Error Internal reference –45 External reference –5 ±3 5 –5 ±2 5 Offset Error 45 LSB LSB Channel-to-Channel Gain Error ±2 LSB Channel-to-Channel Offset Error ±2 LSB ±4 LSB ADC-to-ADC Gain Error Identical VREFHI and VREFLO for all ADCs ADC-to-ADC Offset Error Identical VREFHI and VREFLO for all ADCs ±2 LSB DNL Error >–1 ±0.5 1 LSB INL Error –2 ±1.0 2 LSB ADC-to-ADC Isolation VREFHI = 2.5 V, synchronous ADCs VREFHI = 2.5 V, asynchronous ADCs –1 1 Not Supported LSBs AC Characteristics SNR (3) VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1 68.8 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from INTOSC 60.1 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, VDD supplied from internal DC-DC regulator (4) 67.5 dB THD (3) VREFHI = 2.5 V, fin = 100 kHz –80.6 dB SFDR (3) VREFHI = 2.5 V, fin = 100 kHz 79.2 dB VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1 68.5 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from INTOSC 60.0 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, Single ADC 11.0 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, synchronous ADCs 11.0 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, asynchronous ADCs Not Supported SINAD (3) ENOB (3) (1) (2) (3) (4) dB bits Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions. A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable. IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and crosstalk. Noise impact from the DCDC regulator to the ADC will be strongly dependent on PCB layout. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 107 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-43. ADC Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER PSRR 108 Specifications TEST CONDITIONS MIN TYP VDD = 1.2-V DC + 100mV DC up to Sine at 1 kHz 60 VDD = 1.2-V DC + 100 mV DC up to Sine at 300 kHz 57 MAX UNIT dB VDDA = 3.3-V DC + 200 mV DC up to Sine at 1 kHz 60 VDDA = 3.3-V DC + 200 mV Sine at 900 kHz 57 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.1.2.1 ADC Input Model The ADC input characteristics are given by Table 5-44 and Figure 5-34. Table 5-44. Input Model Parameters DESCRIPTION REFERENCE MODE VALUE Cp Parasitic input capacitance All Ron Sampling switch resistance External Reference, 2.5-V Internal Reference 500 Ω 3.3-V Internal Reference 860 Ω Ch Sampling capacitor Rs Nominal source impedance See Table 5-45 External Reference, 2.5-V Internal Reference 12.5 pF 3.3-V Internal Reference 7.5 pF 50 Ω All ADC Rs ADCINx Switch AC Cp Ron Ch VREFLO Figure 5-34. Input Model This input model should be used with actual signal source impedance to determine the acquisition window duration. For more information, see the Choosing an Acquisition Window Duration section of the Analogto-Digital Converter (ADC) chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 109 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-45 lists the parasitic capacitance on each channel. Table 5-45. Per-Channel Parasitic Capacitance ADC CHANNEL (1) 110 Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED ADCINA0 12.7 15.2 ADCINA1 13.7 16.2 ADCINA2 9.2 11.7 ADCINA3 6.9 9.4 ADCINA4 9.2 11.7 ADCINA5 7.5 10 ADCINA6 8.0 10.5 ADCINA7 7.0 9.5 ADCINA8 10.0 12.5 ADCINA9 8.1 10.6 ADCINA10 9.3 11.8 ADCINB0 7.1 9.6 ADCINB1 9.3 11.8 ADCINB2 9.6 12.1 ADCINB3 (1) 125.6 128.1 ADCINB4 8.8 11.3 ADCINB5 7.1 9.6 ADCINB6 9.2 11.7 ADCINB8 9.2 11.7 ADCINB15 12.7 15.2 ADCINC0 6.4 8.9 ADCINC1 6.1 8.6 ADCINC2 5.24 7.74 ADCINC3 5.5 8 ADCINC4 6.2 8.7 ADCINC5 5.6 8.1 ADCINC6 9.6 12.1 ADCINC8 8.8 11.3 ADCINC10 9.3 11.8 ADCINC12 4.1 6.6 ADCINC14 4.5 7 ADCINC15 12.7 15.2 This pin is also used to supply reference voltage for COMPDAC and GPDAC, and includes an internal decoupling capacitor. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.1.2.2 ADC Timing Diagrams Figure 5-35 shows the ADC conversion timings for two SOCs given the following assumptions: • SOC0 and SOC1 are configured to use the same trigger. • No other SOCs are converting or pending when the trigger occurs. • The round-robin pointer is in a state that causes SOC0 to convert first. • ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module). Table 5-46 lists the descriptions of the ADC timing parameters. Table 5-47 lists the ADC timings. Sample n Input on SOC0.CHSEL Input on SOC1.CHSEL Sample n+1 ADC S+H SOC0 SOC1 SYSCLK ADCCLK ADCTRIG ADCSOCFLG.SOC0 ADCSOCFLG.SOC1 ADCRESULT0 (old data) ADCRESULT1 (old data) Sample n Sample n+1 ADCINTFLG.ADCINTx tSH tLAT tEOC tINT Figure 5-35. ADC Timings Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 111 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-46. ADC Timing Parameters PARAMETER DESCRIPTION The duration of the S+H window. At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so tSH will not necessarily be the same for different SOCs. tSH Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window regardless of device clock settings. The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register. tLAT If the ADCRESULTx register is read before this time, the previous conversion results will be returned. The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The subsequent sample can start before the conversion results are latched. tEOC The time from the end of the S+H window until an ADCINT flag is set (if configured). If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being latched into the result register. If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be taken to ensure the read occurs after the results latch (otherwise, the previous results will be read). tINT If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there will be a delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or trigger the DMA at exactly the time the sample is ready. Table 5-47. ADC Timings ADCCLK PRESCALE SYSCLK CYCLES ADCCLK CYCLES ADCCTL2 [PRESCALE] RATIO ADCCLK:SYSCLK tEOC tLAT 0 1 11 13 1 11 11 2 2 21 23 1 21 10.5 4 3 31 34 1 31 10.3 6 4 41 44 1 41 10.3 8 5 51 55 1 51 10.2 10 6 61 65 1 61 10.2 12 7 71 76 1 71 10.1 14 8 81 86 1 81 10.1 (1) 112 tINT(EARLY) (1) tINT(LATE) tEOC By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET field in the ADCINTCYCLE register. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.9.2 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Programmable Gain Amplifier (PGA) The Programmable Gain Amplifier (PGA) is used to amplify an input voltage for the purpose of increasing the effective resolution of the downstream ADC and CMPSS modules. The integrated PGA helps to reduce cost and design effort for many control applications that traditionally require external, stand-alone amplifiers. On-chip integration ensures that the PGA is compatible with the downstream ADC and CMPSS modules. Software-selectable gain and filter settings make the PGA adaptable to various performance needs. The PGA has the following features: • Four programmable gain modes: 3x, 6x, 12x, 24x • Internally powered by VDDA and VSSA • Support for Kelvin ground connections using PGA_GND pin • Embedded series resistors for RC filtering The active component in the PGA is an embedded operational amplifier (op amp) that is configured as a noninverting amplifier with internal feedback resistors. These internal feedback resistor values are paired to produce software selectable voltage gains. Three PGA signals are available at the device pins: • PGA_IN is the positive input to the PGA op amp. The signal applied to this pin will be amplified by the PGA. • PGA_GND is the Kelvin ground reference for the PGA_IN signal. Ideally, the PGA_GND reference is equal to VSSA; however, the PGA can tolerate small voltage offsets from VSSA. • PGA_OF supports op amp output filtering with RC components. The filtered signal is available for sampling and monitoring by internal ADC and CMPSS modules. The PGA RFILTER path is not available on some device revisions. See the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata for more information. PGA_OUT is an internal signal at the op amp output. It is available for sampling and monitoring by the internal ADC and CMPSS modules. Figure 5-36 shows the PGA block diagram. VDDA + PGA_IN PGACTL[PGAEN] PGA_OUT Op Amp To ADC and CMPSS RFILTER ± To ADC and CMPSS VSSA RGND PGACTL[FILTRESSEL] ROUT PGA_GND PGACTL[GAIN] PGA_OF Figure 5-36. PGA Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 113 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.2.1 www.ti.com PGA Electrical Data and Timing Table 5-48 lists the PGA operating conditions. Table 5-49 lists the PGA characteristics. Table 5-48. PGA Operating Conditions over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS PGA Output Range (1) MIN TYP MAX VSSA + 0.35 VDDA – 0.35 –50 200 PGA GND Range UNIT V mV Min ADC S+H (No Filter; Gain = 3, 6, 12) Settling within ±1 ADC LSB Accuracy 160 ns Min ADC S+H (No Filter; Gain = 24) Settling within ±2 ADC LSB Accuracy 200 ns (1) This is the linear output range of the PGA. The PGA can output voltages outside this range, but the voltages will not be linear. Table 5-49. PGA Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General Gain Settings 3, 6, 12, 24 Input Bias Current Short Circuit Current Full Scale Step Response (No Filter) Settling within ±2 ADC LSB Accuracy Settling Time Gain Switching Slew Rate RGND Filter Resistor Targets nA mA 450 ns 10 µs Gain = 3 15 20 V/µs Gain = 6 31 37 V/µs Gain = 12 61 73 V/µs Gain = 24 78 98 V/µs 9 kΩ Gain = 6 4.5 kΩ Gain = 12 2.25 kΩ Gain = 24 1.125 kΩ Gain = 3 18 kΩ Gain = 6 22.5 kΩ Gain = 12 24.75 kΩ Gain = 24 25.875 kΩ Gain = 3 ROUT 2 35 RFILT = 200 Ω 145 190 234 Ω RFILT = 160 Ω 117 153 188 Ω RFILT = 130 Ω 95 125 154 Ω RFILT = 100 Ω 71 96 120 Ω RFILT = 80 Ω 55 77 98 Ω RFILT = 50 Ω 31 49 66 Ω 500 µs Power Up Time DC Characteristics Gain = 3, 6, 12 –0.5 0.5 % Gain = 24 –0.8 0.8 % Offset Error (2) Input Referred –1.5 Offset Temp Coefficient Input Referred Gain Error (1) Gain Temp Coefficient (1) (2) 114 ±0.004 %/C 1.5 ±5.5 mV µV/C Includes ADC gain error. Includes ADC offset error. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-49. PGA Characteristics (continued) over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP DC Code Spread 2.5 MAX UNIT 12b LSB AC Characteristics Bandwidth (3) THD (4) CMRR PSRR (4) Noise PSD (4) Integrated Noise (Input Referred) (4) (3) (4) All Gain Modes 7 MHz DC –78 dB Up to 100 kHz –70 dB DC –60 dB Up to 100 kHz –50 dB DC –75 dB Up to 100 kHz –50 dB 1 kHz 200 nV/sqrt(Hz) 3 Hz to 30 MHz 100 µV 3dB bandwidth. Performance of PGA alone. 5.9.2.1.1 PGA Typical Characteristics Graphs Figure 5-37 shows the input bias current versus temperature. NOTE For Figure 5-37, the following conditions apply (unless otherwise noted): • TA = 30°C • VDDA = 3.3 V • VDD = 1.2 V INPUT BIAS CURRENT vs TEMPERATURE 300 INPUT BIAS CURRENT (nA) 250 0V INPUT 1.65V INPUT 3.3V INPUT 200 150 100 50 0 -50 -100 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 120 140 160 DPLO Figure 5-37. Input Bias Current Versus Temperature Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 115 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.3 www.ti.com Temperature Sensor 5.9.3.1 Temperature Sensor Electrical Data and Timing The temperature sensor can be used to measure the device junction temperature. The temperature sensor is sampled through an internal connection to the ADC and translated into a temperature through TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in Table 5-50. Table 5-50. Temperature Sensor Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER Tacc Temperature Accuracy tstartup Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor) tacq ADC acquisition time 116 Specifications TEST CONDITIONS MIN External reference TYP MAX UNIT ±15 °C 500 µs 450 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.9.4 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Buffered Digital-to-Analog Converter (DAC) The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that can drive an external load. For driving even higher loads than typical, a trade-off can be made between load size and output voltage swing. For the load conditions of the buffered DAC, see Section 5.9.4.1. The buffered DAC is a general-purpose DAC that can be used to generate a DC voltage or AC waveforms such as sine waves, square waves, triangle waves and so forth. Software writes to the DAC value register can take effect immediately or can be synchronized with EPWMSYNCO events. Each buffered DAC has the following features: • 12-bit resolution • Selectable reference voltage source • x1 and x2 gain modes when using internal VREFHI • Ability to synchronize with EPWMSYNCO The block diagram for the buffered DAC is shown in Figure 5-38. DACCTL[DACREFSEL] ANAREFx2P5 VDAC Internal Reference Circuit 1.65v 0 1 2.5v 1 0 0 DACREF 1 VREFHI ANAREFxSEL VDDA SYSCLK DACVALS > DACCTL[LOADMODE] D Q 0 DACVALA D Q EPWM1SYNCO 0 EPWM2SYNCO 1 EPWM3SYNCO 2 ... Y EPWMnSYNCO n-1 1 > 12-bit DAC DACOUT Amp (x1 or x2) VSSA VSSA DACCTL[MODE] (Select x1 or x2 Gain) DACCTL[SYNCSEL] Figure 5-38. DAC Module Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 117 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.4.1 www.ti.com Buffered DAC Electrical Data and Timing Table 5-51 lists the buffered DAC operating conditions. Table 5-52 lists the buffered DAC electrical characteristics. Table 5-51. Buffered DAC Operating Conditions over recommended operating conditions (unless otherwise noted) (1) PARAMETER TEST CONDITIONS RL Resistive Load (2) CL Capacitive Load VOUT Valid Output Voltage Range (3) (2) (3) (4) TYP MAX UNIT 5 Reference Voltage (4) (1) MIN kΩ 100 pF RL = 5 kΩ 0.3 VDDA – 0.3 V RL = 1 kΩ 0.6 VDDA – 0.6 V VDAC or VREFHI 2.4 VDDA V 2.5 or 3.0 Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V. DAC can drive a minimum resistive load of 1 kΩ, but the output range will be limited. This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear due to the buffer. For best PSRR performance, VDAC or VREFHI should be less than VDDA. Table 5-52. Buffered DAC Electrical Characteristics over recommended operating conditions (unless otherwise noted) (1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General Resolution 12 Load Regulation –1 Glitch Energy 1 mV/V 1.5 Voltage Output Settling Time Full-Scale Voltage Output Settling Time 1/4th Full-Scale Load Transient Settling Time Reference Input Resistance Settling to 2 LSBs after 0.3Vto-3V transition (2) Power Up Time V-ns 2 µs 1.6 µs 4.5 V/µs 5-kΩ Load 328 ns 1-kΩ Load 557 ns Settling to 2 LSBs after 0.3Vto-0.75V transition Slew rate from 0.3V-to-3V transition Voltage Output Slew Rate TPU bits VDAC or VREFHI 2.8 240 kΩ External Reference mode 160 200 500 µs Internal Reference mode 5000 µs DC Characteristics Offset Offset Error Gain Gain Error (3) Midpoint –10 10 mV –2.5 2.5 % of FSR DNL Differential Non Linearity (4) Endpoint corrected –1 ±0.4 1 LSB INL Integral Non Linearity Endpoint corrected –5 ±2 5 LSB AC Characteristics Output Noise Integrated noise from 100 Hz to 100 kHz 600 µVrms Noise density at 10 kHz 800 nVrms/√Hz SNR Signal to Noise Ratio 1 kHz, 200 KSPS 64 dB THD Total Harmonic Distortion 1 kHz, 200 KSPS –64.2 dB (1) (2) (3) (4) 118 Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V. Per active Buffered DAC module. Gain error is calculated for linear output range. The DAC output is monotonic. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-52. Buffered DAC Electrical Characteristics (continued) over recommended operating conditions (unless otherwise noted)(1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SFDR Spurious Free Dynamic Range 1 kHz, 200 KSPS 66 dB SINAD Signal to Noise and Distortion Ratio 1 kHz, 200 KSPS 61.7 dB PSRR Power Supply Rejection Ratio (5) DC 70 dB 100 kHz 30 dB (5) VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine. NOTE The VDAC pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VDAC pin exceeds this level, a blocking circuit may activate, and the internal value of VDAC may float to 0 V internally, giving improper DAC output. 