Obsolescence Notice This product is obsolete. This information is available for your convenience only. For more information on Zarlink’s obsolete products and replacement product lists, please visit http://products.zarlink.com/obsolete_products/ P R E L I M I N A R Y D A T A S H E E T EA-224 – 4-Port Fast Ethernet Access Controller TM (XpressFlow 2001 Series 10/100 Ethernet Switch Chipset) 1. DISTINCTIVE CHARACTERISTICS 4 independent 10/100Mbps Ethernet Access Ports 9 Direct interface with 10BaseT transceiver 9 IEEE 802.3u compliant MII (Media Independent Interface) and Serial Management interface 9 Direct interface with 100BaseTX, -T2, -T4, or -TF physical transceivers Management BUS 16 LOCAL BUFFER MEMORY State of the art 0.5 micron 3.3Volt CMOS process 32 EA-224 4-Port Ethernet Access Controller 32 Port 0 352-PIN BGA package Port 1 Port 2 Port 3 Operating frequency 9 -33 33 MHz maximum 9 -40 40 MHz maximum 9 -50 50 MHz maximum 10/100M BaseTx Xceiver 10/100M BaseTx Ports 32-bit Local Buffer Memory Interface 9 Supports 128k to 1M bytes 9 Utilize high performance 32-bit Synchronous Burst SRAM Hardware assisted Buffer and Queue Management to minimized CPU overhead 16-bit Processor Bus I/O Interface 9 Allows host to access Control Registers & Local Buffer Memory 9 Supports Big and Little Endian CPUs 9 Direct interface with various different standard microprocessors including 386, 486 families and Motorola MPC series embedded processors. 32-bit XpressFlow Bus Interface 9 XpressFlow BUS Uses Granule for frame transferring between Access Controllers Also detects IEEE 802.3X MAC Control frames 9 Store-&-Forward 9 Safe Cut-Thru (Runt Free) 9 Turbo Cut-Thru (10Mbps Mode only) 9 Automatically selects the optimized mode for forwarding 9 Allows manual frame forwarding mode selection override Multi-Media ready with QoS supports Complies with IEEE 802.1 Bridge Standard VLAN ID Tagging & Stripping Automatic retry frame transmission Supports unicast, multicast, and broadcast frames 9 Three frame forwarding modes 9 9 9 Four frame transmission priority queues Assigns one unique MAC Address for each port Auto padding if necessary after stripping Works together with SC-201 XpressFlow Engine 9 Transmit collision 9 Capable to forward frames at full line-rate 9 Transmit buffer under-run 9 Distributed Flow Caching™ to reduce frame forwarding latency Automatic receive filtering for bad frames for Store & Forward Mode Supports both Half & Full Duplex operation 9 Bad FCS Programmable Flow Control Enable 9 Short events or frames under 64 bytes 9 Jam Fake Collision for Half Duplex Mode 9 Long events or frames over 1518 bytes 9 Transmit Flow Control Frame for IEEE 802.3x Full Duplex Mode © 1997 Zarlink Semiconductor Inc. Page: 1 Automatic statistic collection for RMON Rev. 4.0 –December, 1997 P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 2. GENERAL DESCRIPTION: The EA-224 provides four 10/100Mbps Ethernet network access interface ports. MII interface is used to connect external PHY devices for 100 Mbps Ethernet. They also can direct connect with standard 10Mbps serial interface. The EA-224 provides the Ethernet MAC protocols, handles the local buffer memory interface and management, arbitrates among multiple priority queues, and interfaces with the XpressFlow Engine and other Access Controllers through the XpressFlow message passing protocol. SWITCH BUS Management BUS 32 EA-224 Local Buffer Memory 32 Switch Bus Interafce 32 Automatic Buffer Manager MAC Interface 32 MAC Port #0 to #3 Port 0 1 2 3 4-Port 100Base-Tx PHY SC-201 – XpressFlow Engine EA-208E – 8-port 10Mbps Ethernet Access Controller 1 Port 0 EA-208 – 6-port 10 + 2-port 10/100 Ethernet Access Controller EA-222 – 2-port 10/100 Fast Ethernet Access Controller 2.2 Typical Application: A 16-port Ethernet Switch with 4 Fast Ethernet Up-Links 2 3 Block Diagram – EA-224 4-Port Ethernet Access Controller Address Mapping Table Managem Bus Interafce Local Buffer Memory Interface 2.1 Related Components: 16 Buffer RAM RS232 Local Control Console SC201 XpressFlow Engine Switch Manager CPU Flash ROM DRAM Management Bus XpressFlow Bus Buffer RAM EA208E 8-Port Ethernet Access Controller 8 Ethernet ports Buffer RAM EA208E 8-Port Ethernet Access Controller 8 Ethernet ports Buffer RAM EA224 4-Port Ethernet Access Controller Four 100M Fast Ethernet ports System Block Diagram -16-Port Ethernet Switch with 4 Fast Ethernet Up-Links © 1997 Zarlink Semiconductor Inc. Page: 2 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set 3. PIN ASSIGNMENT 3.1 Logic Symbol