LatticeECP/EC Family Data Sheet Version 01.3 LatticeECP/EC Family Data Sheet Introduction November 2004 Preliminary Data Sheet Features − − − − − − ■ Extensive Density and Package Options • 1.5K to 41K LUT4s • 65 to 576 I/Os • Density migration supported ■ sysDSP™ Block (LatticeECP™ Versions) ■ Dedicated DDR Memory Support • High performance multiply and accumulate • 4 to 10 blocks − 4 to 10 36x36 multipliers or – 16 to 40 18x18 multipliers or − 32 to 80 9x9 multipliers • Implements interface up to DDR400 (200MHz) ■ sysCLOCK™ PLLs • Up to 4 analog PLLs per device • Clock multiply, divide and phase shifting ■ System Level Support ■ Embedded and Distributed Memory • IEEE Standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer capability • SPI boot flash interface • 1.2V power supply • 18 Kbits to 645 Kbits sysMEM™ Embedded Block RAM (EBR) • Up to 163 Kbits distributed RAM • Flexible memory resources: − Distributed and block memory ■ Low Cost FPGA • Features optimized for mainstream applications • Low cost TQFP and PQFP packaging ■ Flexible I/O Buffer • Programmable sysIO™ buffer supports wide range of interfaces: Table 1-1. LatticeECP/EC Family Selection Guide Device LFEC1 LFEC3 LFEC6/ LFECP6 12 16 24 PFU/PFF Rows LVCMOS 3.3/2.5/1.8/1.5/1.2 LVTTL SSTL 3/2 Class I, II, SSTL18 Class I HSTL 18 Class I, II, III, HSTL15 Class I, III PCI LVDS, Bus-LVDS, LVPECL, RSDS LFEC10/ LFEC15/ LFEC20/ LFEC33/ LFEC40/ LFECP10 LFECP15 LFECP20 LFECP33 LFECP40 32 40 44 64 64 PFU/PFF Columns 16 24 32 40 48 56 64 80 PFUs/PFFs 192 384 768 1280 1920 2464 4096 5120 LUTs (K) 1.5 3.1 6.1 10.2 15.4 19.7 32.8 41.0 Distributed RAM (Kbits) 6 12 25 41 61 79 131 164 EBR SRAM (Kbits) 18 55 92 277 350 424 535 645 EBR SRAM Blocks 2 6 10 30 38 46 58 70 1 — — 4 5 6 7 8 10 18x18 Multipliers1 — — 16 20 24 28 32 40 VCC Voltage (V) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Number of PLLs 2 2 2 4 4 4 4 4 67 67 360 360 400 496 sysDSP Blocks Packages and I/O Combinations: 100-pin TQFP (14 x 14 mm) 144-pin TQFP (20 x 20 mm) 97 97 97 208-pin PQFP (28 x 28 mm) 112 145 147 256-ball fpBGA (17 x 17 mm) 484-ball fpBGA (23 x 23 mm) 160 147 195 195 195 224 288 352 672-ball fpBGA (27 x 27 mm) 900-ball fpBGA (31 x 31 mm) 496 576 1. LatticeECP devices only. © 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1-1 Introduction_01.2 Introduction LatticeECP/EC Family Data Sheet Lattice Semiconductor Introduction The LatticeECP/EC family of FPGA devices has been optimized to deliver mainstream FPGA features at low cost. For maximum performance and value, the LatticeECP (EConomy Plus) FPGA concept combines an efficient FPGA fabric with high-speed dedicated functions. Lattice’s first family to implement this approach is the LatticeECP-DSP (EConomy Plus DSP) family, providing dedicated high-performance DSP blocks on-chip. The LatticeEC™ (EConomy) family supports all the general purpose features of LatticeECP devices without dedicated function blocks to achieve lower cost solutions. The LatticeECP/EC FPGA fabric, which was designed from the outset with low cost in mind, contains all the critical FPGA elements: LUT-based logic, distributed and embedded memory, PLLs and support for mainstream I/Os. Dedicated DDR memory interface logic is also included to support this memory that is becoming increasingly prevalent in cost-sensitive applications. The ispLEVER® design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeECP/EC family of FPGA devices. Synthesis library support for LatticeECP/EC is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeECP/EC device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification. Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE™ modules for the LatticeECP/EC family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity. 1-2 LatticeECP/EC Family Data Sheet Architecture November 2004 Preliminary Data Sheet Architecture Overview The LatticeECP™-DSP and LatticeEC™ architectures contain an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figures 2-1 and 2-2. In addition, LatticeECP-DSP supports an additional row of DSP blocks as shown in Figure 2-2. There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every three rows of PFF blocks there is a row of PFU blocks. Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM or ROM. The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources. At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeECP/EC architecture provides up to four PLLs per device. Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG™ port which allows for serial or parallel device configuration. The LatticeECP/EC devices use 1.2V as their core voltage. © 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 2-1 Architecture_01.3 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-1. Simplified Block Diagram, LatticeECP/EC Device (Top Level) Programmable I/O Cell (PIC) includes sysIO Interface sysMEM Embedded Block RAM (EBR) JTAG Port sysCONFIG Programming Port (includes dedicated and dual use pins) PFF (PFU without RAM) sysCLOCK PLL Programmable Functional Unit (PFU) Figure 2-2. Simplified Block Diagram, LatticeECP-DSP Device (Top Level) Programmable I/O Cell (PIC) includes sysIO Interface sysMEM Embedded Block RAM (EBR) JTAG Port sysCONFIG Programming Port (includes dedicated and dual use pins) PFF (Fast PFU without RAM/ROM) sysDSP Block sysCLOCK PLL Programmable Functional Unit (PFU) 2-2 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor PFU and PFF Blocks The core of the LatticeECP/EC devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term PFU to refer to both PFU and PFF blocks. Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-3. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block. Figure 2-3. PFU Diagram From Routing LUT4 & CARRY LUT4 & CARRY LUT4 & CARRY Slice 0 D FF/ Latch D FF/ Latch LUT4 & CARRY LUT4 & CARRY Slice 1 D FF/ Latch LUT4 & CARRY LUT4 & CARRY Slice 3 Slice 2 D FF/ Latch D FF/ Latch LUT4 & CARRY D FF/ Latch D FF/ Latch D FF/ Latch To Routing Slice Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-4 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks. There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice. 2-3 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-4. Slice Diagram To / From Different slice / PFU Slice OFX1 A1 B1 C1 D1 From Routing CO LUT4 & CARRY F1 F D SUM Q1 FF/ Latch CI To Routing M1 M0 CO A0 OFX0 LUT Expansion Mux B0 C0 D0 LUT4 & CARRY F0 F SUM OFX0 CI D Q0 FF/ Latch Control Signals CE selected and CLK inverted per LSR slice in routing Interslice signals are not shown To / From Different slice / PFU Table 2-1. Slice Signal Descriptions Function Type Input Data signal A0, B0, C0, D0 Inputs to LUT4 Signal Names Description Input Data signal A1, B1, C1, D1 Inputs to LUT4 Input Multi-purpose M0 Multipurpose Input Input Multi-purpose M1 Multipurpose Input Input Control signal CE Clock Enable Input Control signal LSR Local Set/Reset Input Control signal CLK System Clock Input Inter-PFU signal FCIN Fast Carry In1 Output Data signals F0, F1 LUT4 output register bypass signals Output Data signals Q0, Q1 Register Outputs Output Data signals OFX0 Output of a LUT5 MUX Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the slice Output Inter-PFU signal FCO For the right most PFU the fast carry chain output1 1. See Figure 2-3 for connection details. 2. Requires two PFUs. 2-4 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Modes of Operation Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks. Table 2-2. Slice Modes Logic Ripple RAM ROM PFU Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit SPR16x2 ROM16x1 x 2 PFF Slice LUT 4x2 or LUT 5x1 2-bit Arithmetic Unit N/A ROM16x1 x 2 Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices. Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice: • • • • • • • Addition 2-bit Subtraction 2-bit Add/Subtract 2-bit using dynamic control Up counter 2-bit Down counter 2-bit Ripple mode multiplier building block Comparator functions of A and B inputs - A greater-than-or-equal-to B - A not-equal-to B - A less-than-or-equal-to B Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices. RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed. The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-5 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the read-only port. For more information on using RAM in LatticeECP/EC devices, please see details of additional technical documentation at the end of this data sheet. Table 2-3. Number of Slices Required For Implementing Distributed RAM SPR16x2 DPR16x2 1 2 Number of slices Note: SPR = Single Port RAM, DPR = Dual Port RAM 2-5 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-5. Distributed Memory Primitives SPR16x2 DPR16x2 AD0 AD1 AD2 AD3 WAD0 WAD1 WAD2 WAD3 DO0 DO1 DI0 DI1 WRE DI0 DI1 WCK WRE CK RAD0 RAD1 RAD2 RAD3 RDO0 RDO1 WDO0 WDO1 ROM16x1 AD0 AD1 AD2 AD3 DO0 ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration. PFU Modes of Operation Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level. Table 2-4. PFU Modes of Operation Logic Ripple RAM1 ROM LUT 4x8 or MUX 2x1 x 8 2-bit Add x 4 SPR16x2 x 4 DPR16x2 x 2 ROM16x1 x 8 LUT 5x4 or MUX 4x1 x 4 2-bit Sub x 4 SPR16x4 x 2 DPR16x4 x 1 ROM16x2 x 4 LUT 6x 2 or MUX 8x1 x 2 2-bit Counter x 4 SPR16x8 x 1 ROM16x4 x 2 LUT 7x1 or MUX 16x1 x 1 2-bit Comp x 4 ROM16x8 x 1 1. These modes are not available in PFF blocks 2-6 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Routing There are many resources provided in the LatticeECP/EC devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments. The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered allowing both short and long connections routing between PFUs. The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design. Clock Distribution Network The clock inputs are selected from external I/O, the sysCLOCK™ PLLs or routing. These clock inputs are fed through the chip via a clock distribution system. Primary Clock Sources LatticeECP/EC devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing. LatticeECP/EC devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There are four dedicated clock inputs, one on each side of the device. Figure 2-6 shows the 20 primary clock sources. Figure 2-6. Primary Clock Sources From Routing PLL Input From Routing PLL PLL 20 Primary Clock Sources To Quadrant Clock Selection Clock Input PLL Input Clock Input Clock Input PLL PLL From Routing Clock Input Note: Smaller devices have two PLLs. 2-7 From Routing PLL Input PLL Input Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Secondary Clock Sources LatticeECP/EC devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-7. Figure 2-7. Secondary Clock Sources From Routing From Routing From Routing From Routing From Routing From Routing From Routing From Routing 20 Secondary Clock Sources To Quadrant Clock Selection From Routing From Routing From Routing From Routing From Routing From Routing From Routing From Routing Clock Routing The clock routing structure in LatticeECP/EC devices consists of four Primary Clock lines and a Secondary Clock network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-8 shows this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-9. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-10. 2-8 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-8. Per Quadrant Primary Clock Selection 20 Primary Clock Sources: 12 PLLs + 4 PIOs + 4 Routing1 DCS DCS 4 Primary Clocks (CLK0, CLK1, CLK2, CLK3) per Quadrant 1. Smaller devices have fewer PLL related lines. Figure 2-9. Per Quadrant Secondary Clock Selection 20 Secondary Clock Feedlines : 4 Clock Input Pads + 16 Routing Signals 4 Secondary Clocks per Quadrant Figure 2-10. Slice Clock Selection Primary Clock Secondary Clock 4 3 Clock to Slice Routing GND sysCLOCK Phase Locked Loops (PLLs) The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signal to the feedback divider: from the CLKOP, from the clock net, or from an external pin. There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-11 shows the sysCLOCK PLL diagram. The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after 2-9 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor adjustment and not relock until the tLOCK parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output. The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs. Figure 2-11. PLL Diagram Dynamic Delay Adjustment LOCK CLKI (from routing or external pin) Input Clock Divider (CLKI) Delay Adjust Voltage VCO Controlled Oscillator Post Scalar Divider (CLKOP) Phase/Duty Select CLKOS CLKOP RST Secondary Clock Divider (CLKOK) Feedback Divider (CLKFB) CLKFB (from CLKOP, clock net or external pin) CLKOK Figure 2-12 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block. Figure 2-12. PLL Primitive CLKI CLKFB EPLLB CLKOP LOCK RST CLKOP CLKI CLKOS CLKFB CLKOK DDA MODE DDAIZR DDAILAG DDAIDEL[2:0] 2-10 EHXPLLB LOCK DDAOZR DDAOLAG DDAODEL[2:0] Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Table 2-5. PLL Signal Descriptions Signal I/O Description CLKI I Clock input from external pin or routing CLKFB I PLL feedback input from CLKOP, clocknet, or external pin RST I “1” to reset PLL CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed) CLKOP O PLL output clock to clock tree (No phase shift) CLKOK O PLL output to clock tree through secondary clock divider LOCK O “1” indicates PLL LOCK to CLKI DDAMODE I Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static) DDAIZR I Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on DDAILAG I Dynamic Delay Lag/Lead. “1”: Lead, “0”: Lag DDAIDEL[2:0] I Dynamic Delay Input DDAOZR O Dynamic Delay Zero Output DDAOLAG O Dynamic Delay Lag/Lead Output DDAODEL[2:0] O Dynamic Delay Output For more information on the PLL, please see details of additional technical documentation at the end of this data sheet. Dynamic Clock Select (DCS) The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-13 illustrates the DCS Block Macro. Figure 2-13. DCS Block Primitive CLK0 CLK1 DCS DCSOUT SEL Figure 2-14 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see details of additional technical documentation at the end of this data sheet. 2-11 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-14. DCS Waveforms CLK0 CLK1 SEL DCSOUT sysMEM Memory The LatticeECP/EC family of devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers. sysMEM Memory Block The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-6. Table 2-6. sysMEM Block Configurations Memory Mode Configurations Single Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36 True Dual Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 Pseudo Dual Port 8,192 x 1 4,096 x 2 2,048 x 4 1,024 x 9 512 x 18 256 x 36 Bus Size Matching All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port. RAM Initialization and ROM Operation If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM. 2-12 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Memory Cascading Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs. Single, Dual and Pseudo-Dual Port Modes Figure 2-15 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output. Figure 2-15. sysMEM EBR Primitives AD[12:0] DI[35:0] CLK CE RST WE CS[2:0] EBR ADA[12:0] DIA[17:0] CLKA CEA DO[35:0] RSTA WEA CSA[2:0] DOA[17:0] True Dual Port RAM Single Port RAM AD[12:0] CLK CE RST CS[2:0] EBR EBR ADB[12:0] DIB[17:0] CEB CLKB RSTB WEB CSB[2:0] DOB[17:0] ADW[12:0] DI[35:0] CLKW CEW DO[35:0] WE RST CS[2:0] ROM ADR[12:0] EBR DO[35:0] CER CLKR Pseudo-Dual Port RAM The EBR memory supports three forms of write behavior for single port or dual port operation: 1. Normal – data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. 2. Write Through – a copy of the input data appears at the output of the same port, during a write cycle. 3. Read-Before-Write – when new data is being written, the old content of the address appears at the output. Memory Core Reset The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-16. 