5.9.4.1.1 Buffered DAC Illustrative Graphs Figure 5-39 shows the buffered DAC offset. Figure 5-40 shows the buffered DAC gain. Figure 5-41 shows the buffered DAC linearity. Offset Error Code 2048 Figure 5-39. Buffered DAC Offset Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 119 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Actual Gain Ideal Gain Code 3722 Code 373 Linear Range (3.3-V Reference) Figure 5-40. Buffered DAC Gain Linearity Error Code 3722 Code 373 Linear Range (3.3-V Reference) Figure 5-41. Buffered DAC Linearity 120 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.4.1.2 Buffered DAC Typical Characteristics Graphs Figure 5-42 to Figure 5-47 show the typical performance for some buffered DAC parameters. Figure 5-42 shows the DNL. Figure 5-43 shows the INL. Figure 5-44 shows the glitch response (511 to 512 DACVAL) and Figure 5-45 shows the glitch response (512 to 511 DACVAL). Note that the glitch only happens at MSB transitions, with 511-to-512 and 512-to-511 transitions being the worst case. Figure 5-46 shows the 1-kΩ load transient. Figure 5-47 shows the 5-kΩ load transient. NOTE For Figure 5-42 to Figure 5-47, the following conditions apply (unless otherwise noted): • TA = 30°C • VDDA = 3.3 V • VDD = 1.2 V DNL at VREFHI = 2.5V INL at VREFHI = 2.5V 0.6 DACA DACB 0.4 INL (LSB) DNL (LSB) 0.2 0 -0.2 -0.4 -0.6 0 500 1000 1500 2000 2500 DACVAL 3000 3500 4000 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 DACA DACB 0 500 Figure 5-42. DNL 1500 2000 2500 DACVAL 3000 3500 4000 DPLO Figure 5-43. INL GLITCH RESPONSE at VDAC = 2.5V 511 to 512 DACVAL GLITCH RESPONSE at VDAC = 2.5V 512 to 511 DACVAL 0.33 0.329 0.328 0.327 0.326 0.325 0.324 0.323 0.322 0.321 0.32 0.319 0.318 0.317 0.316 0.315 0.325 0.323 0.321 0.319 DACOUT (V) DACOUT (V) 1000 DPLO 0.317 0.315 0.313 0.311 0.309 0.307 0.305 0 100 200 300 400 TIME (ns) 500 600 Figure 5-44. Glitch Response – 511 to 512 DACVAL 0 DPLO 100 200 300 400 TIME (ns) 500 600 Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated DPLO Figure 5-45. Glitch Response – 512 to 511 DACVAL 121 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5K LOAD TRANSIENT at VDAC = 2.5V 2.4 2.38 2.38 2.36 2.36 2.34 2.34 LOAD CONNECTED DACOUT (V) DACOUT (V) 1K LOAD TRANSIENT at VDAC = 2.5V 2.4 2.32 2.3 2.28 2.3 2.28 2.26 2.24 2.24 2.22 2.22 2.2 0 100 200 300 400 500 TIME (ns) 600 Figure 5-46. 1-kΩ Load Transient 122 2.32 2.26 2.2 LOAD CONNECTED Specifications 700 800 DPLO 0 100 200 300 400 500 TIME (ns) 600 700 800 DPLO Figure 5-47. 5-kΩ Load Transient Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 5.9.5 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Comparator Subsystem (CMPSS) Each CMPSS contains two comparators, two reference 12-bit DACs, two digital filters, and one ramp generator. Comparators are denoted "H" or "L" within each module, where “H” and “L” represent high and low, respectively. Each comparator generates a digital output that indicates whether the voltage on the positive input is greater than the voltage on the negative input. The positive input of the comparator can be driven from an external pin or by the PGA. The negative input can be driven by an external pin or by the programmable reference 12-bit DAC. Each comparator output passes through a programmable digital filter that can remove spurious trip signals. An unfiltered output is also available if filtering is not required. A ramp generator circuit is optionally available to control the reference 12-bit DAC value for the high comparator in the subsystem. There are two outputs from each CMPSS module. These two outputs pass through the digital filters and crossbar before connecting to the ePWM modules or GPIO pin. Figure 5-48 shows the CMPSS connectivity. CMP1_HP CMP1_HN Comparator Subsystem 1 Digital Filter VDDA or VDAC CTRIP1H CTRIP1H CTRIPOUT1H DAC12 CMP1_LN CMP1_LP CMP2_HP CMP2_HN Digital Filter Comparator Subsystem 2 Digital Filter VDDA or VDAC CTRIP1L CTRIPOUT1L CMP2_LN CMP2_LP CTRIP2L ePWM X-BAR ePWMs Output X-BAR GPIO Mux CTRIP2H CTRIPOUT2H DAC12 DAC12 CTRIP1L CTRIP2H DAC12 CTRIP7H Digital Filter CTRIP2L CTRIPOUT2L CTRIP7L CTRIPOUT1H CTRIPOUT1L CTRIPOUT2H CMP7_HP CMP7_HN Comparator Subsystem 7 Digital Filter VDDA or VDAC CTRIP7H CTRIPOUT7H CTRIPOUT2L DAC12 DAC12 CMP7_LN CMP7_LP Digital Filter CTRIP7L CTRIPOUT7L CTRIPOUT7H CTRIPOUT7L Figure 5-48. CMPSS Connectivity NOTE Not all packages have all CMPSS pins. See Table 5-39. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 123 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.9.5.1 www.ti.com CMPSS Electrical Data and Timing Table 5-53 lists the comparator electrical characteristics. Figure 5-49 shows the CMPSS comparator input referred offset. Figure 5-50 shows the CMPSS comparator hysteresis. Table 5-53. Comparator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TPU TEST CONDITIONS MIN TYP Power-up time Comparator input (CMPINxx) range Input referred offset error Hysteresis (1) PSRR CMRR Common Mode Rejection Ratio (1) UNIT 500 µs 0 VDDA –20 20 1x 12 2x 24 3x 36 4x 48 Step response 21 Response time (delay from CMPINx input change to output on ePWM X-BAR or Output Ramp response (1.65V/µs) X-BAR) Ramp response (8.25mV/µs) Power Supply Rejection Ratio MAX LSB 60 26 Up to 250 kHz V mV ns 30 ns 46 dB 40 dB The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations. NOTE The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a CMPSS input exceeds this level, an internal blocking circuit isolates the internal comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the internal comparator input is floating and can decay below VDDA within approximately 0.5 µs. After this time, the comparator could begin to output an incorrect result depending on the value of the other comparator input. Input Referred Offset CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 CMPINxN or DACxVAL COMPINxP Voltage Figure 5-49. CMPSS Comparator Input Referred Offset 124 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Hysteresis CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 CMPINxN or DACxVAL COMPINxP Voltage Figure 5-50. CMPSS Comparator Hysteresis Table 5-54 lists the CMPSS DAC static electrical characteristics. Table 5-54. CMPSS DAC Static Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Internal reference 0 VDDA External reference 0 VDAC (1) Static offset error (2) –25 25 mV Static gain error (2) –2 2 % of FSR CMPSS DAC output range V Static DNL Endpoint corrected >–1 4 LSB Static INL Endpoint corrected –16 16 LSB Settling time Settling to 1LSB after full-scale output change 1 µs Resolution 12 CMPSS DAC output disturbance (3) Error induced by comparator trip or CMPSS DAC code change within the same CMPSS module –100 CMPSS DAC disturbance time (3) bits 100 LSB 200 ns VDAC reference voltage When VDAC is reference 2.4 2.5 or 3.0 VDDA V VDAC load (4) When VDAC is reference 6 8 10 kΩ (1) (2) (3) (4) The maximum output voltage is VDDA when VDAC > VDDA. Includes comparator input referred errors. Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip. Per active CMPSS module. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 125 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.9.5.1.1 CMPSS Illustrative Graphs Figure 5-51 shows the CMPSS DAC static offset. Figure 5-52 shows the CMPSS DAC static gain. Figure 5-53 shows the CMPSS DAC static linearity. Offset Error Figure 5-51. CMPSS DAC Static Offset Ideal Gain Actual Gain Actual Linear Range Figure 5-52. CMPSS DAC Static Gain 126 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Linearity Error Figure 5-53. CMPSS DAC Static Linearity Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 127 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.10 Control Peripherals 5.10.1 Enhanced Capture (eCAP) The Type 1 enhanced capture (eCAP) module is used in systems where accurate timing of external events is important. Applications for the eCAP module include: • Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors) • Elapsed time measurements between position sensor pulses • Period and duty cycle measurements of pulse train signals • Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors The eCAP module includes the following features: • 4-event time-stamp registers (each 32 bits) • Edge polarity selection for up to four sequenced time-stamp capture events • CPU interrupt on any one of the four events • Independent DMA trigger • Single-shot capture of up to four event timestamps • Continuous mode capture of timestamps in a 4-deep circular buffer • Absolute time-stamp capture • Difference (Delta) mode time-stamp capture • 128:1 input multiplexer • Event Prescaler • When not used in capture mode, the eCAP module can be configured as a single channel PWM output. The capture functionality of the Type-1 eCAP is enhanced from the Type-0 eCAP with the following added features: • Event filter reset bit – Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any pending interrupts flags. This is useful for initialization and debug. • Modulo counter status bits – The modulo counter (ECCTL2[MODCTRSTS]) indicates which capture register will be loaded next. In the Type-0 eCAP, it was not possible to know the current state of modulo counter. • DMA trigger source – eCAPxDMA was added as a DMA trigger. CEVT[1–4] can be configured as the source for eCAPxDMA. • Input multiplexer – ECCTL0[INPUTSEL] selects one of 128 input signals. • EALLOW protection – EALLOW protection was added to critical registers. The Input X-BAR must be used to connect the device input pins to the module. The Output X-BAR must be used to connect output signals to the OUTPUTXBARx output locations. See Section 4.4.3 and Section 4.4.4. Figure 5-54 shows the eCAP block diagram. 128 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC] ECCTL2[CAP/APWM] SYNC CTRPHS (phase register−32 bit) ECAPxSYNCIN APWM Mode OVF TSCTR (counter−32 bit) ECAPxSYNCOUT RST CTR_OVF CTR [0−31] Delta−Mode PRD [0−31] PWM Compare Logic Output X-Bar CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 PRD [0−31] ECCTL1 [ CAPLDEN, CTRRSTx] HRCTRL[HRE] 32 32 APRD shadow HRCTRL[HRE] LD1 CAP1 (APRD Active) Polarity Select LD 32 CMP [0−31] 32 HRCTRL[HRE] 32 32 CAP2 (ACMP Active) 32 Polarity Select LD2 LD Other Sources [127:16] Event qualifier ACMP shadow HRCTRL[HRE] Event Prescale 16 ECCTL1[PRESCALE] [15:0] Input X-Bar 32 32 Polarity Select LD3 CAP3 (APRD Shadow) LD CAP4 (ACMP Shadow) LD HRCTRL[HRE] 32 32 LD4 Polarity Select 4 Capture Events Edge Polarity Select ECCTL1[CAPxPOL] 4 CEVT[1:4] ECAPxDMA_INT ECCTL2[CTRFILTRESET] ECCTL2[DMAEVTSEL] ECAPx (to ePIE) Interrupt Trigger and Flag Control Continuous / Oneshot Capture Control CTR_OVF MODCNTRSTS CTR=PRD CTR=CMP ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP] Registers: ECEINT, ECFLG, ECCLR, ECFRC Capture Pulse SYSCLK HRCLK HR Submodule HR Input ECAPx_HRCAL (to ePIE) A. (A) The HRCAP submodule is available on all eCAP modules; in this case, the high-resolution muxes and hardware are not implemented. Figure 5-54. eCAP Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 129 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.1.1 eCAP Electrical Data and Timing Table 5-55 lists the eCAP timing requirements. Table 5-56 lists the eCAP switching characteristics. Table 5-55. eCAP Timing Requirements MIN Asynchronous tw(CAP) Capture input pulse width Synchronous With input qualifier NOM MAX UNIT 2tc(SCO) 2tc(SCO) ns 1tc(SCO) + tw_(QSW) Table 5-56. eCAP Switching Charcteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(APWM) 130 Pulse duration, APWMx output high/low Specifications MIN TYP MAX UNIT 20 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.10.2 High-Resolution Capture Submodule (HRCAP6–HRCAP7) The device contains up to two high-resolution capture (HRCAP) submodules. The HRCAP submodule measures the difference, in time, between pulses asynchronously to the system clock. This submodule is new to the eCAP Type 1 module, and features many enhancements over the Type 0 HRCAP module. Applications for the HRCAP include: • Capacitive touch applications • High-resolution period and duty-cycle measurements of pulse train cycles • Instantaneous speed measurements • Instantaneous frequency measurements • Voltage measurements across an isolation boundary • Distance/sonar measurement and scanning • Flow measurements The HRCAP submodule includes the following features: • Pulse-width capture in either non-high-resolution or high-resolution modes • Absolute mode pulse-width capture • Continuous or "one-shot" capture • Capture on either falling or rising edge • Continuous mode capture of pulse widths in 4-deep buffer • Hardware calibration logic for precision high-resolution capture • All of the resources in this list are available on any pin using the Input X-BAR. The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no “down time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is used, the corresponding eCAP will be unavailable. Each high-resolution-capable channel has the following independent key resources. • All hardware of the respective eCAP • High-resolution calibration logic • Dedicated calibration interrupt Figure 5-55 shows the HRCAP block diagram. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 131 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC] ECCTL2[CAP/APWM] SYNC CTRPHS (phase register−32 bit) ECAPxSYNCIN APWM Mode OVF TSCTR (counter−32 bit) ECAPxSYNCOUT RST CTR_OVF CTR [0−31] Delta−Mode PRD [0−31] PWM Compare Logic Output X-Bar CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 PRD [0−31] ECCTL1 [ CAPLDEN, CTRRSTx] HRCTRL[HRE] 32 32 APRD shadow HRCTRL[HRE] LD1 CAP1 (APRD Active) Polarity Select LD 32 CMP [0−31] 32 HRCTRL[HRE] 32 32 CAP2 (ACMP Active) 32 Polarity Select LD2 LD Other Sources [127:16] Event qualifier ACMP shadow HRCTRL[HRE] Event Prescale 16 ECCTL1[PRESCALE] [15:0] Input X-Bar 32 32 Polarity Select LD3 CAP3 (APRD Shadow) LD CAP4 (ACMP Shadow) LD HRCTRL[HRE] 32 32 LD4 Polarity Select 4 Capture Events 4 Edge Polarity Select ECCTL1[CAPxPOL] CEVT[1:4] ECAPxDMA_INT ECCTL2[CTRFILTRESET] ECCTL2[DMAEVTSEL] ECAPx (to ePIE) Interrupt Trigger and Flag Control Continuous / Oneshot Capture Control CTR_OVF MODCNTRSTS CTR=PRD CTR=CMP ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP] Registers: ECEINT, ECFLG, ECCLR, ECFRC Capture Pulse SYSCLK HRCLK HR Submodule HR Input ECAPx_HRCAL (to ePIE) A. (A) The HRCAP submodule is available on all eCAP modules; in this case, the high-resolution muxes and hardware are not implemented. Figure 5-55. HRCAP Block Diagram 132 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.10.2.1 HRCAP Electrical Data and Timing Table 5-57 lists the HRCAP switching characteristics. Figure 5-56 shows the HRCAP accuracy precision and resolution. Figure 5-57 shows the HRCAP standard deviation characteristics. Table 5-57. HRCAP Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS Input pulse width MIN TYP Accuracy (1) (2) (3) (4) ns ±390 540 ps Measurement length > 5 µs ±450 1450 ps See Figure 5-57 Resolution (4) UNIT Measurement length ≤ 5 µs Standard deviation (1) (2) (3) MAX 110 300 ps Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy. Measurement is completed using rising-rising or falling-falling edges Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the signal’s slew rate. Accuracy only applies to time-converted measurements. HRCAP’s Mean HRCAP Result Probability Accuracy Resolution (Step Size) Actual Input Signal A. Precision (Standard Deviation) The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms: • Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution. • Precision: The width of the HRCAP’s distribution, this is given as a standard deviation. • Resolution: The minimum measurable increment. Figure 5-56. HRCAP Accuracy Precision and Resolution Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 133 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 2 7.4 1.8 6.66 1.6 5.92 1.4 5.18 1.2 4.44 1 3.7 0.8 2.96 0.6 2.22 0.4 1.48 0.2 0 A. B. C. 1000 2000 3000 4000 5000 6000 Time Between Edges(nS) 7000 8000 9000 Standard Deviation (Steps) Standard Deviation (nS) Typical Core Conditions Noisy Core Supply 0.74 10000 Typical core conditions: All peripheral clocks are enabled. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement. This resulted in the 1.2-V rail experiencing a 18.5-mA swing during the measurement. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while using the HRCAP. Figure 5-57. HRCAP Standard Deviation Characteristics 134 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.10.3 Enhanced Pulse Width Modulator (ePWM) The ePWM peripheral is a key element in controlling many of the power electronic systems found in both commercial and industrial equipment. The ePWM type-4 module generates complex pulse width waveforms with minimal CPU overhead. Some of the highlights of the ePWM type-4 module include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced tripzone functionality, and global register reload capabilities. Figure 5-58 shows the signal interconnections with the ePWM. Figure 5-59 shows the ePWM trip input connectivity. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 135 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com TBCTL2[SYNCOSELX] Time-Base (TB) Disable CTR=CPMC CTR=CPMD Rsvd TBPRD Shadow (24) TBPRDHR (8) TBPRD Active (24) 8 CTR=PRD 00 01 10 11 CTR=ZERO CTR=CMPB TBCTL[SWFSYNC] Sync Out Select EPWMxSYNCO EPWMxSYNCI TBCTL[PHSEN] TBCTL[SYNCOSEL] Counter Up/Down (16 Bit) (A) DCAEVT1.sync (A) DCBEVT1.sync CTR=ZERO TBCTR Active (16) CTR_Dir CTR=PRD TBPHSHR (8) 16 8 TBPHS Active (24) EPWMxINT CTR=ZERO CTR=PRD or ZERO Phase Control CTR=CMPA CTR=CMPB CTR=CMPC CTR=CMPD Counter Compare (CC) CTR=CMPA Event Trigger and Interrupt (ET) EPWMxSOCA EPWMxSOCB ADCSOCOUTSEL CTR_Dir Action Qualifier (AQ) DCAEVT1.soc DCBEVT1.soc CMPAHR (8) Select and pulse stretch for external ADC (A) (A) ADCSOCAO ADCSOCBO 16 CMPA Active (24) CMPA Shadow (24) EPWMA ePWMxA Dead Band (DB) CMPBHR (8) 16 HiRes PWM (HRPWM) CMPAHR (8) CTR=CMPB On-chip ADC PWM Chopper (PC) Trip Zone (TZ) ePWMxB EPWMB CMPB Active (24) CMPB Shadow (24) CMPBHR (8) EPWMxTZINT TBCNT(16) CTR=CMPC CMPC[15-0] 16 CMPC Active (16) CMPC Shadow (16) TZ1 to TZ3 CTR=ZERO DCAEVT1.inter DCBEVT1.inter DCAEVT2.inter DCBEVT2.inter EMUSTOP CLOCKFAIL EQEPxERR DCAEVT1.force DCAEVT2.force DCBEVT1.force DCBEVT2.force TBCNT(16) (A) (A) (A) (A) CTR=CMPD CMPD[15-0] 16 CMPD Active (16) CMPD Shadow (16) Copyright © 2017, Texas Instruments Incorporated A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs. Figure 5-58. ePWM Submodules and Critical Internal Signal Interconnects 136 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 GPIO0 Async/ Sync/ Sync+Filter GPIOx Input X-Bar INPUT7 INPUT8 INPUT9 INPUT10 INPUT11 INPUT12 INPUT13 INPUT14 INPUT15 INPUT16 INPUT1 INPUT2 INPUT3 INPUT4 INPUT5 INPUT6 Other Sources 16:127 7 eCAPx INPUT[1:16] 0:15 XINT1 XINT2 ADC XINT3 Wrapper(s) ePWM eCAP Sync Chain XINT4 XINT5 EXTSYNCIN1 EXTSYNCIN2 INPUT[1:14] CMPSSx.TRIPH CMPSSx.TRIPHORL CMPSSx.TRIPL ADCx.EVT1-4 ECAPx.OUT SD1.FLTx.COMPx SD1.FLTx.DRINTx EXTSYNCOUT ADCSOCx CLAHALT ePWM X-Bar TZ1 TZ2 TZ3 TRIP1 TRIP2 TRIP3 TRIP6 TRIP4 TRIP5 TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 PIE, CLA EPWMINT TZINT EPWMx.EPWMCLK PCLKCR2[EPWMx] TBCLKSYNC PCLKCR0[TBCLKSYNC] SDFM All ePWM Modules FLT1 FLT2 FLT3 FLT4 ADCSOCAO Select ADCSOCBO Select Reserved ECCERR PIEVECTERROR EQEPERR CLKFAIL EMUSTOP TRIP13 TRIP14 TRIP15 TZ4 TZ5 TZ6 SOCA SOCB PWMSYNC ADC Wrapper(s) CMPSS Copyright © 2017, Texas Instruments Incorporated Figure 5-59. ePWM Trip Input Connectivity Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 137 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.3.1 Control Peripherals Synchronization The ePWM and eCAP Synchronization Chain allows synchronization between multiple modules for the system. Figure 5-60 shows the Synchronization Chain Architecture. EXTSYNCIN1 EXTSYNCIN2 EPWM1 EPWM1SYNCOUT EPWM2 EPWM4 EPWM3 EXTSYNCOUT EPWM4SYNCOUT Pulse-Stretched (8 PLLSYSCLK Cycles) EPWM5 SYNCSEL.EPWM4SYNCIN EPWM6 EPWM7 EPWM7SYNCOUT EPWM8 ECAP1SYNCOUT SYNCSEL.EPWM7SYNCIN ECAP1 ECAP4SYNCOUT SYNCSEL.SYNCOUT SYNCSEL.ECAP1SYNCIN ECAP2 ECAP3 ECAP4 SYNCSEL.ECAP4SYNCIN ECAP5 ECAP6 ECAP7 SYNCSEL.ECAP6SYNCIN Figure 5-60. Synchronization Chain Architecture 138 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.10.3.2 ePWM Electrical Data and Timing Table 5-58 lists the ePWM timing requirements and Table 5-59 lists the ePWM switching characteristics. Table 5-58. ePWM Timing Requirements (1) MIN Asynchronous tw(SYNCIN) Sync input pulse width Synchronous 2tc(EPWMCLK) With input qualifier (1) MAX UNIT 2tc(EPWMCLK) cycles 1tc(EPWMCLK) + tw(IQSW) For an explanation of the input qualifier parameters, see Table 5-31. Table 5-59. ePWM Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(TZ-PWM) Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low Delay time, trip input active to PWM Hi-Z MIN MAX UNIT 20 ns 8tc(SYSCLK) cycles 25 ns 5.10.3.2.1 Trip-Zone Input Timing Table 5-60 lists the trip-zone input timing requirements. Figure 5-61 shows the PWM Hi-Z characteristics. Table 5-60. Trip-Zone Input Timing Requirements (1) MIN tw(TZ) Pulse duration, TZx input low Asynchronous 1tc(EPWMCLK) Synchronous 2tc(EPWMCLK) With input qualifier (1) MAX UNIT cycles 1tc(EPWMCLK) + tw(IQSW) For an explanation of the input qualifier parameters, see Table 5-31. EPWMCLK tw(TZ) (A) TZ td(TZ-PWM) (B) PWM A. B. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12 PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 5-61. PWM Hi-Z Characteristics Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 139 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.3.3 External ADC Start-of-Conversion Electrical Data and Timing Table 5-61 lists the external ADC start-of-conversion switching characteristics. Figure 5-62 shows the ADCSOCAO or ADCSOCBO timing. Table 5-61. External ADC Start-of-Conversion Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(ADCSOCL) MIN Pulse duration, ADCSOCxO low MAX 32tc(SYSCLK) UNIT cycles tw(ADCSOCL) ADCSOCAO or ADCSOCBO Figure 5-62. ADCSOCAO or ADCSOCBO Timing 140 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.10.4 High-Resolution Pulse Width Modulator (HRPWM) The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a dedicated calibration delay line. For each ePWM module, there are two HR outputs: • HR Duty and Deadband control on Channel A • HR Duty and Deadband control on Channel B The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are: • Significantly extends the time resolution capabilities of conventionally derived digital PWM • This capability can be used in both single edge (duty cycle and phase-shift control) as well as dualedge control for frequency/period modulation. • Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B, phase, period, and deadband registers of the ePWM module. NOTE The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz. 5.10.4.1 HRPWM Electrical Data and Timing Table 5-62 lists the high-resolution PWM switching characteristics. Table 5-62. High-Resolution PWM Characteristics PARAMETER Micro Edge Positioning (MEP) step size (1) (1) MIN TYP MAX UNIT 150 310 ps The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher temperature and lower voltage and decrease with lower temperature and higher voltage. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLK period dynamically while the HRPWM is in operation. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 141 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.5 Enhanced Quadrature Encoder Pulse (eQEP) The Type-1 eQEP peripheral contains the following major functional units (see Figure 5-63): • Programmable input qualification for each pin (part of the GPIO MUX) • Quadrature decoder unit (QDU) • Position counter and control unit for position measurement (PCCU) • Quadrature edge-capture unit for low-speed measurement (QCAP) • Unit time base for speed/frequency measurement (UTIME) • Watchdog timer for detecting stalls (QWDOG) System control registers To CPU EQEPxENCLK Data bus SYSCLK QCPRD QCTMR QCAPCTL 16 Enhanced QEP (eQEP) peripheral 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT QUTMR QUPRD Registers used by multiple units QWDTMR QWDPRD 32 QEPCTL QEPSTS QFLG UTIME 16 UTOUT QDECCTL 16 QWDOG WDTOUT PIE QCLK QDIR QI QS PHE EQEPxINT 32 Position counter/ control unit (PCCU) QPOSLAT QPOSSLAT QPOSILAT QMA Quadrature decoder (QDU) 32 32 QPOSCMP EQEPx_A EQEPxBIN EQEPx_B EQEPxIIN EQEPxIOUT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE PCSOUT QPOSCNT QPOSINIT QPOSMAX EQEPxAIN 16 GPIO MUX EQEPx_INDEX EQEPx_STROBE QEINT QFRC QCLR QPOSCTL Copyright © 2017, Texas Instruments Incorporated Figure 5-63. eQEP Block Diagram 142 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.10.5.1 eQEP Electrical Data and Timing Table 5-63 lists the eQEP timing requirements and Table 5-64 lists the eQEP switching characteristics. Table 5-63. eQEP Timing Requirements (1) MIN Asynchronous (2)/Synchronous tw(QEPP) QEP input period tw(INDEXH) QEP Index Input High time tw(INDEXL) QEP Index Input Low time tw(STROBH) QEP Strobe High time tw(STROBL) QEP Strobe Input Low time (1) (2) With input qualifier 2tc(SYSCLK) With input qualifier 2tc(SYSCLK) 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) Asynchronous (2)/Synchronous With input qualifier cycles 2tc(SYSCLK) + tw(IQSW) Asynchronous (2)/Synchronous With input qualifier cycles 2tc(SYSCLK) + tw(IQSW) Asynchronous (2)/Synchronous UNIT cycles 2[1tc(SYSCLK) + tw(IQSW)] Asynchronous (2)/Synchronous With input qualifier MAX 2tc(SYSCLK) 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) For an explanation of the input qualifier parameters, see Table 5-31. See the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata for limitations in the asynchronous mode. Table 5-64. eQEP Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN MAX UNIT td(CNTR)xin Delay time, external clock to counter increment 5tc(SYSCLK) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 7tc(SYSCLK) cycles Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 143 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.6 Sigma-Delta Filter Module (SDFM) The SDFM is a 4-channel digital filter designed specifically for current measurement and resolver position decoding in motor control applications. Each channel can receive an independent sigma-delta (ΣΔ) modulated bit stream. The bit streams are processed by four individually programmable digital decimation filters. The filter set includes a fast comparator for immediate digital threshold comparisons for overcurrent and undercurrent monitoring. The SDFM features include: • 8 external pins per SDFM module – 4 sigma-delta data input pins per SDFM module (SDx_D1-4) – 4 sigma-delta clock input pins per SDFM module (SDx_C1-4) • 4 different configurable modulator clock modes: – Mode 0: Modulator clock rate equals modulator data rate – Mode 1: Modulator clock rate running at half the modulator data rate – Mode 2: Modulator data is Manchester encoded. Modulator clock not required. – Mode 3: Modulator clock rate is double that of modulator data rate • 4 independent configurable secondary filter (comparator) units per SDFM module: – 4 different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available – Ability to detect over-value, under-value, and zero-crossing conditions – OSR value for comparator filter unit (COSR) programmable from 1 to 32 • 4 independent configurable primary filter (data filter) units per SDFM module: – 4 different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available – OSR value for data filter unit (DOSR) programmable from 1 to 256 – Ability to enable individual filter modules – Ability to synchronize all the 4 independent filters of an SDFM module using Master Filter Enable (MFE) bit or using PWM signals • Data filter unit has programmable FIFO to reduce interrupt overhead. FIFO has the following features: – Primary filter (data filter) has 16 deep × 32-bit FIFO – FIFO can interrupt CPU after programmable number of data ready events – FIFO Wait-for-Sync feature: Ability to ignore data ready events until PWM synchronization signal (SDSYNC) is received. Once SDSYNC event is received, FIFO is populated on every data ready event – Data filter output can be represented in either 16 bits or 32 bits • PWMx.SOCA/SOCB can be configured to serve as SDSYNC source on per data filter channel basis • PWMs can be used to generate a modulator clock for sigma delta modulators Figure 5-64 shows the SDFM block diagram. 144 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 SDFM- Sigma Delta Filter Module SDyFLTx.DRINT G4 Streams Input Ctrl SDx_C1 PWMx.SOCA / SOCB SDSYNC SDx_D2 Secondary (Comparator) Filter R Interrupt Unit Primary (Data) R Filter SDy_ERR Peripheral Frame 1 SDx_D1 GPIO MUX DMA Filter Module 1 FIFO Filter Module 2 SDx_C2 PWMx.SOCA / SOCB SDSYNC SDx_D3 SDyFLTx.DRINT CLA SDy_ERR SDyFLTx.DRINT ePIE Filter Module 3 SDx_C3 PWMx.SOCA / SOCB SDyFLTx.COMPL SDSYNC SDx_D4 Register Map Filter Module 4 SDyFLTx.COMPHA Output / PWM XBAR SDx_C4 PWMx.SOCA / SOCB SDSYNC SDyFLTx.COMPL SDyFLTx.COMPHA ECAP SDyFLTx.COMPHB LEGEND Interrupt / trigger sources from Primary Filter Internal secondary filter signals Figure 5-64. SDFM Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 145 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.6.1 SDFM Electrical Data and Timing Table 5-65 lists the SDFM timing requirements. Figure 5-65, Figure 5-66, Figure 5-67, and Figure 5-68 show the SDFM timing diagrams. Table 5-65. SDFM Timing Requirements MIN MAX UNIT Mode 0 tc(SDC)M0 Cycle time, SDx_Cy 40 256 * SYSCLK period ns tw(SDCH)M0 Pulse duration, SDx_Cy high 10 tc(SDC)M0 – 10 ns tsu(SDDV-SDCH)M0 Setup time, SDx_Dy valid before SDx_Cy goes high 5 ns th(SDCH-SDD)M0 Hold time, SDx_Dy wait after SDx_Cy goes high 5 ns Mode 1 tc(SDC)M1 Cycle time, SDx_Cy 80 256 * SYSCLK period ns tw(SDCH)M1 Pulse duration, SDx_Cy high 10 tc(SDC)M1 – 10 ns tsu(SDDV-SDCL)M1 Setup time, SDx_Dy valid before SDx_Cy goes low 5 ns tsu(SDDV-SDCH)M1 Setup time, SDx_Dy valid before SDx_Cy goes high 5 ns th(SDCL-SDD)M1 Hold time, SDx_Dy wait after SDx_Cy goes low 5 ns th(SDCH-SDD)M1 Hold time, SDx_Dy wait after SDx_Cy goes high 5 ns Mode 2 tc(SDD)M2 Cycle time, SDx_Dy tw(SDDH)M2 Pulse duration, SDx_Dy high 8 * tc(SYSCLK) 20 * tc(SYSCLK) 10 ns ns Mode 3 tc(SDC)M3 Cycle time, SDx_Cy 40 256 * SYSCLK period ns tw(SDCH)M3 Pulse duration, SDx_Cy high 10 tc(SDC)M3 – 5 ns tsu(SDDV-SDCH)M3 Setup time, SDx_Dy valid before SDx_Cy goes high 5 ns th(SDCH-SDD)M3 Hold time, SDx_Dy wait after SDx_Cy goes high 5 ns Mode 0 tw(SDCH)M0 tc(SDC)M0 SDx_Cy tsu(SDDV-SDCH)M0 th(SDCH-SDD)M0 SDx_Dy Figure 5-65. SDFM Timing Diagram – Mode 0 Mode 1 tw(SDCH)M1 tc(SDC)M1 SDx_Cy tsu(SDDV-SDCL)M1 tsu(SDDV-SDCH)M1 SDx_Dy th(SDCL-SDD)M1 th(SDCH-SDD)M1 Figure 5-66. SDFM Timing Diagram – Mode 1 146 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Mode 2 (Manchester-encoded bit stream) tc(SDD)M2 Modulator internal clock tw(SDDH)M2 Modulator internal data 1 0 1 1 1 0 0 1 1 SDx-Dy Figure 5-67. SDFM Timing Diagram – Mode 2 Mode 3 (CLKx is driven externally) tc(SDC)M3 tw(SDCH)M3 SDx_Cy tsu(SDDV-SDCH)M3 th(SDCH-SDD)M3 SDx_Dy Figure 5-68. SDFM Timing Diagram – Mode 3 Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 147 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11 Communications Peripherals 5.11.1 Controller Area Network (CAN) NOTE The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN interchangeably to reference this peripheral. The CAN module implements the following features: • Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B) • Bit rates up to 1 Mbps • Multiple clock sources • 32 message objects (mailboxes), each with the following properties: – Configurable as receive or transmit – Configurable with standard (11-bit) or extended (29-bit) identifier – Supports programmable identifier receive mask – Supports data and remote frames – Holds 0 to 8 bytes of data – Parity-checked configuration and data RAM • Individual identifier mask for each message object • Programmable FIFO mode for message objects • Programmable loopback modes for self-test operation • Suspend mode for debug support • Software module reset • Automatic bus on after bus-off state by a programmable 32-bit timer • Two interrupt lines • DMA support NOTE For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625 kbps. NOTE The accuracy of the on-chip zero-pin oscillator is in Table 5-23. Depending on parameters such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy of this oscillator may not meet the requirements of the CAN protocol. In this situation, an external clock source must be used. Figure 5-69 shows the CAN block diagram. 148 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 CAN_TX CAN_RX CAN CAN Core Message RAM Message Handler Message RAM Interface Registers and Message Object Access (IFx) 32 Message Objects (Mailboxes) Test Modes Only Module Interface to ePIE DMA CPU Bus Figure 5-69. CAN Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 149 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.2 Inter-Integrated Circuit (I2C) The I2C module has the following features: • Compliance with the NXP Semiconductors I2C-bus specification (version 2.1): – Support for 8-bit format transfers – 7-bit and 10-bit addressing modes – General call – START byte mode – Support for multiple master-transmitters and slave-receivers – Support for multiple slave-transmitters and master-receivers – Combined master transmit/receive and receive/transmit mode – Data transfer rate from 10 kbps up to 400 kbps (Fast-mode) • One 16-byte receive FIFO and one 16-byte transmit FIFO • Supports two ePIE interrupts – I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt: • Transmit Ready • Receive Ready • Register-Access Ready • No-Acknowledgment • Arbitration-Lost • Stop Condition Detected • Addressed-as-Slave – I2Cx_FIFO interrupts: • Transmit FIFO interrupt • Receive FIFO interrupt • Module enable and disable capability • Free data format mode Figure 5-70 shows how the I2C peripheral module interfaces within the device. 