L_D[31:0] L_A[18:2] L_BWE[3:0]# L_WE[3:0]# L_OE[3:0]# L_ADSC# L_CLK 4 4 4 Control Buffer Memory Interface EA-224 Test Pin T_MODE S_D[31:0] S_MSGEN# S_EOF# S_IRDY S_TABT# S_OVLD# S_HPREQ# S_REQ# S_GNT# S_CLK © 1997 Zarlink Semiconductor Inc. 4 Port [3:0] 10/100 MII Interface P_CS# P_ADS# P_RWC P_BS16# P_RDY# P_INT P_RST# P_CLK XpressFlow Bus Interface P_A[11:1] Management Bus Interface P_D[15:0] MII Mode Mm_RXD[3:0] Tm_RXD Mm_RXDV Mm_RXC Tm_RXC Mm_RXER Mm_TXER Mm_TXC Mm_TXEN Mm_TXD[0] Mm_TXD[1] Mm_TXD[2] Mm_TXD[3] Mm_COL Mm_CRS Mm_LNK MII Serial Managem't Page: 3 10BaseT Serial Xface Tm_TXC Tm_TXEN Tm_TXD Tm_LPBK Tm_FD Tm_COL Tm_CRS Tm_LNK M_MDC M_MDIO Rev. 4.0 –December, 1997 P R E L I M I N XpressFlow-2001 Series – Ethernet Switch Chip-set A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 3.2 Pin Assignment (Preliminary) Note: # Input I-ST Output Out-OD I/O-TS I/O-OD 5VT ? @ A Active low signal Input signal Input signal with Schmitt-Trigger Output signal (Tri-State driver) Output signal with Open-Drain driver Input & Output signal with Tri-State driver Input & Output signal with Open-Drain driver Input with 5V Tolerance Output signal with programmable polarity. Input or output pins with weak internal pull up resistors (50k to 100k Ohms each) These pins are reserved for internal use only. They should be left unconnected. Pin No(s). Symbol Management Bus Interface P_D[15:0] J25,K26,L24,K25,L26, M24,L25,M26,N24,M25, P24,N26,N25,R24,P26, P25 C26,D24,C25,E24,D26, P_A[11:1] D25,F24,E26,E25,G24, F26 F25 P_ADS# H25 P_RWC J24 P_RDY# G25 P_BS16# G26 P_CS# H26 P_INT J26 P_RST# K24 P_CLK XpressFlow Bus Interface C23,A23,B22,C22,A22 S_D[31:27] / P_C[0:4] Type TTL I/O-TS (5VT) ? Max IOL / IOH Name & Functions 16mA Management Bus – Data Bit [15:0] TTL In (5VT) Management Bus – Address Bit [11:1] TTL In (5VT) TTL In (5VT) TTL Out-OD TTL Out-OD TTL In (5VT) CMOS Output Management Bus – Address Strobe Management Bus – Read/Write Control Management Bus – Data Ready Management Bus – 16 bit Data Bus Management Bus – Chip Select Management Bus – Interrupt Request 16mA 16mA 4mA TTL In-ST (5VT) TTL In (5VT) Management Bus – Master Reset CMOS I/O-TS Management Bus – Bus Clock B21,D20,C21,A21,B20, A20,C20,B19,A19,C19, B18,A18,B17,C18,A17, D17,B16,C17,A16,B15, A15,C16,B14,D15,A14, C15,B13 B12 A12 C14 C13 B23 A24 S_D[26:0] CMOS I/O-TS 12 mA XpressFlow Bus – Data Bit [31:27] or Management Bus Interface Configuration bit [0:4] 12mA XpressFlow Bus – Data Bit [26:0] S_MSGEN# S_EOF# S_IRDY S_TABT# S_HPREQ# S_REQ# CMOS I/O-TS CMOS I/O-TS CMOS I/O-TS CMOS I/O-OD CMOS I/O-OD CMOS Output 12 mA 12mA 12 mA 12 mA 12mA 4mA B24 A13 D13 S_GNT# S_OVLD# S_CLK CMOS Input CMOS Input CMOS Input © 1997 Zarlink Semiconductor Inc. Page: 4 XpressFlow Bus – Message Envelope XpressFlow Bus – End of Frame XpressFlow Bus – Initiator Ready XpressFlow Bus – Target Abort XpressFlow Bus – High Priority Request XpressFlow Bus – Bus Request to SC201 XpressFlow Bus – Bus Grant from SC201 XpressFlow Bus – Bus Overload XpressFlow Bus – Clock Rev. 4.0 –December, 1997 P R E L I M I N XpressFlow-2001 Series – Ethernet Switch Chip-set Pin No(s). A R Y D A Symbol L_ADSC# L_CLK Fast Ethernet Access Port [3:0] T24 M_MDC AB2,U25,AE26,AF5 AB1,V24,AD25,AE6 AA3,U26,AD26,AD6 AC2,T25 AC25,AF6 Y3,V26,AF24,AD5 AC1,U24 E T Local Memory Bus – Data Bit [31:0] 8mA Local Memory Bus – Address Bit [17:2] 8mA Local Memory Bus – Address Bit [19] or Memory Read Chip Select [3] Local Memory Read Chip Select [2:0] Local Memory Write Chip Select [3:0] Local Memory Byte Write Enable, Byte [3:0] Local Memory Controller Address Status Local Memory Clock input 2mA 2mA 8mA 8mA 8mA CMOS Output 4mA TTL IO-TS (5VT) M[3:0]_RXD[3] TTL In (5VT) M[3:0]_RXD[2] TTL In (5VT) 4mA @ @ M[3:0]_RXD[1] TTL In (5VT) @ M[3:2]_RXD[0] TTL In (5VT) @ M[1:0]_RXD[0] TTL In (5VT) M[3:0]_RXDV TTL In (5VT) @ M[3:2]_RXC TTL In (5VT) @ AC24,AE7 AA1,V25,AD23,AE5 AA2,W24,AE24,AF4 W2,AA25,AE22,AD1 W1,AA24,AF22,AF2 V3,AA26,AD21,AE3 Y2,Y26,AE23,AF3 W3,W26,AD22,AD4 Y1,W25,AF23,AE4 V1,AB26 M[1:0]_RXC M[3:0]_RXER M[3:0]_TXER M[3:0]_TXC M[3:0]_TXEN M[3:0]_TXD[3] M[3:0]_TXD[2] M[3:0]_TXD[1] M[3:0]_TXD[0] M[3:2]_COL AD20,AC3 U3,AB24 M[1:0]_COL M[3:2]_CRS AF21,AD2 V2,AB25 M[1:0]_CRS M[3:2]_LNK AE21,AB3 M[1:0]_LNK Test Facility A25 T_MODE © 1997 Zarlink Semiconductor Inc. H E 8mA CMOS Output CMOS Output M_MDIO N1,M3,P2,P1,N3,R2,P3, T_D[15:10] R1,T2,R3,T1,R4,U2,T3, U1,U4 S Max IOL / IOH Name & Functions Type @ R26 A EA-224 4-Port 10/100M Ethernet Access Controller Control Buffer Memory Interface M4,N2,L3,M1,M2,L1,K3, L_D[31:0] TTL I/O-TS L2,K4,K1,J3,K2,J1,J2, H3,H1,H2,G3,G1,G2,F1, F3,F2,E1,E3,E2,D1,D3, D2,C1,C2,B1 