2-13 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-16. Memory Core Reset Memory Core D SET Q Port A[17:0] LCLR Output Data Latches D SET Q Port B[17:0] LCLR RSTA RSTB GSRN Programmable Disable For further information on sysMEM EBR block, please see the details of additional technical documentation at the end of this data sheet. sysDSP Block The LatticeECP-DSP family provides a sysDSP block making it ideally suited for low cost, high performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response (FIR) filters; Fast Fourier Transforms (FFT) functions, correlators, Reed-Solomon/Turbo/Convolution encoders and decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators. sysDSP Block Approach Compare to General DSP Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. The LatticeECP, on the other hand, has many DSP blocks that support different data-widths. This allows the designer to use highly parallel implementations of DSP functions. The designer can optimize the DSP performance vs. area by choosing appropriate level of parallelism. Figure 2-17 compares the serial and the parallel implementations. 2-14 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-17. Comparison of General DSP and LatticeECP-DSP Approaches Operand A Operand A Operand A Operand B Operand A Operand B Operand B Operand B x Single Multiplier x Accumulator Σ x x Multiplier 0 Multiplier 1 M loops Multiplier (k-1) m/k loops Σ Accumulator Function implemented in General purpose DSP Output Function implemented in LatticeECP sysDSP Block Capabilities The sysDSP block in the LatticeECP-DSP family supports four functional elements in three 9, 18 and 36 data path widths. The user selects a function element for a DSP block and then selects the width and type (signed/unsigned) of its operands. The operands in the LatticeECP-DSP family sysDSP Blocks can be either signed or unsigned but not mixed within a function element. Similarly, the operand widths cannot be mixed within a block. The resources in each sysDSP block can be configured to support the following four elements: • • • • MULT MAC MULTADD MULTADDSUM (Multiply) (Multiply, Accumulate) (Multiply, Addition/Subtraction) (Multiply, Addition/Subtraction, Accumulate) The number of elements available in each block depends in the width selected from the three available options x9, x18, and x36. A number of these elements are concatenated for highly parallel implementations of DSP functions. Table 2-1 shows the capabilities of the block. Table 2-7. Maximum Number of Elements in a Block Width of Multiply x9 x18 x36 MULT 8 4 1 MAC 4 2 — MULTADD 4 2 — MULTADDSUM 2 1 — Some options are available in four elements. The input register in all the elements can be directly loaded or can be loaded as shift register from previous operand registers. In addition by selecting ‘dynamic operation’ in the ‘Signed/ Unsigned’ options the operands can be switched between signed and unsigned on every cycle. Similarly by selecting ‘Dynamic operation’ in the ‘Add/Sub’ option the Accumulator can be switched between addition and subtraction on every cycle. 2-15 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor MULT sysDSP Element This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-18 shows the MULT sysDSP element. Figure 2-18. MULT sysDSP Element Shift Register B In Shift Register A In Multiplicand m m n n Multiplier m Input Data Register A n x n Input Data Register B m+n (default) Output Register Multiplier m m+n Output Pipeline Register m n Signed Input Register To Multiplier CLK (CLK0,CLK1,CLK2,CLK3) CE (CE0,CE1,CE2,CE3) RST(RST0,RST1,RST2,RST3) Shift Register B Out Shift Register A Out MAC sysDSP Element In this case the two operands, A and B, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-19 shows the MAC sysDSP element. Figure 2-19. MAC sysDSP Element Shift Register B In Shift Register A In Accumulator m n n m Input Data Register A n Input Data Register B m n n Addn Accumsload x m+n (default) Pipeline Register n SignedAB Multiplier Input Register Pipeline Register Input Register Pipeline Register To Accumulator Input Register Pipeline Register To Accumulator To Accumulator m+n+16 bits (default) Output Register Multiplier m m+n+16 bits (default) Overflow Register Multiplicand CLK (CLK0,CLK1,CLK2,CLK3) CE (CE0,CE1,CE2,CE3) RST(RST0,RST1,RST2,RST3) Shift Register B Out Shift Register A Out 2-16 Output Overflow signal Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor MULTADD sysDSP Element In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and A2. The user can enable the input, output and pipeline registers. Figure 2-20 shows the MULTADD sysDSP element. Figure 2-20. MULTADD Shift Register B In Shift Register A In Multiplicand A0 m CLK (CLK0,CLK1,CLK2,CLK3) m CE (CE0,CE1,CE2,CE3) Multiplier B0 n n RST(RST0,RST1,RST2,RST3) m Input Data Register A n Multiplier m x n Input Data Register B Pipeline Register m m+n (default) Add/Sub Multiplicand A1 Multiplier B1 m m+n+1 (default) m n Input Data Register A n Addn n x n Input Data Register B Signed Multiplier m Output m+n+1 (default) m+n (default) Pipeline Register m Input Register Pipeline Pipe Register Reg To Add/Sub Input Register Pipeline Pipe Register Reg To Add/Sub Shift Register B Out Output Register n Shift Register A Out MULTADDSUM sysDSP Element In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-21 shows the MULTADDSUM sysDSP element. 2-17 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-21. MULTADDSUM Shift Register B In Shift Register A In Multiplicand A0 m m CLK (CLK0,CLK1,CLK2,CLK3) n CE (CE0,CE1,CE2,CE3) Input Data Register A n x n Input Data Register B m+n (default) Pipeline Register m RST(RST0,RST1,RST2,RST3) Add/Sub0 n Multiplicand A1 Multiplier B1 Multiplier m m m+n (default) m n Input Data Register A n m+n+1 x n Input Data Register B Multiplicand A2 Multiplier n SUM Pipeline Register m m m+n+2 Multiplier B2 m n n Input Data Register A n x n Input Data Register B m+n (default) m+n+1 Pipeline Register m Output m+n+2 Add/Sub1 n Multiplicand A3 Multiplier B3 Multiplier m Output Register Multiplier B0 m n m m n Input Data Register A n Input Data Register B Signed Addn0 Addn1 Shift Register B Out m+n (default) n Multiplier m x n Pipeline Register m Input Register Pipeline Register To Add/Sub0, Add/Sub1 Input Register Pipeline Register To Add/Sub0 Input Register Pipeline Register To Add/Sub1 Shift Register A Out Clock, Clock Enable and Reset Resources Global Clock, Clock Enable and Reset signals from routing are available to every DSP block. Four Clock, Reset and Clock Enable signals are selected for the sysDSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3) one clock is selected for each input register, pipeline register and output register. Similarly Clock enable (CE) and Reset (RST) are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3) at each input register, pipeline register and output register. Signed and Unsigned with Different Widths The DSP block supports different widths of signed and unsigned multipliers besides x9, x18 and x36 widths. For unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed two’s complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36 width is reached. Table 2-8 provides an example of this. 2-18 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Table 2-8. An Example of Sign Extension Number Unsigned Unsigned 9-bit Unsigned 18-bit Signed Two’s Complement Signed 9-Bits Two’s Complement Signed 18-bits +5 0101 000000101 000000000000000101 0101 000000101 000000000000000101 -6 0110 000000110 000000000000000110 1010 111111010 111111111111111010 OVERFLOW Flag from MAC The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. When two unsigned numbers are added and the result is a smaller number then accumulator roll over is said to occur and overflow signal is indicated. When two positive numbers are added with a negative sum and when two negative numbers are added with a positive sum, then the accumulator “roll-over” is said to have occurred and an overflow signal is indicated. Note when overflow occurs the overflow flag is present for only one cycle. By counting these overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions overflow signal for signed and unsigned operands are listed in Figure 2-22. Figure 2-22. Accumulator Overflow/Underflow Conditions 0101111100 0101111101 0101111110 0101111111 1010000000 1010000001 1010000010 252 253 254 255 256 257 258 000000011 000000010 000000001 000000000 3 2 1 0 111111111 111111110 111111101 511 510 509 Carry signal is generated for one cycle when this boundary is crossed Unsigned Operation 0101111100 000000011 000000010 000000001 000000000 111111111 111111110 111111101 252 Overflow signal is generated 0101111101 253 0101111110 254 for one cycle when this 0101111111 255 boundary is crossed 1010000000 256 1010000001 255 1010000010 254 +3 +2 +1 0 -1 -2 -3 Signed Operation ispLEVER Module Manager The user can access the sysDSP block via the ispLEVER Module Manager, which has options to configure each DSP module (or group of modules) or through direct HDL instantiation. Additionally Lattice has partnered Mathworks to support instantiation in the Simulink tool, which is a Graphical Simulation Environment. Simulink works with ispLEVER and dramatically shortens the DSP design cycle in Lattice FPGAs. 2-19 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Optimized DSP Functions Lattice provides a library of optimized DSP IP functions. Some of the IPs planned for LatticeECP DSP are: Bit Correlators, Fast Fourier Transform, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/ Decoder, Turbo Encoder/Decoders and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IPs. Resources Available in the LatticeECP Family Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP family. Table 2-10 shows the maximum available EBR RAM Blocks in each of the LatticeECP family. EBR blocks, together with Distributed RAM can be used to store variables locally for the fast DSP operations. Table 2-9. Number of DSP Blocks in LatticeECP Family Device DSP Block 9x9 Multiplier 18x18 Multiplier 36x36 Multiplier LFECP6 4 32 16 4 LFECP10 5 40 20 5 LFECP15 6 48 24 6 LFECP20 7 56 28 7 LFECP33 8 64 32 8 LFECP40 10 80 40 10 EBR SRAM Block Total EBR SRAM (Kbits) Table 2-10. Embedded SRAM in LatticeECP Family Device LFECP6 10 92 LFECP10 30 276 LFECP15 38 350 LFECP20 46 424 LFECP33 58 535 LFECP40 70 645 DSP Performance of the LatticeECP Family Table 2-11 lists the maximum performance in millions of MAC operations per second (MMAC) for each member of the LatticeECP family. Table 2-11. DSP Block Performance of LatticeECP Family Device DSP Block DSP Performance MMAC LFECP6 4 3680 LFECP10 5 4600 LFECP15 6 5520 LFECP20 7 6440 LFECP33 8 7360 LFECP40 10 9200 For further information on the sysDSP block, please see details of additional technical information at the end of this data sheet. 2-20 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Programmable I/O Cells (PIC) Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as shown in Figure 2-23. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO buffer, and receives input from the buffer. Figure 2-23. PIC Diagram PIO A TD D0 D1 DDRCLK TD OPOS1 ONEG1 IOLT0 Tristate Register Block (2 Flip Flops) D0 D1 DDRCLK OPOS0 ONEG0 PADA "T" IOLD0 Output Register Block (2 Flip Flops) INCK INDD INFF IPOS0 IPOS1 INCK INDD INFF IPOS0 IPOS1 Control Muxes CLK CE LSR GSRN DQS DDRCLKPOL CLKO CEO LSR GSR CLKI CEI sysIO Buffer DI Input Register Block (5 Flip Flops) PADB "C" PIO B Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-24. The PAD Labels “T” and “C” distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. One of every 16 PIOs contains a delay element to facilitate the generation of DQS signals. The DQS signal feeds the DQS bus which spans the set of 16 PIOs. Figure 2-24 shows the assignment of DQS pins in each set of 16 PIOs. The exact DQS pins are shown in a dual function in the Logic Signal Connections table at the end of this data sheet. Additional detail is provided in the Signal Descriptions table at the end of this data sheet. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is designed for memories that support one DQS strobe per eight bits of data. 2-21 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Table 2-12. PIO Signal List Name Type Description CE0, CE1 Control from the core Clock enables for input and output block FFs. CLK0, CLK1 Control from the core System clocks for input and output blocks. LSR Control from the core Local Set/Reset. GSRN Control from routing Global Set/Reset (active low). INCK Input to the core Input to Primary Clock Network or PLL reference inputs. DQS Input to PIO DQS signal from logic (routing) to PIO. INDD Input to the core Unregistered data input to core. INFF Input to the core Registered input on positive edge of the clock (CLK0). IPOS0, IPOS1 Input to the core DDRX registered inputs to the core. ONEG0 Control from the core Output signals from the core for SDR and DDR operation. OPOS0, Control from the core Output signals from the core for DDR operation OPOS1 ONEG1 Tristate control from the core Signals to Tristate Register block for DDR operation. TD Tristate control from the core Tristate signal from the core used in SDR operation. DDRCLKPOL Control from clock polarity bus Controls the polarity of the clock (CLK0) that feed the DDR input block. Figure 2-24. DQS Routing PIO A PADA "T" PIO B PADB "C" PIO A PADA "T" LVDS Pair LVDS Pair PIO B PADB "C" PIO A PADA "T" LVDS Pair PADB "C" PIO B PIO A PADA "T" LVDS Pair PADB "C" PIO B DQS PIO A sysIO Buffer Delay PIO B PIO A Assigned DQS Pin PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PIO B PADB "C" PIO A PADA "T" LVDS Pair PIO B PADB "C" PIO A PADA "T" PIO B LVDS Pair PADB "C" PIO The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks. 2-22 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Input Register Block The input register block contains delay elements and registers that can be used to condition signals before they are passed to the device core. Figure 2-25 shows the diagram of the input register block. Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, reduces input-register hold-time requirement when using a global clock. The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2. These two data streams are synchronized with the system clock before entering the core. Further discussion on this topic is in the DDR Memory section of this data sheet. Figure 2-26 shows the input register waveforms for DDR operation and Figure 2-27 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available. The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet. Figure 2-25. Input Register Diagram DI (From sysIO Buffer) INCK INDD Delay Block Fixed Delay SDR & Sync Registers DDR Registers D0 D Q D D-Type /LATCH Q D-Type D2 D Q D1 D-Type DQS Delayed (From DQS Bus) CLK0 (From Routing) DDRCLKPOL (From DDR Polarity Control Bus) 2-23 D Q D-Type D Q D-Type /LATCH To Routing IPOS0 IPOS1 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-26. Input Register DDR Waveforms DI (In DDR Mode) A B C D F E DQS DQS Delayed D0 B D D2 A C Figure 2-27. INDDRXB Primitive D ECLK LSR SCLK QA IDDRXB QB CE DDRCLKPOL Output Register Block The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation. Figure 2-28 shows the diagram of the Output Register Block. In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0). Figure 2-29 shows the design tool DDR primitives. The SDR output register has reset and clock enable available. The additional register for DDR operation does not have reset or clock enable available. 2-24 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-28. Output Register Block OUTDDN Q D D-Type /LATCH ONEG0 0 0 DO 1 From Routing To sysIO Buffer 1 OPOS0 Q D Latch LE* CLK1 Programmed Control *Latch is transparent when input is low. Figure 2-29. ODDRXB Primitive DA DB CLK ODDRXB Q LSR Tristate Register Block The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-30 shows the diagram of the Tristate Register Block. In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0). 