TI CD74HCT259MT High-speed cmos logic 8-bit addressable latch Datasheet

[ /Title
(CD74
HC259
,
CD74
HCT25
9)
/Subject
(High
Speed
CMOS
Logic
8-Bit
Addres
sable
Latch)
CD54HC259, CD74HC259,
CD54HCT259, CD74HCT259
Data sheet acquired from Harris Semiconductor
SCHS173C
High-Speed CMOS Logic
8-Bit Addressable Latch
November 1997 - Revised October 2003
Features
Description
• Buffered Inputs and Outputs
The ’HC259 and ’HCT259 Addressable Latch features the
low-power consumption associated with CMOS circuitry and
has speeds comparable to low-power Schottky.
• Four Operating Modes
• Typical Propagation Delay of 15ns at VCC = 5V,
CL = 15pF, TA = 25oC
This latches three active modes and one reset mode. When
both the Latch Enable (LE) and Master Reset (MR) inputs are
low (8-line Demultiplexer mode) the output of the addressed
latch follows the Data input and all other outputs are forced
low. When both MR and LE are high (Memory Mode), all
outputs are isolated from the Data input, i.e., all latches hold
the last data presented before the LE transition from low to
high. A condition of LE low and MR high (Addressable Latch
mode) allows the addressed latch’s output to follow the data
input; all other latches are unaffected. The Reset mode (all
outputs low) results when LE is high and MR is low.
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
• Wide Operating Temperature Range . . . -55oC to 125oC
• Balanced Propagation Delay and Transition Times
• Significant Power Reduction Compared to LSTTL
Logic ICs
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
Ordering Information
PART NUMBER
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
TEMP. RANGE
(oC)
PACKAGE
CD54HC259F3A
-55 to 125
16 Ld CERDIP
CD54HCT259F3A
-55 to 125
16 Ld CERDIP
CD74HC259E
-55 to 125
16 Ld PDIP
CD74HC259M
-55 to 125
16 Ld SOIC
CD74HC259MT
-55 to 125
16 Ld SOIC
CD74HC259M96
-55 to 125
16 Ld SOIC
CD74HCT259E
-55 to 125
16 Ld PDIP
CD74HCT259M
-55 to 125
16 Ld SOIC
CD74HCT259MT
-55 to 125
16 Ld SOIC
CD74HCT259M96
-55 to 125
16 Ld SOIC
NOTE: When ordering, use the entire part number. The suffix 96
denotes tape and reel. The suffix T denotes a small-quantity reel
of 250.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© 2003, Texas Instruments Incorporated
1
CD54HC259, CD74HC259, CD54HCT259, CD74HCT259
Pinout
CD54HC259, CD54HCT259
(CERDIP)
CD74HC259, CD74HCT259
(PDIP, SOIC)
TOP VIEW
A0 1
16 VCC
A1 2
15 MR
A2 3
14 LE
Q0 4
13 D
Q1 5
12 Q7
Q2 6
11 Q6
Q3 7
10 Q5
GND 8
9 Q4
Functional Diagram
4
1
5
A0
2
A1
A2
LE
8
LATCHES
1-OF-8
DECODER
6
7
3
9
10
14
11
15
MR
12
13
D
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
GND = 8
VCC = 16
TRUTH TABLE
INPUTS
MR
LE
OUTPUT OF
ADDRESS
LATCH
H
L
D
LATCH SELECTION TABLE
SELECT INPUTS
EACH OTHER
OUTPUT
Qio
FUNCTION
Addressable
Latch
H
H
Qio
Qio
Memory
L
L
D
L
8-Line
Demultiplexer
L
H
L
L
Reset
H = High Voltage Level
L = Low Voltage Level
D = The level at the data input
Qio = The level of Qi (i = 0, 1...7, as appropriate) before the indicated steady-state input conditions were established.
2
A2
A1
A0
LATCH
ADDRESSED
L
L
L
0
L
L
H
1
L
H
L
2
L
H
H
3
H
L
L
4
H
L
H
5
H
H
L
6
H
H
H
7
CD54HC259, CD74HC259, CD54HCT259, CD74HCT259
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, IO
For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±25mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC or IGND . . . . . . . . . . . . . . . . . .±50mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
VIH
-
-
2
1.5
-
-
1.5
4.5
3.15
-
-
3.15
-
3.15
-
V
6
4.2
-
-
4.2
-
4.2
-
V
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
-
1.5
-
V
HC TYPES
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
CMOS Loads
VIL
VOH
-
VIH or VIL
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
II
VCC or
GND
-
2
-
-
0.5
-
0.5
-
0.5
V
4.5
-
-
1.35
-
1.35
-
1.35
V
6
-
-
1.8
-
1.8
-
1.8
V
-0.02
2
1.9
-
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
-
5.9
-
5.9
-
V
-
-
-
-
-
-
-
-
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
-5.2
6
5.48
-
-
5.34
-
5.2
-
V
0.02
2
-
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
0.02
6
-
-
0.1
-
0.1
-
0.1
V
-
-
-
-
-
-
-
-
-
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
5.2
6
-
-
0.26
-
0.33
-
0.4
V
-
6
-
-
±0.1
-
±1
-
±1
µA
3
CD54HC259, CD74HC259, CD54HCT259, CD74HCT259
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
ICC
VCC or
GND
0
6
-
-
8
-
80
-
160
µA
High Level Input
Voltage
VIH
-
-
4.5 to
5.5
2
-
-
2
-
2
-
V
Low Level Input
Voltage
VIL
-
-
4.5 to
5.5
-
-
0.8
-
0.8
-
0.8
V
High Level Output
Voltage
CMOS Loads
VOH
VIH or VIL
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
±0.1
-
±1
-
±1
µA
PARAMETER
Quiescent Device
Current
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
HCT TYPES
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
Quiescent Device
Current
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
II
VCC and
GND
0
5.5
-
ICC
VCC or
GND
0
5.5
-
-
8
-
80
-
160
µA
∆ICC
(Note 2)
VCC
-2.1
-
4.5 to
5.5
-
100
360
-
450
-
490
µA
NOTE:
2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT
UNIT LOADS
A0 - A2, LE
1.5
D
1.2
MR
0.75
NOTE: Unit Load is ∆ICC limit specified in DC Electrical Table, e.g.,
360µA max at 25oC.
Prerequisite for Switching Specifications
25oC
PARAMETER
SYMBOL
-40oC TO 85oC
-55oC TO 125oC
VCC (V)
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
2
70
-
-
90
-
-
105
-
-
ns
4.5
14
-
-
18
-
-
21
-
-
ns
6
12
-
-
15
-
-
18
-
-
ns
HC TYPES
Pulse Width
LE
tWL
4
CD54HC259, CD74HC259, CD54HCT259, CD74HCT259
Prerequisite for Switching Specifications
(Continued)
25oC
PARAMETER
MR
Setup Time
-55oC TO 125oC
SYMBOL
VCC (V)
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
tWL
2
70
-
-
90
-
-
105
-
-
ns
4.5
14
-
-
18
-
-
21
-
-
ns
6
12
-
-
15
-
-
18
-
-
ns
2
80
-
-
100
-
-
120
-
-
ns
4.5
16
-
-
20
-
-
24
-
-
ns
6
14
-
-
17
-
-
20
-
-
ns
2
0
-
-
0
-
-
0
-
-
ns
4.5
0
-
-
0
-
-
0
-
-
ns
6
0
-
-
0
-
-
0
-
-
ns
tSU
D to LE
A to LE
Hold Time
-40oC TO 85oC
tH
D to LE
A to LE