CMOS Output A6,B6,C8,A7,D8,D7,C9, L_A[18:2] A8,B8,A9,C10,B9,D10, A10,C11,B10,A11 C7 L_A[19] / CMOS Output L_OE[3]# D5,A5,A3 L_OE[2:0]# CMOS Output D7,E4,B5,C4 L_WE[3:0]# CMOS Output C6,B4,A4,C5 L_BWE[3:0]# CMOS Output B3 G4 T ? ? MII Management Data Clock – (common for all MII Ports – Port [1:0]) MII Management Data I/O – (common for all MII Ports – Port [1:0])) Port [3:0] – MII Receive Data Bit [3] Port [3:0] -- Receive Data Bit [2] Port [3:0] -- Receive Data Bit [1] Port [3:0] -- Receive Data Bit [0] Port [3:0] -- Receive Data Valid Port [3:0] -- Receive Clock TTL In (5VT) CMOS Output TTL In (5VT) CMOS Output CMOS Output CMOS Output CMOS Output CMOS Output TTL In (5VT) TTL In (5VT) TTL In (5VT) TTL In (5VT) TTL In (5VT) TTL In (5VT) @ @ @ 4mA 4mA 4mA 4mA 4mA 4mA Port [3:0] -- Carrier Sense Port [3:0] -- Link Status CMOS I/O-TS 2mA A CMOS Output 4mA @ Page: 5 Port [3:0] -- Receive Error Port [3:0] -- Transmit Error Port [3:0] -- Transmit Clock Port [3:0] -- Transmit Enable Port [3:0] -- Transmit Data Bit [3] Port [3:0] -- Transmit Data Bit [2] Port [3:0] -- Transmit Data Bit [1] Port [3:0] -- Transmit Data Bit [0] Port [3:0] -- Collision Detected Test Pin – Set Test Mode upon Reset, and provides test status output during test mode Test Pins – Reserved for internal use only Rev. 4.0 –December, 1997 P R E L I M I N XpressFlow-2001 Series – Ethernet Switch Chip-set Pin No(s). Symbol Power Pins VDD D6,D11,D16,D21,F4, F23,L4,L23,T4,T23,AA4, AA23,AC6,AC11,AC16, AC21 A1,A2,A26,B2,B25,B26, VSS C3,C24,D4,D9,D14,D19, D23,H4,J23,N4,P23,V4, W23,AC4,AC8,AC13, AC18,AC23,AD3,AD24, AE1,AE2,AE25,AF1, AF25 © 1997 Zarlink Semiconductor Inc. A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller Type Name & Functions Power +3.3 Volt DC Supply Power Ground Page: 6 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set 3.3 Pin Reference Table: (352 pin BGA) Pin # F26 G24 E25 E26 F24 D25 D26 E24 C25 D24 C26 F25 G26 H25 G25 J24 J26 H26 K24 P25 P26 R24 N25 N26 P24 M25 N24 M26 L25 M24 L26 K25 L24 K26 J25 D13 A13 B23 A24 B24 B12 A12 C14 C13 B13 C15 A14 D15 B14 C16 A15 B15 A16 C17 B16 Signal Name Pin # P_A[1] D17 P_A[2] A17 P_A[3] C18 P_A[4] B17 P_A[5] A18 P_A[6] B18 P_A[7] C19 P_A[8] A19 P_A[9] B19 P_A[10] C20 P_A[11] A20 P_ADS# B20 P_CS# A21 P_RWC C21 P_BS16# D20 P_RDY# B21 P_RST# A22 C22 P_INT P_CLK B22 P_D[0] A23 P_D[1] C23 P_D[2] P_D[3] A11 P_D[4] B10 P_D[5] C11 P_D[6] A10 P_D[7] D10 P_D[8] B9 P_D[9] C10 P_D[10] A9 P_D[11] B8 P_D[12] A8 P_D[13] C9 P_D[14] B7 P_D[15] D8 A7 S_CLK C8 S_OVLD# B6 S_HPREQ# A6 S_REQ# C7 S_GNT# D5 S_MSGEN# A5 S_EOF# A3 S_IRDY D7 S_TABT# E4 S_D[0] B5 S_D[1] C4 S_D[2] C6 S_D[3] B4 S_D[4] A4 S_D[5] C5 S_D[6] B3 S_D[7] G4 S_D[8] B1 S_D[9] C2 S_D[10] C1 ? Note: Signal Name S_D[11] S_D[12] S_D[13] S_D[14] S_D[15] S_D[16] S_D[17] S_D[18] S_D[19] S_D[20] S_D[21] S_D[22] S_D[23] S_D[24] S_D[25] S_D[26] S_D[27] / P_C[4] S_D[28] / P_C[3] S_D[29] / P_C[2] S_D[30] / P_C[1] S_D[31] / P_C[0] L_A[2] L_A[3] L_A[4] L_A[5] L_A[6] L_A[7] L_A[8] L_A[9] L_A[10] L_A[11] L_A[12] L_A[13] L_A[14] L_A[15] L_A[16] L_A[17] L_A[18] L_A[19] / OE[3]# L_OE[2]# L_OE[1]# L_OE[0] L_WE[3]# L_WE[2]# L_WE[1]# L_WE[0]# L_BWE[3]# L_BWE[2]# L_BWE[1]# L_BWE[0]# L_ADSC# L_CLK L_D[0] L_D[1] L_D[2] @ @ @ Pin # D2 D3 D1 E2 E3 E1 F2 F3 F1 G2 G1 G3 H2 H1 H3 J2 J1 K2 J3 K1 K4 L2 K3 L1 M2 M1 L3 N2 M4 Signal Name L_D[3] L_D[4] L_D[5] L_D[6] L_D[7] L_D[8] L_D[9] L_D[10] L_D[11] L_D[12] L_D[13] L_D[14] L_D[15] L_D[16] L_D[17] L_D[18] L_D[19] L_D[20] L_D[21] L_D[22] L_D[23] L_D[24] L_D[25] L_D[26] L_D[27] L_D[28] L_D[29] L_D[30] L_D[31] T24 R26 M_MDC M_MDIO AB3 AD2 AC3 AE3 AF3 AD4 AE4 AF2 AD1 AF4 AE5 AE7 AD5 AF6 AD6 AE6 AF5 AE21 AF21 AD20 AD21 AE23 AD22 M0_LNK / T0_LNK M0_CRS / T0_CRS M0_COL / T0_COL M0_TXD[3] / T0_FD M0_TXD[2] / T0_LPBK M0_TXD[1] M0_TXD[0] / T0_TXD M0_TXEN / T0_TXEN M0_TXC / T0_TXC M0_TXER M0_RXER M0_RXC / T0_RXC M0_RXDV M0_RXD[0] / T0_RXD M0_RXD[1] M0_RXD[2] M0_RXD[3] M1_LNK / T1_LNK M1_CRS / T1_CRS M1_COL / T1_COL M1_TXD[3] / T1_FD M1_TXD[2] / T1_LPBK M1_TXD[1] @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ ? ? ? @ @ @ @ @ ? ? ? Pin # AF23 AF22 AE22 AE24 AD23 AC24 AF24 AC25 AD26 AD25 AE26 AB25 AB24 AB26 AA26 Y26 W26 W25 AA24 AA25 W24 V25 U24 V26 T25 U26 V24 U25 V2 U3 V1 V3 Y2 W3 Y1 W1 W2 AA2 AA1 AC1 Y3 AC2 AA3 AB1 AB2 Signal Name M1_TXD[0] / T1_TXD M1_TXEN / T1_TXEN M1_TXC / T1_TXC M1_TXER M1_RXER M1_RXC / T1_RXC M1_RXDV M1_RXD[0] / T1_RXD M1_RXD[1] M1_RXD[2] M1_RXD[3] M2_LNK / T2_LNK M2_CRS / T2_CRS M2_COL / T2_COL M2_TXD[3] / T2_FD M2_TXD[2] / T2_LPBK M2_TXD[1] M2_TXD[0] / T2_TXD M2_TXEN / T2_TXEN M2_TXC / T2_TXC M2_TXER M2_RXER M2_RXC / T2_RXC M2_RXDV M2_RXD[0] / T2_RXD M2_RXD[1] M2_RXD[2] M2_RXD[3] M3_LNK / T3_LNK M3_CRS / T3_CRS M3_COL / T3_COL M3_TXD[3] / T3_FD M3_TXD[2] / T3_LPBK M3_TXD[1] M3_TXD[0] / T3_TXD M3_TXEN / T3_TXEN M3_TXC / T3_TXC M3_TXER M3_RXER M3_RXC / T3_RXC M3_RXDV M3_RXD[0] / T3_RXD M3_RXD[1] M3_RXD[2] M3_RXD[3] A25 T_MODE U4 U1 T3 U2 R4 T1 R3 T2 T_D[0] T_D[1] T_D[2] T_D[3] T_D[4] T_D[5] T_D[6] T_D[7] @ @ @ @ @ ?