2-25 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-30. Tristate Register Block TD OUTDDN Q D D-Type /LATCH ONEG1 0 0 From Routing TO 1 To sysIO Buffer 1 OPOS1 D Q Latch LE* CLK1 Programmed Control *Latch is transparent when input is low. Control Logic Block The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin. The clock can optionally be inverted. The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate signal is passed through this block. DDR Memory Support Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input (for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the EC devices provide this capability. In addition to these registers, the EC devices contain two elements to simplify the design of input structures for read operations: the DQS delay block and polarity control logic. DLL Calibrated DQS Delay Block Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock (referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces. The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-31 and 2-32 show how the DQS transition signals are routed to the PIOs. The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration (6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of the device as shown in Figure 2-32. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop. 2-26 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-31. DQS Local Bus. PIO Delay Control Bus Polarity Control Bus DQS Bus DQS GSR CLKI CEI DQS DDR Datain PAD sysIO Buffer Input Register Block ( 5 Flip Flops) To Sync. Reg. DI To DDR Reg. PIO DQS Strobe PAD sysIO Buffer Polarity Control Logic DI DQS DQSDEL Calibration Bus from DLL Figure 2-32. DLL Calibration Bus and DQS/DQS Transition Distribution Delay Control Bus Polarity Control Bus DQS Bus DLL DLL 2-27 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Polarity Control Logic In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown. The LatticeECP/EC family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block. This requires evaluation at the start of each READ cycle for the correct clock polarity. Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers. sysIO Buffer Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today’s systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL. sysIO Buffer Banks LatticeECP/EC devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (VCCIO), and two voltage references VREF1 and VREF2 resources allowing each bank to be completely independent from each other. Figure 2-33 shows the eight banks and their associated supplies. In the LatticeECP/EC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCIX) are powered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold input independent of VCCIO. In addition to the bank VCCIO supplies, the LatticeECP/EC devices have a VCC core logic power supply, and a VCCAUX supply that power all differential and referenced buffers. Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeECP/EC devices, some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank’s supply and reference voltages. 2-28 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 2-33. LatticeECP/EC Banks GND VREF2(1) VREF1(1) VCCIO1 Bank 7 Bank 1 VCCIO2 Bank 2 VREF2(7) GND VREF2(0) VREF1(7) VREF1(0) VCCIO0 Bank 0 VCCIO7 VREF1(2) VREF2(2) GND VCCIO6 VCCIO3 V REF1(6) VREF1(3) Bank 6 VREF2(3) GND GND VREF2(4) VREF1(4) VCCIO4 Bank 4 GND Bank 5 VREF2(5) M VCCIO5 GND VREF1(5) V REF2(6) Bank 3 GND Note: N and M are the maximum number of I/Os per bank. LatticeECP/EC devices contain two types of sysIO buffer pairs. 1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only) The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input. The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer. Only the I/Os on the top and bottom banks have PCI clamp. 2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs) The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O. Only the left and right banks have LVDS differential output drivers. Supported Standards The LatticeECP/EC sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable 2-29 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-13 and 2-14 show the I/O standards (together with their supply and reference voltages) supported by the LatticeECP/EC devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical information at the end of this data sheet. Table 2-13. Supported Input Standards Input Standard VREF (Nom.) VCCIO1 (Nom.) Single Ended Interfaces LVTTL — — LVCMOS332 — — LVCMOS252 — — LVCMOS18 — 1.8 LVCMOS15 — 1.5 LVCMOS122 — — PCI — 3.3 HSTL18 Class I, II 0.9 — HSTL18 Class III 1.08 — HSTL15 Class I 0.75 — HSTL15 Class III 0.9 — SSTL3 Class I, II 1.5 — SSTL2 Class I, II 1.25 — SSTL18 Class I 0.9 — Differential SSTL18 Class I — — Differential SSTL2 Class I, II — — Differential SSTL3 Class I, II — — Differential HSTL15 Class I, III — — Differential HSTL18 Class I, II, III — — LVDS, LVPECL, BLVDS, RSDS — — Differential Interfaces 1. When not specified VCCIO can be set anywhere in the valid operating range. 2. JTAG inputs do not have a fixed threshold option and always follow VCCJ. 2-30 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Table 2-14. Supported Output Standards Output Standard Drive VCCIO (Nom.) 4mA, 8mA, 12mA, 16mA, 20mA 3.3 LVCMOS33 4mA, 8mA, 12mA 16mA, 20mA 3.3 LVCMOS25 4mA, 8mA, 12mA, 16mA, 20mA 2.5 LVCMOS18 4mA, 8mA, 12mA, 16mA 1.8 LVCMOS15 4mA, 8mA 1.5 Single-ended Interfaces LVTTL LVCMOS12 2mA, 6mA 1.2 LVCMOS33, Open Drain 4mA, 8mA, 12mA 16mA, 20mA — LVCMOS25, Open Drain 4mA, 8mA, 12mA 16mA, 20mA — LVCMOS18, Open Drain 4mA, 8mA, 12mA 16mA — LVCMOS15, Open Drain 4mA, 8mA — LVCMOS12, Open Drain 2mA, 6mA — PCI33 N/A 3.3 HSTL18 Class I, II, III N/A 1.8 HSTL15 Class I, III N/A 1.5 SSTL3 Class I, II N/A 3.3 SSTL2 Class I, II N/A 2.5 SSTL18 Class I N/A 1.8 N/A 3.3 Differential Interfaces Differential SSTL3, Class I, II Differential SSTL2, Class I, II N/A 2.5 Differential SSTL18, Class I N/A 1.8 Differential HSTL18, Class I, II, III N/A 1.8 Differential HSTL15, Class I, III N/A 1.5 LVDS N/A 2.5 BLVDS1 N/A 2.5 N/A 3.3 N/A 2.5 LVPECL 1 RSDS1 1. Emulated with external resistors. Hot Socketing The LatticeECP/EC devices have been carefully designed to ensure predictable behavior during power-up and power-down. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, this allows for easy integration with the rest of the system. These capabilities make the LatticeECP/EC ideal for many multiple power supply and hot-swap applications. Recommended Power Up Sequence: As described in the previous paragraph, the supplies can be sequenced in any order. However, once internal power good is achieved (determined by VCC, VCCAUX, VCCIO bank 5) the part releases I/Os from tri-state and the management of I/Os becomes the designers responsibility. To simplify a system design it is therefore recommended that supplies be sequenced VCCIO, VCC, VCCAUX. 2-31 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Configuration and Testing The following section describes the configuration and testing features of the LatticeECP/EC family of devices. IEEE 1149.1-Compliant Boundary Scan Testability All LatticeECP/EC devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage VCCJ and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet. Device Configuration All LatticeECP/EC devices contain two possible ports that can be used for device configuration. The test access port (TAP), which supports bit-wide configuration, and the sysCONFIG port that supports both byte-wide and serial configuration. The TAP supports both the IEEE Std. 1149.1 Boundary Scan specification and the IEEE Std. 1532 In-System Configuration specification. The sysCONFIG port is a 20-pin interface with six of the I/Os used as dedicated pins and the rest being dual-use pins. When sysCONFIG mode is not used, these dual-use pins are available for general purpose I/O. There are four configuration options for LatticeECP/EC devices: 1. Industry standard SPI memories. 2. Industry standard byte wide flash and ispMACH 4000 for control/addressing. 3. Configuration from system microprocessor via the configuration bus or TAP. 4. Industry standard FPGA board memory. On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port. Once a configuration port is selected, that port is locked and another configuration port cannot be activated until the next power-up sequence. For more information on device configuration, please see details of additional technical documentation at the end of this data sheet. Internal Logic Analyzer Capability (ispTRACY) All LatticeECP/EC devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace memory. This feature is enabled by Lattice’s ispTRACY. The ispTRACY utility is added into the user design at compile time. For more information on ispTRACY, please see information regarding additional technical documentation at the end of this data sheet. External Resistor LatticeECP/EC devices require a single external, 10K ohm +/- 1% value between the XRES pin and ground. Device configuration will not be completed if this resistor is missing. There is no boundary scan register on the external resistor pad. 2-32 Architecture LatticeECP/EC Family Data Sheet Lattice Semiconductor Oscillator Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master serial clock for configuration. The oscillator and the master serial clock run continuously. The default value of the master serial clock is 2.5MHz. Table 2-15 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is selected during the design process, the following sequence takes place: 1. User selects a different Master Serial Clock frequency. 2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency. 3. The clock configuration settings are contained in the early configuration bit stream. 4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are received. For further information on the use of this oscillator for configuration, please see details of additional technical documentation at the end of this data sheet. Table 2-15. Selectable Master Serial Clock (CCLK) Frequencies During Configuration CCLK (MHz) CCLK (MHz) CCLK (MHz) 2.5* 13 45 4.3 15 51 5.4 20 55 6.9 26 60 8.1 30 130 9.2 34 — 10.0 41 — Density Shifting The LatticeECP/EC family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case. 2-33 LatticeECP/EC Family Data Sheet DC and Switching Characteristics November 2004 Preliminary Data Sheet Absolute Maximum Ratings1, 2, 3 Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V Supply Voltage VCCAUX . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V Supply Voltage VCCJ . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V Output Supply Voltage VCCIO . . . . . . . . . . . . . . . . -0.5 to 3.75V Input Voltage Applied4 . . . . . . . . . . . . . . . . . . . . . . -0.5 to 4.25V I/O Tristate Voltage Applied 4 . . . . . . . . . . . . . . . . . -0.5 to 3.75V Storage Temperature (Ambient) . . . . . . . . . . . . . . -65 to 150°C Junction Temp. (Tj) +125°C 1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of <20ns. Recommended Operating Conditions Symbol Min. Max. Units Core Supply Voltage 1.14 1.26 V VCCAUX Auxiliary Supply Voltage 3.135 3.465 V VCCIO1, 2 I/O Driver Supply Voltage 1.140 3.465 V VCCJ Supply Voltage for IEEE 1149.1 Test Access Port 1.140 3.465 V tJCOM Junction Commercial Operation 0 +85 °C tJIND Junction Industrial Operation -40 100 °C VCC 1 Parameter 1. If VCCIO or VCCJ is set to 1.2V, they must be connected to the same power supply as VCC. If VCCIO or VCCJ is set to 3.3V, they must be connected to the same power supply as VCCAUX. 2. See recommended voltages by I/O standard in subsequent table. Hot Socketing Specifications1, 2, 3, 4 Symbol IDK 1. 2. 3. 4. Parameter Input or I/O leakage Current Condition 0 ≤ VIN ≤ VIH (MAX) Min. Typ. Max Units — — +/-1000 µA Insensitive to sequence of VCC, VCCAUX and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX and VCCIO. 0 ≤ VCC ≤ VCC (MAX), 0 ≤ VCCIO ≤ VCCIO (MAX) or 0 ≤ VCCAUX ≤ VCCAUX (MAX). IDK is additive to IPU, IPW or IBH. LVCMOS and LVTTL only. © 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 3-1 DC and Switching_01.2 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor DC Electrical Characteristics Over Recommended Operating Conditions Symbol Parameter IIL, IIH1 Input or I/O Low leakage Condition Min. Typ. Max. Units 0 ≤ VIN ≤ (VCCIO - 0.2V) — — 10 µA (VCCIO - 0.2V) ≤ VIN ≤ 3.6V — — 40 µA IPU I/O Active Pull-up Current 0 ≤ VIN ≤ 0.7 VCCIO 30 — 150 µA IPD I/O Active Pull-down Current VIL (MAX) ≤ VIN ≤ VIH (MAX) -30 — -150 µA IBHLS Bus Hold Low sustaining current VIN = VIL (MAX) 30 — — µA IBHHS -30 — — µA IBHLO Bus Hold High sustaining current VIN = 0.7VCCIO Bus Hold Low Overdrive current 0 ≤ VIN ≤ VIH (MAX) — — 150 µA IBHLH Bus Hold High Overdrive current 0 ≤ VIN ≤ VIH (MAX) — — -150 µA VBHT Bus Hold trip Points 0 ≤ VIN ≤ VIH (MAX) 2 C1 I/O Capacitance C2 Dedicated Input Capacitance2 VIL (MAX) — VIH (MIN) V VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, VCC = 1.2V, VIO = 0 to VIH (MAX) — 8 — pf VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, VCC = 1.2V, VIO = 0 to VIH (MAX) — 6 — pf 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. TA 25oC, f = 1.0MHz 3-2 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Supply Current (Standby)1, 2, 3, 4 Over Recommended Operating Conditions Symbol ICC Parameter Core Power Supply Current Devices Auxiliary Power Supply Current PLL Power Supply Current (per PLL) ICCIO ICCJ 1. 2. 3. 4. 5. 6. Units mA LFEC3 mA LFECP6/LFEC6 mA LFECP10/LFEC10 mA LFECP15/LFEC15 mA 100 mA LFECP33/LFEC33 mA LFECP40/LFEC40 mA LFEC1 mA LFEC3 mA LFECP6/LFEC6 mA LFECP10/LFEC10 mA LFECP15/LFEC15 LFECP20/LFEC20 ICCPLL Max. LFEC1 LFECP20/LFEC20 ICCAUX Typ.5 mA 15 mA LFECP33/LFEC33 mA LFECP40/LFEC40 mA LFEC1, LFEC3, LFEC6, LFECP6, LFECP10, LFECP15, LFECP20, LFECP33, LFECP40, LFEC10, LFEC15, LFEC20, LFEC33, LFEC40, 8 mA Bank Power Supply Current6 2 mA VCCJ Power Supply Current 5 mA For further information on supply current, please see details of additional technical documentation at the end of this data sheet. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND. Frequency 0MHz. Pattern represents typical design with 65% logic, 55% EBR, 10% routing utilization. TJ=25oC, power supplies at nominal voltage. Per bank. 3-3 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Initialization Supply Current1,2,3,4,5,6 Over Recommended Operating Conditions Symbol ICC Parameter Core Power Supply Current Devices Auxiliary Power Supply Current PLL Power Supply Current (per PLL) ICCIO ICCJ 1. 2. 3. 4. 5. 6. 7. Units mA LFEC3 mA LFECP6/LFEC6 mA LFECP10/LFEC10 mA LFECP15/LFEC15 mA 150 mA LFECP33/LFEC33 mA LFECP40/LFEC40 mA LFEC1 mA LFEC3 mA LFECP6/LFECP6 mA LFECP10/LFEC10 mA LFECP15/LFEC15 LFECP20/LFEC20 ICCPLL Max. LFEC1 LFECP20/LFEC20 ICCAUX Typ.6 mA 25 mA LFECP33/LFEC33 mA LFECP40/LFEC40 mA LFEC1, LFEC3, LFEC6, LFECP6, LFECP10, LFECP15, LFECP20, LFECP33, LFECP40, LFEC10, LFEC15, LFEC20, LFEC33, LFEC40, 12 mA Bank Power Supply Current7 5 mA VCCJ Power Supply Current 10 mA Until DONE signal is active. For further information on supply current, please see details of additional technical documentation at the end of this data sheet. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND. Frequency 0MHz. Pattern represents typical design with 65% logic, 55% EBR, 10% routing utilization. TJ=25oC, power supplies at nominal voltage. Per bank. 3-4 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor sysIO Recommended Operating Conditions VCCIO Standard VREF (V) Min. Typ. Max. Min. Typ. Max. LVCMOS 3.3 3.135 3.3 3.465 — — — LVCMOS 2.5 2.375 2.5 2.625 — — — LVCMOS 1.8 1.71 1.8 1.89 — — — LVCMOS 1.5 1.425 1.5 1.575 — — — LVCMOS 1.2 1.14 1.2 1.26 — — — LVTTL 3.135 3.3 3.465 — — — PCI 3.135 3.3 3.465 — — — SSTL18 Class I 1.71 2.5 1.89 1.15 1.25 1.35 SSTL2 Class I, II 2.375 2.5 2.625 1.15 1.25 1.35 SSTL3 Class I, II 3.135 3.3 3.465 1.3 1.5 1.7 HSTL15 Class I 1.425 1.5 1.575 0.68 0.75 0.9 HSTL15 Class III 1.425 1.5 1.575 — 0.9 — HSTL 18 Class I, II 1.71 1.8 1.89 — 0.9 — HSTL 18 Class III 1.71 1.8 1.89 — 1.08 — LVDS 2.375 2.5 2.625 — — — LVPECL1 3.135 3.3 3.465 — — — 2.375 2.5 2.625 — — — 2.375 2.5 2.625 — — — BLVDS RSDS1 1 1. Inputs on chip. Outputs are implemented with the addition of external resistors. 