150 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 I2C module I2CXSR I2CDXR TX FIFO SDA FIFO Interrupt to CPU/PIE RX FIFO Peripheral bus I2CRSR SCL Clock synchronizer I2CDRR Control/status registers CPU Prescaler Noise filters I2C INT Interrupt to CPU/PIE Arbitrator Figure 5-70. I2C Peripheral Module Interfaces Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 151 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.2.1 I2C Electrical Data and Timing Table 5-66 lists the I2C timing requirements. Table 5-67 lists the I2C switching characteristics. Table 5-66. I2C Timing Requirements MIN MAX UNIT th(SDA-SCL)START Hold time, START condition, SCL fall delay after SDA fall 0.6 µs tsu(SCL-SDA)START Setup time, Repeated START, SCL rise before SDA fall delay 0.6 µs th(SCL-DAT) Hold time, data after SCL fall 0 µs tsu(DAT-SCL) Setup time, data before SCL rise 100 ns tr(SDA) Rise time, SDA 20 300 ns tr(SCL) Rise time, SCL 20 300 ns tf(SDA) Fall time, SDA 11.4 300 ns tf(SCL) Fall time, SCL 11.4 300 ns tsu(SCL-SDA)STOP Setup time, STOP condition, SCL rise before SDA rise delay 0.6 µs Table 5-67. I2C Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT 0 400 kHz fSCL SCL clock frequency tw(SCLL) Pulse duration, SCL clock low 1.3 µs tw(SCLH) Pulse duration, SCL clock high 0.6 µs tw(SP) Pulse duration of spikes that will be suppressed by the input filter tBUF Bus free time between STOP and START conditions tv(SCL-DAT) Valid time, data after SCL fall 0.9 µs tv(SCL-ACK) Valid time, Acknowledge after SCL fall 0.9 µs VIL Valid low-level input voltage –0.3 0.3 * VDDIO V VIH Valid high-level input voltage 0.7 * VDDIO VDDIO + 0.3 V VOL Low-level output voltage Sinking 3 mA 0 0.4 V II Input current on pins 0.1 Vbus < Vi < 0.9 Vbus –10 10 µA 0 50 1.3 ns µs NOTE To meet all of the I2C protocol timing specifications, the I2C module clock must be configured in the range from 7 MHz to 12 MHz. 152 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.11.3 Power Management Bus (PMBus) Interface The PMBus module has the following features: • Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1) • Support for master and slave modes • Support for I2C mode • Support for three speeds: – Standard Mode: Up to 100 kHz – Fast Mode: 400 kHz – Fast Mode+: 1000 kHz. This mode applies only to the PMBus module operating in I2C mode, with an input clock frequency of 20 MHz. • Packet error checking • CONTROL and ALERT signals • Clock high and low time-outs • Four-byte transmit and receive buffers • One maskable interrupt, which can be generated by several conditions: – Receive data ready – Transmit buffer empty – Slave address received – End of message – ALERT input asserted – Clock low time-out – Clock high time-out – Bus free Figure 5-71 shows the PMBus block diagram. PCLKCR20 SYSCLK Div PMBCTRL ALERT DMA Bit clock Other registers CTL GPIO Mux CPU PMBTXBUF SCL Shift register PMBRXBUF SDA PMBUSA_INT PIE PMBus Module Figure 5-71. PMBus Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 153 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.3.1 PMBus Electrical Data and Timing Table 5-68 lists the PMBus electrical characteristics. Table 5-69 lists the PMBUS fast mode switching characteristics. Table 5-70 lists the PMBUS standard mode switching characteristics. Table 5-68. PMBus Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VIL Valid low-level input voltage VIH Valid high-level input voltage VOL Low-level output voltage At Ipullup = 4 mA IOL Low-level output current VOL ≤ 0.4 V tSP Pulse width of spikes that must be suppressed by the input filter Ii Input leakage current on each pin Ci Capacitance on each pin MIN TYP 2.1 0.1 Vbus < Vi < 0.9 Vbus MAX UNIT 0.8 V VDDIO V 0.4 4 V mA 0 50 ns –10 10 µA 10 pF Table 5-69. PMBus Fast Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 400 kHz fSCL SCL clock frequency 10 tBUF Bus free time between STOP and START conditions 1.3 µs tHD;STA START condition hold time -- SDA fall to SCL fall delay 0.6 µs tSU;STA Repeated START setup time -- SCL rise to SDA fall delay 0.6 µs tSU;STO STOP condition setup time -- SCL rise to SDA rise delay 0.6 µs tHD;DAT Data hold time after SCL fall 300 ns tSU;DAT Data setup time before SCL rise 100 tTimeout Clock low time-out 25 tLOW Low period of the SCL clock 1.3 tHIGH High period of the SCL clock 0.6 tLOW;SEXT Cumulative clock low extend time (slave device) tLOW;MEXT ns 35 ms µs 50 µs From START to STOP 25 ms Cumulative clock low extend time (master device) Within each byte 10 ms tr Rise time of SDA and SCL 5% to 95% 20 300 ns tf Fall time of SDA and SCL 95% to 5% 20 300 ns 154 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-70. PMBus Standard Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 100 kHz fSCL SCL clock frequency 10 tBUF Bus free time between STOP and START conditions 4.7 µs tHD;STA START condition hold time -- SDA fall to SCL fall delay 4 µs tSU;STA Repeated START setup time -- SCL rise to SDA fall delay 4.7 µs tSU;STO STOP condition setup time -- SCL rise to SDA rise delay 4 µs tHD;DAT Data hold time after SCL fall 300 ns tSU;DAT Data setup time before SCL rise 250 tTimeout Clock low time-out 25 tLOW Low period of the SCL clock 4.7 tHIGH High period of the SCL clock 4 tLOW;SEXT Cumulative clock low extend time (slave device) tLOW;MEXT Cumulative clock low extend time (master device) tr tf ns 35 ms µs 50 µs From START to STOP 25 ms Within each byte 10 ms Rise time of SDA and SCL 1000 ns Fall time of SDA and SCL 300 ns Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 155 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.4 Serial Communications Interface (SCI) The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero (NRZ) format The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit baud-select register. Features of the SCI module include: • Two external pins: – SCITXD: SCI transmit-output pin – SCIRXD: SCI receive-input pin NOTE: Both pins can be used as GPIO if not used for SCI. – Baud rate programmable to 64K different rates • Data-word format – 1 start bit – Data-word length programmable from 1 to 8 bits – Optional even/odd/no parity bit – 1 or 2 stop bits • Four error-detection flags: parity, overrun, framing, and break detection • Two wake-up multiprocessor modes: idle-line and address bit • Half- or full-duplex operation • Double-buffered receive and transmit functions • Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags. – Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty) – Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions) • Separate enable bits for transmitter and receiver interrupts (except BRKDT) • NRZ format • Auto baud-detect hardware logic • 16-level transmit and receive FIFO NOTE All registers in this module are 8-bit registers. When a register is accessed, the register data is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no effect. Figure 5-72 shows the SCI block diagram. 156 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 SCICTL1.1 Frame Format and Mode Parity Even/Odd SCITXD TXSHF Register TXENA Enable SCICCR.6 SCICCR.5 TX EMPTY SCICTL2.6 8 TXRDY Transmitter-Data Buffer Register TX INT ENA SCICTL2.7 SCICTL2.0 TXWAKE SCICTL1.3 8 TX FIFO _0 1 SCITXD TX FIFO Interrupt TX FIFO _1 −−−−− TX Interrupt Logic TXINT To CPU TX FIFO _15 WUT SCI TX Interrupt select logic SCITXBUF.7−0 TX FIFO registers SCIFFENA Auto baud detect logic SCIFFTX.14 SCIHBAUD. 15 − 8 Baud Rate MSbyte Register SCIRXD RXSHF SCIRXD Register RXWAKE LSPCLK SCIRXST.1 SCILBAUD. 7 − 0 Baud Rate LSbyte Register RXENA 8 SCICTL1.0 SCICTL2.1 Receive Data Buffer register RXRDY RX/BK INT ENA SCIRXST.6 SCIRXBUF.7−0 8 RX FIFO _15 −−−−− BRKDT SCIRXST.5 RX FIFO_1 RX FIFO _0 SCIRXBUF.7−0 RX FIFO Interrupt RX Interrupt Logic RXINT To CPU RX FIFO registers SCIRXST.7 SCIRXST.4 – 2 RXFFOVF SCIFFRX.15 RX Error FE OE PE RX Error RX ERR INT ENA SCICTL1.6 SCI RX Interrupt select logic Figure 5-72. SCI Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 157 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.5 Serial Peripheral Interface (SPI) The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is normally used for communications between the MCU controller and external peripherals or another controller. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and analog-to-digital converters (ADCs). Multidevice communications are supported by the master or slave operation of the SPI. The port supports a 16-level, receive and transmit FIFO for reducing CPU servicing overhead. The SPI module features include: • SPISOMI: SPI slave-output/master-input pin • SPISIMO: SPI slave-input/master-output pin • SPISTE: SPI slave transmit-enable pin • SPICLK: SPI serial-clock pin NOTE All four pins can be used as GPIO, if the SPI module is not used. • • • • • • • • • • • • Two operational modes: Master and Slave Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited by the maximum speed of the I/O buffers used on the SPI pins. Data word length: 1 to 16 data bits Four clocking schemes (controlled by clock polarity and clock phase bits) include: – Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. – Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. Simultaneous receive and transmit operation (transmit function can be disabled in software) Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithm 16-level transmit/receive FIFO DMA support High-speed mode Delayed transmit control 3-wire SPI mode SPISTE inversion for digital audio interface receive mode on devices with two SPI modules Figure 5-73 shows the SPI CPU interfaces. 158 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 PCLKCR8 LSPCLK Low-Speed Prescaler SYSCLK CPU Bit Clock Peripheral Bus SYSRS SPISIMO SPISOMI SPI GPIO MUX SPICLK SPIINT SPITXINT PIE SPISTE SPIRXDMA SPITXDMA DMA Figure 5-73. SPI CPU Interface Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 159 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.5.1 SPI Electrical Data and Timing The following sections contain the SPI External Timings in Non-High-Speed Mode: Section 5.11.5.1.1 Non-High-Speed Master Mode Timings Section 5.11.5.1.2 Non-High-Speed Slave Mode Timings The following sections contain the SPI External Timings in High-Speed Mode: Section 5.11.5.1.3 High-Speed Master Mode Timings Section 5.11.5.1.4 High-Speed Slave Mode Timings NOTE All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK, SPISIMO, and SPISOMI. For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. 160 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.11.5.1.1 Non-High-Speed Master Mode Timings Table 5-71 lists the SPI master mode switching characteristics where the clock phase = 0. Figure 5-74 shows the SPI master mode external timing where the clock phase = 0. Table 5-72 lists the SPI master mode switching characteristics where the clock phase = 1. Figure 5-75 shows the SPI master mode external timing where the clock phase = 1. Table 5-73 lists the SPI master mode timing requirements. Table 5-71. SPI Master Mode Switching Characteristics (Clock Phase = 0) over recommended operating conditions (unless otherwise noted) NO. PARAMETER 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPC1)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse 4 td(SIMO)M Delay time, SPICLK to SPISIMO valid 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK 23 td(SPC)M Delay time, SPISTE valid to SPICLK 24 td(STE)M Delay time, SPICLK to SPISTE invalid (BRR + 1) CONDITION (1) MIN MAX Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M + 0.5tc(LSPCLK) – 3 0.5tc(SPC)M + 0.5tc(LSPCLK) + 3 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) + 3 ns 5 ns Even Odd Even Odd Even, Odd Even Odd Even (1) Odd Even Odd UNIT ns ns 0.5tc(SPC)M – 6 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns 0.5tc(SPC)M – 6 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns 0.5tc(SPC)M – 6 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 161 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-72. SPI Master Mode Switching Characteristics (Clock Phase = 1) over recommended operating conditions (unless otherwise noted) NO. PARAMETER 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPC1)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse 4 td(SIMO)M Delay time, SPISIMO valid to SPICLK 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK 23 td(SPC)M Delay time, SPISTE valid to SPICLK (BRR + 1) CONDITION (1) MIN MAX Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) + 3 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M + 0.5tc(LSPCLK) – 3 0.5tc(SPC)M + 0.5tc(LSPCLK) + 3 Even 24 (1) td(STE)M Delay time, SPICLK to SPISTE invalid Odd Even Odd Even Odd Even Odd Even, Odd Even Odd UNIT ns ns ns 0.5tc(SPC)M – 4 ns 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 6 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 ns tc(SPC)M – 3 ns 0.5tc(SPC)M – 6 ns 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Table 5-73. SPI Master Mode Timing Requirements (BRR + 1) CONDITION (1) NO. MIN MAX UNIT 8 tsu(SOMI)M Setup time, SPISOMI valid before SPICLK Even, Odd 20 ns 9 th(SOMI)M Hold time, SPISOMI valid after SPICLK Even, Odd 0 ns (1) 162 The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISIMO Master Out Data Is Valid 8 9 Master In Data Must Be Valid SPISOMI 24 23 (A) SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-74. SPI Master Mode External Timing (Clock Phase = 0) 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 Master Out Data Is Valid SPISIMO 8 9 Master In Data Must Be Valid SPISOMI (A) 23 24 SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-75. SPI Master Mode External Timing (Clock Phase = 1) Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 163 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.5.1.2 Non-High-Speed Slave Mode Timings Table 5-74 lists the SPI slave mode switching characteristics. Table 5-75 lists the SPI slave mode timing requirements. Figure 5-76 shows the SPI slave mode external timing where the clock phase = 0. Figure 5-77 shows the SPI slave mode external timing where the clock phase = 1. Table 5-74. SPI Slave Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER MIN 15 td(SOMI)S Delay time, SPICLK to SPISOMI valid 16 tv(SOMI)S Valid time, SPISOMI valid after SPICLK MAX 16 0 UNIT ns ns Table 5-75. SPI Slave Mode Timing Requirements NO. MIN MAX UNIT 12 tc(SPC)S Cycle time, SPICLK 4tc(SYSCLK) ns 13 tw(SPC1)S Pulse duration, SPICLK, first pulse 2tc(SYSCLK) – 1 ns 14 tw(SPC2)S Pulse duration, SPICLK, second pulse 2tc(SYSCLK) – 1 ns 19 tsu(SIMO)S Setup time, SPISIMO valid before SPICLK 1.5tc(SYSCLK) ns 20 th(SIMO)S Hold time, SPISIMO valid after SPICLK 1.5tc(SYSCLK) ns 25 tsu(STE)S Setup time, SPISTE valid before SPICLK 1.5tc(SYSCLK) ns 26 th(STE)S Hold time, SPISTE invalid after SPICLK 1.5tc(SYSCLK) ns 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI 16 SPISOMI Data Is Valid 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-76. SPI Slave Mode External Timing (Clock Phase = 0) 164 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI Data Valid SPISOMI Data Is Valid Data Valid 16 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-77. SPI Slave Mode External Timing (Clock Phase = 1) Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 165 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.5.1.3 High-Speed Master Mode Timings Table 5-76 lists the SPI high-speed master mode switching characteristics where the clock phase = 0. Figure 5-78 shows the high-speed SPI master mode external timing where the clock phase = 0. Table 5-77 lists the SPI high-speed master mode switching characteristics where the clock phase = 1. Figure 5-79 shows the high-speed SPI master mode external timing where the clock phase = 1. Table 5-78 lists the SPI high-speed master mode timing requirements. Table 5-76. SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 0) over recommended operating conditions (unless otherwise noted) NO. PARAMETER 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPC1)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse 4 td(SIMO)M Delay time, SPICLK to SPISIMO valid 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK 23 td(SPC)M Delay time, SPISTE valid to SPICLK 24 td(STE)M Delay time, SPICLK to SPISTE invalid (BRR + 1) CONDITION (1) MIN MAX Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 ns 3 ns Even Odd Even Odd Even, Odd Even Odd Even (1) 166 Odd Even Odd UNIT ns ns 0.5tc(SPC)M – 4 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 ns 0.5tc(SPC)M – 4 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 ns 0.5tc(SPC)M – 4 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 ns The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 5-77. SPI High-Speed Master Mode Switching Characteristics (Clock Phase = 1) over recommended operating conditions (unless otherwise noted) NO. PARAMETER 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPCH)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse 4 td(SIMO)M Delay time, SPISIMO valid to SPICLK 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK 23 td(SPC)M Delay time, SPISTE valid to SPICLK (BRR + 1) CONDITION (1) MIN MAX Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) + 3 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M + 0.5tc(LSPCLK) – 3 0.5tc(SPC)M + 0.5tc(LSPCLK) + 3 Even 24 (1) td(STE)M Delay time, SPICLK to SPISTE invalid Odd Even Odd Even Odd Even Odd Even, Odd Even Odd UNIT ns ns ns 0.5tc(SPC)M – 4 ns 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 6 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 ns tc(SPC)M – 3 ns 0.5tc(SPC)M – 6 ns 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Table 5-78. SPI High-Speed Master Mode Timing Requirements (BRR + 1) CONDITION (1) NO. (1) MIN MAX UNIT 8 tsu(SOMI)M Setup time, SPISOMI valid before SPICLK Even, Odd 2 ns 9 th(SOMI)M Hold time, SPISOMI valid after SPICLK Even, Odd 11 ns The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 167 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISIMO Master Out Data Is Valid 8 9 Master In Data Must Be Valid SPISOMI 24 23 (A) SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-78. High-Speed SPI Master Mode External Timing (Clock Phase = 0) 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 Master Out Data Is Valid SPISIMO 8 9 Master In Data Must Be Valid SPISOMI 23 (A) 24 SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 5-79. High-Speed SPI Master Mode External Timing (Clock Phase = 1) 168 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.11.5.1.4 High-Speed Slave Mode Timings Table 5-79 lists the SPI high-speed slave mode switching characteristics. Table 5-80 lists the SPI highspeed slave mode timing requirements. Figure 5-80 shows the high-speed SPI slave mode external timing where the clock phase = 0. Figure 5-81 shows the high-speed SPI slave mode external timing where the clock phase = 1. Table 5-79. SPI High-Speed Slave Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER MIN 15 td(SOMI)S Delay time, SPICLK to SPISOMI valid 16 tv(SOMI)S Valid time, SPISOMI valid after SPICLK MAX 14 0 UNIT ns ns Table 5-80. SPI High-Speed Slave Mode Timing Requirements NO. MIN MAX UNIT 12 tc(SPC)S Cycle time, SPICLK 4tc(SYSCLK) ns 13 tw(SPC1)S Pulse duration, SPICLK, first pulse 2tc(SYSCLK) – 1 ns 14 tw(SPC2)S Pulse duration, SPICLK, second pulse 2tc(SYSCLK) – 1 ns 19 tsu(SIMO)S Setup time, SPISIMO valid before SPICLK 1.5tc(SYSCLK) ns 20 th(SIMO)S Hold time, SPISIMO valid after SPICLK 1.5tc(SYSCLK) ns 25 tsu(STE)S Setup time, SPISTE valid before SPICLK 1.5tc(SYSCLK) ns 26 th(STE)S Hold time, SPISTE invalid after SPICLK 1.5tc(SYSCLK) ns 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI 16 SPISOMI Data Is Valid 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-80. High-Speed SPI Slave Mode External Timing (Clock Phase = 0) Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 169 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI Data Valid SPISOMI Data Is Valid Data Valid 16 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 5-81. High-Speed SPI Slave Mode External Timing (Clock Phase = 1) 170 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.11.6 Local Interconnect Network (LIN) This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN 2.1 standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial interface designed for applications where the CAN protocol may be too expensive to implement, such as small subnetworks for cabin comfort functions like interior lighting or window control in an automotive application. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-master and multiple-slave with a message identification for multicast transmission between any network nodes. The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an SCI. The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero format. Though the registers are common for LIN and SCI, the register descriptions have notes to identify the register/bit usage in different modes. Because of this, code written for this module cannot be directly ported to the stand-alone SCI module and vice versa. The LIN module has the following features: • Compatibility with LIN 1.3, 2.0 and 2.1 protocols • Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol) • Two external pins: LINRX and LINTX • Multibuffered receive and transmit units • Identification masks for message filtering • Automatic master header generation – Programmable synchronization break field – Synchronization field – Identifier field • Slave automatic synchronization – Synchronization break detection – Optional baud rate update – Synchronization validation • 231 programmable transmission rates with 7 fractional bits • Wakeup on LINRX dominant level from transceiver • Automatic wakeup support – Wakeup signal generation – Expiration times on wakeup signals • Automatic bus idle detection • Error detection – Bit error – Bus error – No-response error – Checksum error – Synchronization field error – Parity error • Capability to use direct memory access (DMA) for transmit and receive data Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 171 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 • • • • • • www.ti.com Two interrupt lines with priority encoding for: – Receive – Transmit – ID, error, and status Support for LIN 2.0 checksum Enhanced synchronizer finite state machine (FSM) support for frame processing Enhanced handling of extended frames Enhanced baud rate generator Update wakeup/go to sleep Figure 5-82 shows the LIN block diagram. READ DATA BUS WRITE DATA BUS ADDRESS BUS CHECKSUM CALCULATOR INTERFACE ID PARTY CHECKER BIT MONITOR TXRX ERROR DETECTOR (TED) TIME-OUT CONTROL COUNTER LINRX/ SCIRX COMPARE LINTX/ SCITX FSM MASK FILTER SYNCHRONIZER 8 RECEIVE BUFFERS DMA CONTROL 8 TRANSMIT BUFFERS Figure 5-82. LIN Block Diagram 172 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.11.7 Fast Serial Interface (FSI) The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust high-speed communications. The FSI is designed to ensure data robustness across many system conditions such as chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as CRC, start- and end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified after receipt using without additional CPU interaction. Line breaks can be detected using periodic transmissions, all managed and monitored by hardware. The FSI is also tightly integrated with other control peripherals on the device. To ensure that the latest sensor data or control parameters are available, frames can be transmitted on every control loop period. An integrated skewcompensation block has been added on the receiver to handle skew that may occur between the clock and data signals due to a variety of factors, including trace-length mismatch and skews induced by an isolation chip. With embedded data robustness checks, data-link integrity checks, skew compensation, and integration with control peripherals, the FSI can enable high-speed, robust communication in any system. These and many other features of the FSI follow. The FSI module includes the following features: • Independent transmitter and receiver cores • Source-synchronous transmission • Dual data rate (DDR) • One or two data lines • Programmable data length • Skew adjustment block to compensate for board and system delay mismatches • Frame error detection • Programmable frame tagging for message filtering • Hardware ping to detect line breaks during communication (ping watchdog) • Two interrupts per FSI core • Externally triggered frame generation • Hardware- or software-calculated CRC • Embedded ECC computation module • Register write protection • DMA support • CLA task triggering • SPI compatibility mode (limited features available) The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores are configured and operated independently. The features available on the FSITX and FSIRX are described in Section 5.11.7.1 and Section 5.11.7.2, respectively. 5.11.7.1 FSI Transmitter The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0, and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured through programmable control registers. The transmitter control registers let the CPU (or the CLA) program, control, and monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU, CLA, and the DMA. The transmitter has the following features: • Automated ping frame generation • Externally triggered ping frames • Externally triggered data frames • Software-configurable frame lengths • 16-word data buffer Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 173 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 • • • • • www.ti.com Data buffer underrun and overrun detection Hardware-generated CRC on data bits Software ECC calculation on select data DMA support CLA task triggering Figure 5-83 shows the FSITX CPU interface. Figure 5-84 shows the high-level block diagram of the FSITX. Not all data paths and internal connections are shown. This diagram provides a high-level overview of the internal modules present in the FSITX. PLLRAWCLK PCLKCR18 SYSCLK SYSRSN C28x ePIE FSITXyINT1 FSITXyINT2 FSITXyCLK FSITX FSITXyD0 FSITXyD1 GPIO MUX DMA Registers Register Interface CLA FSITXyDMA A. Trigger Muxes(A) 32 The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI) chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. Figure 5-83. FSITX CPU Interface 174 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 FSITX PLLRAWCLK SYSRSN SYSCLK Transmit Clock Generator TXCLK Register Interface Core Reset FSITXINT1 Control Registers, Interrupt Management FSITXINT2 TXCLK Ping Time-out Counter FSITX_DMA_EVT Transmitter Core TXD0 External Frame Triggers TXD1 Transmit Data Buffer ECC Logic Figure 5-84. FSITX Block Diagram Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 175 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.7.1.1 FSITX Electrical Data and Timing FSITX signals must be used in sets as shown in Table 5-81. For example, GPIO10 (CLK), GPIO9 (D0), and GPIO8 (D1) from SET 2 must all be used together to ensure the timings from Table 5-82 are met. Table 5-81. FSITX GPIO Mux Groups FSI SIGNAL GPIO MUX SET SET 1 SET 2 SET 3 SET 4 FSITXA_CLK GPIO7 GPIO10 GPIO27 GPIO44 FSITXA_D0 GPIO6 GPIO9 GPIO26 GPIO45 FSITXA_D1 GPIO5 GPIO8 GPIO25 GPIO46 Table 5-82 lists the FSITX switching characteristics. Figure 5-85 shows the FSITX timings. Table 5-82. FSITX Switching Characteristics over operating free-air temperature range (unless otherwise noted) NO. PARAMETER 1 tc(TXCLK) Cycle time, TXCLK 2 tw(TXCLK) Pulse width, TXCLK low or TXCLK high td(TXCLKL–TXD) Delay time, Data valid after TXCLK rising or falling 3 MIN MAX 20 UNIT ns (0.5tc(TXCLK)) – 1 (0.5tc(TXCLK)) + 1 ns (0.25tc(TXCLK)) – 3.2 (0.25tc(TXCLK)) + 4.7 ns 1 2 FSITXCLK FSITXD0 FSITXD1 3 Figure 5-85. FSITX Timings 176 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.11.7.2 FSI Receiver The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they pass through an optional programmable delay line. The receiver core handles the data framing, CRC computation, and frame-related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is asynchronous to the device system clock. The receiver control registers let the CPU (or the CLA) program, control, and monitor the operation of the FSIRX. The receive data buffer is accessible by the CPU, CLA, and the DMA. The receiver core has the following features: • 16-word data buffer • Multiple supported frame types • Ping frame watchdog • Frame watchdog • CRC calculation and comparison in hardware • ECC detection • Programmable delay line control on incoming signals • DMA support • CLA task triggering • SPI compatibility mode Figure 5-86 shows the FSIRX CPU interface. Figure 5-87 provides a high-level overview of the internal modules present in the FSIRX. Not all data paths and internal connections are shown. PCLKCR18 SYSRSN C28x SYSCLK ePIE FSIRXyINT1 FSIRXyINT2 FSIRXyCLK FSIRX FSIRXyD0 FSIRXyD1 GPIO MUX DMA Registers Register Interface CLA FSIRXyDMA Figure 5-86. FSIRX CPU Interface Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 177 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com FSIRX SYSRSN SYSCLK Frame Watchdog Register Interface Core Reset FSITXINT1 FSITXINT2 Control Registers, Interrupt Management RXCLK Ping Watchdog FSITX_DMA_EVT Receiver Core Skew Control RXD0 RXD1 Receive Data Buffer ECC Check Logic Figure 5-87. FSIRX Block Diagram 178 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 5.11.7.2.1 FSIRX Electrical Data and Timing Table 5-83 lists the FSIRX timing requirements. Figure 5-88 shows the FSIRX timings. Table 5-83. FSIRX Timing Requirements NO. MIN MAX 20 UNIT 1 tc(RXCLK) Cycle time, RXCLK 2 tw(RXCLK) Pulse width, RXCLK low or RXCLK high 3 tsu(RXCLK–RXD) Setup time with respect to RXCLK, applies to both edges of the clock 1.7 ns 4 th(RXCLK–RXD) Hold time with respect to RXCLK, applies to both edges of the clock 3.8 ns (0.5tc(RXCLK)) – 1 ns (0.5tc(RXCLK)) + 1 ns 1 FSIRXCLK 2 FSIRXD0 FSIRXD1 3 4 Figure 5-88. FSIRX Timings Specifications Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 179 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 5.11.7.3 FSI SPI Compatibility Mode The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In this mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the FSI is able to physically interface with a SPI in this mode, the external device must be able to encode and decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with the exception of the preamble and postamble. The FSI provides the same data validation and frame checking as if it was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The external SPI is required to send all relevant information and can access standard FSI features such as the ping frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of SPI compatibility mode follows: • Data will transmit on rising edge and receive on falling edge of the clock. • Only 16-bit word size is supported. • TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full frame transmission. • No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active clock edge. • No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase is finished. • It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external clock source. 5.11.7.3.1 FSITX SPI Mode Electrical Data and Timing Table 5-84 lists the FSITX SPI mode switching characteristics. Figure 5-89 shows the FSITX SPI mode timings. Special timings are not required for the FSIRX in SPI mode. FSIRX timings listed in Table 5-83 are applicable in SPI compatibility mode. Setup and Hold times are only valid on the falling edge of FSIRXCLK because this is the active edge in SPI mode. Table 5-84. FSITX SPI Mode Switching Characteristics over operating free-air temperature range (unless otherwise noted) NO. PARAMETER MIN MAX 20 UNIT 1 tc(TXCLK) Cycle time, TXCLK 2 tw(TXCLK) Pulse width, TXCLK low or TXCLK high 3 td(TXCLKH–TXD0) Delay time, Data valid after TXCLK high 4 td(TXD1-TXCLK) Delay time, TXCLK high after TXD1 low tw(TXCLK) – 1 ns 5 td(TXCLK-TXD1) Delay time, TXD1 high after TXCLK low tw(TXCLK) – 1 ns (0.5tc(TXCLK)) – 1 ns (0.5tc(TXCLK)) + 1 ns 3 ns 1 2 FSITXCLK 3 FSITXD0 5 4 FSITXD1 Figure 5-89. FSITX SPI Mode Timings 180 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6 Detailed Description 6.1 Overview The Piccolo™ TMS320F28004x (F28004x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device. The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal processing performance. The C28x CPU is further boosted by the new TMU extended instruction set, which enables fast execution of algorithms with trigonometric operations commonly found in transforms and torque loop calculations; and the VCU-I extended instruction set, which reduces the latency for complex math operations commonly found in encoded applications. The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent 32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own dedicated memory resources and it can directly access the key peripherals that are required in a typical control system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware task-switching. The F28004x supports up to 256KB (128KW) of flash memory divided into two 128KB (64KW) banks, which enables programming and execution in parallel. Up to 100KB (50KW) of on-chip SRAM is also available in blocks of 4KB (2KW) and 16KB (8KW) for efficient system partitioning. Flash ECC, SRAM ECC/parity, and dual-zone security are also supported. High-performance analog blocks are integrated on the F28004x MCU to further enable system consolidation. Three separate 12-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. Seven PGAs on the analog front end enable on-chip voltage scaling before conversion. Seven analog comparator modules provide continuous monitoring of input voltage levels for trip conditions. The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent ePWM/HRPWM and eCAP allow for a best-in-class level of control to the system. The built-in 4-channel SDFM allows for seamless integration of an oversampling sigma-delta modulator across an isolation barrier. Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C, LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of applications. New to the C2000™ platform is the fully compliant PMBus. Additionally, in an industry first, the FSI enables high-speed, robust communication to complement the rich set of peripherals that are embedded in the device. A specially enabled device variant, TMS320F28004xC, allows access to the Configurable Logic Block (CLB) for additional interfacing features and allows access to the secure ROM, which includes a library to enable InstaSPIN-FOC™. See Device Comparison for more information. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 181 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.2 www.ti.com Functional Block Diagram Figure 6-1 shows the CPU system and associated peripherals. C28x RAM - ECC M0 - 1KW (2KB) M1 - 1KW (2KB) C28x TMU+FPU+VCU-I CPU Timer0 CPU Timer1 CPU Timer2 C28x ROM Boot - 64KW (128KB) Secure - 32KW (64KB) 10 MHz INTOSC1, INTOSC2 10–20 MHz Crystal Oscillator PLL Missing Clock Detect PF1 8x ePWM 7x eCAP (2 HRCAP Channels) 2x eQEP (CW/CCW Support) CLA to CPU - 128W CLA CPU to CLA - 128W (Type 2) Flash - ECC Flash BANK0 - 16 Sectors 64KW (128KB) Flash BANK1 - 16 Sectors 64KW (128KB) DCSM OTP ePIE (16 Hi-Res Channels) CLA MSG RAM - Parity PF3 Result 7x CMPSS Config. 