@ @ @ ?@ ?@ @ @ @ @ ?@ @ @ ?@ ?@ @ @ @ @ @ A A A A A A A A Signal Name Pin # R1 P3 R2 N3 P1 P2 M3 N1 T_D[8] T_D[9] T_D[10] T_D[11] T_D[12] T_D[13] T_D[14] T_D[15] D6 D11 D16 D21 F4 F23 L4 L23 T4 T23 AA4 AA23 AC6 AC11 AC16 AC21 A1 A2 A26 B2 B25 B26 C3 C24 D4 D9 D14 D19 D23 H4 J23 N4 P23 V4 W23 AC4 AC8 AC13 AC18 AC23 AD3 AD24 AE1 AE2 AE25 AF1 AF25 VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND ? Output signals with programmable polarity. @ Input or output pins with weak internal pull up resistors (50k to 100k Ohms each) A These pins are reserved for internal use only. They should be left unconnected. © 1997 Zarlink Semiconductor Inc. Page: 7 Rev. 4.0 –December, 1997 A A A A A A A A P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 4. FUNCTIONAL DESCRIPTION 4.1 Local Memory (Local Buffer Memory) Interface Use industry standard Synchronous Burst Mode SRAM up to 1M bytes 9 32k x 32, 64k x 32, 128k x 32, or 256k x 32 Provides 4 individual Byte Write Enable controls ( L_BWE[3:0]# ) Provides separate Read and Write Chip Selects ( L_OE[3:0]# and L_WE[3:0]# ) for each memory chip Supports back to back Read or Write operations across memory chips 4.1.1 Pin Description Symbol L_D[31:0] L_A[19] / L_OE[3]# L_OE[2:0]# L_WE[3:0]# L_BWE[3:0]# L_CLK Note: Name & Functions TTL Local Memory Data Bus Bit [31:0] – a 32-bit synchronous data bus. @ I/O-TS L_A[18:2] L_ADSC# Type CMOS Local Memory Address Bus Bit [18:2] – Bit [18:2] of a synchronous Output address bus. The memory address is sampled when L_CS# is enabled and L_ADSC# is asserted. CMOS Local Memory Address Bus Bit [19] or Local Memory Read Chip Output Select [3] – Depends on memory configuration, this pin can be used as the Local Memory Address Bit [19] or as the Local Memory Read Chip Select [3]. CMOS Local Memory Read Chip Select [2:0] – allows up to read one of the 4 Output banks of memory. CMOS Local Memory Write Chip Select [3:0] – allows up to write one of the 4 Output banks of memory. CMOS Local Memory Byte Write Enable [3:0] – use to write individual bytes. Output CMOS Local Memory Controller Address Status – to load a new address. Output CMOS Local Memory Clock – a synchronous clock to memory devices. Output @ These pins have weak internal pull up resistors (50k to 100k Ohms each). © 1997 Zarlink Semiconductor Inc. Page: 8 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set 4.1.2 Supported Memory Configurations Read/Write Chip Select and High Address Bits Chip #3 Chip #2 Chip #1 Chip #0 L_A[19] / RAM Chip # of RAM Total Buffer L_WE[2]# L_OE[2]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# L_WE[3]# L_OE[3]# Size Chips Memory Size 32k x 32 64k x 32 128k x32 256k x32 1 128k bytes ---- ---- ---- ---- 2 256k bytes ---- ---- ---- ---- 4 512k bytes 1 256k bytes 2 512k bytes 4 1M bytes 1 512k bytes ---- ---- ---- ---- 2 1M bytes ---- ---- ---- ---- 1 1M bytes ---- L_A[19] ---- ---- ---- ---- L_WE[0]# L_OE[0]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# L_WE[3]# L_OE[3]# L_WE[2]# L_OE[2]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- L_WE[0]# L_OE[0]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# L_WE[3]# L_OE[3]# L_WE[2]# L_OE[2]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# ---- ---- L_WE[0]# L_OE[0]# L_WE[1]# L_OE[1]# L_WE[0]# L_OE[0]# ---- ---- L_WE[0]# L_OE[0]# 4.1.3 Bus Cycle Waveforms L_CLK L_ADSC# L_CS# L_A[19:2] A1 A2 A3 A3+1 A3+2 A3+3 A4 A4+1 A4+2 A4+3 A5 A6 L_WE[3:0]# L_BWE[3:0]# L_OE[3:0]# L_D[31:0] (Wr) D1 D3 L_D[31:0] (Rd) D3+1 D3+2 D3+3 D2 D6 D4 D4+1 D4+2 D4+3 D5 Typical Local Memory Access Operations © 1997 Zarlink Semiconductor Inc. Page: 9 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A 4.2 Management Bus Interface Supports various industry standard microprocessors including: S H E E T 9 Motorola MPC series embedded processors Easily adapts to other industry standard CPUs Provides separate Address and Data bus Supports Big & Little Endian byte ordering Supports 16-bit Data Bus Supports early RDY cycle 9 Meets timing requirement for Intel/AMD 186 family processors 9 Intel 186, 386, and 486 family or equivalent A EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set