3-5 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor sysIO Single-Ended DC Electrical Characteristics Input/Output Standard LVCMOS 3.3 LVTTL LVCMOS 2.5 LVCMOS 1.8 LVCMOS 1.5 VIL VIH Min. (V) Max. (V) Min. (V) -0.3 0.8 2.0 -0.3 -0.3 -0.3 -0.3 0.8 0.7 0.35VCCIO 0.35VCCIO 0.35VCC 2.0 1.7 0.65VCCIO 0.65VCCIO LVCMOS 1.2 -0.3 PCI -0.3 SSTL3 class I -0.3 SSTL3 class II -0.3 SSTL2 class I -0.3 SSTL2 class II -0.3 VREF - 0.18 SSTL18 class I -0.3 HSTL15 class I -0.3 HSTL15 class III -0.3 VREF - 0.1 VREF + 0.1 HSTL18 class I -0.3 VREF - 0.1 HSTL18 class II -0.3 VREF - 0.1 HSTL18 class III -0.3 VREF - 0.1 VOH Min. (V) IOL1 (mA) IOH1 (mA) 0.4 VCCIO - 0.4 20, 16, 12, 8, 4 -20, -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 20, 16, 12, 8, 4 -20, -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 20, 16, 12, 8, 4 -20, -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 16, 12, 8, 4 -16, -12, -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 8, 4 -8, -4 0.2 VCCIO - 0.2 0.1 -0.1 0.4 VCCIO - 0.4 6, 2 -6, -2 0.2 VCCIO - 0.2 0.1 -0.1 VOL Max. (V) Max. (V) 3.6 3.6 3.6 3.6 3.6 0.65VCC 3.6 0.3VCCIO 0.5VCCIO 3.6 0.1VCCIO 0.9VCCIO 1.5 -0.5 VREF - 0.2 VREF + 0.2 3.6 0.7 VCCIO - 1.1 8 -8 VREF - 0.2 VREF + 0.2 3.6 0.5 VCCIO - 0.9 16 -16 VREF - 0.18 VREF + 0.18 3.6 0.54 VCCIO - 0.62 7.6 -7.6 VREF + 0.18 3.6 0.35 VCCIO - 0.43 15.2 -15.2 VREF - 0.125 VREF + 0.125 VREF + 0.1 VREF - 0.1 3.6 0.4 VCCIO - 0.4 6.7 -6.7 3.6 0.4 VCCIO - 0.4 8 -8 3.6 0.4 VCCIO - 0.4 24 -8 VREF + 0.1 3.6 0.4 VCCIO - 0.4 9.6 -9.6 VREF + 0.1 3.6 0.4 VCCIO - 0.4 16 -16 VREF + 0.1 3.6 0.4 VCCIO - 0.4 24 -8 1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank. Rev F 0.17 3-6 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor sysIO Differential Electrical Characteristics LVDS Over Recommended Operating Conditions Parameter Symbol Parameter Description Test Conditions VINP, VINM Input voltage VTHD Differential input threshold VCM Input common mode voltage IIN Input current Power on or power off Min. Typ. Max. Units 0 — 2.4 V +/-100 — — mV 100mV ≤ VTHD VTHD/2 1.2 1.8 V 200mV ≤ VTHD VTHD/2 1.2 1.9 V 350mV ≤ VTHD VTHD/2 1.2 2.0 V — — +/-10 µA VOH Output high voltage for VOP or VOM RT = 100 Ohm — 1.38 1.60 V VOL Output low voltage for VOP or VOM RT = 100 Ohm 0.9V 1.03 — V VOD Output voltage differential (VOP - VOM), RT = 100 Ohm 250 350 450 mV ∆VOD Change in VOD between high and low — — 50 mV VOS Output voltage offset 1.125 1.25 1.375 V ∆VOS Change in VOS between H and L — — 50 mV — — 6 mA IOSD Output short circuit current (VOP - VOM)/2, RT = 100 Ohm VOD = 0V Driver outputs shorted 3-7 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Differential HSTL and SSTL Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode. BLVDS The LatticeECP/EC devices support BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-1 is one possible solution for bi-directional multi-point differential signals. Figure 3-1. BLVDS Multi-point Output Example Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential 2.5V 2.5V 80 45-90 ohms 45-90 ohms 80 2.5V 2.5V 80 ... 80 2.5V 2.5V + + - - 80 80 + - 2.5V + 80 2.5V - Table 3-1. BLVDS DC Conditions1 Over Recommended Operating Conditions Typical Parameter Description Zo = 45 Zo = 90 Units ZOUT Output impedance 100 100 ohm RTLEFT Left end termination 45 90 ohm RTRIGHT Right end termination 45 90 ohm VOH Output high voltage 1.375 1.48 V VOL Output low voltage 1.125 1.02 V VOD Output differential voltage 0.25 0.46 V VCM Output common mode voltage 1.25 1.25 V IDC DC output current 11.2 10.2 mA 1. For input buffer, see LVDS table. 3-8 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LVPECL The LatticeECP/EC devices support differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-2 is one possible solution for point-to-point signals. Figure 3-2. Differential LVPECL 3.3V 100 ohms + 100 ohms ~150 ohms 3.3V - 100 ohms Transmission line, Zo = 100 ohm differential Off-chip Table 3-2. LVPECL DC Conditions1 Over Recommended Operating Conditions Typical Units ZOUT Parameter Output impedance Description 100 ohm RP Driver parallel resistor 150 ohm RT Receiver termination 100 ohm VOH Output high voltage 2.03 V VOL Output low voltage 1.27 V VOD Output differential voltage 0.76 V VCM Output common mode voltage 1.65 V ZBACK Back impedance 85.7 ohm IDC DC output current 12.7 mA 1. For input buffer, see LVDS table. For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical information at the end of this data sheet. 3-9 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor RSDS The LatticeECP/EC devices support differential RSDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-3 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-3 are industry standard values for 1% resistors. Figure 3-3. RSDS (Reduced Swing Differential Standard) VCCIO = 2.5V 294 Zo = 100 + VCCIO = 2.5V 121 100 - 294 On-chip Off-chip Emulated RSDS Buffer Table 3-3. RSDS DC Conditions Parameter Description Typical Units ZOUT Output impedance 20 ohm RS Driver series resistor 294 ohm RP Driver parallel resistor 121 ohm RT Receiver termination 100 ohm VOH Output high voltage 1.35 V VOL Output low voltage 1.15 V VOD Output differential voltage 0.20 V VCM Output common mode voltage 1.25 V ZBACK Back impedance 101.5 ohm IDC DC output current 3.66 mA 5V Tolerant Input Buffer The input buffers of the LatticeECP/EC family of devices can support 5V signals by using a PCI Clamp and an external series resistor as shown in Figure 3-4. Figure 3-4. 5 V Tolerant Input Buffer VCCIO 5V Signals from Legacy Systems External Resistor 3-10 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 3-5. Typical PCI Clamp Current 400 350 Current (mA) 300 250 200 150 100 50 0 0 1 2 3 4 5 Voltage (V) 3-11 6 7 8 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Typical Building Block Function Performance Pin-to-Pin Performance (LVCMOS25 12mA Drive) Function -5 Timing Units 16 bit decoder 6.2 ns 32 bit decoder 7.2 ns 64 bit decoder 7.7 ns 4:1 MUX 4.8 ns Basic Functions 8:1 MUX 5.1 ns 16:1 MUX 6.1 ns 32:1 MUX 6.5 ns Combinatorial (pin to LUT to pin) 5.3 ns -5 Timing Units 16 bit decoder 331 MHz 32 bit decoder 277 MHz 64 bit decoder 240 MHz 4:1 MUX 727 MHz 8:1 MUX 482 MHz 16:1 MUX 439 MHz 32:1 MUX 382 MHz Register-to-Register Performance Function Basic Functions 8-bit adder 391 MHz 16-bit adder 337 MHz 64-bit adder 190 MHz 16-bit counter 410 MHz 32-bit counter 315 MHz 64-bit counter 215 MHz 64-bit accumulator 155 MHz 256x36 Single Port RAM 280 MHz 512x18 True-Dual Port RAM 280 MHz 549 MHz Embedded Memory Functions Distributed Memory Functions 16x2 Single Port RAM 64x2 Single Port RAM 259 MHz 128x4 Single Port RAM 205 MHz 32x2 Pseudo-Dual Port RAM 360 MHz 64x4 Pseudo-Dual Port RAM 301 MHz 9x9 Pipelined Multiply/Accumulate 250 MHz 18x18 Pipelined Mutiply/Accumulate 230 MHz 36x36 Pipelined Mutiply 210 MHz 1 DSP Function 1. Applies to LatticeECP devices only. 2. The above timing numbers were generated using ispLEVER tool, exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device. 3-12 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Derating Timing Tables Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst-case numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process, can be much better than the values given in the tables. To calculate logic timing numbers at a particular temperature and voltage multiply the noted numbers with the derating factors provided below. The junction temperature for the FPGA depends on the power dissipation by the device, the package thermal characteristics (ΘJA), and the ambient temperature, as calculated with the following equation: TJMAX = TAMAX + (Power * ΘJA) The user must determine this temperature and then use it to determine the derating factor based on the following derating tables: TJ °C. Table 3-4. Delay Derating Table for Internal Blocks Power Supply Voltage TJ °C Commercial TJ °C Industrial 1.14V 1.2V 1.26V — -40 0.82 0.77 0.71 — -25 0.82 0.76 0.71 0 20 0.89 0.83 0.78 25 45 0.93 0.87 0.81 85 105 1.00 0.94 0.89 100 115 1.00 0.95 0.90 110 — 1.00 0.95 0.90 125 — 1.02 0.96 0.91 3-13 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP/EC External Switching Characteristics Over Recommended Operating Conditions -5 Parameter Description Device -4 Min. Max. -3 Min. Max. Min. Max. Units General I/O Pin Parameters (Using Primary Clock without PLL)1 tCO Clock to Output - PIO Output Register LFEC20 — 5.71 — 6.85 — 7.99 ns tSU Clock to Data Setup - PIO Input Register LFEC20 0.00 — 0.00 — 0.00 — ns tH Clock to Data Hold - PIO Input Register LFEC20 3.41 — 4.09 — 4.77 — ns tSU_DEL Clock to Data Setup - PIO Input Register with data input delay LFEC20 3.84 — 4.62 — 5.38 — ns tH_DEL Clock to Data Hold - PIO Input Register with Input Data Delay LFEC20 -0.44 — -0.54 — -0.61 — ns fMAX_IO LVDS I/O Buffer Frequency LFEC20 — 420 — 378 — 340 MHz 2, 3 DDR I/O Pin Parameters tDVADQ4 Data Valid After DQS (DDR Read) LFEC20 — 0.192 — 0.192 — 0.192 UI 4 tDVEDQ Data Hold After DQS (DDR Read) LFEC20 0.668 — 0.668 — 0.668 — UI tDQVBS Data Valid Before DQS LFEC20 0.2 — 0.2 — 0.2 — UI tDQVAS Data Valid After DQS LFEC20 0.2 — 0.2 — 0.2 — UI fMAX_DDR DDR Clock Frequency LFEC20 95 200 95 166 95 133 MHz 420 — 378 — 340 MHz Primary and Secondary Clock fMAX_PRI Frequency for Primary Clock Tree LFEC20 — tW_PRI Clock Pulse Width for Primary Clock LFEC20 1.19 — 1.19 — 1.19 — ns tSKEW_PRI Primary Clock Skew within an I/O Bank LFEC20 — 250 — 300 — 350 ps 1. General timing numbers based on LVCMOS2.5V, 12 mA. 2. DDR timing numbers based on SSTL I/O. 3. DDR specifications are characterized but not tested. 4. UI is average bit period. Rev F 0.17 Figure 3-6. DDR Timings DQ and DQS Read Timings DQS DQ tDVADQ tDVEDQ DQ and DQS Write Timings DQS DQ tDQVBS tDQVAS 3-14 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP/EC Internal Timing Parameters1 Over Recommended Operating Conditions -5 Parameter Description -4 -3 Min. Max. Min. Max. Min. Max. Units PFU/PFF Logic Mode Timing tLUT4_PFU LUT4 delay (A to D inputs to F output) - 0.25 - 0.31 - 0.36 ns tLUT6_PFU LUT6 delay (A to D inputs to OFX output) - 0.55 - 0.66 - 0.77 ns tLSR_PFU Set/Reset to output of PFU - 0.81 - 0.98 - 1.14 ns tSUM_PFU Clock to Mux (M0,M1) input setup time 0.08 - 0.10 - 0.11 - ns tHM_PFU Clock to Mux (M0,M1) input hold time -0.06 - -0.07 - -0.08 - ns tSUD_PFU Clock to D input setup time 0.11 - 0.14 - 0.16 - ns tHD_PFU Clock to D input hold time -0.04 - -0.04 - -0.05 - ns tCK2Q_PFU Clock to Q delay, D-type register configuration - 0.43 - 0.51 - 0.60 tLE2Q_PFU Clock to Q delay latch configuration - 0.54 - 0.65 - 0.76 tLD2Q_PFU D to Q throughput delay when latch is enabled - 0.50 - 0.60 - 0.69 - 0.43 - 0.51 - 0.60 ns ns ns PFU Memory Mode Timing tCORAM_PFU Clock to Output ns tSUDATA_PFU Data Setup Time -0.25 - -0.30 - -0.34 - ns tHDATA_PFU Data Hold Time -0.06 - -0.07 - -0.08 - ns tSUADDR_PFU Address Setup Time -0.66 - -0.79 - -0.92 - ns tHADDR_PFU Address Hold Time -0.27 - -0.33 - -0.38 - ns tSUWREN_PFU Write/Read Enable Setup Time -0.30 - -0.36 - -0.42 - ns tHWREN_PFU Write/Read Enable Hold Time -0.21 - -0.25 - -0.29 - ns PIC Timing PIO Input/Output Buffer Timing tIN_PIO Input Buffer Delay - 0.56 - 0.67 - 0.78 ns tOUT_PIO Output Buffer Delay - 2.07 - 2.49 - 2.90 ns IOLOGIC Input/Output Timing tSUI_PIO Input Register Setup Time (Data Before Clock) - 0.12 - 0.14 - 0.17 tHI_PIO Input Register Hold Time (Data after Clock) - -0.09 - -0.11 - -0.13 tCOO_PIO Output Register Clock to Output Delay - 0.82 - 0.98 - 1.15 ns tSUCE_PIO Input Register Clock Enable Setup Time - -0.02 - -0.02 - -0.03 ns tHCE_PIO Input Register Clock Enable Hold Time - 0.12 - 0.14 - 0.17 ns tSULSR_PIO Set/Reset Setup Time 0.10 - 0.12 - 0.14 - ns tHLSR_PIO Set/Reset Hold Time -0.24 - -0.29 - -0.34 - ns ns ns EBR Timing tCO_EBR Clock to output from Address or Data - 3.82 - 4.58 - 5.34 ns tCOO_EBR Clock to output from EBR output Register - 0.74 - 0.88 - 1.03 ns tSUDATA_EBR Setup Data to EBR Memory -0.34 - -0.41 - -0.48 - ns tHDATA_EBR Hold Data to EBR Memory 0.37 - 0.44 - 0.52 - ns tSUADDR_EBR Setup Address to EBR Memory -0.34 - -0.41 - -0.48 - ns tHADDR_EBR Hold Address to EBR Memory 0.37 - 0.45 - 0.52 - ns tSUWREN_EBR Setup Write/Read Enable to PFU Memory -0.22 - -0.26 - -0.30 - ns 3-15 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP/EC Internal Timing Parameters1 (Continued) Over Recommended Operating Conditions -5 Parameter Description -4 -3 Min. Max. Min. Max. Min. Max. Units ns tHWREN_EBR Hold Write/Read Enable to PFU Memory 0.23 - 0.28 - 0.33 - tSUCE_EBR Clock Enable Setup Time to EBR Output Register 0.28 - 0.34 - 0.40 - tHCE_EBR Clock Enable Hold Time to EBR Output Register -0.24 - -0.29 - -0.34 - tRSTO_EBR Reset To Output Delay Time from EBR Output Register - 1.00 - 1.20 - 1.40 tRSTREC Reset Recovery to Rising Clock - tRSTSU Reset Signal Setup Time tRSTW Reset Signal Pulse Width ns ns ns PLL Parameters 10.0 - - 10.0 - ns - ns 10.0 - ns DSP Block Timing2 tSUI_DSP Input Register Setup Time - -0.44 - -0.35 - -0.27 ns tHI_DSP Input Register Hold Time - 0.80 - 0.96 - 1.12 ns tSUP_DSP Pipeline Register Setup Time - 3.31 - 3.98 - 4.64 ns tHP_DSP Pipeline Register Hold Time - 0.80 - 0.96 - 1.12 ns tSUO_DSP Output Register Setup Time - 6.72 - 8.07 - 9.41 ns tHO_DSP Output Register Hold Time - 0.80 - 0.96 - 1.12 ns tCOI_DSP Input Register Clock to Output Time - 8.33 - 10.35 - 12.07 ns tCOP_DSP Pipeline Register Clock to Output Time - 4.80 - 5.89 - 6.87 ns tCOO_DSP Output Register Clock to Output Time - 1.47 - 1.77 - 2.06 ns tCOOVRFL_DSP Overflow Register Clock to Output Time - 1.47 - 1.77 - 2.06 ns tSUADSUB AdSub Setup Time - 3.31 - 3.98 - 4.64 ns tHADSUB AdSub Hold Time - 0.71 - 0.86 - 1.00 ns tSUSIGN Sign Setup Time - 3.31 - 3.98 - 4.64 ns tHSIGN Sign Hold Time - 0.80 - 0.96 - 1.12 ns tSUACCSLOAD Accumulator Load Setup Time - 3.31 - 3.98 - 4.64 ns tHACCSLOAD Accumulator Load Hold Time - 0.80 - 0.96 - 1.12 ns 1. Internal parameters are characterized but not tested on every device. 