IRF IRS2118SPBF Single channel driver Datasheet

Data Sheet No. PD60227
IRS2117/IRS2118(S)PbF
SINGLE CHANNEL DRIVER
Features
•
•
•
•
•
•
•
•
Floating channel designed for bootstrap operation
Fully operational to +600 V
Tolerant to negative transient voltage, dV/dt
immune
Gate drive supply range from 10 V to 20V
Undervoltage lockout
CMOS Schmitt-triggered inputs with pull-down
Output in phase with input (IRS2117) or out of
phase with input (IRS2118)
RoHS compliant
Product Summary
VOFFSET
600 V max.
IO+/-
200 mA / 420 mA
VOUT
10 V - 20 V
ton/off (typ.)
125 ns & 105 ns
Packages
Description
The IRS2117/IRS2118 are a high voltage, high speed
power MOSFET and IGBT driver. Proprietary HVIC and
latch immune CMOS technologies enable ruggedized
monolithic construction. The logic input is compatible
with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for
minimum cross-conduction. The floating channel can
be used to drive an N-channel power MOSFET or IGBT
in the high-side or low-side configuration which operates up to 600 V.
8-Lead PDIP
IRS2117/IRS2118
8-Lead SOIC
IRS2117S/IRS2118S
Typical Connection
up to 600 V
V CC
IN
VCC
IN
COM
VB
HO
TO
LOAD
VS
IRS2117
up to 600 V
VCC
IN
VCC
VB
IN
HO
COM
(Refer to Lead Assignments for correct pin configuration). These
diagrams show electrical connections only. Please refer to our
Application Notes and DesignTips for proper circuit board layout.
www.irf.com
TO
LOAD
VS
IRS2118
1
IRS2117/IRS2118(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figs. 5 through 8.
Symbol
Definition
Min.
Max.
VB
High-side floating supply voltage
-0.3
625
VS
High-side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High-side floating output voltage
VS - 0.3
VB + 0.3
VCC
Logic supply voltage
-0.3
25
VIN
Logic input voltage
-0.3
VCC + 0.3
—
50
dVs/dt
PD
RthJA
Allowable offset supply voltage transient (Fig. 2)
Package power dissipation @ TA ≤ +25 °C
Thermal resistance, junction to ambient
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
Units
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15 V differential.
Symbol
Min.
Max.
VB
High-side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High-side floating supply offset voltage
Note 1
600
VHO
High-side floating output voltage
VS
VB
VCC
Logic supply voltage
10
20
VIN
Logic input voltage
0
VCC
TA
Ambient temperature
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
2
IRS2117/IRS2118(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified. The dynamic electrical characteristics
are measured using the test circuit shown in Fig. 3.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
—
125
200
VS = 0 V
toff
Turn-off propagation delay
—
105
180
VS = 600 V
tr
Turn-on rise time
—
75
130
tf
Turn-off fall time
—
35
65
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Input voltage - logic “1” (IRS2117) logic “0” (IRS2118) 9.5
—
—
VIL
Input voltage - logic “0” (IRS2117) logic “1” (IRS2118)
—
—
6.0
VOH
High level output voltage, VBIAS - VO
—
0.05
0.2
VOL
Low level output voltage, VO
—
0.02
0.1
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
—
50
240
IQCC
Quiescent VCC Supply Current
—
70
340
IIN+
Logic “1” input bias current
—
20
40
—
—
5.0
IIN-
Logic “0” input bias current
(IRS2117)
V
IO = 2 mA
VB = VS = 600 V
VIN = 0 V or VCC
µA
(IRS2118)
(IRS2117)
VIN = VCC
VIN = 0 V
(IRS2118)
VIN = VCC
VBSUV+
VBS supply undervoltage positive going threshold
7.6
8.6
9.6
VBSUV-
VBS supply undervoltage negative going threshold
7.2
8.2
9.2
VCCUV+
VCC supply undervoltage positive going threshold