T Supports 1X or 2X CPU Clock 9 2X CPU Clock for 386 family processors Provides a single interrupt signal to Switch Manager CPU 4.2.1 Pin Description Symbol P_C[4:0] Type Name & Functions CMOS Input Processor Configuration bit [4:0]: – During the Reset Cycle, the P_C[4:0] pins provides the processor configuration. By using external weak pull-up or -down resistors, they define the External Management Bus Interface Configuration. These inputs are sampled at the trailing edge of the Reset cycle. C[0] – Defines the CPU Clock input is 1X or 2X clock C[1] – Selects either Big or Little Endian byte ordering C[2] – Defines the polarity of the P_RWC (Rd/Wr Control) input C[3] – Defines the CPU Bus width – For EA-208, it is default to 16-bit CPU Bus interface, and the setting of this bit is ignored. C[4] – Defines the timing relationship between P_RDY and P_D[15:0] valid. If C[4] is High, the P_D[15:0] are valid along in the same clock period as P_RDY is asserted. If C[4] is Low, the P_RDY is asserted one clock period early ahead of the P_D[15:0] are valid. Lo Hi C[0] CPU Clock C[1] Byte Order C[2] RWC C[3] Bus Size C[4] RDY Timing 1X Clock 2x Clock Little Endian Big Endian P_R/W# P_W/R# n/a n/a Normal Early After RESET, these pins are used as XpressFlow Bus Data bit [31:27]. P_A[11:1] TTL In (5VT) Address Bus Bit [11:1] – I/O port address P_D[15:0] TTL I/O-TS Data Bus Bit [15:0] – a 16-bit synchronous data bus. (5VT) P_ADS# TTL In (5VT) Address Strobe – indicates valid address is on the bus P_RWC TTL Input Read/Write Control – indicates the current bus cycle is a read or write (5VT) cycle. C[1] defines the polarity of this signal during the Reset cycle. C[1]=0 C[1]=1 P_R/W# is used for PowerPC or other similar processors. P_W/R# is used for 386, 486 or other similar processors P_RDY# TTL Out-OD Data Ready – timing indicates for bus data valid P_BS16# TTL Out-OD Bus Size 16 – response to bus master that the EA208 only supports 16bit data bus width. P_CS# TTL Input Chip Select – indicates the XpressFlow Engine is the target for the cur(5VT) rent bus operation. P_INT ? CMOS Out- Interrupt Request to Switch Manager CPU The polarity of this signal put output is programmable via chip configuration register. P_RST# TTL In-ST CPU Reset – Synchronous reset Input from Switch Manager CPU (5VT) P_CLK TTL In (5VT) CPU Clock – 2X Clock for 386 family, and 1X Clock for the others © 1997 Zarlink Semiconductor Inc. Page: 10 Rev. 4.0 –December, 1997 P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 4.2.2 Motorola MPC801 Processor Interface P_CLK {CLKOUT} P_ADS# {TS#} P_A[11:1] {A[20:30]} P_CS# P_RWC {RD/WR#} P_RDY# {TA#} P_D[15:0] {D[0:15]} (in) P_D[15:0] {D[0:15]} (out) Note: Mnemonics with in {} are the equivalent signals defined by MPC801 Typical Motorola MPC801 CPU I/O Access Operations 4.2.3 Intel 486 Processor Interface P_CLK P_ADS# P_A[11:1] P_CS# P_W/R# P_RDY# P_D[15:0] (in) P_D[15:0] (out) Typical 486 CPU I/O Access Operations © 1997 Zarlink Semiconductor Inc. Page: 11 Rev. 4.0 –December, 1997 P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 4.2.4 Intel 386 Processor Interface P_CLK PH2 (internal) PH2 P_ADS# P_A[11:1] P_CS# P_W/R# P_RDY# P_D[15:0] (in) P_D15:0] (out) Typical 386 CPU I/O Access Operations P_CLK PH2 (internal) PH2 PH1 PH2 PH2 or PH1 P_RST# Internal PH2 Clock Synchronization ** Note: ** See Intel 386 Processor Data Book for more details © 1997 Zarlink Semiconductor Inc. Page: 12 Rev. 4.0 –December, 1997 P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 4.2.5 Register Map Note: All 32-bit registers are D-word aligned. All 16-bit registers are also D-word aligned and right justified. For the Little Endian CPUs, register offset bit [1,0] are always set to be 00. For the Big Endian CPUs, register offset bit [1,0] are always set to be 10. ? This is a Global Register. CPU is allowed to write the Global Register of all devices by a single operation. @ These registers are reserved for system diagnostic usage only. I/O Offset Register Description Device Configuration Registers (DCR) GCR Global Control Register DCR0 DCR1 DCR2 DCR3 DCR4 DTSR Device Status Register Signature & Revision Register ID Register Device Configuration Register Interfaces Status Register Test Register Interrupt Controls ISR Interrupt Status Register – Unmasked ISRM Interrupt Status Register – Masked IMSK Interrupt Mask Register IAR Interrupt Acknowledgment Register Buffer Memory Interface MWAR Memory Write Address Reg. – Single Cycle MRAR Memory Read Address Reg. – Single Cycle MBAR Memory Address Register – Burst Mode MWBS