2. These parameters apply to LatticeECP devices only. Rev F 0.17 3-16 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Timing Diagrams PFU Timing Diagrams Figure 3-7. Slice Single/Dual Port Write Cycle Timing CK WRE AD[3:0] AD DI[1:0] D DO[1:0] Old Data D Figure 3-8. Slice Single /Dual Port Read Cycle Timing WRE AD[3:0] AD DO[1:0] Old Data D 3-17 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor EBR Memory Timing Diagrams Figure 3-9. Read/Write Mode (Normal) CLKA CSA WEA A0 ADA A1 A0 A1 A0 tSU tH DIA D1 D0 tACCESS tACCESS D0 DOA D1 D0 Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock. Figure 3-10. Read/Write Mode with Input and Output Registers CLKA CSA WEA ADA A0 tSU DIA DOA A1 A0 A1 A0 tH D0 D1 D1 D0 Mem(n) data from previous read D0 DOA tACCESS DOA (Regs) Mem(n) data from previous read output is only updated during a read cycle 3-18 tACCESS D0 D1 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Figure 3-11. Read Before Write (SP Read/Write on Port A, Input Registers Only) CLKA CSA WEA ADA A0 tSU DIA A1 A0 A1 A0 D3 D1 tH D2 D1 D0 tACCESS old A0 Data DOA tACCESS tACCESS old A1 Data tACCESS tACCESS D0 D1 D2 Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock. Figure 3-12. Write Through (SP Read/Write On Port A, Input Registers Only) CLKA CSA WEA Three consecutive writes to A0 ADA A0 tSU DIA A1 tH D0 D2 D1 tACCESS DOA A0 Data from Prev Read or Write tACCESS D0 D3 D4 tACCESS D1 tACCESS D2 D3 D4 Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock. 3-19 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP/EC Family Timing Adders1, 2, 3 Over Recommended Operating Conditions Buffer Type Description -5 -4 -3 Units 0.41 0.50 0.58 ns Input Adjusters LVDS25 LVDS BLVDS25 BLVDS 0.41 0.50 0.58 ns LVPECL33 LVPECL 0.50 0.60 0.70 ns HSTL18_I HSTL_18 class I 0.41 0.49 0.57 ns HSTL18_II HSTL_18 class II 0.41 0.49 0.57 ns HSTL18_III HSTL_18 class III 0.41 0.49 0.57 ns HSTL18D_I Differential HSTL 18 class I 0.37 0.44 0.52 ns HSTL18D_II Differential HSTL 18 class II 0.37 0.44 0.52 ns HSTL18D_III Differential HSTL 18 class III 0.37 0.44 0.52 ns HSTL15_I HSTL_15 class I 0.40 0.48 0.56 ns HSTL15_III HSTL_15 class III 0.40 0.48 0.56 ns HSTL15D_I Differential HSTL 15 class I 0.37 0.44 0.51 ns HSTL15D_III Differential HSTL 15 class III 0.37 0.44 0.51 ns SSTL33_I SSTL_3 class I 0.46 0.55 0.64 ns SSTL33_II SSTL_3 class II 0.46 0.55 0.64 ns SSTL33D_I Differential SSTL_3 class I 0.39 0.47 0.55 ns SSTL33D_II Differential SSTL_3 class II 0.39 0.47 0.55 ns SSTL25_I SSTL_2 class I 0.43 0.51 0.60 ns SSTL25_II SSTL_2 class II 0.43 0.51 0.60 ns SSTL25D_I Differential SSTL_2 class I 0.38 0.45 0.53 ns SSTL25D_II Differential SSTL_2 class II 0.38 0.45 0.53 ns SSTL18_I SSTL_18 class I 0.40 0.48 0.56 ns SSTL18D_I Differential SSTL_18 class I 0.37 0.44 0.51 ns LVTTL33 LVTTL 0.07 0.09 0.10 ns LVCMOS33 LVCMOS 3.3 0.07 0.09 0.10 ns LVCMOS25 LVCMOS 2.5 0.00 0.00 0.00 ns LVCMOS18 LVCMOS 1.8 0.07 0.09 0.10 ns LVCMOS15 LVCMOS 1.5 0.24 0.29 0.33 ns LVCMOS12 LVCMOS 1.2 1.27 1.52 1.77 ns PCI33 PCI 0.07 0.09 0.10 ns Output Adjusters LVDS25E LVDS 2.5 E -0.03 -0.04 -0.04 ns LVDS25 LVDS 2.5 -0.59 -0.71 -0.83 ns BLVDS25 BLVDS 2.5 0.18 0.22 0.26 ns LVPECL33 LVPECL 3.3 0.05 0.06 0.07 ns HSTL18_I HSTL_18 class I -0.25 -0.30 -0.35 ns HSTL18_II HSTL_18 class II -0.09 -0.11 -0.13 ns HSTL18_III HSTL_18 class III 0.00 0.01 0.01 ns HSTL18D_I Differential HSTL 18 class I -0.25 -0.30 -0.35 ns HSTL18D_II Differential HSTL 18 class II -0.09 -0.11 -0.13 ns HSTL18D_III Differential HSTL 18 class III 0.00 0.01 0.01 ns 3-20 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP/EC Family Timing Adders1, 2, 3 (Continued) Over Recommended Operating Conditions Buffer Type Description -5 -4 -3 Units -0.07 -0.08 -0.09 ns 0.00 0.00 ns -0.06 -0.07 ns -0.08 -0.09 ns -0.06 -0.07 ns -0.20 -0.24 -0.28 ns 0.25 0.30 0.35 ns Differential SSTL_3 class I -0.20 -0.24 -0.28 ns Differential SSTL_3 class II 0.25 0.30 0.35 ns SSTL25_I SSTL_2 class I -0.10 -0.11 -0.13 ns SSTL25_II SSTL_2 class II 0.10 0.12 0.14 ns SSTL25D_I Differential SSTL_2 class I -0.10 -0.11 -0.13 ns SSTL25D_II Differential SSTL_2 class II 0.10 0.12 0.14 ns HSTL15_I HSTL_15 class I HSTL15_II HSTL_15 class II 0.00 HSTL15_III HSTL_15 class III -0.05 HSTL15D_I Differential HSTL 15 class I -0.07 HSTL15D_III Differential HSTL 15 class III -0.05 SSTL33_I SSTL_3 class I SSTL33_II SSTL_3 class II SSTL33D_I SSTL33D_II SSTL18_I SSTL_1.8 class I -0.14 -0.17 -0.20 ns SSTL18D_I Differential SSTL_1.8 class I -0.14 -0.17 -0.20 ns LVTTL33_4mA LVTTL 4mA drive -0.06 -0.07 -0.09 ns LVTTL33_8mA LVTTL 8mA drive -0.05 -0.07 -0.08 ns LVTTL33_12mA LVTTL 12mA drive -0.06 -0.07 -0.08 ns LVTTL33_16mA LVTTL 16mA drive -0.05 -0.07 -0.08 ns LVTTL33_20mA LVTTL 20mA drive -0.07 -0.09 -0.10 ns LVCMOS33_4mA LVCMOS 3.3 4mA drive -0.06 -0.07 -0.09 ns LVCMOS33_8mA LVCMOS 3.3 8mA drive -0.05 -0.07 -0.08 ns LVCMOS33_12mA LVCMOS 3.3 12mA drive -0.06 -0.07 -0.08 ns LVCMOS33_16mA LVCMOS 3.3 16mA drive -0.05 -0.07 -0.08 ns LVCMOS33_20mA LVCMOS 3.3 20mA drive -0.07 -0.09 -0.10 ns LVCMOS25_4mA LVCMOS 2.5 4mA drive 0.04 0.05 0.05 ns LVCMOS25_8mA LVCMOS 2.5 8mA drive 0.03 0.03 0.04 ns LVCMOS25_12mA LVCMOS 2.5 12mA drive 0.00 0.00 0.00 ns LVCMOS25_16mA LVCMOS 2.5 16mA drive 0.03 0.03 0.04 ns LVCMOS25_20mA LVCMOS 2.5 20mA drive -0.05 -0.06 -0.07 ns LVCMOS18_4mA LVCMOS 1.8 4mA drive 0.07 0.08 0.10 ns LVCMOS18_8mA LVCMOS 1.8 8mA drive 0.07 0.08 0.09 ns LVCMOS18_12mA LVCMOS 1.8 12mA drive 0.06 0.07 0.09 ns LVCMOS18_16mA LVCMOS 1.8 16mA drive 0.07 0.08 0.09 ns LVCMOS15_4mA LVCMOS 1.5 4mA drive 0.12 0.14 0.16 ns LVCMOS15_8mA LVCMOS 1.5 8mA drive 0.11 0.13 0.15 ns LVCMOS12_2mA LVCMOS 1.2 2mA drive 0.22 0.26 0.31 ns LVCMOS12_6mA LVCMOS 1.2 6mA drive 0.21 0.25 0.29 ns LVCMOS12_4mA LVCMOS 1.2 4mA drive 0.22 0.26 0.31 ns PCI33 PCI33 2.00 2.40 2.80 ns 1. Timing adders are characterized but not tested on every device. 2. LVCMOS timing measured with the load specified in Switching Test Conditions table. 3. All other standards according to the appropriate specification. Rev F 0.17 3-21 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor sysCLOCK PLL Timing Over Recommended Operating Conditions Parameter Descriptions Conditions Min. Typ. Max. Units fIN Input Clock Frequency (CLKI, CLKFB) 25 — 420 MHz fOUT Output Clock Frequency (CLKOP, CLKOS) 25 — 420 MHz fOUT2 K-Divider Output Frequency (CLKOK) 0.195 — 210 MHz fVCO PLL VCO Frequency 420 — 840 MHz fPFD Phase Detector Input Frequency 25 — — MHz 45 50 55 % — — TBD UI Fout >= 100MHz — — +/- 125 ps Fout < 100MHz — — 0.02 UIPP AC Characteristics Output Clock Duty Cycle tDT 4 Default duty cycle elected3 tPH Output Phase Accuracy tOPJIT1 Output Clock Period Jitter tSK Input Clock to Output Clock skew Divider ratio = integer — — +/- 200 ps tW Output Clock Pulse Width At 90% or 10%3 1 — — ns 2 tLOCK PLL Lock-in Time tPA Programmable Delay Unit tIPJIT Input Clock Period Jitter tFBKDLY External Feedback Delay tHI Input Clock High Time 90% to 90% tLO Input Clock Low Time 10% to 10% tRST RST Pulse Width 1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock. 2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment. 3. Using LVDS output buffers. 4. Relative to CLKOP. Rev F 0.17 3-22 — — 150 us 100 250 400 ps — — +/- 200 ps — — 10 ns 0.5 — — ns 0.5 — — ns 10 — — ns DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP/EC sysCONFIG Port Timing Specifications Over Recommended Operating Conditions Parameter Description Min Max Units 7 — ns sysCONFIG Byte Data Flow tSUCBDI Byte D[0:7] Setup Time to CCLK tHCBDI Byte D[0:7] Hold Time to CCLK 1 — ns tCODO Clock to Dout in Flowthrough Mode — TBD ns tSUCS CS[0:1] Setup Time to CCLK 7 — ns tHCS CS[0:1] Hold Time to CCLK 1 — ns tSUWD Write Signal Setup Time to CCLK 7 — ns tHWD Write Signal Hold Time to CCLK 1 — ns tDCB CCLK to BUSY Delay Time — 12 ns tCORD Clock to out for read Data — 12 ns 6 — ns sysCONFIG Byte Slave Clocking tBSCH Byte Slave Clock Minimum High Pulse tBSCL Byte Slave Clock Minimum Low Pulse 6 — ns tBSCYC Byte Slave Clock Cycle Time 15 — ns 7 — ns sysCONFIG Serial (Bit) Data Flow tSUSCDI Din Setup Time to CCLK Slave Mode tHSCDI Din Hold Time to CCLK Slave Mode 1 — ns tCODO Clock to Dout in Flowthrough Mode — 12 ns tSUMCDI Din Setup Time to CCLK Master Mode 7 — ns tHMCDI Din Hold Time to CCLK Master Mode 1 — ns sysCONFIG Serial Slave Clocking tSSCH Serial Slave Clock Minimum High Pulse 6 — ns tSSCL Serial Slave Clock Minimum Low Pulse 6 — ns sysCONFIG POR, Initialization and Wake Up tICFG Minimum Vcc to INIT High — 50 ms tVMC Time from tICFG to valid Master Clock — 2 us tPRGMRJ PROGRAMB Pin Pulse Rejection — 10 ns tPRGM PROGRAMB Low Time to Start Configuration 25 — ns tDINIT PROGRAMB High to INIT High Delay — 1 ms tDPPINIT Delay Time from PROGRAMB Low to INIT Low — 37 ns tDPPDONE Delay Time from PROGRAMB Low to DONE Low — 37 ns tIODISS User I/O Disable from PROGRAMB Low — 25 ns tIOENSS User I/O Enabled Time from CCLK Edge During Wake-up Sequence tMWC Additional Wake Master Clock Signals after Done Pin High — 25 ns 120 — cycles µs sysCONFIG SPI Port tCFGX Init High to CCLK Low — 1 tCSSPI Init High to CSSPIN Low — 2 us tCSCCLK CCLK Low before CSSPIN Low 0 - ns tSOCDO CCLK Low to Output Valid — 15 ns tSOE CSSPIN Active Setup Time 300 — ns tCSPID CSSPIN Low to First Clock Edge Setup Time 300+3cyc 600+6cyc ns fMAXSPI Max Frequency for SPI — 20 MHz 3-23 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP/EC sysCONFIG Port Timing Specifications (Continued) Over Recommended Operating Conditions Parameter Description tSUSPI SOSPI Data Setup Time Before CCLK tHSPI SOSPI Data Hold Time After CCLK Master Clock Frequency Min Max Units 7 — ns 2 — ns Selected value -30% Selected value +30% MHz 40 60 % Duty Cycle Rev F 0.18 Figure 3-13. sysCONFIG SPI Port Sequence Capture CFGx Capture OPCODE Clock 127 Clock 128 tICFG VCC tPRGM PROGRAMN tDPPDONE DONE tDPPINT INITN CSSPIN CCLK tDINT tCSSPI tCSPID tCFGX tCSCCLK 0 tSOE SISPI/BUSY 1 2 3 4 5 6 7 tSOCDO D7 D6 D5 D4 D3 D2 D1 D0 D7/SPID0 0 XXX 3-24 Valid Bitstream DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor JTAG Port Timing Specifications Over Recommended Operating Conditions Symbol Parameter Min. Max. Units fMAX TCK Clock Frequency - 25 MHz tBTCP TCK [BSCAN] clock pulse width 40 - ns tBTCPH TCK [BSCAN] clock pulse width high 20 - ns tBTCPL TCK [BSCAN] clock pulse width low 20 - ns tBTS TCK [BSCAN] setup time 8 - ns tBTH TCK [BSCAN] hold time 10 - ns tBTRF TCK [BSCAN] rise/fall time 50 - mV/ns tBTCO TAP controller falling edge of clock to valid output - 10 ns tBTCODIS TAP controller falling edge of clock to valid disable - 10 ns tBTCOEN TAP controller falling edge of clock to valid enable - 10 ns tBTCRS BSCAN test capture register setup time 8 - ns tBTCRH BSCAN test capture register hold time 25 - ns tBUTCO BSCAN test update register, falling edge of clock to valid output - 25 ns tBTUODIS BSCAN test update register, falling edge of clock to valid disable - 25 ns tBTUPOEN BSCAN test update register, falling edge of clock to valid enable - 25 ns Rev F 0.17 3-25 DC and Switching Characteristics LatticeECP/EC Family Data Sheet Lattice Semiconductor Switching Test Conditions Figure 3-14 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-5. Figure 3-14. Output Test Load, LVTTL and LVCMOS Standards VT R1 DUT Test Point CL* *CL Includes Test Fixture and Probe Capacitance Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces Test Condition LVTTL and other LVCMOS settings (L -> H, H -> L) R1 ∞ CL 0pF Timing Ref. LVCMOS 3.3 = 1.5V — LVCMOS 2.5 = VCCIO/2 — LVCMOS 1.8 = VCCIO/2 — LVCMOS 1.5 = VCCIO/2 — LVCMOS 1.2 = VCCIO/2 LVCMOS 2.5 I/O (Z -> H) LVCMOS 2.5 I/O (Z -> L) LVCMOS 2.5 I/O (H -> Z) 188Ω LVCMOS 2.5 I/O (L -> Z) 0pF — VCCIO/2 VOL VCCIO/2 VOH VOH - 0.15 VOL VOL + 0.15 VOH Note: Output test conditions for all other interfaces are determined by the respective standards. 3-26 VT LatticeECP/EC Family Data Sheet Pinout Information November 2004 Preliminary Data Sheet Signal Descriptions Signal Name I/O Descriptions General Purpose [Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top). [Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number. P[Edge] [Row/Column Number*]_[A/B] I/O [A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration. GSRN I Global RESET signal (active low). Any I/O pin can be GSRN. NC — No connect. GND — Ground. Dedicated pins. VCC — Power supply pins for core logic. Dedicated pins. VCCAUX — Auxiliary power supply pin. It powers all the differential and referenced input buffers. Dedicated pins. VCCIOx — Power supply pins for I/O bank x. Dedicated pins. VREF1_x, VREF2_x — Reference supply pins for I/O bank x. Pre-determined pins in each bank are as assigned VREF inputs. When not used, they may be used as I/O pins. XRES — 10K ohm +/-1% resistor must be connected between this pad and ground. PLL and Clock Functions (Used as user programmable I/O pins when not in use for PLL or clock pins) [LOC][num]_PLL[T, C]_IN_A I Reference clock (PLL) input pads: ULM, LLM, URM, LRM, num = row from center, T = true and C = complement, index A,B,C...at each side. [LOC][num]_PLL[T, C]_FB_A I Optional feedback (PLL) input pads: ULM, LLM, URM, LRM, num = row from center, T = true and C = complement, index A,B,C...at each side. PCLK[T, C]_[n:0]_[3:0] I Primary Clock pads, T = true and C = complement, n per side, indexed by bank and 0,1,2,3 within bank. [LOC]DQS[num] I DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball function number. Any pad can be configured to be output. TMS I Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration. TCK I Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled. Test and Programming (Dedicated pins) © 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 4-1 Pinout Information_01.2 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor Signal Descriptions (Cont.) Signal Name TDI I/O I Descriptions Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up sequence). Pull-up is enabled during configuration. TDO O Output pin. Test Data out pin used to shift data out of device using 1149.1. VCCJ — VCCJ - The power supply pin for JTAG Test Access Port. Configuration Pads (used during sysCONFIG) CFG[2:0] INITN I Mode pins used to specify configuration modes values latched on rising edge of INITN. During configuration, a pull-up is enabled. These are dedicated pins. I/O Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin. I Initiates configuration sequence when asserted low. This pin always has an active pull-up. This is a dedicated pin. DONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress. This is a dedicated pin. CCLK I/O Configuration Clock for configuring an FPGA in sysCONFIG mode. BUSY/SISPI I/O Read control command in SPI3 or SPIX mode. PROGRAMN CSN I sysCONFIG chip select (Active low). During configuration, a pull-up is enabled. CS1N I sysCONFIG chip select (Active low). During configuration, a pull-up is enabled. WRITEN I Write Data on Parallel port (Active low). D[7:0]/SPID[0:7] I/O sysCONFIG Port Data I/O. DOUT/CSON O Output for serial configuration data (rising edge of CCLK) when using sysCONFIG port. DI/CSSPIN I Input for serial configuration data (clocked with CCLK) when using sysCONFIG port. During configuration, a pull-up is enabled. 4-2 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin PICs Associated with DQS Strobe P[Edge] [n-4] P[Edge] [n-3] P[Edge] [n-2] P[Edge] [n-1] P[Edge] [n] P[Edge] [n+1] P[Edge] [n+2] P[Edge] [n+3] PIO Within PIC DDR Strobe (DQS) and Data (DQ) Pins A DQ B DQ A DQ B DQ A DQ B DQ A DQ B DQ A [Edge]DQSn B DQ A DQ B DQ A DQ B DQ A DQ B DQ Notes: 1. “n” is a Row/Column PIC number 2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available. 3. PIC numbering definitions are provided in the “Signal Names” column of the Signal Descriptions table. 4-3 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor Pin Information Summary LFECP6/EC6 Pin Type Single Ended User I/O Differential Pair User I/O Configuration 256-fpBGA 484-fpBGA 484-fpBGA 672-fpBGA 147 195 224 360 400 72 97 97 112 180 200 13 13 13 13 13 Muxed 48 48 48 48 56 56 5 5 5 5 5 5 110 160 208 373 373 509 4 4 10 20 20 32 VCC 2 4 2 12 12 20 Bank0 2 3 2 4 4 6 Bank1 2 2 2 4 4 6 Bank2 1 2 2 4 4 6 Bank3 2 2 2 4 4 6 Bank4 2 2 2 4 4 6 Bank5 2 3 2 4 4 6 Bank6 2 2 2 4 4 6 VCCAUX Bank7 GND, GND0-GND7 NC VCCJ 208-PQFP 97 13 Dedicated (total without supplies) Single Ended/ Differential I/O per Bank 144-TQFP Dedicated TAP VCCIO LFECP20/EC20 1 2 2 4 4 6 14 18 20 44 44 63 0 4 0 139 3 96 Bank0 14 26 32 32 48 64 Bank1 13 17 18 32 48 48 Bank2 8 14 16 16 40 40 Bank3 13 16 32 32 44 48 Bank4 14 17 17 32 48 48 Bank5 13 26 32 32 48 64 Bank6 14 16 32 32 44 48 Bank7 8 15 16 16 40 40 1 1 1 1 1 1 Note: During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration. 