3x 12-Bit ADC 2x Buffered DAC 7x PGA CLA ROM Data 4KW (8KB) Program 48KW (96KB) Local Shared RAM - Parity 16KW (32KB) LS0–LS7 8x (2KW [4KB]) Global Shared RAM - Parity 32KW (64KB) DMA GS0–GS3 4x (8KW [16KB]) PF4 (6 Channels) PF2 PF7 PF8 PF9 Data Config. GPIO 1x PMBUS 2x CAN 1x LIN 2x SCI XBAR 1x FSI RX 2x SPI 1x FSI TX 4x SD Filters 1x I2C NMI Watchdog Windowed Watchdog Copyright © 2017, Texas Instruments Incorporated Figure 6-1. Functional Block Diagram 182 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 6.3 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Memory 6.3.1 C28x Memory Map Table 6-1 describes the C28x memory map. Memories accessible by the CLA or DMA (direct memory access) are also noted. See the Memory Controller Module section of the System Control chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. Table 6-1. C28x Memory Map MEMORY ACCESS PROTECTION SECURE Yes Yes Yes Yes Yes Yes Configurable Yes Yes Yes 0x0000 9FFF Configurable Yes Yes Yes 0x0000 A000 0x0000 A7FF Configurable Yes Yes Yes 2K × 16 0x0000 A800 0x0000 AFFF Configurable Yes Yes Yes LS6 RAM 2K × 16 0x0000 B000 0x0000 B7FF Configurable Yes Yes Yes LS7 RAM 2K × 16 0x0000 B800 0x0000 BFFF Configurable Yes Yes Yes GS0 RAM 8K × 16 0x0000 C000 0x0000 DFFF Yes Yes Yes GS1 RAM 8K × 16 0x0000 E000 0x0000 FFFF Yes Yes Yes GS2 RAM 8K × 16 0x0001 0000 0x0001 1FFF Yes Yes Yes GS3 RAM 8K × 16 0x0001 2000 0x0001 3FFF Yes Yes Yes CAN A Message RAM 2K × 16 0x0004 9000 0x0004 97FF Yes CAN B Message RAM 2K × 16 0x0004 B000 0x0004 B7FF Yes Flash Bank 0 64K × 16 0x0008 0000 0x0008 FFFF Yes N/A Yes Flash Bank 1 64K × 16 0x0009 0000 0x0009 FFFF Yes N/A Yes Secure ROM 32K × 16 0x003E 8000 0x003E FFFF Boot ROM 64K × 16 0x003F 0000 0x003F FFBF Vectors 64 × 16 0x003F FFC0 0x003F FFFF CLA Data ROM 4K × 16 0x0100 1000 0x0100 1FFF Read CLA Program ROM 48K × 16 0x0102 0000 0x0102 BFFF Read SIZE START ADDRESS END ADDRESS M0 RAM 1K × 16 0x0000 0000 0x0000 03FF Yes M1 RAM 1K × 16 0x0000 0400 0x0000 07FF Yes PieVectTable 512 × 16 0x0000 0D00 0x0000 0EFF CLA-to-CPU MSGRAM 128 × 16 0x0000 1480 0x0000 14FF Read/Write Yes CPU-to-CLA MSGRAM 128 × 16 0x0000 1500 0x0000 157F Read Yes LS0 RAM 2K × 16 0x0000 8000 0x0000 87FF Configurable LS1 RAM 2K × 16 0x0000 8800 0x0000 8FFF Configurable LS2 RAM 2K × 16 0x0000 9000 0x0000 97FF LS3 RAM 2K × 16 0x0000 9800 LS4 RAM 2K × 16 LS5 RAM MEMORY CLA ACCESS DMA ACCESS ECCCAPABLE PARITY Yes Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated Yes 183 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.3.2 www.ti.com Flash Memory Map On the F28004x devices, up to two flash banks (each 128KB [64KW]) are available. The flash banks are controlled by a single FMC (flash module controller). On the devices in which there is only one flash bank (F280041 and F280040), the code to program the flash should be executed out of RAM. On the devices in which there are two flash banks (F280049, F280048, and F280045), only one bank at a time can be programmed or erased. In the dual-bank devices, the code to program the flash can be executed from one flash bank to erase or program the other flash bank, or the code can be executed from RAM. There should not be any kind of access to the flash bank on which an erase/program operation is in progress. Table 6-2 lists the addresses of flash sectors for F280049, F280048, and F280045. Table 6-3 lists the addresses of flash sectors for F280041 and F280040. Table 6-2. Addresses of Flash Sectors for F280049, F280048, and F280045 SECTOR SIZE START ADDRESS END ADDRESS OTP SECTORS TI OTP Bank 0 1K × 16 0x0007 0000 0x0007 03FF User-configurable DCSM OTP Bank 0 1K × 16 0x0007 8000 0x0007 83FF TI OTP Bank 1 1K × 16 0x0007 0400 0x0007 07FF User-configurable DCSM OTP Bank 1 1K × 16 0x0007 8400 0x0007 87FF Sector 0 4K × 16 0x0008 0000 0x0008 0FFF Sector 1 4K × 16 0x0008 1000 0x0008 1FFF Sector 2 4K × 16 0x0008 2000 0x0008 2FFF Sector 3 4K × 16 0x0008 3000 0x0008 3FFF Sector 4 4K × 16 0x0008 4000 0x0008 4FFF Sector 5 4K × 16 0x0008 5000 0x0008 5FFF Sector 6 4K × 16 0x0008 6000 0x0008 6FFF Sector 7 4K × 16 0x0008 7000 0x0008 7FFF Sector 8 4K × 16 0x0008 8000 0x0008 8FFF BANK 0 SECTORS Sector 9 4K × 16 0x0008 9000 0x0008 9FFF Sector 10 4K × 16 0x0008 A000 0x0008 AFFF Sector 11 4K × 16 0x0008 B000 0x0008 BFFF Sector 12 4K × 16 0x0008 C000 0x0008 CFFF Sector 13 4K × 16 0x0008 D000 0x0008 DFFF Sector 14 4K × 16 0x0008 E000 0x0008 EFFF Sector 15 4K × 16 0x0008 F000 0x0008 FFFF Sector 0 4K × 16 0x0009 0000 0x0009 0FFF Sector 1 4K × 16 0x0009 1000 0x0009 1FFF Sector 2 4K × 16 0x0009 2000 0x0009 2FFF Sector 3 4K × 16 0x0009 3000 0x0009 3FFF Sector 4 4K × 16 0x0009 4000 0x0009 4FFF Sector 5 4K × 16 0x0009 5000 0x0009 5FFF Sector 6 4K × 16 0x0009 6000 0x0009 6FFF Sector 7 4K × 16 0x0009 7000 0x0009 7FFF Sector 8 4K × 16 0x0009 8000 0x0009 8FFF BANK 1 SECTORS 184 Sector 9 4K × 16 0x0009 9000 0x0009 9FFF Sector 10 4K × 16 0x0009 A000 0x0009 AFFF Sector 11 4K × 16 0x0009 B000 0x0009 BFFF Sector 12 4K × 16 0x0009 C000 0x0009 CFFF Sector 13 4K × 16 0x0009 D000 0x0009 DFFF Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 6-2. Addresses of Flash Sectors for F280049, F280048, and F280045 (continued) SECTOR SIZE START ADDRESS END ADDRESS Sector 14 4K × 16 0x0009 E000 0x0009 EFFF 4K × 16 0x0009 F000 0x0009 FFFF Sector 15 FLASH ECC LOCATIONS TI OTP ECC Bank 0 128 × 16 0x0107 0000 0x0107 007F 0x0107 00FF TI OTP ECC Bank 1 128 × 16 0x0107 0080 User-configurable DCSM OTP ECC Bank 0 128 × 16 0x0107 1000 0x0107 107F User-configurable DCSM OTP ECC Bank 1 128 × 16 0x0107 1080 0x0107 10FF Flash ECC Bank 0 8K × 16 0x0108 0000 0x0108 1FFF Flash ECC Bank 1 8K × 16 0x0108 2000 0x0108 3FFF Table 6-3. Addresses of Flash Sectors for F280041 and F280040 SECTOR SIZE START ADDRESS END ADDRESS OTP SECTORS TI OTP Bank 0 1K × 16 0x0007 0000 0x0007 03FF User-configurable DCSM OTP Bank 0 1K × 16 0x0007 8000 0x0007 83FF BANK 0 SECTORS Sector 0 4K × 16 0x0008 0000 0x0008 0FFF Sector 1 4K × 16 0x0008 1000 0x0008 1FFF Sector 2 4K × 16 0x0008 2000 0x0008 2FFF Sector 3 4K × 16 0x0008 3000 0x0008 3FFF Sector 4 4K × 16 0x0008 4000 0x0008 4FFF Sector 5 4K × 16 0x0008 5000 0x0008 5FFF Sector 6 4K × 16 0x0008 6000 0x0008 6FFF Sector 7 4K × 16 0x0008 7000 0x0008 7FFF Sector 8 4K × 16 0x0008 8000 0x0008 8FFF Sector 9 4K × 16 0x0008 9000 0x0008 9FFF Sector 10 4K × 16 0x0008 A000 0x0008 AFFF Sector 11 4K × 16 0x0008 B000 0x0008 BFFF Sector 12 4K × 16 0x0008 C000 0x0008 CFFF Sector 13 4K × 16 0x0008 D000 0x0008 DFFF Sector 14 4K × 16 0x0008 E000 0x0008 EFFF 4K × 16 0x0008 F000 0x0008 FFFF Sector 15 FLASH ECC LOCATIONS TI OTP ECC Bank 0 128 × 16 0x0107 0000 0x0107 007F User-configurable DCSM OTP ECC Bank 0 128 × 16 0x0107 1000 0x0107 107F Flash ECC Bank 0 8K × 16 0x0108 0000 0x0108 1FFF Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 185 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.3.3 www.ti.com Peripheral Registers Memory Map Table 6-4 lists the peripheral registers. Table 6-4. Peripheral Registers Memory Map REGISTER STRUCTURE NAME START ADDRESS AdcaResultRegs (2) ADC_RESULT_REGS 0x0000 0B00 AdcbResultRegs (2) ADC_RESULT_REGS 0x0000 0B20 AdccResultRegs (2) ADC_RESULT_REGS 0x0000 0B40 CLA ACCESS DMA ACCESS 0x0000 0B1F Yes Yes 0x0000 0B3F Yes Yes 0x0000 0B5F Yes Yes 0x0000 0CFF Yes - CLA only no CPU access END ADDRESS PIPELINE PROTECTION (1) Peripheral Frame 0 Cla1OnlyRegs CLA_ONLY_REGS 0x0000 0C00 CpuTimer0Regs CPUTIMER_REGS 0x0000 0C00 0x0000 0C07 CpuTimer1Regs CPUTIMER_REGS 0x0000 0C08 0x0000 0C0F CpuTimer2Regs CPUTIMER_REGS 0x0000 0C10 0x0000 0C17 PieCtrlRegs PIE_CTRL_REGS 0x0000 0CE0 0x0000 0CFF Cla1SoftIntRegs CLA_SOFTINT_REGS 0x0000 0CE0 0x0000 0CFF DmaRegs DMA_REGS 0x0000 1000 0x0000 11FF Cla1Regs CLA_REGS 0x0000 1400 0x0000 147F Yes Yes - CLA only no CPU access Peripheral Frame 1 (1) (2) 186 EPwm1Regs EPWM_REGS 0x0000 4000 0x0000 40FF Yes Yes Yes EPwm2Regs EPWM_REGS 0x0000 4100 0x0000 41FF Yes Yes Yes EPwm3Regs EPWM_REGS 0x0000 4200 0x0000 42FF Yes Yes Yes EPwm4Regs EPWM_REGS 0x0000 4300 0x0000 43FF Yes Yes Yes EPwm5Regs EPWM_REGS 0x0000 4400 0x0000 44FF Yes Yes Yes EPwm6Regs EPWM_REGS 0x0000 4500 0x0000 45FF Yes Yes Yes EPwm7Regs EPWM_REGS 0x0000 4600 0x0000 46FF Yes Yes Yes EPwm8Regs EPWM_REGS 0x0000 4700 0x0000 47FF Yes Yes Yes EQep1Regs EQEP_REGS 0x0000 5100 0x0000 513F Yes Yes Yes EQep2Regs EQEP_REGS 0x0000 5140 0x0000 517F Yes Yes Yes ECap1Regs ECAP_REGS 0x0000 5200 0x0000 521F Yes Yes Yes ECap2Regs ECAP_REGS 0x0000 5240 0x0000 525F Yes Yes Yes ECap3Regs ECAP_REGS 0x0000 5280 0x0000 529F Yes Yes Yes ECap4Regs ECAP_REGS 0x0000 52C0 0x0000 52DF Yes Yes Yes ECap5Regs ECAP_REGS 0x0000 5300 0x0000 531F Yes Yes Yes ECap6Regs ECAP_REGS 0x0000 5340 0x0000 535F Yes Yes Yes Hrcap6Regs HRCAP_REGS 0x0000 5360 0x0000 537F Yes Yes Yes ECap7Regs ECAP_REGS 0x0000 5380 0x0000 539F Yes Yes Yes Hrcap7Regs HRCAP_REGS 0x0000 53A0 0x0000 53BF Yes Yes Yes Pga1Regs PGA_REGS 0x0000 5B00 0x0000 5B0F Yes Yes Yes Pga2Regs PGA_REGS 0x0000 5B10 0x0000 5B1F Yes Yes Yes Pga3Regs PGA_REGS 0x0000 5B20 0x0000 5B2F Yes Yes Yes Pga4Regs PGA_REGS 0x0000 5B30 0x0000 5B3F Yes Yes Yes Pga5Regs PGA_REGS 0x0000 5B40 0x0000 5B4F Yes Yes Yes Pga6Regs PGA_REGS 0x0000 5B50 0x0000 5B5F Yes Yes Yes Pga7Regs PGA_REGS 0x0000 5B60 0x0000 5B6F Yes Yes Yes DacaRegs DAC_REGS 0x0000 5C00 0x0000 5C0F Yes Yes Yes DacbRegs DAC_REGS 0x0000 5C10 0x0000 5C1F Yes Yes Yes Cmpss1Regs CMPSS_REGS 0x0000 5C80 0x0000 5C9F Yes Yes Yes Cmpss2Regs CMPSS_REGS 0x0000 5CA0 0x0000 5CBF Yes Yes Yes Cmpss3Regs CMPSS_REGS 0x0000 5CC0 0x0000 5CDF Yes Yes Yes Cmpss4Regs CMPSS_REGS 0x0000 5CE0 0x0000 5CFF Yes Yes Yes The CPU (not applicable for CLA or DMA) contains a write-followed-by-read protection mode to ensure that any read operation that follows a write operation within a protected address range is executed as written by delaying the read operation until the write is initiated. ADC result register has no arbitration. Each master can access any ADC result register without any arbitration. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 6-4. Peripheral Registers Memory Map (continued) REGISTER STRUCTURE NAME START ADDRESS END ADDRESS PIPELINE PROTECTION (1) CLA ACCESS DMA ACCESS Cmpss5Regs CMPSS_REGS 0x0000 5D00 0x0000 5D1F Yes Yes Yes Cmpss6Regs CMPSS_REGS 0x0000 5D20 0x0000 5D3F Yes Yes Yes Cmpss7Regs CMPSS_REGS 0x0000 5D40 0x0000 5D5F Yes Yes Yes Sdfm1Regs SDFM_REGS 0x0000 5E00 0x0000 5E7F Yes Yes Yes Peripheral Frame 2 SpiaRegs (3) SPI_REGS 0x0000 6100 0x0000 610F Yes Yes Yes SpibRegs (3) SPI_REGS 0x0000 6110 0x0000 611F Yes Yes Yes PmbusaRegs PMBUS_REGS 0x0000 6400 0x0000 641F Yes Yes Yes FsiTxaRegs FSI_TX_REGS 0x0000 6600 0x0000 667F Yes Yes Yes FsiRxaRegs FSI_RX_REGS 0x0000 6680 0x0000 66FF Yes Yes Yes Peripheral Frame 3 AdcaRegs ADC_REGS 0x0000 7400 0x0000 747F Yes Yes AdcbRegs ADC_REGS 0x0000 7480 0x0000 74FF Yes Yes AdccRegs ADC_REGS 0x0000 7500 0x0000 757F Yes Yes Peripheral Frame 4 InputXbarRegs INPUT_XBAR_REGS 0x0000 7900 0x0000 791F Yes XbarRegs XBAR_REGS 0x0000 7920 0x0000 793F Yes SyncSocRegs SYNC_SOC_REGS 0x0000 7940 0x0000 794F Yes DmaClaSrcSelRegs DMA_CLA_SRC_SEL_REGS 0x0000 7980 0x0000 79BF Yes EPwmXbarRegs EPWM_XBAR_REGS 0x0000 7A00 0x0000 7A3F Yes OutputXbarRegs OUTPUT_XBAR_REGS 0x0000 7A80 0x0000 7ABF Yes GpioCtrlRegs GPIO_CTRL_REGS 0x0000 7C00 0x0000 7EFF Yes GpioDataRegs (4) GPIO_DATA_REGS 0x0000 7F00 0x0000 7FFF Yes Yes Peripheral Frame 5 DevCfgRegs DEV_CFG_REGS 0x0005 D000 0x0005 D17F Yes ClkCfgRegs CLK_CFG_REGS 0x0005 D200 0x0005 D2FF Yes CpuSysRegs CPU_SYS_REGS 0x0005 D300 0x0005 D3FF Yes PeriphAcRegs PERIPH_AC_REGS 0x0005 D500 0x0005 D6FF Yes AnalogSubsysRegs ANALOG_SUBSYS_REGS 0x0005 D700 0x0005 D7FF Yes Peripheral Frame 6 EnhancedDebugGlobalRegs ERAD_GLOBAL_REGS 0x0005 E800 EnhancedDebugHWBP1Regs ERAD_HWBP_REGS 0x0005 E900 0x0005 E907 EnhancedDebugHWBP2Regs ERAD_HWBP_REGS 0x0005 E908 0x0005 E90F EnhancedDebugHWBP3Regs ERAD_HWBP_REGS 0x0005 E910 0x0005 E917 EnhancedDebugHWBP4Regs ERAD_HWBP_REGS 0x0005 E918 0x0005 E91F EnhancedDebugHWBP5Regs ERAD_HWBP_REGS 0x0005 E920 0x0005 E927 EnhancedDebugHWBP6Regs ERAD_HWBP_REGS 0x0005 E928 0x0005 E92F EnhancedDebugHWBP7Regs ERAD_HWBP_REGS 0x0005 E930 0x0005 E937 EnhancedDebugHWBP8Regs ERAD_HWBP_REGS 0x0005 E938 0x0005 E93F EnhancedDebugCounter1Regs ERAD_COUNTER_REGS 0x0005 E980 0x0005 E98F EnhancedDebugCounter2Regs ERAD_COUNTER_REGS 0x0005 E990 0x0005 E99F EnhancedDebugCounter3Regs ERAD_COUNTER_REGS 0x0005 E9A0 0x0005 E9AF EnhancedDebugCounter4Regs ERAD_COUNTER_REGS 0x0005 E9B0 0x0005 E9BF DcsmBank0Z1Regs DCSM_BANK0_Z1_REGS 0x0005 F000 0x0005 F022 Yes DcsmBank0Z2Regs DCSM_BANK0_Z2_REGS 0x0005 F040 0x0005 F062 Yes DcsmBank1Z1Regs DCSM_BANK1_Z1_REGS 0x0005 F100 0x0005 F122 Yes DcsmBank1Z2Regs DCSM_BANK1_Z2_REGS 0x0005 F140 0x0005 F162 Yes DcsmCommonRegs DCSM_COMMON_REGS 0x0005 F070 0x0005 F07F Yes DcsmCommon2Regs DCSM_COMMON_REGS 0x0005 F080 0x0005 F087 Yes MemCfgRegs MEM_CFG_REGS 0x0005 F400 0x0005 F47F Yes AccessProtectionRegs ACCESS_PROTECTION_REGS 0x0005 F4C0 0x0005 F4FF Yes MemoryErrorRegs MEMORY_ERROR_REGS 0x0005 F500 0x0005 F53F Yes (3) (4) 0x0005 E80A Registers with 16-bit access only. Both CPU and CLA have their own copy of GPIO_DATA_REGS, and hence, no arbitration is required between CPU and CLA. For more details, see the General-Purpose Input/Output (GPIO) chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 187 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 6-4. Peripheral Registers Memory Map (continued) START ADDRESS END ADDRESS PIPELINE PROTECTION (1) FLASH_CTRL_REGS 0x0005 F800 0x0005 FAFF Yes FLASH_ECC_REGS 0x0005 FB00 0x0005 FB3F Yes REGISTER STRUCTURE NAME Flash0CtrlRegs Flash0EccRegs CLA ACCESS DMA ACCESS Peripheral Frame 7 CanaRegs CAN_REGS 0x0004 8000 0x0004 87FF Yes Yes CanbRegs CAN_REGS 0x0004 A000 0x0004 A7FF Yes Yes RomPrefetchRegs ROM_PREFETCH_REGS 0x0005 E608 0x0005 E609 Yes DccRegs DCC_REGS 0x0005 E700 0x0005 E73F Yes 0x0000 6AFF Yes Peripheral Frame 8 LinaRegs LIN_REGS 0x0000 6A00 Yes Yes Peripheral Frame 9 188 WdRegs (3) WD_REGS 0x0000 7000 0x0000 703F Yes NmiIntruptRegs (3) NMI_INTRUPT_REGS 0x0000 7060 0x0000 706F Yes XintRegs (3) XINT_REGS 0x0000 7070 0x0000 707F Yes SciaRegs (3) SCI_REGS 0x0000 7200 0x0000 720F Yes ScibRegs (3) SCI_REGS 0x0000 7210 0x0000 721F Yes I2caRegs (3) I2C_REGS 0x0000 7300 0x0000 733F Yes Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 6.3.4 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Memory Types 6.3.4.1 Dedicated RAM (Mx RAM) The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them). 6.3.4.2 Local Shared RAM (LSx RAM) RAM blocks which are dedicated to each subsystem and are accessible only to its CPU and CLA, are called local shared RAMs (LSx RAMs). All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU write/CPU fetch) feature. By default, these memories are dedicated only to the CPU, and the user could choose to share these memories with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately (see Table 6-5). Table 6-5. Master Access for LSx RAM (With Assumption That all Other Access Protections are Disabled) MSEL_LSx CLAPGM_LSx CPU ALLOWED ACCESS CLA1 ALLOWED ACCESS COMMENT 00 X All – LSx memory is configured as CPU dedicated RAM. 01 0 All Data Read Data Write Emulation Data Read Emulation Data Write LSx memory is shared between CPU and CLA1. 01 1 Emulation Read Emulation Write Fetch Only Emulation Program Read Emulation Program Write 6.3.4.3 LSx memory is CLA1 program memory. Global Shared RAM (GSx RAM) RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx RAMs). Both the CPU and DMA have full read and write access to these memories. Table 6-6 shows the features of the GSx RAM. Table 6-6. Global Shared RAM CPU (FETCH) CPU (READ) CPU (WRITE) CPU.DMA (READ) CPU.DMA (WRITE) Yes Yes Yes Yes Yes All GSx RAM blocks have parity. The GSx RAMs have access protection (CPU write/CPU fetch/DMA write). 6.3.4.4 CLA Message RAM (CLA MSGRAM) These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write access to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA MSGRAM." The CPU and CLA both have read access to both MSGRAMs. This RAM has parity. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 189 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.4 www.ti.com Identification Table 6-7 lists the Device Identification Registers. Additional information on device identification can be found in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. See the register descriptions of PARTIDH and PARTIDL for identification of production status (TMX or TMS); availability of InstaSPIN-FOC™; and other device information. Table 6-7. Device Identification Registers NAME ADDRESS SIZE (x16) DESCRIPTION Device part identification number PARTIDH 0x0005 D00A 2 TMS320F280049 0x01FF 0500 TMS320F280049C 0x01FF 0500 TMS320F280048 0x01FE 0500 TMS320F280048C 0x01FE 0500 TMS320F280045 0x01FB 0500 TMS320F280041 0x01F7 0500 TMS320F280041C 0x01F7 0500 TMS320F280040 0x01F6 0500 TMS320F280040C 0x01F6 0500 Silicon revision number REVID 0x0005 D00C UID_UNIQUE 190 Detailed Description 0x0007 03CC 2 2 Revision 0 0x0000 0000 Revision A 0x0000 0001 Revision B 0x0000 0002 Unique identification number. This number is different on each individual device with the same PARTIDH. This unique number can be used as a serial number in the application. This number is present only on TMS Revision B devices. Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 6.5 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Bus Architecture – Peripheral Connectivity Table 6-8 lists a broad view of the peripheral and configuration register accessibility from each bus master. Table 6-8. Bus Master Peripheral Access PERIPHERALS DMA CLA CPU SYSTEM PERIPHERALS CPU Timers Y System Configuration (WD, NMIWD, LPM, Peripheral Clock Gating) Y Device Capability, Peripheral Reset Y Clock and PLL Configuration Y Flash Configuration Y Reset Configuration Y GPIO Pin Mapping and Configuration Y GPIO Data (1) Y DMA and CLA Trigger Source Select Y Y CONTROL PERIPHERALS ePWM/HRPWM Y Y Y eCAP/HRCAP Y Y Y eQEP (2) Y Y Y SDFM Y Y Y ANALOG PERIPHERALS Analog System Control Y ADC Configuration ADC Result (3) CMPSS (2) Y Y Y Y Y Y Y Y DAC (2) Y Y Y PGA (2) Y Y Y COMMUNICATION PERIPHERALS CAN Y SPI Y Y Y Y Y Y Y I2C Y PMBus SCI (2) (3) Y Y LIN (1) Y Y The GPIO Data Registers are unique for the CPU and CLA. When the GPIO Pin Mapping Register is configured to assign a GPIO to a particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO) chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual for more details. These modules are accessible from DMA but cannot trigger a DMA transfer. ADC result registers are duplicated for each master. This allows them to be read with 0-wait states with no arbitration from any or all masters. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 191 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.6 www.ti.com C28x Processor The CPU is a 32-bit fixed-point processor which draws from the best features of digital signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets. The features include: • CPU – modified Harvard architecture and circular addressing. The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this over six separate address and data buses. • RISC – single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. • Microcontroller – ease of use through an intuitive instruction set, byte packing and unpacking, and bit manipulation. For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set Reference Guide. For more information on the C28x Floating-Point Unit (FPU), see the TMS320C28x Extended Instruction Sets Technical Reference Guide. All of the features of the C28x documented in the TMS320C28x DSP CPU and Instruction Set Reference Guide apply to the C28x+VCU. All features documented in the TMS320C28x Floating Point Unit and Instruction Set Reference Guide apply to the C28x+FPU+VCU. A brief overview of the FPU, TMU, and VCU-Type 0 is provided here. An overview of the VCU-I instructions can be found in the TMS320C28x Extended Instruction Sets Technical Reference Manual. 6.6.1 Embedded Real-Time Analysis and Diagnostic (ERAD) The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and system-analysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists of the Enhanced Bus Comparator units and the Benchmark System Event Counter units. The Enhanced Bus Comparator units are used to generate hardware breakpoints, hardware watch points, and other output events. The Benchmark System Event Counter units are used to analyze and profile the system. The ERAD module is accessible by the debugger and by the application software, which significantly increases the debug capabilities of many real-time systems, especially in situations where debuggers are not connected. In the TMS320F28004x devices, the ERAD module contains eight Enhanced Bus Comparator units and four Benchmark System Event Counter units. 6.6.2 Floating-Point Unit (FPU) The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by adding registers and instructions to support IEEE single-precision floating-point operations. Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit registers. The additional floating-point unit registers are the following: • Eight floating-point result registers, RnH (where n = 0–7) • Floating-point Status Register (STF) • Repeat Block Register (RB) All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in highpriority interrupts for fast context save and restore of the floating-point registers. 192 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 6.6.3 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Trigonometric Math Unit (TMU) The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 6-9. Table 6-9. TMU Supported Instructions INSTRUCTIONS C EQUIVALENT OPERATION PIPELINE CYCLES MPY2PIF32 RaH,RbH a = b * 2pi 2/3 DIV2PIF32 RaH,RbH a = b / 2pi 2/3 DIVF32 RaH,RbH,RcH a = b/c 5 SQRTF32 RaH,RbH a = sqrt(b) 5 SINPUF32 RaH,RbH a = sin(b*2pi) 4 COSPUF32 RaH,RbH a = cos(b*2pi) 4 ATANPUF32 RaH,RbH a = atan(b)/2pi 4 QUADF32 RaH,RbH,RcH,RdH Operation to assist in calculating ATANPU2 5 No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions use the existing FPU register set (R0H to R7H) to carry out their operations. 6.6.4 Viterbi, Complex Math and CRC Unit (VCU-I) The C28x with VCU (C28x+VCU) processor extends the capabilities of the C28x fixed-point or floatingpoint CPU by adding registers and instructions to support the following algorithm types: • Viterbi decoding Viterbi decoding is commonly used in baseband communications applications. The viterbi decode algorithm consists of three main parts: branch metric calculations, compare-select (viterbi butterfly), and a traceback operation. Table 6-10 lists a summary of the VCU-I performance for each of these operations. Table 6-10. Viterbi Decode Performance VITERBI OPERATION VCU CYCLES Branch Metric Calculation (code rate = 1/2) Branch Metric Calculation (code rate = 1/3) 1 2p Viterbi Butterfly (add-compare-select) 2 (1) Traceback per Stage 3 (2) (1) (2) C28x CPU takes 15 cycles per butterfly. C28x CPU takes 22 cycles per stage. • • Cyclic redundancy check (CRC) CRC algorithms provide a straightforward method for verifying data integrity over large data blocks, communication packets, or code sections. The C28x+VCU can perform 8-, 16-, and 32-bit CRCs. For example, the VCU can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result register contains the current CRC which is updated whenever a CRC instruction is executed. Complex math Complex math is used in many applications; a few of which are: – Fast fourier transform (FFT) The complex FFT is used in spread spectrum communications, as well as many signal processing algorithms. – Complex filters Complex filters improve data reliability, transmission distance, and power efficiency. The C28x+VCU can perform a complex I and Q multiply with coefficients (four multiplies) in a single cycle. In addition, the C28x+VCU can read/write the real and imaginary parts of 16-bit complex data to memory in a single cycle. Table 6-11 lists a summary of a few complex math operations enabled by the VCU. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 193 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com Table 6-11. Complex Math Performance COMPLEX MATH OPERATION Add or Subtract VCU CYCLES NOTES 1 32 ± 32 = 32-bit (Useful for filters) Add or Subtract 1 16 ± 32 = 15-bit (Useful for FFT) Multiply 2p 16 × 16 = 32-bit 2p 32 + 32 = 32-bit, 16 × 16 = 32-bit Multiply and Accumulate (MAC) RPT MAC 194 2p+N Detailed Description Repeat MAC. Single cycle after the first operation. Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 6.7 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Control Law Accelerator (CLA) The CLA Type-2 is an independent, fully programmable, 32-bit floating-point math processor that brings concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read ADC samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster system response and higher MHz control loops. By using the CLA to service time-critical control loops, the main CPU is free to perform other system tasks such as communications and diagnostics. The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Timecritical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster system response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main CPU to perform other system and communication functions concurrently. The following is a list of major features of the CLA: • Clocked at the same rate as the main CPU (SYSCLKOUT). • An independent architecture allowing CLA algorithm execution independent of the main C28x CPU. – Complete bus architecture: • Program Address Bus (PAB) and Program Data Bus (PDB) • Data Read Address Bus (DRAB), Data Read Data Bus (DRDB), Data Write Address Bus (DWAB), and Data Write Data Bus (DWDB) – Independent 8-stage pipeline. – 16-bit program counter (MPC) – Four 32-bit result registers (MR0 to MR3) – Two 16-bit auxiliary registers (MAR0, MAR1) – Status register (MSTF) • Instruction set includes: – IEEE single-precision (32-bit) floating-point math operations – Floating-point math with parallel load or store – Floating-point multiply with parallel add or subtract – 1/X and 1/sqrt(X) estimations – Data type conversions – Conditional branch and call – Data load/store operations • The CLA program code can consist of up to eight tasks or interrupt service routines, or seven tasks and a main background task. – The start address of each task is specified by the MVECT registers. – No limit on task size as long as the tasks fit within the configurable CLA program memory space. – One task is serviced at a time until its completion. There is no nesting of tasks. – Upon task completion a task-specific interrupt is flagged within the PIE. – When a task finishes the next highest-priority pending task is automatically started. – The Type-2 CLA can have a main task that runs continuously in the background, while other highpriority events trigger a foreground task. • Task trigger mechanisms: – C28x CPU through the IACK instruction – Task1 to Task8: up to 256 possible trigger sources from peripherals connected to the shared bus on which the CLA assumes secondary ownership. – Task8 can be set to be the background task, while Tasks 1 to 7 take peripheral triggers. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 195 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 • www.ti.com Memory and Shared Peripherals: – Two dedicated message RAMs for communication between the CLA and the main CPU. – The C28x CPU can map CLA program and data memory to the main CPU space or CLA space. – The CLA, on reset, is the secondary master for all peripherals which can have either the CLA or DMA as their secondary master. Figure 6-2 shows the CLA block diagram. CLA Control Register Set MIFR(16) MPERINT1 to MPERINT8 From Shared Peripherals CLA_INT1 to CLA_INT8 MIOVF(16) MICLR(16) MICLROVF(16) PIE MIFRC(16) INT11 C28x CPU INT12 MIER(16) MIRUN(16) MCTLBGRND(16) MSTSBGRND(16) CLA1SOFTINTEN(16) CLA1INTFRC(16) LVF LUF SYSCLK CLA Clock Enable SYSRS MVECT1(16) MVECT2(16) MVECT3(16) CPU Read/Write Data Bus MVECT4(16) MVECT5(16) MVECT6(16) MVECT7(16) MVECT8(16) CLA Program Memory (LSx) CLA Program Bus LSxMSEL[MSEL_LSx] LSxCLAPGM[CLAPGM_LSx] MVECTBGRND(16) MVECTBGRNDACTIVE(16) MPSA1(32) MPSA2(32) CLA Data Memory (LSx) CLA Data Buses: DRAB -Data Read Address Bus DRDB ± Data Read Data Bus DWAB ± Data Write Address Bus DWDB ± Data Write Data Bus CLA Program Buses: PAB ± Program Address Bus PDB ± Program Data Bus CLA Data Bus MCTL(16) CLA Execution Register Set CPU Data Bus MPSACTL(16) CLA Message RAMs MPC(16) MSTF(32) MR0(32) MR1(32) MR2(32) MR3(32) MEALLOW Shared Peripherals MAR0(16) MAR1(16) CPU Read Data Bus Copyright © 2017, Texas Instruments Incorporated Figure 6-2. CLA Block Diagram 196 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 6.8 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Direct Memory Access (DMA) The DMA module provides a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong” data between buffers. These features are useful for structuring data into blocks for optimal CPU processing. DMA features include: • Six channels with independent PIE interrupts • Peripheral interrupt trigger sources – ADC interrupts and EVT signals – External Interrupts – ePWM SOC signals – CPU timers – eCAP – Sigma-Delta Filter Module – SPI transmit and receive – CAN transmit and receive – LIN transmit and receive • Data sources and destinations: – GSx RAM – ADC result registers – Control peripheral registers (ePWM, eQEP, eCAP, SDFM) – DAC and PGA registers – SPI, LIN, CAN, and PMBus registers • Word Size: 16-bit or 32-bit (SPI limited to 16-bit) • Throughput: Four cycles per word without arbitration Figure 6-3 shows a device-level block diagram of the DMA. LIN ADC WRAPPER ADC RESULTS XINT Global Shared (GSx) RAMs TIMER C28x Bus DMA Bus TINT (0-2) XINT (1-5) ADCx.INT(1-4), ADCx.EVT LINATXDMA, LINARXDMA CANxIF(1-3) ECAP(1-7)DMA SD1DRINT (1-4) EPWM(1-8).SOCA, EPWM(1-8).SOCB SPITXDMA(A-B), SPIRXDMA(A-B) DMA Trigger Source Selection DMACHSRCSEL1.CHx DMACHSRCSEL2.CHx CHx.MODE.PERINTSEL (x = 1 to 6) DMA DMA_CHx (1-6) CAN C28x PIE FSITXADMA, FSIRXADMA DMA Trigger Source eQEP DAC CMPSS PGA CPU and DMA Data Path eCAP SDFM EPWM SPI PMBUS FSI Figure 6-3. DMA Block Diagram Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 197 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.9 www.ti.com Boot ROM and Peripheral Booting The device boot ROM contains bootloading software. The device ROM has an internal bootloader (programmed by TI) that is executed when the device is powered ON, and each time the device is reset. The bootloader is used as an initial program to load the application on to device RAM through any of the bootable peripherals, or it is configured to start the application in flash, if any. Table 6-12 lists the default boot mode options. Users have the option to customize the boot modes supported as well as the boot mode select pins. Table 6-12. Device Default Boot Modes BOOT MODE GPIO24 (DEFAULT BOOT MODE SELECT PIN 1) GPIO32 (DEFAULT BOOT MODE SELECT PIN 0) Parallel IO 0 0 SCI/Wait boot 0 1 CAN 1 0 Flash 1 1 Table 6-13 lists the possible boot modes supported on the device. The default boot mode pins are GPIO24 (boot mode pin 1) and GPIO32 (boot mode pin 0). Users may choose to have weak pullups for boot mode pins if they use a peripheral on these pins as well, so the pullups can be overdriven. On this device, customers can change the factory default boot mode pins by programming user-configurable Dual Code Security Module (DCSM) OTP locations. Table 6-13. All Available Boot Modes BOOT MODE NUMBER BOOT MODE 0 Parallel IO 1 SCI/Wait boot 2 CAN 3 Flash 4 Wait 5 RAM 6 SPI Master 7 I2C Master 8 PLC NOTE All the peripheral boot modes supported use the first instance of the peripheral module (SCIA, SPIA, I2CA, CANA, and so forth). Whenever these boot modes are referred to in this section, such as SCI boot, it is actually referring to the first module instance, meaning SCI boot on the SCIA port. The same applies to the other peripheral boots. 198 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 6.9.1 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Configuring Alternate Boot Mode Pins This section explains how the boot mode select pins can be customized by the user, by programming the BOOTPIN_CONFIG location in user-configurable DCSM OTP. The location in user DCSM OTP is Z1OTP-BOOTPIN-CONFIG. When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1OTP-BOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing to OTP. The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed. Table 6-14. BOOTPIN_CONFIG Bit Fields BIT NAME DESCRIPTION Write 0x5A to these 8 bits to tell the boot ROM code that the bits in this register are valid 31-24 Key 23-16 Boot Mode Select Pin 2 (BMSP2) See BMPS0 description except for BMPS2 15-8 Boot Mode Select Pin 1 (BMSP1) See BMSP0 description except for BMPS1 Set to the GPIO pin to be used during boot (up to 255). 