Memory Write Burst Size (in D-words) MRBS Memory Read Burst Size (in D-words) MWDR Memory Write Data Register MWDX Memory Write Data Reg. – Byte Swapping MRDR Memory Read Data Register MRDX Memory Read Data Reg. – Byte Swapping FCB Buffer & Stack Management FCBBA Frame Control Buffer – Base Address FCBAG Frame Control Buffer – Buffer Aging Status FCBSL FCBST FCBSS Frame Ctrl Buffer Stack – Size Limit Frame Ctrl Buffer Stack – Buffer Low Threshold Frame Ctrl Buffer Stack – Allocation Status © 1997 Zarlink Semiconductor Inc. Page: 13 Reg. Little Big Endian Endian Size hF00 hF02 hF00 hF10 hF20 hF30 hF40 hF70 W/R Note: 16-bit W/-- ? hF02 hF12 hF22 hF32 hF42 hF72 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit --/R --/R W/R W/R --/R W/R hF80 hF90 hFA0 hFB0 hF82 hF92 hFA2 hFB2 16-bit 16-bit 16-bit 16-bit --/R --/R W/R W/-- hE08 hE18 hE28 hE40 hE50 hE68 hE6C hE68 hE6C hE08 hE18 hE28 hE42 hE52 hE68 hE6C hE68 hE6C 32-bit 32-bit 32-bit 16-bit 16-bit 32-bit 32-bit 32-bit 32-bit W/R W/R W/R W/R W/R W/-W/---/R --/R hD00 hD30 hD02 hD32 16-bit 16-bit W/R --/R hD90 hDA0 hDB0 hD92 hDA2 hDB2 16-bit 16-bit 16-bit W/R W/R --/R @ @ Rev. 4.0 –December, 1997 P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller I/O Offset Register Description Access Control Function (Chip Level controls) AVXR VLAN Control Table (VCT) Index Register AVDR VCT Data Register AVTC VLAN Type Code AXSC Transmission Scheduling Control Register AMIIC MII Command Register AMIIS MII Status Register AFCR Flow Control Register AMAR0 Multicast Address. for MAC Control Frames Byte [1,0] AMAR1 Byte [3,2] AMAR2 Byte [5,4] AMCT MAC Control FrameType Code Register ADAR0 Base MAC Address Register – Byte [1,0] ADAR1 Base MAC Address Register – Byte [3,2] ADAR2 Base MAC Address Register – Byte [5,4] Reg. Little Big Endian Endian Size hC00 hC10 hC20 hC30 hC40 hC40 hC70 hC80 hC02 hC12 hC22 hC32 hC40 hC40 hC72 hC82 16-bit 16-bit 16-bit 16-bit 32-bit 32-bit 16-bit 16-bit W/-W/R W/R W/R W/---/R W/R W/R hC90 hCA0 hCB0 hCC0 hCD0 hCE0 hC92 hCA2 hCB2 hCC2 hCD2 hCE2 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit W/R W/R W/R W/R W/R W/R W/R Ethernet MAC Port Control Registers – (substitute [n] with Port Number, n = {0..3] ) ECR0 MAC Port Control Register hn00 hn02 16-bit W/R ECR1 MAC Port Configuration Register hn10 hn12 16-bit W/R ECR2 MAC Port Interrupt Mask Register hn20 hn22 16-bit W/R ECR3 MAC Port Interrupt Status Register hn30 hn32 16-bit --/R EXSR MAC Tx Status Register hn40 hn42 16-bit --/R EXEC MAC Tx Error Counters hn50 hn52 16-bit --/R ERSR MAC Rx Status Register hn68 hn68 32-bit --/R EREC MAC Rx Error Counters hn78 hn78 32-bit --/R © 1997 Zarlink Semiconductor Inc. Page: 14 Note: @ @ @ @ Rev. 4.0 –December, 1997 P R E L I M I N XpressFlow-2001 Series – Ethernet Switch Chip-set A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 4.3 XpressFlow Bus Operation Zarlink’s optimized XpressFlow Bus architecture 9 High priority for Data Messages Provides up to 1.6G bps switching bandwidth 9 -33 1.07G bps 9 -40 1.28G bps 9 -50 1.60G bps Two level bus request priorities z for forwarding an Ethernet frame from receiving port to transmission port 9 Low priority for Command Messages z Full multi bus master structure for passing control information between devices Allows Access Controllers to communicate with XpressFlow Engine and other Access Controllers via a message passing protocol 4.3.1 Pin Description Symbol S_D[31:0] S_MSGEN# S_EOF# S_IRDY S_TABT# S_HPREQ# S_REQ# S_GNT# S_OVLD# S_CLK Type Name & Functions CMOS Data Bus Bit [31:0] – a 32-bit synchronous data bus. I/O-TS Note: During the system RESET period, Data Bit [31:27] are used as Processor Interface Configuration bit [0:3] CMOS Message Envelope – encompasses the entire period of a message I/O-TS transfer. Targets use the leading edge of this signal to detect the beginning of a message transfer, and to decode the message header for the intended target(s). CMOS End of Frame – only used by frame data transfer messages to identify I/O-TS the end of frame condition. This signal is synchronous with the Rx Frame Status word appended to the end of the message. CMOS Initiator Ready – a normal true signal. When negated, it indicates the I/O-TS initiator had asserted wait state(s) in between command words. Target should use this signal as enable signal for latching the data from the bus. CMOS Target Abort – when asserted, the target had aborted the reception of I/O-OD current message on the bus. CMOS High Priority Request – indicates one or more Bus Requester is reI/O-OD questing for high priority message