4-4 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor Power Supply and NC Connections Signals 144 TQFP 208 PQFP 256 fpBGA VCC 11, 13, 92, 99 24, 26, 128, 135 E12, E5, E8, M12, M5, M9, F6, F11, L11, L6 VCCIO0 136, 143 187, 197, 208 F7, F8 VCCIO1 110, 125 157, 176 F9, F10 VCCIO2 108 145, 155 G11, H11 VCCIO3 73, 84 106, 120 J11, K11 VCCIO4 55, 71 85, 104 L9, L10 VCCIO5 38, 44 53, 64, 74 L7, L8 VCCIO6 24, 36 37, 51 J6, K6 VCCIO7 1 2, 13 G6, H6 VCCJ 19 32 L4 VCCAUX 54, 126 22, 84, 136, 177 B15, R2 GND, GND0-GND7 12, 15, 28, 37, 52, 63, 72, 80, 1, 18, 25, 28, 41, 52, 72, 82, 96, 98, 109, 117, 128, 144 93, 105, 116, 132, 134, 138, 156, 168, 179, 189 A1, A16, G10, G7, G8, G9, H10, H7, H8, H9, J10, J7, J8, J9, K10, K7, K8, K9, T1, T16 NC - - - 4-5 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor Power Supply and NC Connections Signals 484 fpBGA 672 fpBGA VCC J6, J7, J16, J17, K6, K7, K16, K17, L6, H8, H9, H10, H11, H16, H17, H18, H19, L17, M6, M17, N6, N7, N16, N17, P6, P7, J9, J18, K8, K19, L8, L19, M19, N7, R7, P16, P17 R20, T19, U8, U19, V8, V18, V9, W8, W9, W10, W11, W16, W17, W18, W19 VCCIO0 G11, H9, H10, H11 H12, H13, J10, J11, J12, J13 VCCIO1 G12, H12, H13, H14 H14, H15, J14, J15, J16, J17 VCCIO2 J15, K15, L15, L16 K17, K18, L18, M18, N18, N19 VCCIO3 M15, M16, N15, P15 P18, P19, R18, R19, T8, U18 VCCIO4 R12, R13, R14, T12 V14, V15, V16, V17, W14, W15 VCCIO5 R9, R10, R11, T11 V10, V11, V12, V13, W12, W13 VCCIO6 M7, M8, N8, P8 P8, P9, R8, R9, T9, U9 VCCIO7 J8, K8, L7, L8 K9, L9, M8, M9, N8, N9 VCCJ U2 U6 VCCAUX G7, G8, G15, G16, H7, H16, R7, R16, T7, T8, T15, T16 G13, H7, H20, J8, J19, K7, L20, M7, M20, N20, P7, P20, T7, T8, T20, V7, V19, W20, Y7, Y13 GND, GND0-GND7 A1, A22, AB1, AB22, H8, H15, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, R8, R15 K10, K11, K12, K13, K14, K15, K16, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17 NC ECP6/EC6: C3, B2, E5, F5, D3, C2, F4, G4, E3, D2, B1, C1, F3, E2, G5, H6, G3, H4, J5, H5, F2, F1, E1, D1, R6, P5, P3, P4, R1, R2, R5, R4, T1, T2, R3, T3, A2, AB2, A21 A25, B2, B23, B24, B25, B26, C2, C3, C19, C20, C21, C22, C23, C24, D3, D5, D20, D21, D22, D24, E5, E19, E21, E22, E24, E25, E26, F4, F5, F20, F22, F23, F24, F26, G5, G20, G26, H2, H3, H5, H6, H22, J2, J3, J7, J21, J22, J23, W5, W7, Y5, Y6, Y19, Y20, Y21, Y22, Y23, Y24, AA2, AA3, AA4, AA5, AA21, AA22, AA23, AA24, AB3, AB5, AB19, AB20, AB21, AB22, AB23, AB24, AC2, AC3, AC19, AC20, AC21, AC22, AD1, AD2, AD3, AD19, AD20, AD21, AD22, AD23, AD24, AD25, AD26, AE1, AE24, AE25, AE26, AF25 ECP/EC20: A2, AB2, A21 4-6 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 144 TQFP Pin Number Pin Function Bank LVDS Dual Function 1 VCCIO7 7 2 PL2A 7 T VREF2_7 3 4 PL2B 7 C VREF1_7 PL7A 7 T 5 PL7B 7 C 6 PL8A 7 T 7 PL8B 7 C 8 PL9A 7 T PCLKT7_0 C PCLKC7_0 LLM0_PLLT_IN_A 9 PL9B 7 10 XRES 6 11 VCC - 12 GND - 13 VCC - 14 TCK 6 15 GND - 16 TDI 6 17 TMS 6 18 TDO 6 19 VCCJ 6 20 PL20A 6 T 21 PL20B 6 C LLM0_PLLC_IN_A 22 PL21A 6 T LLM0_PLLT_FB_A 23 PL21B 6 C LLM0_PLLC_FB_A 24 VCCIO6 6 25 PL22A 6 T 26 PL22B 6 C 27 PL23A 6 T 28 GND6 6 29 PL23B 6 C 30 PL24A 6 T 31 PL24B 6 C 32 PL25A 6 T 33 PL25B 6 C 34 PL27A 6 T VREF1_6 35 PL27B 6 C VREF2_6 36 VCCIO6 6 37* GND5, GND6 38 VCCIO5 5 39 PB10A 5 T 40 PB10B 5 C 41 PB11A 5 T 42 PB11B 5 C 43 PB13B 5 4-7 LDQS24 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 144 TQFP (Cont.) Pin Number Pin Function Bank 44 VCCIO5 5 LVDS Dual Function 45 PB14A 5 T BDQS14 46 47 PB14B 5 C PB15A 5 T 48 PB15B 5 C 49 PB16A 5 T 50 PB16B 5 C VREF1_5 51 PB17A 5 T PCLKT5_0 52 GND5 5 53 PB17B 5 C PCLKC5_0 54 VCCAUX - 55 VCCIO4 4 56 PB18A 4 T WRITEN 57 PB18B 4 C CS1N 58 PB19A 4 T VREF1_4 59 PB19B 4 C CSN 60 PB20A 4 T VREF2_4 61 PB20B 4 C D0/SPID7 62 PB21A 4 T D2/SPID5 63 GND4 4 64 PB21B 4 C D1/SPID6 65 PB22A 4 T BDQS22 66 PB22B 4 C D3/SPID4 67 PB23A 4 T 68 PB23B 4 C 69 PB24B 4 D5/SPID2 70 PB25B 4 D6/SPID1 71 VCCIO4 4 72* GND3, GND4 73 VCCIO3 3 74 PR27A 3 75 PR25B 3 76 PR25A 3 T 77 PR24B 3 C 78 PR24A 3 T RDQS24 79 PR23B 3 C RLM0_PLLC_FB_A VREF2_5 D4/SPID3 VREF1_3 C 80 GND3 3 81 PR23A 3 T RLM0_PLLT_FB_A 82 PR22B 3 C RLM0_PLLC_IN_A 83 PR22A 3 T RLM0_PLLT_IN_A 84 VCCIO3 3 85 PR21B 3 C DI/CSSPIN 86 PR21A 3 T DOUT/CSON 87 PR20B 3 C BUSY/SISPI 4-8 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 144 TQFP (Cont.) Pin Number Pin Function Bank LVDS Dual Function 88 PR20A 3 T D7/SPID0 89 CFG2 3 90 CFG1 3 91 CFG0 3 92 VCC - 93 PROGRAMN 3 94 CCLK 3 95 INITN 3 96 GND - 97 DONE 3 98 GND - 99 VCC - 100 PR9B 2 C PCLKC2_0 101 PR9A 2 T PCLKT2_0 102 PR8B 2 C 103 PR8A 2 T 104 PR7B 2 C 105 PR7A 2 T 106 PR2B 2 C VREF1_2 107 PR2A 2 T VREF2_2 2 108 VCCIO2 109* GND1, GND2 110 VCCIO1 1 111 PT25B 1 C 112 PT25A 1 T 113 PT23A 1 114 PT22B 1 115 PT22A 1 T 116 PT21B 1 C 117 GND1 1 118 PT21A 1 T 119 PT20B 1 C 120 PT20A 1 T 121 PT19B 1 C VREF2_1 122 PT19A 1 T VREF1_1 123 PT18B 1 C 124 PT18A 1 T 125 VCCIO1 1 126 VCCAUX - 127 PT17B 0 128 GND0 0 129 PT17A 130 PT16B 131 PT16A C TDQS22 C PCLKC0_0 0 T PCLKT0_0 0 C VREF1_0 0 T VREF2_0 4-9 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 144 TQFP (Cont.) Pin Number Pin Function Bank LVDS 132 PT15B 0 C 133 PT15A 0 T 134 PT14B 0 C 135 PT14A 0 T 136 VCCIO0 0 137 PT13B 0 138 PT13A 0 T 139 PT12B 0 C 140 PT12A 0 T 141 PT10B 0 C T 142 PT10A 0 143 VCCIO0 0 144* GND0, GND7 * Double bonded to the pin. 4-10 C Dual Function TDQS14 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 208 PQFP Pin Number Pin Function Bank LVDS Dual Function 1* GND0, GND7 2 VCCIO7 7 3 PL2A 7 T VREF2_7 4 PL2B 7 C VREF1_7 5 NC - 6 NC - 7 PL3B 7 8 PL4A 7 T 9 PL4B 7 C 10 PL5A 7 T 11 PL5B 7 C 12 PL6A 7 T 13 VCCIO7 7 14 PL6B 7 15 PL7A 7 T 16 PL7B 7 C 17 PL8A 7 T 18 GND7 7 19 PL8B 7 C 20 PL9A 7 T PCLKT7_0 21 PL9B 7 C PCLKC7_0 22 VCCAUX - 23 XRES 6 24 VCC - 25 GND - 26 VCC - 27 TCK 6 28 GND - 29 TDI 6 30 TMS 6 LDQS6 C 31 TDO 6 32 VCCJ 6 33 PL20A 6 T LLM0_PLLT_IN_A 34 PL20B 6 C LLM0_PLLC_IN_A 35 PL21A 6 T LLM0_PLLT_FB_A 36 PL21B 6 C LLM0_PLLC_FB_A 37 VCCIO6 6 38 PL22A 6 T 39 PL22B 6 C 40 PL23A 6 T 41 GND6 6 42 PL23B 6 C 43 PL24A 6 T 4-11 LDQS24 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.) Pin Number Pin Function Bank LVDS 44 PL24B 6 C Dual Function 45 PL25A 6 T 46 PL25B 6 C 47 PL26A 6 T 48 PL26B 6 C 49 PL27A 6 T VREF1_6 50 PL27B 6 C VREF2_6 51 VCCIO6 6 52* GND5, GND6 53 VCCIO5 5 54 PB2A 5 T 55 PB2B 5 C 56 PB3A 5 T 57 PB3B 5 C 58 PB4A 5 T 59 PB4B 5 C 60 PB5A 5 T 61 PB5B 5 C 62 PB6A 5 T C BDQS6 63 PB6B 5 64 VCCIO5 5 65 PB10A 5 T 66 PB10B 5 C 67 PB11A 5 T 68 PB11B 5 C 69 PB12A 5 T 70 PB12B 5 C 71 PB13A 5 T 72 GND5 5 73 PB13B 5 74 VCCIO5 5 75 PB14A 5 T 76 PB14B 5 C 77 PB15A 5 T 78 PB15B 5 C 79 PB16A 5 T VREF2_5 80 PB16B 5 C VREF1_5 81 PB17A 5 T PCLKT5_0 82 GND5 5 83 PB17B 5 C PCLKC5_0 84 VCCAUX - 85 VCCIO4 4 86 PB18A 4 T WRITEN 87 PB18B 4 C CS1N 4-12 C BDQS14 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.) Pin Number Pin Function Bank LVDS Dual Function 88 PB19A 4 T VREF1_4 89 PB19B 4 C CSN 90 PB20A 4 T VREF2_4 91 PB20B 4 C D0/SPID7 92 PB21A 4 T D2/SPID5 93 GND4 4 94 PB21B 4 C D1/SPID6 95 PB22A 4 T BDQS22 96 PB22B 4 C D3/SPID4 97 PB23A 4 T 98 PB23B 4 C 99 PB24A 4 T 100 PB24B 4 C 101 PB25A 4 T 102 PB25B 4 C D6/SPID1 103 PB33A 4 4 C VREF2_3 VREF1_3 D4/SPID3 D5/SPID2 104 VCCIO4 105* GND3, GND4 106 VCCIO3 3 107 PR27B 3 108 PR27A 3 T 109 PR26B 3 C 110 PR26A 3 T 111 PR25B 3 C 112 PR25A 3 T 113 PR24B 3 C 114 PR24A 3 T RDQS24 115 PR23B 3 C RLM0_PLLC_FB_A 116 GND3 3 117 PR23A 3 T RLM0_PLLT_FB_A 118 PR22B 3 C RLM0_PLLC_IN_A 119 PR22A 3 T RLM0_PLLT_IN_A 120 VCCIO3 3 121 PR21B 3 C DI/CSSPIN 122 PR21A 3 T DOUT/CSON 123 PR20B 3 C BUSY/SISPI 124 PR20A 3 T D7/SPID0 125 CFG2 3 126 CFG1 3 127 CFG0 3 128 VCC - 129 PROGRAMN 3 130 CCLK 3 131 INITN 3 4-13 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.) Pin Number Pin Function Bank 132 GND - LVDS Dual Function 133 DONE 3 134 GND - 135 VCC - 136 VCCAUX - 137 PR9B 2 C PCLKC2_0 138 GND2 2 139 PR9A 2 T PCLKT2_0 140 141 PR8B 2 C PR8A 2 T 142 PR7B 2 C 143 PR7A 2 T 144 PR6B 2 C 145 VCCIO2 2 146 PR6A 2 T 147 PR5B 2 C 148 PR5A 2 T 149 PR4B 2 C 150 PR4A 2 T 151 NC - RDQS6 152 NC - 153 PR2B 2 C VREF1_2 154 PR2A 2 T VREF2_2 155 VCCIO2 2 156* GND1, GND2 157 VCCIO1 1 158 PT33A 1 159 PT25B 1 160 PT25A 1 T 161 PT24B 1 C 162 PT24A 1 T 163 PT23B 1 C 164 PT23A 1 T 165 PT22B 1 C 166 PT22A 1 T 167 PT21B 1 C 168 GND1 1 169 PT21A 1 T 170 PT20B 1 C 171 PT20A 1 T 172 PT19B 1 C VREF2_1 173 PT19A 1 T VREF1_1 174 PT18B 1 C 175 PT18A 1 T 4-14 C TDQS22 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 208 PQFP (Cont.) Pin Number Pin Function Bank 176 VCCIO1 1 LVDS Dual Function 177 VCCAUX - 178 PT17B 0 179 GND0 0 C PCLKC0_0 180 PT17A 181 PT16B 0 T PCLKT0_0 0 C VREF1_0 182 PT16A 183 PT15B 0 T VREF2_0 0 C 184 PT15A 0 T 185 PT14B 0 C T 186 PT14A 0 187 VCCIO0 0 188 PT13B 0 189 GND0 0 190 PT13A 0 T 191 PT12B 0 C 192 PT12A 0 T 193 PT11B 0 C 194 PT11A 0 T 195 PT10B 0 C T C 196 PT10A 0 197 VCCIO0 0 198 PT6B 0 C 199 PT6A 0 T 200 PT5B 0 C 201 PT5A 0 T 202 PT4B 0 C 203 PT4A 0 T 204 PT3B 0 C 205 PT3A 0 T 206 PT2B 0 C 207 PT2A 0 T 208 VCCIO0 0 * Double bonded to the pin. 4-15 TDQS14 TDQS6 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA Ball Number Ball Function Bank LVDS Dual Function GND GND7 7 D4 PL2A 7 T VREF2_7 D3 C3 PL2B 7 C VREF1_7 PL3A 7 T C2 PL3B 7 C B1 PL4A 7 T C1 PL4B 7 C E3 PL5A 7 T E4 PL5B 7 C F4 PL6A 7 T F5 PL6B 7 C G4 PL7A 7 T LDQS6 G3 PL7B 7 C D2 PL8A 7 T GND GND7 7 D1 PL8B 7 E1 PL9A 7 T PCLKT7_0 E2 PL9B 7 C PCLKC7_0 C F3 XRES 6 G5 PL11A 6 T H5 PL11B 6 C F2 PL12A 6 T F1 PL12B 6 C H4 PL13A 6 T H3 PL13B 6 C G2 PL14A 6 T GND GND6 6 G1 PL14B 6 J4 PL15A 6 T J3 PL15B 6 C C J5 PL16A 6 T K5 PL16B 6 C H2 PL17A 6 T H1 PL17B 6 C T J2 PL18A 6 GND GND6 6 J1 PL18B 6 K4 TCK 6 K3 TDI 6 L3 TMS 6 L5 TDO 6 L4 VCCJ 6 K2 PL20A 6 4-16 LDQS15 C T LLM0_PLLT_IN_A Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function K1 PL20B 6 C LLM0_PLLC_IN_A L2 PL21A 6 T LLM0_PLLT_FB_A LLM0_PLLC_FB_A L1 PL21B 6 C M2 PL22A 6 T M1 PL22B 6 C T N1 PL23A 6 GND GND6 6 N2 PL23B 6 C M4 PL24A 6 T M3 PL24B 6 C P1 PL25A 6 T R1 PL25B 6 C P2 PL26A 6 T LDQS24 P3 PL26B 6 C N3 PL27A 6 T VREF1_6 C VREF2_6 N4 PL27B 6 GND GND6 6 GND GND5 5 P4 PB2A 5 T N5 PB2B 5 C P5 PB3A 5 T P6 PB3B 5 C R4 PB4A 5 T R3 PB4B 5 C T2 PB5A 5 T T3 PB5B 5 C R5 PB6A 5 T R6 PB6B 5 C T4 PB7A 5 T T5 PB7B 5 C N6 PB8A 5 T M6 PB8B 5 C T6 PB9A 5 T GND GND5 5 T7 PB9B 5 C P7 PB10A 5 T N7 PB10B 5 C R7 PB11A 5 T R8 PB11B 5 C M7 PB12A 5 T M8 PB12B 5 C T T8 PB13A 5 GND GND5 5 T9 PB13B 5 4-17 C BDQS6 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function P8 PB14A 5 T BDQS14 N8 PB14B 5 C R9 PB15A 5 T R10 PB15B 5 C P9 PB16A 5 T N9 PB16B 5 C VREF1_5 T10 PB17A 5 T PCLKT5_0 GND GND5 5 T11 PB17B 5 C PCLKC5_0 T12 PB18A 4 T WRITEN T13 PB18B 4 C CS1N VREF2_5 P10 PB19A 4 T VREF1_4 N10 PB19B 4 C CSN T14 PB20A 4 T VREF2_4 T15 PB20B 4 C D0/SPID7 M10 PB21A 4 T D2/SPID5 GND GND4 4 M11 PB21B 4 C D1/SPID6 R11 PB22A 4 T BDQS22 D3/SPID4 P11 PB22B 4 C R13 PB23A 4 T R14 PB23B 4 C P12 PB24A 4 T P13 PB24B 4 C N11 PB25A 4 T GND GND4 4 N12 PB25B 4 D4/SPID3 D5/SPID2 C D6/SPID1 R12 PB26A 4 GND GND4 4 GND GND4 4 GND GND3 3 N13 PR27B 3 C VREF2_3 N14 PR27A 3 T VREF1_3 P14 PR26B 3 C P15 PR26A 3 T R15 PR25B 3 C R16 PR25A 3 T M13 PR24B 3 C M14 PR24A 3 T RDQS24 C RLM0_PLLC_FB_A P16 PR23B 3 GND GND3 3 N16 PR23A 3 T RLM0_PLLT_FB_A N15 PR22B 3 C RLM0_PLLC_IN_A M15 PR22A 3 T RLM0_PLLT_IN_A 4-18 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.) Ball Number Ball Function Bank LVDS M16 PR21B 3 C DI/CSSPIN L16 PR21A 3 T DOUT/CSON K16 PR20B 3 C BUSY/SISPI T D7/SPID0 J16 PR20A 3 L12 CFG2 3 L14 CFG1 3 L13 CFG0 3 K13 PROGRAMN 3 L15 CCLK 3 K15 INITN 3 K14 DONE 3 H16 PR18B 3 GND GND3 3 H15 PR18A 3 T G16 PR17B 3 C Dual Function C G15 PR17A 3 T K12 PR16B 3 C J12 PR16A 3 T J14 PR15B 3 C J15 PR15A 3 T F16 PR14B 3 C GND GND3 3 F15 PR14A 3 T J13 PR13B 3 C H13 PR13A 3 T RDQS15 H14 PR12B 3 C G14 PR12A 3 T E16 PR11B 3 C E15 PR11A 3 T C PCLKC2_0 PCLKT2_0 H12 PR9B 2 GND GND2 2 G12 PR9A 2 T G13 PR8B 2 C F13 PR8A 2 T F12 PR7B 2 C E13 PR7A 2 T D16 PR6B 2 C D15 PR6A 2 T F14 PR5B 2 C E14 PR5A 2 T C16 PR4B 2 C B16 PR4A 2 T C15 PR3B 2 C C14 PR3A 2 T 4-19 RDQS6 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function D14 PR2B 2 C VREF1_2 D13 PR2A 2 T VREF2_2 GND GND2 2 GND GND1 1 GND GND1 1 B13 PT26B 1 C C13 PT26A 1 T GND GND1 1 C12 PT25B 1 D12 PT25A 1 T A15 PT24B 1 C C B14 PT24A 1 T D11 PT23B 1 C C11 PT23A 1 T E10 PT22B 1 C E11 PT22A 1 T A14 PT21B 1 C TDQS22 GND GND1 1 A13 PT21A 1 T D10 PT20B 1 C C10 PT20A 1 T A12 PT19B 1 C VREF2_1 B12 PT19A 1 T VREF1_1 A11 PT18B 1 C B11 PT18A 1 T C PCLKC0_0 A10 PT17B 0 GND GND0 0 B10 PT17A 0 T PCLKT0_0 C9 PT16B 0 C VREF1_0 B9 PT16A 0 T VREF2_0 E9 PT15B 0 C D9 PT15A 0 T D8 PT14B 0 C C8 PT14A 0 T A9 PT13B 0 C GND GND0 0 A8 PT13A 0 T B8 PT12B 0 C B7 PT12A 0 T D7 PT11B 0 C C7 PT11A 0 T A7 PT10B 0 C A6 PT10A 0 T E7 PT9B 0 C 4-20 TDQS14 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.) Ball Number Ball Function Bank GND GND0 0 LVDS E6 PT9A 0 T D6 PT8B 0 C C6 PT8A 0 T B6 PT7B 0 C B5 PT7A 0 T A5 PT6B 0 C A4 PT6A 0 T A3 PT5B 0 C A2 PT5A 0 T B2 PT4B 0 C B3 PT4A 0 T D5 PT3B 0 C C5 PT3A 0 T C4 PT2B 0 C T B4 PT2A 0 GND GND0 0 A1 GND - A16 GND - G10 GND - G7 GND - G8 GND - G9 GND - H10 GND - H7 GND - H8 GND - H9 GND - J10 GND - J7 GND - J8 GND - J9 GND - K10 GND - K7 GND - K8 GND - K9 GND - T1 GND - T16 GND - E12 VCC - E5 VCC - E8 VCC - M12 VCC - M5 VCC - M9 VCC - B15 VCCAUX - 4-21 Dual Function TDQS6 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6 Logic Signal Connections: 256 fpBGA (Cont.) Ball Number Ball Function Bank R2 VCCAUX - F7 VCCIO0 0 F8 VCCIO0 0 F10 VCCIO1 1 F9 VCCIO1 1 G11 VCCIO2 2 H11 VCCIO2 2 J11 VCCIO3 3 K11 VCCIO3 3 L10 VCCIO4 4 L9 VCCIO4 4 L7 VCCIO5 5 L8 VCCIO5 5 J6 VCCIO6 6 K6 VCCIO6 6 G6 VCCIO7 7 H6 VCCIO7 7 F6 VCC - F11 VCC - L11 VCC - L6 VCC - 4-22 LVDS Dual Function Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 LFEC20/LFECP20 Ball Number Ball Function GND GND7 7 D4 PL2A 7 T VREF2_7 C VREF1_7 Bank LVDS Dual Function Ball Number Ball Function GND GND7 7 D4 PL2A 7 T VREF2_7 VREF1_7 Bank LVDS E4 PL2B 7 E4 PL2B 7 C C3 NC - C3 PL3A 7 T B2 NC - B2 PL3B 7 C E5 NC - E5 PL4A 7 T F5 NC - F5 PL4B 7 C D3 NC - D3 PL5A 7 T C2 NC - C2 PL5B 7 C F4 NC - F4 PL6A 7 T Dual Function LDQS6 G4 NC - G4 PL6B 7 C E3 NC - E3 PL7A 7 T D2 NC - D2 PL7B 7 C B1 NC - B1 PL8A 7 T C1 NC - C1 PL8B 7 C LUM0_PLLC_IN_A F3 NC - F3 PL9A 7 T LUM0_PLLT_FB_A C LUM0_PLLC_FB_A - - - GND GND7 7 E2 NC - E2 PL9B 7 G5 NC - G5 PL11A 7 T H6 NC - H6 PL11B 7 C G3 NC - G3 PL12A 7 T H4 NC - H4 PL12B 7 C J5 NC - J5 PL13A 7 T H5 NC - H5 PL13B 7 C F2 NC - F2 PL14A 7 T - - - GND GND7 7 F1 NC - F1 PL14B 7 C E1 NC - E1 PL15A 7 T D1 NC - D1 PL15B 7 C H3 PL3A 7 T H3 PL16A 7 T G2 PL3B 7 C G2 PL16B 7 C H2 PL4A 7 T H2 PL17A 7 T G1 PL4B 7 C G1 PL17B 7 C J4 PL5A 7 T J4 PL18A 7 T - - - J3 PL5B 7 C LDQS6 GND GND7 7 J3 PL18B 7 C J2 PL6A 7 T H1 PL6B 7 C K4 PL7A 7 T K4 PL20A 7 T K5 PL7B 7 C K5 PL20B 7 C K3 PL8A 7 T K3 PL21A 7 T K2 PL8B 7 C K2 PL21B 7 C 4-23 LUM0_PLLT_IN_A J2 PL19A 7 T H1 PL19B 7 C LDQS19 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function J1 PL9A 7 GND GND7 7 K1 PL9B 7 LFEC20/LFECP20 Dual Function Ball Number T PCLKT7_0 J1 C PCLKC7_0 Bank LVDS Ball Function PL22A Bank LVDS 7 GND GND7 7 K1 PL22B 7 PCLKT7_0 C PCLKC7_0 L3 XRES 6 L3 XRES 6 L4 PL11A 6 T L4 PL24A 6 T L5 PL11B 6 C L5 PL24B 6 C L2 PL12A 6 T L2 PL25A 6 T L1 PL12B 6 C L1 PL25B 6 C M4 PL13A 6 T M4 PL26A 6 T M5 PL13B 6 C M5 PL26B 6 C T T M1 PL14A 6 GND GND6 6 M2 PL14B 6 C M1 PL27A 6 GND GND6 6 M2 PL27B 6 N3 PL28A 6 T M3 PL28B 6 C C N3 PL15A 6 T M3 PL15B 6 C N5 PL16A 6 T N5 PL29A 6 T N4 PL16B 6 C N4 PL29B 6 C N1 PL17A 6 T N1 PL30A 6 T N2 PL17B 6 C N2 PL30B 6 C P1 PL18A 6 T P1 PL31A 6 T GND GND6 6 P2 PL18B 6 R6 NC P5 P3 LDQS15 GND GND6 6 P2 PL31B 6 C - R6 PL32A 6 T NC - P5 PL32B 6 C NC - P3 PL33A 6 T C P4 NC - P4 PL33B 6 C R1 NC - R1 PL34A 6 T R2 NC - R2 PL34B 6 C R5 NC - R5 PL35A 6 T - - - GND GND6 6 R4 NC - R4 PL35B 6 T1 NC - T1 PL36A 6 T T2 NC - T2 PL36B 6 C R3 NC - R3 PL37A 6 T T3 NC - T3 PL37B 6 C PL38A 6 T PL38B 6 C PL39A 6 T GND6 6 - - - GND PL39B 6 T5 TCK 6 T5 TCK 6 U5 TDI 6 U5 TDI 6 4-24 Dual Function T LDQS28 C C LDQS36 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function T4 TMS Bank LVDS LFEC20/LFECP20 Dual Function 6 Ball Number Ball Function T4 TMS Bank LVDS Dual Function 6 U1 TDO 6 U1 TDO 6 U2 VCCJ 6 U2 VCCJ 6 V1 PL20A 6 T LLM0_PLLT_IN_A V1 PL41A 6 T LLM0_PLLT_IN_A V2 PL20B 6 C LLM0_PLLC_IN_A V2 PL41B 6 C LLM0_PLLC_IN_A U3 PL21A 6 T LLM0_PLLT_FB_A U3 PL42A 6 T LLM0_PLLT_FB_A V3 PL21B 6 C LLM0_PLLC_FB_A V3 PL42B 6 C LLM0_PLLC_FB_A U4 PL22A 6 T U4 PL43A 6 T V5 PL22B 6 C V5 PL43B 6 C W1 PL23A 6 T W1 PL44A 6 T GND GND6 6 GND GND6 6 W2 PL23B 6 C Y1 PL24A 6 T LDQS24 W2 PL44B 6 C Y1 PL45A 6 T Y2 PL24B 6 C Y2 PL45B 6 C AA1 PL25A 6 T AA1 PL46A 6 T AA2 PL25B 6 C AA2 PL46B 6 C W4 PL26A 6 T W4 PL47A 6 T V4 PL26B 6 C W3 PL27A 6 T VREF1_6 C VREF2_6 V4 PL47B 6 C W3 PL48A 6 T VREF1_6 C VREF2_6 Y3 PL27B 6 Y3 PL48B 6 GND GND6 6 GND GND6 6 GND GND5 5 GND GND5 5 PB2A 5 T PB2B 5 C PB3A 5 T PB3B 5 C PB4A 5 T PB4B 5 C PB5A 5 T PB5B 5 C PB6A 5 T PB6B 5 C PB7A 5 T PB7B 5 C PB8A 5 T PB8B 5 C PB9A 5 T GND5 5 PB9B 5 - - - GND C V7 NC - V7 PB10A 5 T T6 NC - T6 PB10B 5 C V8 NC - V8 PB11A 5 T 4-25 LDQS45 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function U7 NC LFEC20/LFECP20 Ball Number Ball Function - U7 PB11B Bank LVDS Dual Function Bank LVDS 5 W5 NC - W5 PB12A 5 T U6 NC - U6 PB12B 5 C AA3 NC - AA3 PB13A 5 T - - - GND GND5 5 AB3 NC - AB3 PB13B 5 C Y6 NC - Y6 PB14A 5 T V6 NC - V6 PB14B 5 C AA5 NC - AA5 PB15A 5 T W6 NC - W6 PB15B 5 C Y5 NC - Y5 PB16A 5 T Y4 NC - Y4 PB16B 5 C AA4 NC - AA4 PB17A 5 T - - - GND GND5 5 AB4 NC - AB4 