HCT TYPES
Pulse Width
LE
MR
tWL
4.5
18
-
-
23
-
-
27
-
-
ns
Setup Time
D to LE
A to LE
tSU
4.5
17
-
-
21
-
-
26
-
-
ns
Hold Time
D to LE
A to LE
tH
4.5
0
-
-
0
-
-
0
-
-
ns
Switching Specifications
CL = 50pF, Input tr, tf = 6ns
-40oC TO
85oC
25oC
PARAMETER
SYMBOL
TEST
CONDITIONS
tPHL
CL = 50pF
-55oC TO
125oC
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
-
-
185
-
230
-
280
ns
4.5
-
-
37
-
46
-
56
ns
CL = 15pF
5
-
15
-
-
-
-
-
ns
CL = 50pF
6
-
-
31
-
39
-
48
ns
CL = 50pF
2
-
-
170
-
215
-
255
ns
4.5
-
-
34
-
43
-
51
ns
CL = 15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
6
-
-
29
-
37
-
43
ns
HC TYPES
Propagation Delay
D to Q
LE to Q
tPHL
5
CD54HC259, CD74HC259, CD54HCT259, CD74HCT259
Switching Specifications
CL = 50pF, Input tr, tf = 6ns (Continued)
-40oC TO
85oC
25oC
PARAMETER
A to Q
MR to Q
Output Transition Time
Power Dissipation Capacitance
(Notes 3, 4)
Input Capacitance
-55oC TO
125oC
SYMBOL
TEST
CONDITIONS
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
tPHL
CL = 50pF
2
-
-
185
-
230
-
280
ns
4.5
-
-
37
-
46
-
56
ns
CL = 15pF
5
-
15
-
-
-
-
-
ns
CL = 50pF
6
-
-
31
-
39
-
48
ns
CL = 50pF
2
-
-
155
-
195
-
235
ns
4.5
-
-
31
-
39
-
47
ns
CL = 15pF
5
-
13
-
-
-
-
-
ns
CL = 50pF
6
-
-
26
-
33
-
40
ns
CL = 50pF
2
-
-
75
-
95
-
110
ns
4.5
-
-
15
-
19
-
22
ns
6
-
-
13
-
16
-
19
ns
tPHL, tPLH
tTHL, tTLH
CPD
CL = 15pF
5
-
21
-
-
-
-
-
pF
CI
CL = 50pF
-
10
-
10
-
10
-
10
pF
CL = 50pF
4.5
-
-
39
-
49
-
59
ns
CL = 15pF
5
-
16
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
38
-
48
-
57
ns
CL = 15pF
5
-
16
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
41
-
51
-
61
ns
CL = 15pF
5
-
17
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
39
-
49
-
59
ns
CL = 15pF
5
-
16
-
-
-
-
-
ns
CPD
CL = 15pF
5
-
22
-
-
-
-
-
pF
CI
CL = 50pF
-
10
-
10
-
10
-
10
pF
tTHL, tTLH
CL = 50pF
4.5
-
-
15
-
19
-
22
ns
HCT TYPES
Propagation Delay
tPHL, tPLH
D to Q
LE to Q
A to Q
MR to Q
Power Dissipation Capacitance
(Notes 3, 4)
Input Capacitance
Output Transition Time
NOTES:
3. CPD is used to determine the dynamic power consumption, per package.
4. PD = CPD VCC2 fi + ∑ CL VCC2 fO where fi = Input Frequency, fO = Output Frequency, CL = Output Load Capacitance,
VCC = Supply Voltage.
6
CD54HC259, CD74HC259, CD54HCT259, CD74HCT259
Test Circuits and Waveforms
tWL + tWH =
tfCL
trCL
50%
10%
10%
FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND
PULSE WIDTH
tf = 6ns
tr = 6ns
GND
tTHL
tTLH
1.3V
10%
INVERTING
OUTPUT
tPHL
FIGURE 3. HC TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
trCL
VCC
tfCL
GND
1.3V
0.3V
GND
tH(H)
tH(L)
VCC
DATA
INPUT
3V
2.7V
CLOCK
INPUT
50%
tH(H)
tPLH
FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
tfCL
10%
tTLH
90%
tPLH
90%
GND
tTHL
90%
50%
10%
trCL
3V
2.7V
1.3V
0.3V
INPUT
INVERTING
OUTPUT
GND
tWH
NOTE: Outputs should be switching from 10% VCC to 90% VCC in
accordance with device truth table. For fMAX, input duty cycle = 50%.
VCC
90%
50%
10%
1.3V
1.3V
tWL
tf = 6ns
tPHL
1.3V
0.3V
tWH
FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND
PULSE WIDTH
INPUT
2.7V
0.3V
GND
tr = 6ns
DATA
INPUT
50%
tH(L)
3V
1.3V
1.3V
1.3V
GND
tSU(H)
tSU(H)
tSU(L)
tTLH
90%
OUTPUT
tTHL
90%
50%
10%
tTLH
90%
1.3V
OUTPUT
tREM
3V
SET, RESET
OR PRESET
GND
tTHL
1.3V
10%
FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME,
AND PROPAGATION DELAY TIMES FOR EDGE
TRIGGERED SEQUENTIAL LOGIC CIRCUITS
tPHL
1.3V
GND
IC
CL
50pF
GND
90%
tPLH
50%
IC
tSU(L)
tPHL
tPLH
I
fCL
3V
NOTE: Outputs should be switching from 10% VCC to 90% VCC in
accordance with device truth table. For fMAX, input duty cycle = 50%.
tREM
VCC
SET, RESET
OR PRESET
tfCL = 6ns
CLOCK
50%
50%
tWL
CLOCK
INPUT
tWL + tWH =
trCL = 6ns
VCC
90%
CLOCK
I
fCL
CL
50pF
FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME,
AND PROPAGATION DELAY TIMES FOR EDGE
TRIGGERED SEQUENTIAL LOGIC CIRCUITS
7
CD54HC259, CD74HC259, CD54HCT259, CD74HCT259
Test Circuits and Waveforms
6ns
(Continued)
6ns
OUTPUT
DISABLE
90%
50%
10%
OUTPUTS
ENABLED
2.7
1.3
OUTPUT HIGH
TO OFF
50%
OUTPUTS
DISABLED
FIGURE 7. HC THREE-STATE PROPAGATION DELAY
WAVEFORM
OTHER
INPUTS
TIED HIGH
OR LOW
OUTPUT
DISABLE
IC WITH
THREESTATE
OUTPUT
GND
1.3V
tPZH
90%
OUTPUTS
ENABLED
OUTPUTS
ENABLED
0.3
10%
tPHZ
tPZH
90%
3V
tPZL
tPLZ
OUTPUT LOW
TO OFF
50%
OUTPUT HIGH
TO OFF
6ns
GND
10%
tPHZ
tf
OUTPUT
DISABLE
tPZL
tPLZ
OUTPUT LOW
TO OFF
6ns
tr
VCC
1.3V
OUTPUTS
DISABLED
OUTPUTS
ENABLED
FIGURE 8. HCT THREE-STATE PROPAGATION DELAY
WAVEFORM
OUTPUT
RL = 1kΩ
CL
50pF
VCC FOR tPLZ AND tPZL
GND FOR tPHZ AND tPZH
NOTE: Open drain waveforms tPLZ and tPZL are the same as those for three-state shown on the left. The test circuit is Output RL = 1kΩ to
VCC, CL = 50pF.
FIGURE 9. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT
8
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
PACKAGING INFORMATION
(1)
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
5962-8985201EA
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HC259F3A
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HCT259F3A
ACTIVE
CDIP
J
16
1
TBD
A42 SNPB
N / A for Pkg Type
CD74HC259E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC259EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC259M
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259M96
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259M96E4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259M96G4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259ME4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259MG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259MT
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259MTE4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC259MTG4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT259EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT259M
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259M96
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259M96E4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259M96G4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259ME4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259MG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259MT
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259MTE4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT259MTG4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
The marketing status values are defined as follows:
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Oct-2007
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
CD74HC259M96
D
16
SITE 27
330
16
6.5
10.3
2.1
8
16
Q1
CD74HCT259M96
D
16
SITE 27
330
16
6.5
10.3
2.1
8
16
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Oct-2007
Device
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
CD74HC259M96
D
16
SITE 27
342.9
336.6
28.58
CD74HCT259M96
D
16
SITE 27
342.9
336.6
28.58
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated
Similar pages