transfer. CMOS Bus Request – Bus Request signal from Access Controller to Bus AcOutput cess Arbitrator in XpressFlow Engine CMOS Bus Grant – Bus Grant signal from Bus Arbitrator to Bus Requester Input CMOS Bus Over-load – when asserted, all data forwarding bus bandwidth has Input been allocated. Cannot support additional load for data forwarding traffic. CMOS XpressFlow Bus Clock – up to 50MHz system clock Input © 1997 Zarlink Semiconductor Inc. Page: 15 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set 4.3.2 Bus Cycle Waveforms S_CLK S_MSGEN# S_D[31:0] C0 C1 D0 D1 D2 D3 D4 D5 EoF S_EOF# S_IRDY XpressFlow Bus Data Transfer Cycle S_CLK S_MSGEN# S_D[31:0] C0 C1 C0 C1 EOF C0 C1 S_EOF# S_TABT# Command Cycle Data Xfer w/o Data Aborted Command Other XpressFlow Bus Cycles S_CLK S_REQ[k]# S_REQ[j]# S_HPREQ# High Priority Request pre-empts the low priority request. © 1997 Zarlink Semiconductor Inc. Page: 16 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set S_CLK S_MSGEN# S_REQ[j]# S_GNT[j]# S_HPREQ# S_REQ[I]# S_GNT[I]# XpressFlow Bus arbitration S_CLK S_REQ[k]# S_OVLD# Bus Overload pre-empts the data transfer request © 1997 Zarlink Semiconductor Inc. Page: 17 Rev. 4.0 –December, 1997 P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 4.4 MII Interface Fully compliant with IEEE 802.3u Media Independent Interface for connecting with external 10/100M Ethernet Physical Layer Transceiver All ports can also support 10Mbps Serial Interface 9 If 10Mbps Serial Interface is used, the MII port pin assignment are re-mapped for 10Mbps Serial Interface. Supports both 10Mbps 10BaseT interface and 100Mbps 100BaseTx interface Supports both half and full duplex operation Shared Station Management interface (one for all MII channels with in the Access Controller) 4.4.1 Pin Description Symbol Type Name & Functions M_MDC CMOS MII Management Data Clock – (common for all MII Ports) used to synOutput chronize the MII data stream (MDIO) for transferring between the Access Controller and the MII Tranceivers. M_MDIO TTL MII Management Data I/O – (common for all MII Ports) a serial manIO-TS agement data stream synchronous with MDC. (5VT) TTL In Receive Data [3:0] – (one set for each MII Port) a four-bit transmit data Mm_RXD[3:0] (5VT) nibble. Bit 0 is the least significant bit, and bit 3 is the most significant bit. Mm_RXDV TTL In Receive Data Valid – (one for each MII Port) instructs the MAC to be(5VT) gin moving data nibbles from the receive data lines. Mm_RXC TTL In Receive Clock – (one for each MII Port) a 25MHz clock input with 35% (5VT) to 65% duty cycles. Mm_RXER TTL In Receive Error – (one for each MII Port) (5VT) Mm_TXER CMOS Transmit Error – (one for each MII Port) Output Mm_TXC TTL In Transmit Clock – (one for each MII Port) a continuous clock input with (5VT) 35% to 65% duty cycles. Mm_TXEN CMOS Transmit Enable – (one for each MII Port) instructs the transceiver to Output begin moving data nibbles on the transmit data lines. Mm_TXD[3:0] CMOS Transmit Data [3:0] – (one set for each MII Port) a four-bit transmit Output data nibble. Bit 0 is the least significant bit, and bit 3 is the most significant bit. Mm_COL TTL In Collision Detected – (one for each MII Port) (5VT) Mm_CRS TTL In Carrier Sense – (one for each MII Port) (5VT) Mm_LNK TTL In Link Status – (one for each MII Port) ? (5VT) The polarity of this signal is programmable via Port Configuration Register Note: “m” is the port number [3:0]. ? These signals have programmable output polarity. © 1997 Zarlink Semiconductor Inc. Page: 18 Rev. 4.0 –December, 1997 P R E L I M I N R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set TXC A 40 nsec TXEN TXD[3:0] 100M MII Transmit Timing 40 nsec RXC RXDV RXD[3:0] SFD SFD Data 100M MII Receive Timing © 1997 Zarlink Semiconductor Inc. Page: 19 Rev. 4.0 –December, 1997 P R E L I M XpressFlow-2001 Series – Ethernet Switch Chip-set I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 4.4.2 PIN Mapping between MII Interface and 10Mbps Serial Interface MII Interface Symbol Type 10Mbps Serial Interface Symbol Mm_RXD[3:1] TTL In (5VT) Mm_RXD[0] TTL In Tm_RXD (5VT) Mm_RXDV TTL In (5VT) Mm_RXC TTL In Tm_RXC (5VT) Mm_RXER TTL In (5VT) Mm_TXER CMOS Output Mm_TXC TTL In Tm_TXC (5VT) Mm_TXEN Mm_TXD[0] Mm_TXD[1] Mm_TXD[2] Mm_TXD[3] Mm_COL Mm_CRS Mm_LNK Note: ? Type Name & Functions Not used by Serial Interface Ports. Has a weak internal pull-up resistor. TTL In Receive Data – (one for each Serial Interface (5VT) Port) a receive data stream. Not used by Serial Interface Ports. Has a weak internal pull-up resistor. TTL In Receive Clock – (one