0x0 = GPIO0; 0x01 = GPIO1 and so on 7-0 Boot Mode Select Pin 0 (BMSP0) 0xFF is invalid and selects the factory default chosen BMSP0, if all other BMSPs are also set to 0xFF. If any other BMSPs are not set to 0xFF, then setting a BMSP to 0xFF will disable that particular BMSP. NOTE The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM automatically selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables the BMSP). • GPIO 20 to 23 • GPIO 36 • GPIO 38 • GPIO 60 to 223 Table 6-15. Stand-alone Boot Mode Select Pin Decoding BOOTPIN_CONFIG KEY BMSP0 BMSP1 BMSP2 != 0x5A Don’t Care Don’t Care Don’t Care 0xFF 0xFF 0xFF Boot as defined in the boot table for boot mode 0 (All BMSPs disabled) Valid GPIO 0xFF 0xFF Boot as defined by the value of BMSP0 (BMSP1 and BMSP2 disabled) 0xFF Valid GPIO 0xFF Boot as defined by the value of BMSP1 (BMSP0 and BMSP2 disabled) 0xFF 0xFF Valid GPIO Boot as defined by the value of BMSP2 (BMSP0 and BMSP1 disabled) Valid GPIO Valid GPIO 0xFF Boot as defined by the values of BMSP0 and BMSP1 (BMSP2 disabled) Valid GPIO 0xFF Valid GPIO Boot as defined by the values of BMSP0 and BMSP2 (BMSP1 disabled) 0xFF Valid GPIO Valid GPIO Boot as defined by the values of BMSP1 and BMSP2 (BMSP0 disabled) Valid GPIO Valid GPIO Valid GPIO Boot as defined by the values of BMSP0, BMPS1, and BMSP2 = 0x5A REALIZED BOOT MODE Boot as defined by the factory default BMSPs (GPIO24, GPIO32) Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 199 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.9.2 www.ti.com Configuring Alternate Boot Mode Options This section explains how to configure the boot definition table, BOOTDEF, for the device and the associated boot options. The 64-bit location is in user-configurable DCSM OTP in the Z1-OTP-BOOTDEFLOW and Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMUBOOTDEF-HIGH are the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEFHIGH, and can be programmed to experiment with different boot mode options without writing to OTP. The range of customization to the boot definition table depends on how many boot mode select pins are being used. For examples on how to use the BOOTPIN_CONFIG and BOOTDEF values, see the Boot Mode Example Use Cases section of the ROM Code and Peripheral Booting chapter in the TMS320F28004x Piccolo Microcontrollers Technical Reference Manual. Table 6-16. BOOTDEF Bit Fields BOOTDEF NAME BYTE POSITION BIT NAME 4-0 BOOT_DEF0 mode DESCRIPTION Set the boot Table 6-13. mode number from An unsupported boot mode will cause the device to reset. BOOT_DEF0 7-0 Set the alternative or additional boot options. 7-5 BOOT_DEF0 options This can include changing the GPIOs for a particular boot peripheral or specifying a different flash entry point. See GPIO Assignments for boot options. BOOT_DEF1 15-8 BOOT_DEF1 mode and options BOOT_DEF2 23-16 BOOT_DEF2 mode and options BOOT_DEF3 31-24 BOOT_DEF3 mode and options BOOT_DEF4 39-32 BOOT_DEF4 mode and options BOOT_DEF5 47-40 BOOT_DEF5 mode and options BOOT_DEF6 55-48 BOOT_DEF6 mode and options BOOT_DEF7 63-56 BOOT_DEF7 mode and options 6.9.3 See BOOT_DEF0 descriptions GPIO Assignments This section details the GPIOs and boot options used for each boot mode set in BOOT_DEFx at Z1-OTPBOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH. See Configuring Alternate Boot Mode Pins on how to manipulate BOOT_DEFx. Table 6-17. SCI Boot Options OPTION BOOTDEFx VALUE SCIATX GPIO SCIARX GPIO 1 0x01 GPIO29 GPIO28 2 0x21 GPIO16 GPIO17 3 0x41 GPIO8 GPIO9 4 0x61 GPIO48 GPIO49 5 0x81 GPIO24 GPIO25 NOTE Pullups are enabled on the SCIATX and SCIARX pins. 200 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Table 6-18. CAN Boot Options OPTION BOOTDEFx VALUE CANTXA GPIO CANRXA GPIO 1 0x02 GPIO32 GPIO33 2 0x22 GPIO4 GPIO5 3 0x42 GPIO31 GPIO30 4 0x62 GPIO37 GPIO35 NOTE Pullups are enabled on the CANTXA and SCIARX pins. Table 6-19. Flash Boot Options OPTION BOOTDEFx VALUE FLASH ENTRY POINT (ADDRESS) FLASH BANK, SECTOR 1 0x03 Flash – Default Option 1 (0x00080000) Bank 0, Sector 0 2 0x23 Flash – Option 2 (0x0008EFF0) Bank 0, Sector 14 3 0x43 Flash – Option 3 (0x00090000) Bank 1, Sector 0 4 0x63 Flash – Option 4 (0x0009EFF0) Bank 1, Sector 14 Table 6-20. Wait Boot Options OPTION BOOTDEFx VALUE WATCHDOG STATUS 1 0x04 Enabled 2 0x24 Disabled Table 6-21. SPI Boot Options OPTION BOOTDEFx VALUE SPIA_SIMO SPIA_SOMI SPIA_CLK SPIA_STE 1 0x26 GPIO8 GPIO10 GPIO9 GPIO11 2 0x46 GPIO54 GPIO55 GPIO56 GPIO57 3 0x66 GPIO16 GPIO17 GPIO56 GPIO57 4 0x86 GPIO8 GPIO17 GPIO9 GPIO11 NOTE Pullups are enabled on the SPIA_SIMO, SPIA_SOMI, SPIA_CLK, and SPIA_STE pins. Table 6-22. I2C Boot Options OPTION BOOTDEFx VALUE SDAA GPIO SCLA GPIO 1 0x02 GPIO32 GPIO33 2 0x42 GPIO26 GPIO27 3 0x62 GPIO42 GPIO43 Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 201 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com NOTE Pullups are enabled on the SDAA and SCLA pins. Table 6-23. Parallel Boot Options OPTION BOOTDEFx VALUE D0 to D7 GPIO DSP CONTROL GPIO HOST CONTROL GPIO 1 0x00 GPIO0 to GPIO7 GPIO16 GPIO11 NOTE Pullups are enabled on GPIO0 to GPIO7. 202 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 6.10 Watchdog The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional lower limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the watchdog is fully backward-compatible. The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable frequency divider. Figure 6-4 shows the various functional blocks within the watchdog module. WDCR(WDPS(2:0)) WDCR(WDDIS) WDCNTR(7:0) WDCLK (INTOSC1) Watchdog Prescaler /512 SYSRSn 8-bit Watchdog Counter Overflow 1-count delay Clear Count WDWCR(MIN(7:0)) WDKEY(7:0) Watchdog Key Detector 55 + AA WDRSTn WDINTn Good Key Out of Window Watchdog Window Detector Bad Key Generate 512-WDCLK Output Pulse Watchdog Time-out SCSR(WDENINT) Figure 6-4. Windowed Watchdog 6.11 Configurable Logic Block (CLB) TI uses the CLB to offer additional interfacing and control features for select C2000 devices. Functions that would otherwise be accomplished using external logic devices are now provided by on-chip TI solutions. For example, absolute encoder master protocol interfaces such as EnDat and BiSS are now provided as Position Manager solutions. In some solutions, the TI-configured CLB is used with other onchip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. In some cases, external communications transceivers may need to be added. Detailed Description Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 203 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 7 Applications, Implementation, and Layout NOTE Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 7.1 TI Design or Reference Design The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at TIDesigns. 204 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 8 Device and Documentation Support 8.1 Device and Development Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 MCU devices and support tools. Each TMS320™ MCU commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, TMS320F280049). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools). TMX Experimental device that is not necessarily representative of the final device's electrical specifications TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification TMS Fully qualified production device Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing TMDS Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZ) and temperature range (for example, S). For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI sales representative. For additional description of the device nomenclature markings on the die, see the TMS320F28004x Piccolo™ Microcontrollers Silicon Errata. Device and Documentation Support Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 205 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 320 F 280049 (blank) F 280049 Generic Part Number: TMS Orderable Part Number: X www.ti.com PZ S (A) PREFIX TMX (X) = experimental device TMP (P) = prototype device TMS (blank) = qualified device TEMPERATURE RANGE S = −40°C to 125°C (TJ) Q = −40°C to 125°C (TA) (Q refers to AEC Q100 qualification for automotive applications.) DEVICE FAMILY 320 = TMS320 MCU Family PACKAGE TYPE 100-Pin PZ Low-Profile Quad Flatpack (LQFP) 64-Pin PM LQFP 56-Pin RSH Very Thin Quad Flatpack No-Lead (VQFN) TECHNOLOGY F = Flash DEVICE 280049 280048 280045 280041 280040 A. 280049C 280048C 280041C 280040C Prefixes X and P are used in orderable part numbers. Figure 8-1. Device Nomenclature 8.2 Tools and Software TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of the device, generate code, and develop solutions follow. To view all available tools and software for C2000™ real-time control MCUs, visit the Tools & software for C2000™ real-time control MCUs page. Development Tools F280049 Experimenter's Kit for C2000 Real-Time Control Development Kits The F280049 Experimenter's Kit from Texas Instruments is an ideal kit for software development and evaluation of the TMS320F280049 microcontroller. It is a board-level module that uses the HSEC controlCARD form factor, which is a common interface used in C2000 kits and can be used in conjunction with other C2000 application kits. The F280049 controlCARD can also be used in the creation of in-house system prototypes, test stands, and many other projects that require easy access to high-performance controllers. The baseboard, to which the controlCARD mates, must only provide a single 5-V power rail for the controlCARD to be fully functional. Software Tools C2000Ware for C2000 MCUs C2000Ware for C2000™ microcontrollers is a cohesive set of development software and documentation designed to minimize software development time. From device-specific drivers and libraries to device peripheral examples, C2000Ware provides a solid foundation to begin development and evaluation of your product. Code Composer Studio™ (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. 206 Device and Documentation Support Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Pin Mux Tool The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. F021 Flash Application Programming Interface (API) The F021 Flash Application Programming Interface (API) provides a software library of functions to program, erase, and verify F021 on-chip Flash memory. Models Various models are available for download from the product Tools & Software pages. These models include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all available models, visit the Models section of the Tools & Software page for each device, which can be found in Table 8-1. Training Technical Introduction to the New C2000 TMS320F28004x Device Family Discover the newest member to the C2000 MCU family. This presentation will cover the technical details of the Piccolo TMS320F28004x architecture and highlight the new improvements to various key peripherals, such as an enhanced Type 2 CLA capable of running a background task, and the inclusion of a set of high-speed programmable gain amplifiers. Also, a completely new boot mode flow enables expanded booting options. Where applicable, a comparison to the Piccolo TMS320F2807x MCU device series will be used, and some knowledge about the previous device architectures will be helpful in understanding the topics presented in this presentation. C2000 Multi-Day Workshop The C2000™ Microcontroller 3-Day Workshop will decrease the learning curve from months to days, reduce development time, and accelerate product time to market! The workshop is perfect for both the beginner and advanced users. Based on TI’s latest F28x7x devices, this workshop combines many of the common features and peripherals found on the Piccolo™ and Delfino™ families, making it ideal for anyone interested in learning about the C2000 MCU family of devices. Device and Documentation Support Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 207 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 8.3 www.ti.com Documentation Support To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The current documentation that describes the processor, related peripherals, and other technical collateral follows. Errata TMS320F28004x Piccolo™ Microcontrollers Silicon Errata describes known advisories on silicon and provides workarounds. Technical Reference Manual TMS320F28004x Piccolo Microcontrollers Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the F28004x microcontrollers. InstaSPIN Technical Reference Manuals InstaSPIN-FOC™ and InstaSPIN-MOTION™ User's Guide describes the InstaSPIN-FOC and InstaSPINMOTION devices. CPU User's Guides TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference Guide also describes emulation features available on these DSPs. TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and instruction set of the TMU, VCU-II, and FPU accelerators. Peripheral Guides C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x DSPs. Tools Guides TMS320C28x Assembly Language Tools v17.9.0.STS User's Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device. TMS320C28x Optimizing C/C++ Compiler v17.9.0.STS User's Guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device. TMS320C28x Instruction Set Simulator Technical Overview describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x core. Application Reports Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users. Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement. An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/output structures, and future trends. 208 Device and Documentation Support Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C www.ti.com 8.4 SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now. Table 8-1. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TMS320F280049 Click here Click here Click here Click here Click here TMS320F280049C Click here Click here Click here Click here Click here TMS320F280048 Click here Click here Click here Click here Click here TMS320F280048C Click here Click here Click here Click here Click here TMS320F280045 Click here Click here Click here Click here Click here TMS320F280041 Click here Click here Click here Click here Click here TMS320F280041C Click here Click here Click here Click here Click here TMS320F280040 Click here Click here Click here Click here Click here TMS320F280040C Click here Click here Click here Click here Click here 8.5 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 8.6 Trademarks InstaSPIN-FOC, FAST, Piccolo, TMS320C2000, C2000, InstaSPIN-MOTION, Delfino, TMS320, Code Composer Studio, E2E are trademarks of Texas Instruments. Bosch is a registered trademark of Robert Bosch GmbH Corporation. All other trademarks are the property of their respective owners. 8.7 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 8.8 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Device and Documentation Support Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C Copyright © 2017, Texas Instruments Incorporated 209 TMS320F280049, TMS320F280049C TMS320F280048, TMS320F280048C, TMS320F280045 TMS320F280041, TMS320F280041C, TMS320F280040, TMS320F280040C SPRS945C – JANUARY 2017 – REVISED DECEMBER 2017 www.ti.com 9 Mechanical, Packaging, and Orderable Information 9.1 Packaging Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. For packages with a thermal pad, the MECHANICAL DATA figure shows a generic thermal pad without dimensions. For the actual thermal pad dimensions that are applicable to this device, see the THERMAL PAD MECHANICAL DATA figure. 210 Mechanical, Packaging, and Orderable Information Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TMS320F280049 TMS320F280049C TMS320F280048 TMS320F280048C TMS320F280045 TMS320F280041 TMS320F280041C TMS320F280040 TMS320F280040C PACKAGE OPTION ADDENDUM www.ti.com 30-Mar-2018 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) F280040CPMQ PREVIEW LQFP PM 64 90 TBD Call TI Call TI -40 to 125 F280040PMQ PREVIEW LQFP PM 64 90 TBD Call TI Call TI -40 to 125 F280041CPMS ACTIVE LQFP PM 64 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280041CPZQ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280041CPZS PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280041CRSHS PREVIEW VQFN RSH 56 90 TBD Call TI Call TI -40 to 125 F280041PMS ACTIVE LQFP PM 64 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280041PMS F280041PMSR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280041PMS F280041PZQ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280041PZS PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280041RSHS PREVIEW VQFN RSH 56 90 TBD Call TI Call TI -40 to 125 F280045PMS ACTIVE LQFP PM 64 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280045PMS F280045PMSR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280045PMS F280045PZS PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280045RSHS PREVIEW VQFN RSH 56 90 TBD Call TI Call TI -40 to 125 F280048CPMQ PREVIEW LQFP PM 64 90 TBD Call TI Call TI -40 to 125 F280041CPMS F280048PMQ PREVIEW LQFP PM 64 90 TBD Call TI Call TI -40 to 125 F280049CPMS ACTIVE LQFP PM 64 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280049CPZQ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280049CPZS PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280049CRSHS PREVIEW VQFN RSH 56 90 TBD Call TI Call TI -40 to 125 F280049PMS ACTIVE LQFP PM 64 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280049PMS F280049PMSR ACTIVE LQFP PM 64 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280049PMS F280049PZQ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 Addendum-Page 1 F280049CPMS Samples PACKAGE OPTION ADDENDUM www.ti.com 30-Mar-2018 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) F280049PZS PREVIEW LQFP PZ 100 90 TBD Call TI Call TI -40 to 125 F280049RSHS PREVIEW VQFN RSH 56 90 TBD Call TI Call TI -40 to 125 XF280049MPZS ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 F280049MPZS X (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 Samples MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated