ON NCP694H25HT1G 1a cmos low-dropout voltage regulator Datasheet

NCP694
1A CMOS Low-Dropout
Voltage Regulator
The NCP694 series of fixed output super low dropout linear
regulators are designed for portable battery powered applications with
high output current requirement up to 1 A and −3 mV typical load
regulation at 1 A. Each device contains a voltage reference unit, an
error amplifier, a PMOS power transistor, resistors for setting output
voltage, a current limit circuits for overcurrent and thermal−shutdown.
A standby mode with ultra low supply current can be realized with the
chip enable function.
The device is housed in the SOT−89−5 and HSON−6 packages.
Standard voltage versions are 0.8 V, 1.0 V, 1.2 V, 2.5 V, 3.3 V for fixed
version and adjustable output voltage down to 1.0 V.
http://onsemi.com
MARKING
DIAGRAMS
1
XXX
XMM
G
SOT−89−5
CASE 528AB
Features
• Maximum Operating Voltage of 6.0 V
• Minimum Output Voltage Down to 0.8 V for Fix Version and 1.0 V
•
•
•
•
•
for Adjustable Version
Load Regulation −3 mV at 1 A Output Current
Low Dropout
Build−in Auto Discharge Function for D Version
Standby Mode With Low Consumption
These are Pb−Free Devices
6
1
HSON−6
CASE 506AE
January, 2010 − Rev. 1
1
For actual marking Pb−Free indicator, “G” or microdot “G” may or may not be provided.
Battery Powered Instruments
Hand−Held Instruments
Camcorders and Cameras
Portable communication equipments
© Semiconductor Components Industries, LLC, 2010
XXX
XYYG
XXXX
= Specific Device Code
MM, YY = Lot Number
G or G
= Pb−Free Package
Typical Applications
•
•
•
•
6
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 15 of this data sheet.
1
Publication Order Number:
NCP694/D
NCP694
6 5 4
4 5 6
HSON−6
1 2 3
(TOP VIEW)
5
3 2 1
(BOTTOM VIEW)
4
4
5
SOT−89−5
1
2
3
(TOP VIEW)
3
2
1
(BOTTOM VIEW)
Figure 1. Pin Description
PIN FUNCTION DESCRIPTION FOR SOT−89−5 PACKAGE
Pin No.
Pin Name
Description
1
ADJ/NC
2
GND
3
CE
This input is used to place the device into low−power standby. When this input is pulled low, the
device is disabled. If this function is not used, Enable should be connected to Vin.
4
Vin
Positive power supply input voltage.
5
Vout
Regulated output voltage.
Adjust pin for NCP694DADJHT1G and NCP694HADJHT1G / No connection
Power supply ground
PIN FUNCTION DESCRIPTION FOR HSON−6 PACKAGE
Pin No.
Pin Name
1
Vout
Regulated output voltage
Description
2
Vout
Regulated output voltage
3
ADJ / NC
4
GND
5
CE
This input is used to place the device into low power standby. When this input is pulled low, the
device is disabled. If this function is not used, Enable should be connected to Vin.
6
Vin
Positive power supply input voltage
Adjust pin for NCP694DSANADJT1G and NCP694HSANADJT1G / No connection
Power supply ground
Vin
Vout
Vin
Vout
Vin
Vout
Vin
Vout
Vref
CE
Vref
Current Limit&
Thermal Shutdown
CE
Current Limit&
Thermal Shutdown
GND
GND
Version H (NCP694HxxxxT1G)
Version D (NCP694DxxxxT1G)
Figure 2. Internal Block Diagram
http://onsemi.com
2
NCP694
MAXIMUM RATINGS
Symbol
Value
Unit
Input Voltage
Rating
Vin
6.5
V
Enable Voltage
VCE
−0.3 to Vin
V
Output Voltage
Vout
−0.3 to Vin + 0.3
V
Power Dissipation SOT−89−5
PD
900
mW
Power Dissipation HSON−6
PD
900
mW
Operating Junction Temperature
TJ
+150
°C
Operating Ambient Temperature
TA
−40 to +85
°C
Storage Temperature
Tstg
−55 to +125
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. This device series contains ESD protection and exceeds the following tests:
Human Body Model 2000 V per JEDEC
Machine Model Method 200 V
THERMAL CHARACTERISTICS
Rating
Junction−to−Ambient SOT−89−5
Power Dissipation SOT−89−5
Junction−to−Ambient HSON−6
Power Dissipation HSON−6
NOTE:
Symbol
Test Conditions
Typical Value
Unit
RqJA
1 oz Copper Thickness, 100 mm2
111
°C/W
900
mW
111
°C/W
900
mW
PD
RqJA
1 oz Copper Thickness, 100
PD
mm2
Single component mounted on an 80 x 80 x 1.5 mm FR4 PCB with stated copper head spreading area. Using the following
boundary conditions as stated in EIA/JESD 51−1, 2, 3, 7, 12.
http://onsemi.com
3
NCP694
ELECTRICAL CHARACTERISTICS FOR FIX VERSION (Vin = Vout(nom.) + 1.0 V, VCE = Vin, Cin = 4.7 mF, Cout = 4.7 mF, TA =
25°C, unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
0.770
0.970
1.170
2.450
3.234
0.8
1.0
1.2
2.5
3.3
0.830
1.030
1.030
2.550
3.366
Output Voltage (TA = 25°C, Iout = 100 mA, Vin−Vout = 1 V)
0.8 V
1.0 V
1.2 V
2.5 V
3.3 V
Vout
Output Current (Vin−Vout = 1 V)
Iout
Input voltage
Vin
1.4
Regline
−
Load Regulation (Iout = 1 mA to 300 mA, Vin = Vout + 2.0 V)
Regload03
Load Regulation (Iout = 1 mA to 1 A, Vin = Vout + 2.0 V)
Regload1
Supply Current (Iout = 0 A, (Vin − Vout) = 1 V, VCE = Vin)
1
Unit
V
A
6.0
V
0.05
0.2
%/V
−15
−2
15
mV
−
−3
−
mV
Iss
60
100
mA
Istby
0.1
1.0
mA
Short Current Limit (Vout = 0 V)
Ish
250
Output Voltage Temperature Coefficient
Tc
Line Regulation (Iout = 100 mA)
Standby Current (VCE = 0V, Vin = 6.0 V)
Enable Input Threshold Voltage
(Voltage Increasing, Output Turns On, Logic High)
(Voltage Decreasing, Output Turns Off, Logic Low)
VthCE
Enable Pull−down Current
Drop Output Voltage (TA = 25°C, Iout = 300 mA)
0.8 V Output voltage Vout (V)
1.0 V
1.2 V
2.5 V
3.3 V
Vin−Vout
Drop Output Voltage (TA = 25°C, Iout = 1A)
0.8 V Output voltage Vout (V)
1.0 V
1.2 V
2.5 V
3.3 V
Vin−Vout
mA
−
$100
−
1.0
0
−
−
6
0.4
100
220
0.33
0.22
0.18
0.10
0.05
0.570
0.470
0.320
0.150
0.100
0.72
0.64
0.56
0.32
0.18
ppm/°C
V
nA
V
V
Ripple Rejection (Ripple 200 mVpp, Iout =100 mA, f = 1 kHz)
PSRR
70
dB
Output Noise (BW = 10 Hz to 100 kHz, Iout = 1 mA)
Vnoise
30
mVrms
Tshd/Hyst
150/30
°C
RDS(on)
30
W
Thermal Shutdown Temperature/Hysteresis
RDS(on) of additional output transistor (D version only)
2. Maximum package power dissipation limits must be observed.
3. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
http://onsemi.com
4
NCP694
ELECTRICAL CHARACTERISTIC FOR ADJUSTABLE VERSION (Vin = Vout + 1 V, VCE = Vin, Cin = Cout = 4.7 mF, TA
= 25°C, unless otherwise noted)
Symbol
Min
Input Voltage
Vin
1.4
Supply Current (Vout = VADJ, Vin = 2 V, VCE = Vin)
ISS
Istandby
Characteristic
Standby Current (Vin = 6.0 V, VCE = 0 V)
Reference Voltage For Adjustable Voltage Regulator (Vout = VADJ, Vin = 2.0 V,
Iout = 100 mA
Output Voltage Range
Output Current (Vout = VADJ, Vin = 2.0 V)
Load Regulation (Vin = 1.4 V, 1 mA < Iout < 300 mA, Vout = VADJ)
Vref
0.97
Voutrange
1
Iout
1
Vout/Iout
−15
Typ
Max
Unit
6
V
60
100
uA
0.1
1
uA
1
1.03
V
Vin
V
A
−2
15
mV
Load Regulation (Vin = 1.7 V, 1 mA < Iout < 1 A, Vout = VADJ)
Vout/Iout
−3
Dropout Voltage (Vout = VADJ, Iout = 300 mA)
Vdrop300
0.18
mV
Dropout Voltage (Vout = VADJ, Iout = 1 A)
Vdrop1
0.56
Line regulation (Vout = VADJ, Iout = 100 mA, 1.5 V < Vin < 6.0 V
Vout/Vin
0.05
PSRR ( f = 1 kHz, Vout = VADJ, Vin = 2.5 V, Iout = 100 mA, Input Ripple 0.5 Vpp)
PSRR
70
dB
Output Voltage Temperature Coefficient (Iout = 100 mA, −40°C < TJ < 85°C)
Vout/TJ
$100
ppm/°C
Short Current Limit (Vout = VADJ = 0)
Ilim
250
Enable Pull−down Current
ICE
100
220
−
−
6
0.4
0.32
V
V
0.2
%V
mA
nA
Enable Input Threshold Voltage
(Voltage Increasing, Output Turns On, Logic High)
(Voltage Decreasing, Output Turns Off, Logic Low)
VthCE
Thermal Shutdown Temperature/Hysteresis
Tshdn/
Hyst
150/
30
°C
RDS(on)
30
W
RDS(on) of additional output transistor (D version only)
http://onsemi.com
5
1
0
V
NCP694
APPLICATIONS INFORMATION
Set external components, especially the output capacitor,
as close as possible to the circuit, and make leads as short as
possible.
A typical application circuit for the NCP694 series is
shown in Figure 5, Typical Application Schematic.
Input Decoupling (C1)
A 4.7 mF capacitor either ceramic or tantalum is
recommended and should be connected as close as possible
to the pins of NCP694 device. Higher values and lower ESR
will improve the overall line transient response.
Thermal
As power across the NCP694 increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and also the ambient
temperature effect the rate of temperature rise for the part.
This is stating that when the NCP694 has good thermal
conductivity through the PCB, the junction temperature will
be relatively low with high power dissipation applications.
Output Decoupling (C2)
The minimum decoupling value is 4.7 mF and can be
augmented to fulfill stringent load transient requirements.
The regulator accepts ceramic chip capacitors as well as
tantalum devices. If a tantalum capacitor is used, and its ESR
is large, the loop oscillation may result. Because of this,
select C2 carefully considering its frequency characteristics.
Larger values improve noise rejection and load regulation
transient response.
Output Voltage Setting of Adjustable Version.
An external two resistors are required for setting desired
output voltage as shows Figure 3. Output Voltage Setting.
The equation for the output voltage is mentioned in equation
below.
Enable Operation
The enable pin CE will turn on or off the regulator. These
limits of threshold are covered in the electrical specification
section of this data sheet. If the enable is not used then the
pin should be connected to Vin. The D version devices
(NCP694DxxxxT1G) have additional circuitry in order to
reach the turn−off speed faster than normal type. When the
mode is into standby with CE signal, auto discharge
transistor turns on.
V out + V ref ) R1 @ I1
+ V ref ) R1 @ ǒI adj ) I2Ǔ
+ V ref ) R1 @ ǒV refńR adjǓ ) R1 @ ǒV refńR2Ǔ
ǒ
Ǔ
+ 1.0 @ ǒ1 ) ǒR1ńR adjǓ ) ǒR1ńR2ǓǓ
+ V ref @ 1 ) ǒR1ńR adjǓ ) ǒR1ńR2Ǔ
Hints
For better accuracy, choosing R2 << Radj reduces the error
given by ADJ pin consumption. The typical resistance Radj
is showed in Figure 4. ADJ Pin Resistance
Please be sure the Vin and GND lines are sufficiently wide.
If their impedance is high, noise pickup or unstable
operation may result.
1.8
Vout
I1
Vref = 1 V
Iadj
Radj
R2
I2
1.6
Radj, RESISTANCE (MW)
R1
ADJ
GND
(eq. 1)
1.4
1.2
1.0
0.8
−50
−25
0
25
50
75
TJ, TEMPERATURE (°C)
Figure 3. Output Voltage Setting
Figure 4. ADJ Pin Resistance vs. Temperature
http://onsemi.com
6
100
NCP694
NCP694DSAN08T1G
Vin
6
5
Vin
Vout
CE
Vout
2
C2
C1
4.7 mF
Vout
1
4
GND
NC
3
GND
4.7 mF
GND
Figure 5. Typical Application Schematic
http://onsemi.com
7
NCP694
0.9
1.6
0.8
1.4
0.7
0.6
2.5 V
1.6 V
0.5
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
TYPICAL CHARACTERISTICS
Vin = 1.4 V
2.0 V
0.4
0.3
0.2
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
3.0 V
0.4
Vout = 1.5 V
TA = 25°C
0.2
0.4
0.6
0.8
1.0
1.2
OUTPUT CURRENT (A)
Figure 7. Output Voltage vs. Output Current
1.4
1.2
1.0
4.5 V
3.6 V
2.5
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
2.5 V
0.6
OUTPUT CURRENT (A)
Vin = 4.0 V
2.0
1.5
1.0
0.5
Vout = 3.3 V
TA = 25°C
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.8
1.6 V
Vin = 1.4 V
2.5 V
2.0 V
0.6
0.4
0.2
0.0
1.6
Vout = Vadj = 1.0 V
TA = 25°C
0.0
0.2
0.4
0.6
0.8
1.0
1.2
OUTPUT CURRENT (A)
OUTPUT CURRENT (A)
Figure 8. Output Voltage vs. Output Current
Figure 9. Output Voltage vs. Output Current
for Adjustable Output
1.4
1.6
1.2
1.4
OUTPUT VOLTAGE (V)
1.0
OUTPUT VOLTAGE (V)
Vin = 3.5 V
0.8
Figure 6. Output Voltage vs. Output Current
3.0
0.8
0.6
Iout = 1 mA
50 mA
0.4
100 mA
0.2
0.0
1.0
0.0
0.0
1.4
3.5
0.0
1.2
0.2
Vout = 0.8 V
TA = 25°C
0.1
1.7 V
Vout = 0.8 V
TA = 25°C
300 mA
0.0
1.0
2.0
3.0
4.0
5.0
1.2
1.0
0.8
Iout = 1 mA
0.6
50 mA
0.4
100 mA
0.2
6.0
0.0
Vout = 1.5 V
TA = 25°C
300 mA
0.0
1.0
2.0
3.0
4.0
5.0
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
Figure 10. Output Voltage vs. Input Voltage
Figure 11. Output Voltage vs. Input Voltage
http://onsemi.com
8
6.0
NCP694
70.0
3.0
60.0
2.5
2.0
1.5
Iout = 1 mA
1.0
50 mA
0.5
0
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
3.5
100 mA
Vout = 3.3 V
TA = 25°C
300 mA
0
1.0
2.0
3.0
4.0
5.0
50.0
40.0
30.0
20.0
Vout = 0.8 V
Iout = 0 mA
TA = 25°C
10.0
0
6.0
0
1
2
3
4
5
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
Figure 12. Output Voltage vs. Input Voltage
Figure 13. Supply Current vs. Input Voltage
70.0
70.0
60.0
60.0
SUPPLY CURRENT (mA)
OUTPUT VOLTAGE (V)
TYPICAL CHARACTERISTICS
50.0
40.0
30.0
20.0
Vout = 1.5 V
Iout = 0 mA
TA = 25°C
10.0
0.0
0
1
2
3
4
5
50.0
40.0
30.0
20.0
Vout = 3.3 V
Iout = 0 mA
TA = 25°C
10.0
0.0
6
0
1
2
3
4
5
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
Figure 14. Supply Current vs. Input Voltage
Figure 15. Supply Current vs. Input Voltage
0.820
6
6
1.520
0.810
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
0.815
0.805
0.800
0.795
0.790
Vout = 0.8 V
Iout = 0 mA
0.785
0.780
−40.0
−20.0
0.0
20.0
40.0
60.0
1.510
1.500
1.490
1.480
1.470
−40.0
80.0
Vout = 1.5 V
Iout = 0 mA
−20.0
0.0
20.0
40.0
60.0
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 16. Output Voltage vs. Temperature
Figure 17. Output Voltage vs. Temperature
http://onsemi.com
9
80.0
NCP694
TYPICAL CHARACTERISTICS
3.302
0.8
DROPOUT VOLTAGE (V)
3.299
3.298
3.297
3.296
3.295
3.294
Vout = 3.3 V
Iout = 0 mA
3.293
DROPOUT VOLTAGE (V)
3.292
−40.0
−20.0
0.0
20.0
40.0
60.0
0.6
0.5
−40°C
0.3
0.2
Vout = 0.8 V
0.1
80.0
0.0
0.0
0.6
0.8
1.0
Figure 18. Output Voltage vs. Temperature
Figure 19. Dropout Voltage vs. Output Current
0.18
0.3
TA = 85°C
0.25
0.2
25°C
0.15
0.1
−40°C
Vout = 1.5 V
0.05
0.2
0.4
0.6
OUTPUT CURRENT (A)
0.8
0.16
0.14
TA = 85°C
0.12
0.10
0.08
0.06
25°C
0.04
0.00
0.0
1
0.7
0.6
DROPOUT VOLTAGE (V)
0.7
0.5
TA = 85°C
0.4
0.3
25°C
0.2
−40°C
0.1
Vout = Vadj = 1 V
0.2
0.4
0.6
OUTPUT CURRENT (A)
0.8
0.1
0.2
0.3 0.4 0.5 0.6 0.7
OUTPUT CURRENT (A)
0.8
0.9
1.0
Figure 21. Dropout Voltage vs. Output Current
0.8
0.6
Vout = 3.3 V
−40°C
0.02
Figure 20. Dropout Voltage vs. Output Current
DROPOUT VOLTAGE (V)
0.4
OUTPUT CURRENT (A)
0.35
0.0
0.0
0.2
TEMPERATURE (°C)
0.20
0
25°C
0.4
0.4
0
TA = 85°C
0.7
3.300
DROPOUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
3.301
1.0
TA = 25°C
0.5
0.4
0.3
Iout = 1 A
0.2
500 mA
0.1
0
100 mA
1
Figure 22. Dropout Voltage vs. Output Current
for Adjustable Output
1.5
2
2.5
3
3.5
4
SET OUTPUT VOLTAGE (V)
4.5
Figure 23. Dropout Voltage vs. Set Output
Voltage
http://onsemi.com
10
5
NCP694
TYPICAL CHARACTERISTICS
90
80
70
80
Iout = 100 mA
PSRR (dB)
40
30
0
0.1
1.0
10.0
FREQUENCY (kHz)
50
Iout = 1 A
40
30
Vout = 1.5 V
Vin = 2.5 V + 0.5 VPP Modulation
TA = 25°C
Cout = 4.7 mF
20
10
0
100
0.1
1.0
10.0
FREQUENCY (kHz)
Figure 24. PSRR vs. Frequency
Figure 25. PSRR vs. Frequency
90
80
70
Iout = 100 mA
60
Iout = 1 A
50
40
30
Vout = 3.3 V
Vin = 4.3 V + 0.5 VPP Modulation
TA = 25°C
Cout = 4.7 mF
20
10
0
0.1
1.0
10.0
FREQUENCY (kHz)
100
Figure 26. PSRR vs. Frequency
3.0
0.84
2.5
0.83
2.0
1.5
1.0
Vout = 0.8 V
Vin = Step 1.8 to 2.8 V
Tr = Tf = 5 ms
Cout = 4.7 mF, Iout = 100 mA
TA = 25°C
Input Voltage
0.82
0.81
0.80
Output Voltage
0.5
0.0
−10 0
0.79
10
20
30
40 50
TIME (ms)
60
70
80
Figure 27. Line Transient Response
http://onsemi.com
11
90
0.78
100
OUTPUT VOLTAGE (V)
10
Vout = 0.8 V
Vin = 1.8 V + 0.5 VPP Modulation
TA = 25°C
Cout = 4.7 mF
PSRR (dB)
20
INPUT VOLTAGE (V)
PSRR (dB)
60
Iout = 1 A
50
Iout = 100 mA
70
60
100
NCP694
6.0
3.320
5.0
3.315
Vout = 3.3 V
Vin = Step to 4.3 V to 5.3 V
Tr = Tf = 5 ms,
Cout = 4.7 mF
Iout = 100 mA
TA = 25°C
4.0
3.0
2.0
3.310
Input Voltage
3.305
3.300
Output Voltage
1.0
3.295
0.0
−10 0
10
20
30
40
50
60
70
80
90
OUTPUT VOLTAGE (V)
INPUT VOLTAGE (V)
TYPICAL CHARACTERISTICS
3.290
100
TIME (ms)
110
0.88
100
0.87
90
0.86
80
0.85
70
Vout = 0.8 V
Vin = 1.8 V
Cout = 4.7 mF,
Iout = Step 50 mA to 100 mA
TA = 25°C
60
50
40
30
0.84
Output Current
Output Voltage
0.83
0.82
0.81
0.80
OUTPUT VOLtAGE (V)
OUTPUT CURRENT (mA)
Figure 28. Input Transient Response
0.79
20
10
−10 0
10
20
30
40 50 60
TIME (ms)
70
80
90
0.78
100
110
3.37
100
3.36
Vout = 3.3 V
Vin = 4.3 V
Cout = 4.7 mF,
Iout = Step 50 mA
to 100 mA
TA = 25°C
90
80
70
60
50
3.35
3.34
3.33
Output Current
Output Voltage
40
3.32
3.31
3.30
30
3.29
20
3.28
10
−10 0
10
20
30
40 50 60
TIME (ms)
70
80
Figure 30. Load Transient Response
http://onsemi.com
12
90
3.27
100
OUTPUT VOLTAGE (V)
OUTPUT CURRENT (mA)
Figure 29. Load Transient Response
NCP694
TYPICAL CHARACTERISTICS
Figure 31. Output Voltage vs. CE Pin Turn−On NCP694Dx08xx
Figure 32. Output Voltage vs. CE Pin Turn−On NCP694Dx33xx
http://onsemi.com
13
NCP694
TYPICAL CHARACTERISTICS
Figure 33. Output Voltage vs. CE Pin Turn−Off NCP694H08xxxx
Figure 34. Output Voltage vs. CE Pin Turn−Off NCP694D08xxxx
http://onsemi.com
14
NCP694
ORDERING INFORMATION
Nominal
Output Voltage
Description
Marking
Package
Shipping†
adj.