7.6
8.6
9.6
VCCUV-
VCC supply undervoltage negative going threshold
7.2
8.2
9.2
V
VO = 0V
IO+
Output high short circuit pulsed current
200
290
—
VIN = Logic “1”
mA
IO-
Output low short circuit pulsed current
420
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
600
—
PW ≤ 10 µs
VO = 15V
VIN = Logic “0”
PW ≤ 10 µs
3
IRS2117/IRS2118(S)PbF
Functional Block Diagram (IRS2117)
Functional Block Diagram (IRS2118)
www.irf.com
4
IRS2117(S)/IRS2118(S)
Lead Definitions
Symbol
Description
VCC
IN
Logic and gate drive supply
Logic input for gate driver output (HO), in phase with HO (IRS2117)
IN
Logic input for gate driver output (HO), out of phase with HO (IRS2118)
COM
Logic ground
VB
HO
High-side floating supply
VS
High-side floating supply return
High-side gate drive output
Lead Assignments
1
2
3
VCC
VB
IN
HO
COM
VS
4
7
1
2
6
3
5
4
VCC
VB
8
IN
HO
7
COM
VS
6
5
8 Lead PDIP
8 Lead SOIC
IRS2117
IRS2117S
1
VCC
VB
8
1
VCC
VB
8
2
IN
HO
7
2
IN
HO
7
3
COM
VS
6
3
COM
VS
6
5
4
4
www.irf.com
8
5
8 Lead PDIP
8 Lead SOIC
IRS2118
IRS2118S
5
IRS2117/IRS2118(S)PbF
IN
(IRS2118)
<50 V/ns
IN
IRS2117
IRS2118
(IRS2117)
HO
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
IN
(IRS2118)
50%
50%
50%
50%
IN
(IRS2117)
IRS2117
IRS2118
www.irf.com
tr
toff
90%
HO
Figure 3. Switching Time Test Circuit
ton
10%
tf
90%
10%
Figure 4. Switching Time Waveform Definition
6
IRS2117/IRS2118(S)PbF
500
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
500
400
300
200
M ax.
100
Typ.
0
-50
400
300
M ax.
200
Typ.
100
0
-25
0
25
50
75
100
10
125
12
Temperature ( C)
500
400
400
Turn-Off Time (ns)
Turn-Off Time (ns)
500
300
200
M ax.
100
Typ.
18
20
18
20
300
M ax.
200
Typ.
100
0
-25
0
25
50
75
Temperature ( oC)
Figure 6A. Turn-Off Time
vs. Tem perature
www.irf.com
16
Figure 5B. Turn-On Time
vs. Supply Voltage
Figure 5A. Turn-On Tim e
vs. Tem perature
0
-50
14
V BIAS Supply Voltage (V)
o
100
125
10
12
14
16
V BIAS Supply Voltage (V)
Figure 6B. Turn-Off Tim e
vs. Supply Voltage
7
IRS2117/IRS2118(S)PbF
500
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
500
400
300
200
M ax.
100
400
300
200
M ax.
100
T yp.
Typ.
0
-50
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
18
20
Figure 7B. Turn-On Rise Tim e
vs. Supply Voltage
250
250
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
16
V BIAS Supply Voltage (V)
Figure 7A. Turn-On Rise Time
vs.Temperature
200
150
100
M ax.
50
0
14
Typ.
-50
150
100
M ax.
50
Typ.
0
-25
0
25
50
75
Temperature ( oC)
Figure 8A. Turn-Off Fall Tim e
vs. Tem perature
www.irf.com
200
100
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 8B. Turn-Off Fall Tim e
vs. Supply Voltage
8
13
18
12
15
Input Voltage (V)
Input Voltage (V)
IRS2117/IRS2118(S)PbF
11
10
9
M in.
8
-50
12
9
6
3
-25
0
25
50
75
100
125
10
12
o
Temperature ( C)
15
8
12
Input Voltage (V)
Input Voltage (V)
18
20
Figure 9B. Logic "1" (IRS2118 "0") Input Voltage
vs. Supply Voltage
9
7
M ax.
6
5
9
6
3
0
-25
0
25
50
75
100
125
o
Temperatre ( C)
Figure 10A. Logic "0" (IRS2118 "1") Input Voltage
vs. Tem perature
www.irf.com
16
V cc Supply Voltage (V)
Figure 9A. Logic "1" (IRS2118 "0") Input Voltage
vs. Tem perature
4
-50
14
10
12
14
16
18
20
V cc Supply Voltage (V)
Figure 10B. Logic "0" (IRS2118 "1") Input Voltage
vs. Supply Voltage
9
0.5
High Level Output Voltage (V)
High Level Output Voltage (V)
IRS2117/IRS2118(S)PbF
0.4
0.3
0.2
M ax.
0.1
Typ
0.0
-50
-25
0
25
50
75
100
0.5
0.4
0.3
M ax.
0.2
0.1
Typ
0
10
125
12
o
Temperature ( C)
Low Level Output Voltage (V)
Low Level Output Voltage (V)
0.4
0.3
0.2
M ax.
0.1
0
25
50
75
100
Temperature (oC)
Figure 12A. Low Level Output
vs.Temperature
www.irf.com
18
20
Figure 11B. High Level Output
vs. Supply Voltage (Io = 2 m A)
0.5
-25
16
V cc Supply Voltage (V)
Figure 11A. High Level Output
vs. Tem perature (Io = 2 m A)
0
-50
14
125
0.5
0.4
0.3
0.2
MAX.
0.1
0
10
12
14
16
18
20
V cc Supply Voltage (V)
Figure 12B. Low Level Output
vs. Supply Voltage
10
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
IRS2117/IRS2118(S)PbF
500
400
300
200
100
M ax.
0
0
100
o
Temperature ( C)
300
400
500
600
VB Boost Voltage (V)
Figure 13A. Offset Supply Leakage Current
vs. Temperature
Figure 13B. Offset Supply Leakage
Current vs. V B Boost Voltage
1000
VBS Supply Current (µA)
1000
VBS Supply Current (µA)
200
800
600
400
M ax.
200
Typ.
0
-50
600
400
200
M ax.
Typ.
0
-25
0
25
50
75
100
Temperature ( oC)
Figure 14A. V BS Supply Current
vs. Tem perature
www.irf.com
800
125
10
12
14
16
18
20
V BS Supply Voltage (V)
Figure 14B. V BS Supply Current
vs. Supply Voltage
11
IRS2117/IRS2118(S)PbF
1000
V cc Supply Current (µA)
V cc Supply Current (µA)
1000
800
600
400
M ax.
200
Typ.
0
-50
800
600
400
M ax.
200
Typ.
0
-25
0
25
50
75
100
125
10
12
o
Temperature ( C)
16
18
20
V cc Supply Voltage (V)
Figure 15B. V CC Supply Curre nt
vs . Supply Voltage
Figure 15A. V CC Supply Current
vs. Tem perature
120
Logic "1" Input Current (µA)
120
Logic "1" Input Current (µA)
14
100
80
60
40
M ax.
20
Typ.
0
-50
100
80
60
M ax.
40
Typ.
20
0
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC)
V CC Supply Voltage (V)
Figure 16A. Logic "1" (IRS2118 Logic"0")
Input Current vs. Temperature
Figure 16B. Logic "1" (IRS2118 Logic "0")
Input Current vs. Supply Voltage
www.irf.com
12
6
5
Logic "0" Input Bias Current (µA)
Lo gic "0" Input Bias Current (µA)
IRS2117/IRS2118(S)PbF
Max
4
3
2
1
0
-50
-25
0
25
50
75
100
125
6
5
Max
4
3
2
1
0
10
Temperature (°C)
12
14
20
vs. Voltage
vs. Temperature
16
V cc Supply Current (µA)
16
V cc Supply Current (µA)
18
Supply Voltage (V)
Figure 17B. Logic "0" Input Bias Current
Figure 17A. Logic "0" Input Bias Current
14
12
10
16
Max.
Typ.
8
Min.
14
12
10
Max
.
Typ.
8
Min.
6
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 18. V cc Undervoltage Threshold (+)
vs. Tem perature
www.irf.com
6
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 19. V cc Undervoltage Threshold (-)
vs. Tem perature
13
IRS2117/IRS2118(S)PbF
V BS Supply Current (µA)
V BS Supply Current (µA)
16
14
12
10
M ax.
Typ.
8
16
14
12
M ax.
10
Typ.
8
M in.
6
-50
M in.
-25
0
25
50
75
100
6
-50
125
-25
0
5000
2000
Typ.
Typ.
M in.
M in.
1000
00
-50
-25
0
25
50
75
100
o
Temperature ( C)
Figure 22A. Output Source Current
vs. Tem perature
www.irf.com
75
100
125
Figure 21. V BS Undervoltage Threshold (-)
vs. Tem perature
Output Source Current (mA)
Output Source Current (mA )
Figure 20. VBS Undervoltage Threshold (+)
vs. Tem perature
3000
50
Temperature ( oC)
Temperature ( oC)
4000
25
125
500
400
300
200
Typ.
Typ
.
100
M
M in.
in.
0
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 22B. Output Source Current
vs. Supply Voltage
14
IRS2117/IRS2118(S)PbF
Output Sink Current (
Output Sink Current ( )
1000
)
1000
800
600
400
Typ.
Typ.
Min.
M in.
200
0
-50
800
600
400
Typ.
Ty p.
200
Min.
Mi n.