PB17B 5 Y7 PB2A 5 T Y7 PB18A 5 T W8 PB2B 5 C W8 PB18B 5 C PB3A 5 T W7 PB19A 5 T U8 PB3B 5 C U8 PB19B 5 C W9 PB4A 5 T W9 PB20A 5 T U9 PB4B 5 C U9 PB20B 5 C Y8 PB5A 5 T T - - - Y9 PB5B 5 C V9 PB6A 5 T Y8 PB21A 5 GND GND5 5 Y9 PB21B 5 C V9 PB22A 5 T T9 PB6B 5 C T9 PB22B 5 C W10 PB7A 5 T W10 PB23A 5 T U10 PB7B 5 C U10 PB23B 5 C V10 PB8A 5 T V10 PB24A 5 T T10 PB8B 5 C T10 PB24B 5 C AA6 PB9A 5 T AA6 PB25A 5 T GND GND5 5 GND GND5 5 AB5 PB9B 5 AB5 PB25B 5 AA8 PB10A 5 T AA8 PB26A 5 T AA7 PB10B 5 C AA7 PB26B 5 C AB6 PB11A 5 T AB6 PB27A 5 T AB7 PB11B 5 C AB7 PB27B 5 C C C Y10 PB12A 5 T Y10 PB28A 5 T W11 PB12B 5 C W11 PB28B 5 C T T AB8 PB13A 5 GND GND5 5 AB9 PB13B 5 C 4-26 AB8 PB29A 5 GND GND5 5 AB9 PB29B 5 BDQS14 C W7 BDQS6 Dual Function C C BDQS22 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function AA10 PB14A 5 T AA9 PB14B 5 Y11 PB15A 5 AA11 PB15B 5 C V11 PB16A 5 T LFEC20/LFECP20 Dual Function Ball Number Ball Function BDQS14 AA10 PB30A 5 T C AA9 PB30B 5 C T Y11 PB31A 5 T AA11 PB31B 5 C V11 PB32A 5 T Bank LVDS VREF2_5 Bank LVDS Dual Function BDQS30 VREF2_5 V12 PB16B 5 C VREF1_5 V12 PB32B 5 C VREF1_5 AB10 PB17A 5 T PCLKT5_0 AB10 PB33A 5 T PCLKT5_0 GND GND5 5 C PCLKC5_0 AB11 PB33B 5 C PCLKC5_0 GND GND5 5 AB11 PB17B 5 Y12 PB18A 4 T WRITEN Y12 PB34A 4 T WRITEN U11 PB18B 4 C CS1N U11 PB34B 4 C CS1N W12 PB19A 4 T VREF1_4 W12 PB35A 4 T VREF1_4 U12 PB19B 4 C CSN U12 PB35B 4 C CSN W13 PB20A 4 T VREF2_4 W13 PB36A 4 T VREF2_4 U13 PB20B 4 C D0/SPID7 U13 PB36B 4 C D0/SPID7 AA12 PB21A 4 T D2/SPID5 AA12 PB37A 4 T D2/SPID5 GND GND4 4 GND GND4 4 AB12 PB21B 4 C D1/SPID6 AB12 PB37B 4 C D1/SPID6 T13 PB22A 4 T BDQS22 T13 PB38A 4 T BDQS38 D3/SPID4 D3/SPID4 V13 PB22B 4 C W14 PB23A 4 T U14 PB23B 4 C Y13 PB24A 4 T V14 PB24B 4 C AA13 PB25A 4 T D4/SPID3 D5/SPID2 V13 PB38B 4 C W14 PB39A 4 T U14 PB39B 4 C Y13 PB40A 4 T V14 PB40B 4 C AA13 PB41A 4 T GND GND4 4 AB13 PB25B 4 AA14 PB26A 4 T AA14 PB42A 4 T Y14 PB26B 4 C Y14 PB42B 4 C C D6/SPID1 GND GND4 4 AB13 PB41B 4 C Y15 PB27A 4 T Y15 PB43A 4 T W15 PB27B 4 C W15 PB43B 4 C V15 PB28A 4 T V15 PB44A 4 T T14 PB28B 4 C T14 PB44B 4 C AB14 PB29A 4 T AB14 PB45A 4 T GND GND4 4 GND GND4 4 AB15 PB29B 4 C AB15 PB45B 4 C AB16 PB30A 4 T AB16 PB46A 4 T AA15 PB30B 4 C AA15 PB46B 4 C AB17 PB31A 4 T AB17 PB47A 4 T AA16 PB31B 4 C AA16 PB47B 4 C AB18 PB32A 4 T AB18 PB48A 4 T AA17 PB32B 4 C AA17 PB48B 4 C BDQS30 4-27 D4/SPID3 D5/SPID2 D6/SPID1 BDQS46 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function AB19 PB33A Ball Function T AB19 PB49A GND GND4 4 C AA18 PB49B 4 Bank LVDS 4 - - - AA18 PB33B 4 LFEC20/LFECP20 Ball Number Dual Function Bank LVDS 4 C W16 NC - W16 PB50A 4 T U15 NC - U15 PB50B 4 C V16 NC - V16 PB51A 4 T U16 NC - U16 PB51B 4 C Y17 NC - Y17 PB52A 4 T V17 NC - V17 PB52B 4 C AB20 NC - AB20 PB53A 4 T - - - GND GND4 4 AA19 NC - AA19 PB53B 4 C Y16 NC - Y16 PB54A 4 T W17 NC - W17 PB54B 4 C AA20 NC - AA20 PB55A 4 T Y19 NC - Y19 PB55B 4 C Y18 NC - Y18 PB56A 4 T W18 NC - W18 PB56B 4 C T17 NC - T17 PB57A 4 T C U17 NC - U17 PB57B 4 GND GND4 4 GND GND4 4 GND GND3 3 W20 PR27B 3 C VREF2_3 VREF1_3 GND GND3 3 W20 PR48B 3 Dual Function T BDQS54 C VREF2_3 VREF1_3 Y20 PR27A 3 T Y20 PR48A 3 T AA21 PR26B 3 C AA21 PR47B 3 C AB21 PR26A 3 T AB21 PR47A 3 T W19 PR25B 3 C W19 PR46B 3 C V19 PR25A 3 T V19 PR46A 3 T Y21 PR24B 3 C Y21 PR45B 3 C AA22 PR24A 3 T RDQS24 AA22 PR45A 3 T RDQS45 V20 PR23B 3 C RLM0_PLLC_FB_A V20 PR44B 3 C RLM0_PLLC_IN_A GND GND3 3 GND GND3 3 U20 PR23A 3 T RLM0_PLLT_FB_A U20 PR44A 3 T RLM0_PLLT_IN_A W21 PR22B 3 C RLM0_PLLC_IN_A W21 PR43B 3 C RLM0_PLLC_FB_A Y22 PR22A 3 T RLM0_PLLT_IN_A Y22 PR43A 3 T RLM0_PLLT_FB_A V21 PR21B 3 C DI/CSSPIN V21 PR42B 3 C DI/CSSPIN W22 PR21A 3 T DOUT/CSON W22 PR42A 3 T DOUT/CSON U21 PR20B 3 C BUSY/SISPI U21 PR41B 3 C BUSY/SISPI V22 PR20A 3 T D7/SPID0 V22 PR41A 3 T D7/SPID0 T19 CFG2 3 T19 CFG2 3 U19 CFG1 3 U19 CFG1 3 U18 CFG0 3 U18 CFG0 3 4-28 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function V18 PROGRAMN T20 CCLK LFEC20/LFECP20 Ball Number Ball Function 3 V18 PROGRAMN 3 3 T20 CCLK 3 Bank LVDS Dual Function Bank LVDS T21 INITN 3 T21 INITN 3 R20 DONE 3 R20 DONE 3 - - - GND PR39B 3 GND3 3 PR39A 3 T PR38B 3 C C PR38A 3 T T18 NC - T18 PR37B 3 C R17 NC - R17 PR37A 3 T R19 NC - R19 PR36B 3 C R18 NC - R18 PR36A 3 T U22 NC - U22 PR35B 3 C - - - GND GND3 3 T22 NC - T22 PR35A 3 T R21 NC - R21 PR34B 3 C R22 NC - R22 PR34A 3 T P20 NC - P20 PR33B 3 C N20 NC - N20 PR33A 3 T P19 NC - P19 PR32B 3 C P18 NC - P18 PR32A 3 T P21 PR18B 3 P21 PR31B 3 C GND GND3 3 GND GND3 3 C P22 PR18A 3 T P22 PR31A 3 T N21 PR17B 3 C N21 PR30B 3 C N22 PR17A 3 T N22 PR30A 3 T N19 PR16B 3 C N19 PR29B 3 C N18 PR16A 3 T N18 PR29A 3 T M21 PR15B 3 C M21 PR28B 3 C L20 PR15A 3 T L20 PR28A 3 T L21 PR14B 3 C L21 PR27B 3 C RDQS15 GND GND3 3 GND GND3 3 M20 PR14A 3 T M20 PR27A 3 T M18 PR13B 3 C M18 PR26B 3 C M19 PR13A 3 T M19 PR26A 3 T M22 PR12B 3 C M22 PR25B 3 C L22 PR12A 3 T L22 PR25A 3 T K22 PR11B 3 C K22 PR24B 3 C K21 PR11A 3 T K21 PR24A 3 T J22 PR9B 2 C J22 PR22B 2 C PCLKC2_0 4-29 Dual Function RDQS36 RDQS28 PCLKC2_0 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function GND GND2 Bank LVDS LFEC20/LFECP20 Dual Function 2 PCLKT2_0 Ball Number Ball Function GND GND2 Bank LVDS J21 PR9A 2 T J21 PR22A 2 T H22 PR8B 2 C H22 PR21B 2 C H21 PR8A 2 T H21 PR21A 2 T L19 PR7B 2 C L19 PR20B 2 C L18 PR7A 2 T L18 PR20A 2 T K20 PR6B 2 C K20 PR19B 2 C J20 PR6A 2 T K19 PR5B 2 C RDQS6 Dual Function 2 J20 PR19A 2 T K19 PR18B 2 C - - - GND GND2 2 K18 PR5A 2 T K18 PR18A 2 T G22 PR4B 2 C G22 PR17B 2 C F22 PR4A 2 T F22 PR17A 2 T F21 PR3B 2 C F21 PR16B 2 C E22 PR3A 2 T E22 PR16A 2 T E21 NC - E21 PR15B 2 C D22 NC - D22 PR15A 2 T G21 NC - G21 PR14B 2 C G20 NC - G20 PR14A 2 T PCLKT2_0 RDQS19 - - - GND GND2 2 J18 NC - J18 PR13B 2 H19 NC - H19 PR13A 2 T J19 NC - J19 PR12B 2 C H20 NC - H20 PR12A 2 T H17 NC - H17 PR11B 2 C H18 NC - H18 PR11A 2 T D21 NC - D21 PR9B 2 C RUM0_PLLC_FB_A C - - - GND GND2 2 C22 NC - C22 PR9A 2 T RUM0_PLLT_FB_A G19 NC - G19 PR8B 2 C RUM0_PLLC_IN_A G18 NC - G18 PR8A 2 T RUM0_PLLT_IN_A F20 NC - F20 PR7B 2 C F19 NC - F19 PR7A 2 T E20 NC - E20 PR6B 2 C D20 NC - D20 PR6A 2 T C21 NC - C21 PR5B 2 C C20 NC - C20 PR5A 2 T F18 NC - F18 PR4B 2 C E18 NC - E18 PR4A 2 T B22 NC - B22 PR3B 2 C B21 NC - B21 PR3A 2 T E19 PR2B 2 E19 PR2B 2 C C VREF1_2 4-30 RDQS6 VREF1_2 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function D19 PR2A 2 GND GND2 GND GND1 G17 F17 LFEC20/LFECP20 Dual Function Ball Number Ball Function VREF2_2 D19 PR2A 2 2 GND GND2 2 1 GND GND1 1 NC - G17 PT57B 1 C NC - F17 PT57A 1 T D18 NC - D18 PT56B 1 C C18 NC - C18 PT56A 1 T C19 NC - C19 PT55B 1 C B20 NC - B20 PT55A 1 T D17 NC - D17 PT54B 1 C C16 NC - C16 PT54A 1 T B19 NC - B19 PT53B 1 C - - - GND GND1 1 A20 NC - A20 PT53A 1 T E17 NC - E17 PT52B 1 C C17 NC - C17 PT52A 1 T F16 NC - F16 PT51B 1 C E16 NC - E16 PT51A 1 T F15 NC - F15 PT50B 1 C D16 PT50A 1 T B18 PT49B 1 C Bank LVDS D16 NC - B18 PT33B 1 T C Bank LVDS T - - - GND GND1 1 A19 PT33A 1 T A19 PT49A 1 T B17 PT32B 1 C B17 PT48B 1 C A18 PT32A 1 T A18 PT48A 1 T B16 PT31B 1 C B16 PT47B 1 C A17 PT31A 1 T A17 PT47A 1 T B15 PT30B 1 C B15 PT46B 1 C A16 PT30A 1 T A16 PT46A 1 T C A15 PT45B 1 C GND GND1 1 TDQS30 A15 PT29B 1 GND GND1 1 A14 PT29A 1 T A14 PT45A 1 T G14 PT28B 1 C G14 PT44B 1 C E15 PT28A 1 T E15 PT44A 1 T D15 PT27B 1 C D15 PT43B 1 C C15 PT27A 1 T C15 PT43A 1 T C14 PT26B 1 C C14 PT42B 1 C B14 PT26A 1 T B14 PT42A 1 T A13 PT25B 1 C A13 PT41B 1 C GND GND1 1 GND GND1 1 B13 PT25A 1 T B13 PT41A 1 T E14 PT24B 1 C E14 PT40B 1 C 4-31 Dual Function VREF2_2 TDQS54 TDQS46 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function C13 PT24A Bank LVDS 1 T LFEC20/LFECP20 Dual Function Ball Number Ball Function C13 PT40A Bank LVDS 1 T F14 PT23B 1 C F14 PT39B 1 C D14 PT23A 1 T D14 PT39A 1 T E13 PT22B 1 C G13 PT22A 1 T C TDQS22 E13 PT38B 1 C G13 PT38A 1 T C A12 PT37B 1 GND GND1 1 T B12 PT37A 1 T C F13 PT36B 1 C Dual Function TDQS38 A12 PT21B 1 GND GND1 1 B12 PT21A 1 F13 PT20B 1 D13 PT20A 1 T D13 PT36A 1 T F12 PT19B 1 C VREF2_1 F12 PT35B 1 C VREF2_1 D12 PT19A 1 T VREF1_1 D12 PT35A 1 T VREF1_1 F11 PT18B 1 C F11 PT34B 1 C C12 PT18A 1 T A11 PT17B 0 C PCLKC0_0 C12 PT34A 1 T A11 PT33B 0 C PCLKC0_0 GND GND0 0 GND GND0 0 A10 PT17A 0 T PCLKT0_0 A10 PT33A 0 T PCLKT0_0 E12 PT16B 0 C VREF1_0 E12 PT32B 0 C VREF1_0 E11 PT16A 0 T VREF2_0 E11 PT32A 0 T VREF2_0 B11 PT15B 0 C B11 PT31B 0 C C11 PT15A 0 T C11 PT31A 0 T B9 PT14B 0 C B10 PT14A 0 T A9 PT13B 0 C GND GND0 0 TDQS14 B9 PT30B 0 C B10 PT30A 0 T A9 PT29B 0 C GND GND0 0 A8 PT13A 0 T A8 PT29A 0 T D11 PT12B 0 C D11 PT28B 0 C C10 PT12A 0 T C10 PT28A 0 T A7 PT11B 0 C A7 PT27B 0 C A6 PT11A 0 T A6 PT27A 0 T B7 PT10B 0 C B7 PT26B 0 C B8 PT10A 0 T B8 PT26A 0 T A5 PT9B 0 C A5 PT25B 0 C GND GND0 0 GND GND0 0 B6 PT9A 0 T B6 PT25A 0 T G10 PT8B 0 C G10 PT24B 0 C E10 PT8A 0 T E10 PT24A 0 T F10 PT7B 0 C F10 PT23B 0 C D10 PT7A 0 T D10 PT23A 0 T G9 PT22B 0 C E9 PT22A 0 T C9 PT21B 0 C G9 PT6B 0 C E9 PT6A 0 T C9 PT5B 0 C TDQS6 4-32 TDQS30 TDQS22 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 LFEC20/LFECP20 Ball Number Ball Function Ball Number Ball Function - - - GND GND0 0 C8 PT5A 0 F9 PT4B 0 T C8 PT21A 0 T C F9 PT20B 0 C D9 PT4A 0 F8 PT3B 0 T D9 PT20A 0 T C F8 PT19B 0 C D7 PT3A 0 T D7 PT19A 0 T D8 PT2B 0 C D8 PT18B 0 C T T Bank LVDS Dual Function Bank LVDS C7 PT2A 0 C7 PT18A 0 GND GND0 0 GND GND0 0 A4 NC - A4 PT17B 0 C B4 NC - B4 PT17A 0 T C4 NC - C4 PT16B 0 C C5 NC - C5 PT16A 0 T D6 NC - D6 PT15B 0 C B5 NC - B5 PT15A 0 T E6 NC - E6 PT14B 0 C C6 NC - C6 PT14A 0 T A3 NC - A3 PT13B 0 C - - - GND GND0 0 B3 NC - B3 PT13A 0 T F6 NC - F6 PT12B 0 C D5 NC - D5 PT12A 0 T F7 NC - F7 PT11B 0 C E8 NC - E8 PT11A 0 T G6 NC - G6 PT10B 0 C E7 NC - E7 PT10A 0 T PR9B C GND0 0 PT9A 0 T PR8B 0 C PT8A 0 T PT7B 0 C PT7A 0 T PT6A 0 C PT6A 0 T PT5B 0 C PT5A 0 T PT4B 0 C PT4A 0 T PT3B 0 C PT3A 0 T PT2B 0 C - - - GND 4-33 Dual Function TDQS14 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function Bank LVDS LFEC20/LFECP20 Ball Number Dual Function Ball Function PT2A Bank LVDS 0 - - - GND GND0 A1 GND - A1 GND - A22 GND - A22 GND - AB1 GND - AB1 GND - AB22 GND - AB22 GND - H15 GND - H15 GND - H8 GND - H8 GND - J10 GND - J10 GND - J11 GND - J11 GND - J12 GND - J12 GND - J13 GND - J13 GND - J14 GND - J14 GND - J9 GND - J9 GND - K10 GND - K10 GND - K11 GND - K11 GND - K12 GND - K12 GND - K13 GND - K13 GND - K14 GND - K14 GND - K9 GND - K9 GND - L10 GND - L10 GND - L11 GND - L11 GND - L12 GND - L12 GND - L13 GND - L13 GND - L14 GND - L14 GND - L9 GND - L9 GND - M10 GND - M10 GND - M11 GND - M11 GND - M12 GND - M12 GND - M13 GND - M13 GND - M14 GND - M14 GND - M9 GND - M9 GND - N10 GND - N10 GND - N11 GND - N11 GND - N12 GND - N12 GND - N13 GND - N13 GND - N14 GND - N14 GND - N9 GND - N9 GND - P10 GND - P10 GND - P11 GND - P11 GND - P12 GND - P12 GND - P13 GND - P13 GND - 4-34 T Dual Function Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function P14 GND Bank LVDS LFEC20/LFECP20 Dual Function - Ball Number Ball Function P14 GND Bank LVDS - P9 GND - P9 GND - R15 GND - R15 GND - R8 GND - R8 GND - J16 VCC - J16 VCC - J7 VCC - J7 VCC - K16 VCC - K16 VCC - K17 VCC - K17 VCC - K6 VCC - K6 VCC - K7 VCC - K7 VCC - L17 VCC - L17 VCC - L6 VCC - L6 VCC - M17 VCC - M17 VCC - M6 VCC - M6 VCC - N16 VCC - N16 VCC - N17 VCC - N17 VCC - N6 VCC - N6 VCC - N7 VCC - N7 VCC - P16 VCC - P16 VCC - P7 VCC - P7 VCC - G11 VCCIO0 0 G11 VCCIO0 0 H10 VCCIO0 0 H10 VCCIO0 0 H11 VCCIO0 0 H11 VCCIO0 0 H9 VCCIO0 0 H9 VCCIO0 0 G12 VCCIO1 1 G12 VCCIO1 1 H12 VCCIO1 1 H12 VCCIO1 1 H13 VCCIO1 1 H13 VCCIO1 1 H14 VCCIO1 1 H14 VCCIO1 1 J15 VCCIO2 2 J15 VCCIO2 2 K15 VCCIO2 2 K15 VCCIO2 2 L15 VCCIO2 2 L15 VCCIO2 2 L16 VCCIO2 2 L16 VCCIO2 2 M15 VCCIO3 3 M15 VCCIO3 3 M16 VCCIO3 3 M16 VCCIO3 3 N15 VCCIO3 3 N15 VCCIO3 3 P15 VCCIO3 3 P15 VCCIO3 3 R12 VCCIO4 4 R12 VCCIO4 4 R13 VCCIO4 4 R13 VCCIO4 4 R14 VCCIO4 4 R14 VCCIO4 4 T12 VCCIO4 4 T12 VCCIO4 4 R10 VCCIO5 5 R10 VCCIO5 5 R11 VCCIO5 5 R11 VCCIO5 5 4-35 Dual Function Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP6/LFEC6, LFECP20/LFEC20 Logic Signal Connections: 484 fpBGA LFEC6/LFECP6 Ball Number Ball Function R9 VCCIO5 T11 M7 LFEC20/LFECP20 Ball Number Ball Function 5 R9 VCCIO5 5 VCCIO5 5 T11 VCCIO5 5 VCCIO6 6 M7 VCCIO6 6 Bank LVDS Dual Function Bank LVDS M8 VCCIO6 6 M8 VCCIO6 6 N8 VCCIO6 6 N8 VCCIO6 6 P8 VCCIO6 6 P8 VCCIO6 6 J8 VCCIO7 7 J8 VCCIO7 7 K8 VCCIO7 7 K8 VCCIO7 7 L7 VCCIO7 7 L7 VCCIO7 7 L8 VCCIO7 7 L8 VCCIO7 7 G15 VCCAUX - G15 VCCAUX - G16 VCCAUX - G16 VCCAUX - G7 VCCAUX - G7 VCCAUX - G8 VCCAUX - G8 VCCAUX - H16 VCCAUX - H16 VCCAUX - H7 VCCAUX - H7 VCCAUX - R16 VCCAUX - R16 VCCAUX - R7 VCCAUX - R7 VCCAUX - T15 VCCAUX - T15 VCCAUX - T16 VCCAUX - T16 VCCAUX - T7 VCCAUX - T7 VCCAUX - T8 VCCAUX - T8 VCCAUX - J6 VCC - J6 VCC - J17 VCC - J17 VCC - P6 VCC - P6 VCC - P17 VCC - P17 VCC - A2 NC - A2 NC - AB2 NC - AB2 NC - A21 NC - A21 NC - 4-36 Dual Function Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA Ball Number Ball Function Bank LVDS E3 PL2A 7 T VREF2_7 E4 PL2B 7 C VREF1_7 B1 PL3A 7 T C1 PL3B 7 C F3 PL4A 7 T G3 PL4B 7 C D2 PL5A 7 T E2 PL5B 7 C D1 PL6A 7 T E1 PL6B 7 C Dual Function LDQS6 F2 PL7A 7 T G2 PL7B 7 C F6 PL8A 7 T LUM0_PLLT_IN_A G6 PL8B 7 C LUM0_PLLC_IN_A H4 PL9A 7 T LUM0_PLLT_FB_A GND GND07 LUM0_PLLC_FB_A G4 PL9B 7 C J4 PL11A 7 T J5 PL11B 7 C K4 PL12A 7 T K5 PL12B 7 C J6 PL13A 7 T K6 PL13B 7 C F1 PL14A 7 T GND GND07 G1 PL14B 7 C H1 PL15A 7 T J1 PL15B 7 C K2 PL16A 7 T K1 PL16B 7 C K3 PL17A 7 T L3 PL17B 7 C 7 T L2 PL18A GND GND07 L1 PL18B 7 C M3 PL19A 7 T M4 PL19B 7 C M1 PL20A 7 T M2 PL20B 7 C L4 PL21A 7 T L5 PL21B 7 C N2 PL22A 7 T GND GND07 4-37 LDQS19 PCLKT7_0 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function N1 PL22B 7 C PCLKC7_0 N3 XRES 6 P1 PL24A 6 T P2 PL24B 6 C L7 PL25A 6 T L6 PL25B 6 C N4 PL26A 6 T N5 PL26B 6 C R1 PL27A 6 T GND GND06 R2 PL27B 6 C P4 PL28A 6 T P3 PL28B 6 C M5 PL29A 6 T M6 PL29B 6 C T1 PL30A 6 T T2 PL30B 6 C 6 T R4 PL31A GND GND06 R3 PL31B 6 C N6 PL32A 6 T P5 PL32B 6 C P6 PL33A 6 T R5 PL33B 6 C U1 PL34A 6 T U2 PL34B 6 C T3 PL35A 6 T GND GND06 T4 PL35B 6 C R6 PL36A 6 T T5 PL36B 6 C T6 PL37A 6 T U5 PL37B 6 C U3 PL38A 6 T U4 PL38B 6 C 6 T C V1 PL39A GND GND06 V2 PL39B 6 U7 TCK 6 V4 TDI 6 V5 TMS 6 V3 TDO 6 U6 VCCJ 6 W1 PL41A 6 4-38 T LDQS28 LDQS36 LLM0_PLLT_IN_A Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function W2 PL41B 6 C LLM0_PLLC_IN_A V6 PL42A 6 T LLM0_PLLT_FB_A W6 PL42B 6 C LLM0_PLLC_FB_A Y1 PL43A 6 T Y2 PL43B 6 C W3 PL44A 6 T GND GND06 W4 PL44B 6 C AA1 PL45A 6 T AB1 PL45B 6 C Y4 PL46A 6 T LDQS45 Y3 PL46B 6 C AC1 PL47A 6 T AB2 PL47B 6 C AB4 PL48A 6 T VREF1_6 6 C VREF2_6 AC4 PL48B GND GND06 GND GND05 AB6 PB2A 5 T AA6 PB2B 5 C AC7 PB3A 5 T Y8 PB3B 5 C AB7 PB4A 5 T AA7 PB4B 5 C AC6 PB5A 5 T AC5 PB5B 5 C AB8 PB6A 5 T AC8 PB6B 5 C AE2 PB7A 5 T AA8 PB7B 5 C AF2 PB8A 5 T Y9 PB8B 5 C AD5 PB9A 5 T GND GND05 AD4 PB9B 5 C AD8 PB10A 5 T AC9 PB10B 5 C AE3 PB11A 5 T AB9 PB11B 5 C AF3 PB12A 5 T AD9 PB12B 5 C 5 T 5 C AE4 PB13A GND GND05 AF4 PB13B 4-39 BDQS6 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function AE5 PB14A 5 T BDQS14 AA9 PB14B 5 C AF5 PB15A 5 T Y10 PB15B 5 C AD6 PB16A 5 T AC10 PB16B 5 C AF6 PB17A 5 T GND GND05 AE6 PB17B 5 C AF7 PB18A 5 T AB10 PB18B 5 C AE7 PB19A 5 T AD10 PB19B 5 C AD7 PB20A 5 T AA10 PB20B 5 C AF8 PB21A 5 T GND GND05 AF9 PB21B 5 C AD11 PB22A 5 T Y11 PB22B 5 C AE8 PB23A 5 T AC11 PB23B 5 C AF10 PB24A 5 T AB11 PB24B 5 C AE10 PB25A 5 T GND GND05 AE9 PB25B 5 C AA11 PB26A 5 T Y12 PB26B 5 C AE11 PB27A 5 T AF11 PB27B 5 C AF12 PB28A 5 T AE12 PB28B 5 C AD12 PB29A 5 T GND GND05 AC12 PB29B 5 C AA12 PB30A 5 T AB12 PB30B 5 C AE13 PB31A 5 T BDQS22 BDQS30 AF13 PB31B 5 C AD13 PB32A 5 T AC13 PB32B 5 C VREF1_5 AF14 PB33A 5 T PCLKT5_0 GND GND05 4-40 VREF2_5 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function AE14 PB33B 5 C PCLKC5_0 AA13 PB34A 4 T WRITEN AB13 PB34B 4 C CS1N AD14 PB35A 4 T VREF1_4 AA14 PB35B 4 C CSN AC14 PB36A 4 T VREF2_4 AB14 PB36B 4 C D0/SPID7 AF15 PB37A 4 T D2/SPID5 GND GND04 AE15 PB37B 4 C D1/SPID6 AD15 PB38A 4 T BDQS38 AC15 PB38B 4 C D3/SPID4 AF16 PB39A 4 T Y14 PB39B 4 C AE16 PB40A 4 T AB15 PB40B 4 C AF17 PB41A 4 T C GND GND04 AE17 PB41B 4 Y15 PB42A 4 T AA15 PB42B 4 C AD17 PB43A 4 T Y16 PB43B 4 C AD18 PB44A 4 T AC16 PB44B 4 C AE18 PB45A 4 T GND GND04 AF18 PB45B 4 C AD16 PB46A 4 T AB16 PB46B 4 C AF19 PB47A 4 T AA16 PB47B 4 C AA17 PB48A 4 T Y17 PB48B 4 C AF21 PB49A 4 T GND GND04 AF20 PB49B 4 C AE21 PB50A 4 T AC17 PB50B 4 C AF22 PB51A 4 T AB17 PB51B 4 C AE22 PB52A 4 T AA18 PB52B 4 C AE19 PB53A 4 T 4-41 D4/SPID3 D5/SPID2 D6/SPID1 BDQS46 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function GND GND04 AE20 PB53B Bank LVDS 4 C AA19 PB54A 4 T Y18 PB54B 4 C AF23 PB55A 4 T Dual Function BDQS54 AA20 PB55B 4 C AC18 PB56A 4 T AB18 PB56B 4 C AF24 PB57A 4 T AE23 PB57B 4 C GND GND04 C VREF2_3 VREF1_3 GND GND03 AC23 PR48B 3 AC24 PR48A 3 T AC25 PR47B 3 C AC26 PR47A 3 T AB25 PR46B 3 C AA25 PR46A 3 T AB26 PR45B 3 C AA26 PR45A 3 T RDQS45 W23 PR44B 3 C RLM0_PLLC_IN_A GND GND03 W24 PR44A 3 T RLM0_PLLT_IN_A W22 PR43B 3 C RLM0_PLLC_FB_A W21 PR43A 3 T RLM0_PLLT_FB_A Y25 PR42B 3 C DI/CSSPIN Y26 PR42A 3 T DOUT/CSON W25 PR41B 3 C BUSY/SISPI W26 PR41A 3 T D7/SPID0 V24 CFG2 3 V21 CFG1 3 V23 CFG0 3 V22 PROGRAMN 3 V20 CCLK 3 V25 INITN 3 U20 DONE 3 V26 PR39B 3 C GND GND03 U26 PR39A 3 T U24 PR38B 3 C U25 PR38A 3 T U23 PR37B 3 C U22 PR37A 3 T U21 PR36B 3 C 4-42 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS Dual Function T21 PR36A 3 T RDQS36 T25 PR35B 3 C GND GND03 T26 PR35A 3 T T22 PR34B 3 C T23 PR34A 3 T T24 PR33B 3 C R23 PR33A 3 T R25 PR32B 3 C R24 PR32A 3 T R26 PR31B 3 C GND GND03 P26 PR31A 3 T R21 PR30B 3 C R22 PR30A 3 T P25 PR29B 3 C P24 PR29A 3 T P23 PR28B 3 C P22 PR28A 3 T N26 PR27B 3 C GND GND03 M26 PR27A 3 T N21 PR26B 3 C RDQS28 P21 PR26A 3 T N23 PR25B 3 C N22 PR25A 3 T N25 PR24B 3 C N24 PR24A 3 T L26 PR22B 2 C PCLKC2_0 GND GND02 K26 PR22A 2 T PCLKT2_0 M22 PR21B 2 C M23 PR21A 2 T M25 PR20B 2 C M24 PR20A 2 T M21 PR19B 2 C L21 PR19A 2 T 2 C L22 PR18B GND GND02 L23 PR18A 2 T L25 PR17B 2 C L24 PR17A 2 T K25 PR16B 2 C J25 PR16A 2 T 4-43 RDQS19 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS J26 PR15B 2 C Dual Function H26 PR15A 2 T H25 PR14B 2 C J24 PR14A 2 T GND GND02 K21 PR13B 2 C K22 PR13A 2 T K20 PR12B 2 C J20 PR12A 2 T K23 PR11B 2 C K24 PR11A 2 T F25 PR9B 2 C RUM0_PLLC_FB_A GND GND02 G25 PR9A 2 T RUM0_PLLT_FB_A H23 PR8B 2 C RUM0_PLLC_IN_A H24 PR8A 2 T RUM0_PLLT_IN_A H21 PR7B 2 C G21 PR7A 2 T D26 PR6B 2 C D25 PR6A 2 T F21 PR5B 2 C G22 PR5A 2 T G24 PR4B 2 C RDQS6 G23 PR4A 2 T C26 PR3B 2 C C25 PR3A 2 T E23 PR2B 2 C VREF1_2 2 T VREF2_2 C D23 PR2A GND GND02 GND GND01 A24 PT57B 1 A23 PT57A 1 T E18 PT56B 1 C D19 PT56A 1 T F19 PT55B 1 C B22 PT55A 1 T G19 PT54B 1 C B21 PT54A 1 T D18 PT53B 1 C GND GND01 C18 PT53A 1 T F18 PT52B 1 C A22 PT52A 1 T G18 PT51B 1 C 4-44 TDQS54 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS A21 PT51A 1 T E17 PT50B 1 C B17 PT50A 1 T C17 PT49B 1 C GND GND01 D17 PT49A 1 T F17 PT48B 1 C E20 PT48A 1 T G17 PT47B 1 C B20 PT47A 1 T E16 PT46B 1 C A20 PT46A 1 T A19 PT45B 1 C GND GND01 B19 PT45A 1 T D16 PT44B 1 C C16 PT44A 1 T F16 PT43B 1 C A18 PT43A 1 T G16 PT42B 1 C B18 PT42A 1 T A17 PT41B 1 C GND GND01 A16 PT41A 1 T D15 PT40B 1 C B16 PT40A 1 T E15 PT39B 1 C C15 PT39A 1 T F15 PT38B 1 C G15 PT38A 1 T B15 PT37B 1 C GND GND01 A15 PT37A 1 T Dual Function TDQS46 TDQS38 E14 PT36B 1 C G14 PT36A 1 T D14 PT35B 1 C VREF2_1 E13 PT35A 1 T VREF1_1 F14 PT34B 1 C C14 PT34A 1 T B14 PT33B 0 C PCLKC0_0 GND GND01 A14 PT33A 0 T PCLKT0_0 D13 PT32B 0 C VREF1_0 C13 PT32A 0 T VREF2_0 4-45 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS A13 PT31B 0 C B13 PT31A 0 T F13 PT30B 0 C F12 PT30A 0 T A12 PT29B 0 C GND GND00 B12 PT29A 0 T A11 PT28B 0 C B11 PT28A 0 T D12 PT27B 0 C C12 PT27A 0 T B10 PT26B 0 C A10 PT26A 0 T G12 PT25B 0 C GND GND00 A9 PT25A 0 T E12 PT24B 0 C B9 PT24A 0 T F11 PT23B 0 C A8 PT23A 0 T D11 PT22B 0 C C11 PT22A 0 T B8 PT21B 0 C GND GND00 B7 PT21A 0 T E11 PT20B 0 C A7 PT20A 0 T G11 PT19B 0 C C7 PT19A 0 T G10 PT18B 0 C C6 PT18A 0 T 0 C C10 PT17B GND GND00 D10 PT17A 0 T F10 PT16B 0 C A6 PT16A 0 T E10 PT15B 0 C C9 PT15A 0 T G9 PT14B 0 C D9 PT14A 0 T A5 PT13B 0 C GND GND00 A4 PT13A 0 T F9 PT12B 0 C 4-46 Dual Function TDQS30 TDQS22 TDQS14 Pinout Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LFECP20/LFEC20 Logic Signal Connections: 672 fpBGA (Cont.) Ball Number Ball Function Bank LVDS B6 PT12A 0 T E9 PT11B 0 C C8 PT11A 0 T G8 PT10B 0 C B5 PT10A 0 T 0 C A3 PT9B GND GND00 A2 PT9A 0 T F8 PT8B 0 C B4 PT8A 0 T E8 PT7B 0 C B3 PT7A 0 T D8 PT6B 0 C G7 PT6A 0 T C4 PT5B 0 C C5 PT5A 0 T E7 PT4B 0 C D4 PT4A 0 T F7 PT3B 0 C D6 PT3A 0 T D7 PT2B 0 C E6 PT2A 0 T GND GND00 4-47 Dual Function TDQS6 LatticeECP/EC Family Data Sheet Ordering Information October 2004 Preliminary Data Sheet Part Number Description LFXXX XX X – X XXXX X Device Family Lattice EC (FPGA) Lattice ECP (EC FPGA + DSP Blocks) Grade C = Commercial I = Industrial Logic Capacity 1* = 1.5K LUTs 3* = 3K LUTs 6 = 6K LUTs 10 = 10K LUTs 15 = 15K LUTs 20 = 20K LUTs 33 = 33K LUTs 40 = 40K LUTs Package T100 = 100-pin TQFP* T144 = 144-pin TQFP Q208 = 208-pin PQFP F256 = 256-ball fpBGA F484 = 484-ball fpBGA F672 = 672-ball fpBGA F900 = 900-ball fpBGA Speed 3 = Slowest 4 5 = Fastest Supply Voltage E = 1.2V *Not available in the LatticeECP Family. Ordering Information Note: LatticeECP/EC devices are dual marked. For example, the commercial speed grade LFEC20E-4F484C is also marked with industrial grade -3I (LFEC20E-3F484I). The commercial grade is one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings. The markings appear as follows: EC LFEC20C4F484C-3I Datecode LatticeEC Commercial Part Number I/Os Grade Package Pins Temp. LUTs LFEC1E-3Q208C 112 -3 PQFP 208 COM 1.5K LFEC1E-4Q208C 112 -4 PQFP 208 COM 1.5K LFEC1E-5Q208C 112 -5 PQFP 208 COM 1.5K LFEC1E-3T144C 97 -3 TQFP 144 COM 1.5K LFEC1E-4T144C 97 -4 TQFP 144 COM 1.5K LFEC1E-5T144C 97 -5 TQFP 144 COM 1.5K LFEC1E-3T100C 67 -3 TQFP 100 COM 1.5K © 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 5-1 Order Info_01.1 Ordering Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeEC Commercial (Continued) I/Os Grade Package Pins Temp. LUTs LFEC1E-4T100C Part Number 67 -4 TQFP 100 COM 1.5K LFEC1E-5T100C 67 -5 TQFP 100 COM 1.5K I/Os Grade Package Pins Temp. LUTs LFEC3E-3F256C Part Number 160 -3 fpBGA 256 COM 3.1K LFEC3E-4F256C 160 -4 fpBGA 256 COM 3.1K LFEC3E-5F256C 160 -5 fpBGA 256 COM 3.1K LFEC3E-3Q208C 145 -3 PQFP 208 COM 3.1K LFEC3E-4Q208C 145 -4 PQFP 208 COM 3.1K LFEC3E-5Q208C 145 -5 PQFP 208 COM 3.1K LFEC3E-3T144C 97 -3 TQFP 144 COM 3.1K LFEC3E-4T144C 97 -4 TQFP 144 COM 3.1K LFEC3E-5T144C 97 -5 TQFP 144 COM 3.1K LFEC3E-3T100C 67 -3 TQFP 100 COM 3.1K LFEC3E-4T100C 67 -4 TQFP 100 COM 3.1K LFEC3E-5T100C 67 -5 TQFP 100 COM 3.1K I/Os Grade Package Pins Temp. LUTs LFEC6E-3F484C Part Number 224 -3 fpBGA 484 COM 6.1K LFEC6E-4F484C 224 -4 fpBGA 484 COM 6.1K LFEC6E-5F484C 224 -5 fpBGA 484 COM 6.1K LFEC6E-3F256C 195 -3 fpBGA 256 COM 6.1K LFEC6E-4F256C 195 -4 fpBGA 256 COM 6.1K LFEC6E-5F256C 195 -5 fpBGA 256 COM 6.1K LFEC6E-3Q208C 147 -3 PQFP 208 COM 6.1K LFEC6E-4Q208C 147 -4 PQFP 208 COM 6.1K LFEC6E-5Q208C 147 -5 PQFP 208 COM 6.1K LFEC6E-3T144C 97 -3 TQFP 144 COM 6.1K LFEC6E-4T144C 97 -4 TQFP 144 COM 6.1K LFEC6E-5T144C 97 -5 TQFP 144 COM 6.1K I/Os Grade Package Pins Temp. LUTs LFEC10E-3F484C Part Number 288 -3 fpBGA 484 COM 10.2K LFEC10E-4F484C 288 -4 fpBGA 484 COM 10.2K LFEC10E-5F484C 288 -5 fpBGA 484 COM 10.2K LFEC10E-3F256C 195 -3 fpBGA 256 COM 10.2K LFEC10E-4F256C 195 -4 fpBGA 256 COM 10.2K LFEC10E-5F256C 195 -5 fpBGA 256 COM 10.2K LFEC10E-3Q208C 147 -3 PQFP 208 COM 10.2K LFEC10E-4Q208C 147 -4 PQFP 208 COM 10.2K LFEC10E-5Q208C 147 -5 PQFP 208 COM 10.2K 5-2 Ordering Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeEC Commercial (Continued) I/Os Grade Package Pins Temp. LUTs LFEC15E-3F484C Part Number 352 -3 fpBGA 484 COM 15.3K LFEC15E-4F484C 352 -4 fpBGA 484 COM 15.3K LFEC15E-5F484C 352 -5 fpBGA 484 COM 15.3K LFEC15E-3F256C 195 -3 fpBGA 256 COM 15.3K LFEC15E-4F256C 195 -4 fpBGA 256 COM 15.3K LFEC15E-5F256C 195 -5 fpBGA 256 COM 15.3K I/Os Grade Package Pins Temp. LUTs LFEC20E-3F672C Part Number 400 -3 fpBGA 672 COM 19.7K LFEC20E-4F672C 400 -4 fpBGA 672 COM 19.7K LFEC20E-5F672C 400 -5 fpBGA 672 COM 19.7K LFEC20E-3F484C 360 -3 fpBGA 484 COM 19.7K LFEC20E-4F484C 360 -4 fpBGA 484 COM 19.7K LFEC20E-5F484C 360 -5 fpBGA 484 COM 19.7K I/Os Grade Package Pins Temp. LUTs LFEC33E-3F672C Part Number 496 -3 fpBGA 672 COM 32.8K LFEC33E-4F672C 496 -4 fpBGA 672 COM 32.8K LFEC33E-4F672C 496 -5 fpBGA 672 COM 32.8K LFEC33E-3F484C 360 -3 fpBGA 484 COM 32.8K LFEC33E-4F484C 360 -4 fpBGA 484 COM 32.8K LFEC33E-4F484C 360 -5 fpBGA 484 COM 32.8K I/Os Grade Package Pins Temp. LUTs LFEC40E-3F900C Part Number 576 -3 fpBGA 900 COM 40.9K LFEC40E-4F900C 576 -4 fpBGA 900 COM 40.9K LFEC40E-5F900C 576 -5 fpBGA 900 COM 40.9K LFEC40E-3F672C 496 -3 fpBGA 672 COM 40.9K LFEC40E-4F672C 496 -4 fpBGA 672 COM 40.9K LFEC40E-5F672C 496 -5 fpBGA 672 COM 40.9K LatticeECP Commercial Part Number I/Os Grade Package Pins Temp. LUTs LFECP6E-3F484C 224 -3 fpBGA 484 COM 6.1K LFECP6E-4F484C 224 -4 fpBGA 484 COM 6.1K LFECP6E-5F484C 224 -5 fpBGA 484 COM 6.1K LFECP6E-3F256C 195 -3 fpBGA 256 COM 6.1K LFECP6E-4F256C 195 -4 fpBGA 256 COM 6.1K LFECP6E-5F256C 195 -5 fpBGA 256 COM 6.1K LFECP6E-3Q208C 147 -3 PQFP 208 COM 6.1K LFECP6E-4Q208C 147 -4 PQFP 208 COM 6.1K LFECP6E-5Q208C 147 -5 PQFP 208 COM 6.1K LFECP6E-3T144C 97 -3 TQFP 144 COM 6.1K 5-3 Ordering Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP Commercial (Continued) I/Os Grade Package Pins Temp. LUTs LFECP6E-4T144C Part Number 97 -4 TQFP 144 COM 6.1K LFECP6E-5T144C 97 -5 TQFP 144 COM 6.1K Part Number I/Os Grade Package Pins Temp. LUTs LFECP10E-3F484C 288 -3 fpBGA 484 COM 10.2K LFECP10E-4F484C 288 -4 fpBGA 484 COM 10.2K LFECP10E-5F484C 288 -5 fpBGA 484 COM 10.2K LFECP10E-3F256C 195 -3 fpBGA 256 COM 10.2K LFECP10E-4F256C 195 -4 fpBGA 256 COM 10.2K LFECP10E-5F256C 195 -5 fpBGA 256 COM 10.2K LFECP10E-3Q208C 147 -3 PQFP 208 COM 10.2K LFECP10E-4Q208C 147 -4 PQFP 208 COM 10.2K LFECP10E-5Q208C 147 -5 PQFP 208 COM 10.2K Part Number I/Os Grade Package Pins Temp. LUTs LFECP15E-3F484C 352 -3 fpBGA 484 COM 15.3K LFECP15E-4F484C 352 -4 fpBGA 484 COM 15.3K LFECP15E-5F484C 352 -5 fpBGA 484 COM 15.3K LFECP15E-3F256C 195 -3 fpBGA 256 COM 15.3K LFECP15E-4F256C 195 -4 fpBGA 256 COM 15.3K LFECP15E-5F256C 195 -5 fpBGA 256 COM 15.3K Part Number I/Os Grade Package Pins Temp. LUTs LFECP20E-3F672C 400 -3 fpBGA 672 COM 19.7K LFECP20E-4F672C 400 -4 fpBGA 672 COM 19.7K LFECP20E-5F672C 400 -5 fpBGA 672 COM 19.7K LFECP20E-3F484C 360 -3 fpBGA 484 COM 19.7K LFECP20E-4F484C 360 -4 fpBGA 484 COM 19.7K LFECP20E-5F484C 360 -5 fpBGA 484 COM 19.7K Part Number I/Os Grade Package Pins Temp. LUTs LFECP33E-3F672C 496 -3 fpBGA 672 COM 32.8K LFECP33E-4F672C 496 -4 fpBGA 672 COM 32.8K LFECP33E-4F672C 496 -5 fpBGA 672 COM 32.8K LFECP33E-3F484C 360 -3 fpBGA 484 COM 32.8K LFECP33E-4F484C 360 -4 fpBGA 484 COM 32.8K LFECP33E-4F484C 360 -5 fpBGA 484 COM 32.8K Part Number I/Os Grade Package Pins Temp. LUTs LFECP40E-3F900C 576 -3 fpBGA 900 COM 40.9K LFECP40E-4F900C 576 -4 fpBGA 900 COM 40.9K LFECP40E-5F900C 576 -5 fpBGA 900 COM 40.9K LFECP40E-3F672C 496 -3 fpBGA 672 COM 40.9K 5-4 Ordering Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP Commercial (Continued) Part Number I/Os Grade Package Pins Temp. LUTs LFECP40E-4F672C 496 -4 fpBGA 672 COM 40.9K LFECP40E-5F672C 496 -5 fpBGA 672 COM 40.9K LatticeEC Industrial Part Number I/Os Grade Package Pins Temp. LUTs LFEC1E-3Q208I 112 -3 PQFP 208 IND 1.5K LFEC1E-4Q208I 112 -4 PQFP 208 IND 1.5K LFEC1E-3T144I 97 -3 TQFP 144 IND 1.5K LFEC1E-4T144I 97 -4 TQFP 144 IND 1.5K LFEC1E-3T100I 67 -3 TQFP 100 IND 1.5K LFEC1E-4T100I 67 -4 TQFP 100 IND 1.5K I/Os Grade Package Pins Temp. LUTs LFEC3E-3F256I 160 -3 fpBGA 256 IND 3.1K LFEC3E-4F256I 160 -4 fpBGA 256 IND 3.1K LFEC3E-3Q208I 145 -3 PQFP 208 IND 3.1K LFEC3E-4Q208I 145 -4 PQFP 208 IND 3.1K LFEC3E-3T144I 97 -3 TQFP 144 IND 3.1K LFEC3E-4T144I 97 -4 TQFP 144 IND 3.1K LFEC3E-3T100I 67 -3 TQFP 100 IND 3.1K LFEC3E-4T100I 67 -4 TQFP 100 IND 3.1K I/Os Grade Package Pins Temp. LUTs LFEC6E-3F484I 224 -3 fpBGA 484 IND 6.1K LFEC6E-4F484I 224 -4 fpBGA 484 IND 6.1K LFEC6E-3F256I 195 -3 fpBGA 256 IND 6.1K LFEC6E-4F256I 195 -4 fpBGA 256 IND 6.1K LFEC6E-3Q208I 147 -3 PQFP 208 IND 6.1K LFEC6E-4Q208I 147 -4 PQFP 208 IND 6.1K LFEC6E-3T144I 97 -3 TQFP 144 IND 6.1K LFEC6E-4T144I 97 -4 TQFP 144 IND 6.1K I/Os Grade Package Pins Temp. LUTs LFEC10E-3F484I 288 -3 fpBGA 484 IND 10.2K LFEC10E-4F484I 288 -4 fpBGA 484 IND 10.2K LFEC10E-3F256I 195 -3 fpBGA 256 IND 10.2K LFEC10E-4F256I 195 -4 fpBGA 256 IND 10.2K LFEC10E-3 P208I 147 -3 PQFP 208 IND 10.2K LFEC10E-4 P208I 147 -4 PQFP 208 IND 10.2K I/Os Grade Package Pins Temp. LUTs LFEC15E-3F484I 352 -3 fpBGA 484 IND 15.3K LFEC15E-4F484I 352 -4 fpBGA 484 IND 15.3K Part Number Part Number Part Number Part Number 5-5 Ordering Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeEC Industrial (Continued) I/Os Grade Package Pins Temp. LUTs LFEC15E-3F256I Part Number 195 -3 fpBGA 256 IND 15.3K LFEC15E-4F256I 195 -4 fpBGA 256 IND 15.3K I/Os Grade Package Pins Temp. LUTs LFEC20E-3F672I Part Number 400 -3 fpBGA 672 IND 19.7K LFEC20E-4F672I 400 -4 fpBGA 672 IND 19.7K LFEC20E-3F484I 360 -3 fpBGA 484 IND 19.7K LFEC20E-4F484I 360 -4 fpBGA 484 IND 19.7K I/Os Grade Package Pins Temp. LUTs LFEC33-3F672I Part Number 496 -3 fpBGA 672 IND 32.8 LFEC33-4F672I 496 -4 fpBGA 672 IND 32.8 LFEC33-3F484I 360 -3 fpBGA 484 IND 32.8 LFEC33-4F484I 360 -4 fpBGA 484 IND 32.8 I/Os Grade Package Pins Temp. LUTs LFEC40E-3F900I Part Number 576 -3 fpBGA 900 IND 40.9K LFEC40E-4F900I 576 -4 fpBGA 900 IND 40.9K LFEC40E-3F672I 496 -3 fpBGA 672 IND 40.9K LFEC40E-4F672I 496 -4 fpBGA 672 IND 40.9K LatticeECP Industrial Part Number I/Os Grade Package Pins Temp. LUTs LFECP6E-3F484I 224 -3 fpBGA 484 IND 6.1K LFECP6E-4F484I 224 -4 fpBGA 484 IND 6.1K LFECP6E-3F256I 195 -3 fpBGA 256 IND 6.1K LFECP6E-4F256I 195 -4 fpBGA 256 IND 6.1K LFECP6E-3Q208I 147 -3 PQFP 208 IND 6.1K LFECP6E-4Q208I 147 -4 PQFP 208 IND 6.1K LFECP6E-3T144I 97 -3 TQFP 144 IND 6.1K LFECP6E-4T144I 97 -4 TQFP 144 IND 6.1K I/Os Grade Package Pins Temp. LUTs LFECP10E-3F484I 288 -3 fpBGA 484 IND 10.2K LFECP10E-4F484I 288 -4 fpBGA 484 IND 10.2K LFECP10E-3F256I 195 -3 fpBGA 256 IND 10.2K LFECP10E-4F256I 195 -4 fpBGA 256 IND 10.2K LFECP10E-3Q208I 147 -3 PQFP 208 IND 10.2K LFECP10E-4Q208I 147 -4 PQFP 208 IND 10.2K Part Number 5-6 Ordering Information LatticeECP/EC Family Data Sheet Lattice Semiconductor LatticeECP Industrial (Continued) I/Os Grade Package Pins Temp. LUTs LFECP15E-3F484I Part Number 352 -3 fpBGA 484 IND 15.3K LFECP15E-4F484I 352 -4 fpBGA 484 IND 15.3K LFECP15E-3F256I 195 -3 fpBGA 256 IND 15.3K LFECP15E-4F256I 195 -4 fpBGA 256 IND 15.3K I/Os Grade Package Pins Temp. LUTs LFECP20E-3F672I 400 -3 fpBGA 672 IND 19.7K LFECP20E-4F672I 400 -4 fpBGA 672 IND 19.7K LFECP20E-3F484I 360 -3 fpBGA 484 IND 19.7K LFECP20E-4F484I 360 -4 fpBGA 484 IND 19.7K Part Number I/Os Grade Package Pins Temp. LUTs LFECP33-3F672I 496 -3 fpBGA 672 IND 32.8K LFECP33-4F672I 496 -4 fpBGA 672 IND 32.8K LFECP33-3F484I 360 -3 fpBGA 484 IND 32.8K LFECP33-4F484I 360 -4 fpBGA 484 IND 32.8K Part Number Part Number I/Os Grade Package Pins Temp. LUTs LFECP40E-3F900I 576 -3 fpBGA 900 IND 40.9K LFECP40E-4F900I 576 -4 fpBGA 900 IND 40.9K LFECP40E-3F672I 496 -3 fpBGA 672 IND 40.9K LFECP40E-4F672I 496 -4 fpBGA 672 IND 40.9K 5-7 LatticeECP/EC Family Data Sheet Supplemental Information October 2004 Preliminary Data Sheet For Further Information A variety of technical notes for the LatticeECP/EC family are available on the Lattice web site at www.latticesemi.com. • • • • • • • • • LatticeECP/EC sysIO Usage Guide (TN1056) ispTRACY Internal Logic Analyzer Guide (TN1054) LatticeECP/EC sysCLOCK PLL Design and Usage Guide (TN1049) Memory Usage Guide for LatticeECP/EC Devices (TN1051) LatticeECP/EC DDR Usage Guide (TN1050) Estimating Power Using Power Calculator for LatticeECP/EC Devices (TN1052) sysDSP/MAC Usage Guide (TN1057) LatticeECP/EC sysCONFIG Usage Guide (TN1053) IEEE 1149.1 Boundary Scan Testability in Lattice Devices For further information on interface standards refer to the following web sites: • JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org • PCI: ww.pcisig.com © 2004 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 6-1 Further Info_01.1