Enable High
L00B
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694H08HT1G
0.8 V
Enable High
L08B
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694H10HT1G
1.0 V
Enable High
L10B
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694H12HT1G
1.2 V
Enable High
L12B
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694H25HT1G
2.5 V
Enable High
L25B
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694H33HT1G
3.3 V
Enable High
L33B
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
adj.
Enable High −
Auto discharge
L00D
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694D08HT1G
0.8 V
Enable High −
Auto discharge
L08D
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694D10HT1G
1.0 V
Enable High −
Auto discharge
L10D
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694D12HT1G
1.2 V
Enable High −
Auto discharge
L12D
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694D25HT1G
2.5V
Enable High −
Auto discharge
L25D
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
NCP694D33HT1G
3.3 V
Enable High −
Auto discharge
L33D
SOT−89−5
(Pb−Free)
1000 / Tape & Reel
adj.
Enable High
H00B
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694HSAN08T1G
0.8 V
Enable High
H08B
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694HSAN10T1G
1.0 V
Enable High
H10B
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694HSAN12T1G
1.2 V
Enable High
H12B
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694HSAN25T1G
2.5 V
Enable High
H25B
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694HSAN33T1G
3.3 V
Enable High
H33B
HSON−6
(Pb−Free)
3000 / Tape & Reel
adj.
Enable High −
Auto discharge
H00D
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694DSAN08T1G
0.8 V
Enable High −
Auto discharge
H08D
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694DSAN10T1G
1.0 V
Enable High −
Auto discharge
H10D
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694DSAN12T1G
1.2 V
Enable High −
Auto discharge
H12D
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694DSAN25T1G
2.5 V
Enable High −
Auto discharge
H25D
HSON−6
(Pb−Free)
3000 / Tape & Reel
NCP694DSAN33T1G
3.3 V
Enable High −
Auto discharge
H33D
HSON−6
(Pb−Free)
3000 / Tape & Reel
Device
NCP694HADJHT1G
NCP694DADJHT1G
NCP694HSANADJT1G
NCP694DSANADJT1G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
15
NCP694
PACKAGE DIMENSIONS
SOT−89, 5 LEAD
CASE 528AB−01
ISSUE O
D
E
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. LEAD THICKNESS INCLUDES LEAD FINISH.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE
MEASURED AT DATUM PLANE C.
H
DIM
A
b
b1
c
D
D2
E
e
H
L
L2
L3
L4
L5
1
TOP VIEW
c
A
0.10 C
C
SIDE VIEW
e
b1
L
e
b
2
5
L4
0.57
1.75
3
L5
L3
RECOMMENDED
MOUNTING FOOTPRINT*
L2
4X
1
MILLIMETERS
MIN
MAX
1.40
1.60
0.32
0.52
0.37
0.57
0.30
0.50
4.40
4.60
1.40
1.80
2.40
2.60
1.40
1.60
4.25
4.45
1.10
1.50
0.80
1.20
0.95
1.35
0.65
1.05
0.20
0.60
2.79
1.50
0.45
4
4.65
D2
1.30
BOTTOM VIEW
1
1.65
2X
2X
1.50
0.62
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
16
NCP694
PACKAGE DIMENSIONS
HSON−6
CASE 506AE−01
ISSUE A
A
D
PIN ONE
REFERENCE
6
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION:
MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.10 AND 0.15 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE
EXPOSED PAD AS WELL AS THE
TERMINALS.
4
E1
2X
E
0.20 C
1
2X
3
0.20 C
TOP VIEW
DIM
A
A3
b
D
D2
E
E1
E2
e
L
0.10 C
A
6X
0.08 C
SEATING
PLANE
(A3)
C
SIDE VIEW
MILLIMETERS
MIN
MAX
0.70
0.90
0.15 REF
0.20
0.40
2.90 BSC
1.40
1.60
3.00 BSC
2.80 BSC
1.50
1.70
0.95 BSC
0.15
0.25
D2
1
L
e
3
6X
EXPOSED PAD
E2
6
4
b
BOTTOM VIEW
6X
NOTE 3
0.10 C A B
0.05 C
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
17
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP694/D
Similar pages