0
-25
0
25
50
75
100
10
10
125
12
12
o
16
18
20
20
V BIAS Supply Voltage (V)
Temperature ( C)
Figure 23B. Output Sink Current
vs. Supply Voltage
Figure 23A. Output Sink Current
vs.Tem perature
vs Offset Supply Voltage (V)
14
0
-2
Typ.
-4
-6
-8
-10
-12
10
12
14
16
18
20
V BS Floting Supply Voltage (V)
Figure 24. Maxim um VS Negative Offset
vs. Supply Voltage
www.irf.com
15
IRS2117/IRS2118(S)PbF
320 V
140 V
320 V 140 V
150
125
125
o
Junction Temperature ( C)
o
Junction Temperature ( C)
150
100
75
10 V
50
100
10 V
75
50
25
25
0
0
1E+2
1E+3
1E+4
1E+5
1E+2
1E+6
1E+3
Figure 24. IRS2117/IRS2118 TJ vs.
Frequency (IRFBC20)
RGATE = 33 Ω, VCC = 15 V
1E+5
1E+6
Figure 25. IRS2117/IRS2118 TJ vs.
Frequency (IRFBC30)
RGATE = 22 Ω, VCC = 15 V
320 V 140 V 10 V
150
1E+4
Frequency (Hz)
Frequency (Hz)
320 V 140 V
150
125
o
Junction Temperature ( C)
o
Junction Temperature ( C)
10 V
125
100
75
50
25
100
75
50
25
0
0
1E+2
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 26. IRS2117/IRS2118 TJ vs.
Frequency (IRFBC40)
RGATE = 15 Ω, VCC = 15 V
www.irf.com
1E+6
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 27. IRS2117/IRS2118 TJ vs.
Frequency (IRFPE50)
RGATE = 10 Ω, VCC = 15 V
16
IRS2117/IRS2118(S)PbF
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
2
3
0.25 [.010]
4
A
6.46 [.255]
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BASIC
e1
6X
e
3X 1.27 [.050]
e1
0.25 [.010]
A1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INC HES
MIN
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
8-Lead SOIC
www.irf.com
17
IRS2117/IRS2118(S)PbF
Tape & Reel
8-Lead SOIC
LOAD ED TA PE FEED DIRECTIO N
A
B
H
D
F
C
NO TE : CON TROLLING
DIMEN SION IN MM
E
G
C A R R IE R T A P E D I M E N S I O N F O R 8 S O IC N
M e tri c
Im p e r i a l
Co de
M in
M ax
M in
M ax
A
7 .9 0
8. 10
0. 3 1 1
0 .3 1 8
B
3 .9 0
4. 10
0. 1 5 3
0 .1 6 1
C
1 1. 7 0
1 2 .3 0
0 .4 6
0 .4 8 4
D
5 .4 5
5. 55
0. 2 1 4
0 .2 1 8
E
6 .3 0
6. 50
0. 2 4 8
0 .2 5 5
F
5 .1 0
5. 30
0. 2 0 0
0 .2 0 8
G
1 .5 0
n /a
0. 0 5 9
n /a
H
1 .5 0
1. 60
0. 0 5 9
0 .0 6 2
F
D
C
B
A
E
G
H
R E E L DI M E NS I ON S FO R 8S O ICN
M et ric
I m pe rial
C o de
M in
Max
M in
M ax
A
3 2 9. 60
3 30 .2 5
1 2. 97 6
13 .0 0 1
B
20 .9 5
2 1 .4 5
0 .8 24
0 .8 44
C
12 .8 0
1 3 .2 0
0 .5 03
0 .5 19
D
1 .9 5
2. 45
0 .7 67
0 .0 96
E
98 .0 0
1 02 .0 0
3 .8 58
4 .0 15
F
n /a
1 8 .4 0
n /a
0 .7 24
G
14 .5 0
1 7 .1 0
0 .5 70
0 .6 73
H
12 .4 0
1 4 .4 0
0 .4 88
0 .5 66
www.irf.com
18
IRS2117/IRS2118(S)PbF
LEADFREE PART MARKING INFORMATION
IRSxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-LeadPDIP IRS2117PbF
8-Lead PDIP IRS2118PbF
8-Lead SOIC IRS2117SPbF
8-Lead SOIC IRS2118SPbF
8-Lead SOIC Tape & Reel IRS2117STRPbF
8-Lead SOIC Tape & Reel IRS2118STRPbF
The SOIC-8 is MSL2 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 11/20/2006
www.irf.com
19
Similar pages