for each Serial Interface (5VT) Port) Not used by Serial Interface Ports. Has a weak internal pull-up resistor. Not used by Serial Interface Ports. TTL In Transmit Clock – (one for each Serial Inter(5VT) face Port) a continuous clock input with 35% to 65% duty cycles. CMOS Transmit Enable – (one for each Serial InterOutput face Port) CMOS Transmit Data – (one for each Serial Interface Output Port) a transmit data stream. Not used by Serial Interface Ports CMOS Tm_TXEN Output CMOS Tm_TXD Output CMOS Output CMOS Tm_LPBK ? CMOS Loop Back Enable – (one for each Serial InOutput Output terface Port) The polarity of this signal is programmable via Port Configuration Register CMOS Tm_FD ? CMOS Full Duplex Mode – (one for each Serial InOutput Output terface Port) The polarity of this signal is programmable via Port Configuration Register TTL In Tm_COL TTL In Collision Detected – (one for each Serial In(5VT) (5VT) terface Port) TTL In Tm_CRS TTL In Carrier Sense – (one for each Serial Interface (5VT) (5VT) Port) TTL In Tm_LNK ? TTL In Link Status – (one for each Port) The polarity (5VT) (5VT) of this signal is programmable via Port Configuration Register “m” is the port number [3:0]. ? These signals have programmable output polarity. 4.5 Test Facility Symbol T_MODE Type Name & Functions CMOS Test Mode Selection & Test Output – Set Test Mode upon Reset, and I/O TS provides test status output during test mode © 1997 Zarlink Semiconductor Inc. Page: 20 Rev. 4.0 –December, 1997 P R E L I M I N XpressFlow-2001 Series – Ethernet Switch Chip-set A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 5. DC SPECIFICATION 5.1 ABSOLUTE MAXIMUM RATINGS Storage Temperature Operating Temperature -65°C to +150°C 0°C to +70°C Supply Voltage VDD with Respect to VSS Voltage on 5V Tolerant Input Pins Voltage on Other Pins +3.0 V to +3.6 V -0.5 V to (VDD + 2.5 V) -0.5 V to (VDD + 0.5 V) Stresses above those listed may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. 5.2 DC CHARACTERISTICS VDD = +3.0 V to +3.6 V TAMBIENT = 0°C to +70°C Preliminary Symbol fosc IDD VOH-CMOS VOL-CMOS VOH-TTL VOL-TTL VIH-CMOS VIL-CMOS VIH-TTL VIL-TTL VIH-5VT VIL-5VT ILI ILO IIH IIL CIN COUT CI/O Parameter Description Min Frequency of Operation ( -33) Frequency of Operation ( -40) Frequency of Operation (-50) Supply Power – @ 33.3333 MHz (VDD =3.3 V) Supply Power – @ 40 MHz (VDD =3.3 V) Supply Power – @ 50 MHz (VDD =3.3 V) Output High Voltage (CMOS) IOH = maximum Output Low Voltage (CMOS) IOL = maximum Output High Voltage (TTL) IOH = maximum Output Low Voltage (TTL) IOL = maximum Input High Voltage (CMOS) Input Low Voltage (CMOS) Input High Voltage (TTL) Input Low Voltage (TTL) Input High Voltage (TTL 5V tolerant) Input Low Voltage (TTL 5V tolerant) Input Leakage Current (0.1 V ) VIN ) VDD) (all pins except those with internal pullup/pull-down resistors) Output Leakage Current (0.1 V ) VOUT ) VDD) Input Leakage Current VIH = VDD - 0.1 V (pins with internal pull-down resistors) Input Leakage Current VIL = 0.1 V (pins with internal pull-up resistors) Input Capacitance Output Capacitance I/O Capacitance 20 20 20 Typ Max Unit 33.3333 40.0000 50.0000 TBD TBD TBD 0.45 VDD + 10% VDD x 30% VDD + 10% +0.8 VDD + 1.8 +0.8 ±10 MHz MHz MHz mA mA mA V V V V V V V V V V µA ±15 60 µA µA -60 µA VDD - 0.5 0.45 2.4 VDD x 70% -0.5 2.0 -0.3 2.0 -0.3 8 8 10 pF pF pF Notes: © 1997 Zarlink Semiconductor Inc. Page: 21 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set 6. AC SPECIFICATION 6.1 XpressFlow Bus Interface: S_CLK S12 S1-min S_CLK S_D[31:0] S17 S18 S13 S2-min S_D[31:0] S_MSGEN# S19 S20 S14 S3-min S_MSGEN# S_EOF# S21 S22 S15 S4-min S_EOF# S_IRDY S23 S24 S_IRDY XpressFlow Bus Interface – Output float delay timing S27 S28 S_TABT# S29 S_CLK S30 S_HPREQ# S1-max S1-min S31 S_D[31:0] S32 S_GNT# S2-max S2-min S33 S_MSGEN# S34 S_OVLD# S3-max S3-min S_EOF# XpressFlow Bus Interface – Input setup and hold timing S4-max S4-min S_IRDY S6-max S6-min S_TABT# S7-max S7-min S_HPREQ# S8-max S8-min S_REQ# XpressFlow Bus Interface – Output valid delay timing © 1997 Zarlink Semiconductor Inc. Page: 22 Rev. 4.0 –December, 1997 P R E L I M I N XpressFlow-2001 Series – Ethernet Switch Chip-set A R Y D A T Parameter S H E E T EA-224 4-Port 10/100M Ethernet Access Controller -33 Symbol A -40 -50 Min Max Min Max Min Max (ns) (ns) (ns) (ns) (ns) (ns) Note: S1 S_D[31:0] output valid delay 6 20 5 18 4 15 CL = 50pf S2 S_MSGEN# output valid delay 6 20 5 18 4 15 CL = 50pf S3 S_EOF# output valid delay 6 20 5 18 4 15 CL = 50pf S4 S_IRDY output valid delay 6 20 5 18 4 15 CL = 50pf S6 S_TABT# output valid delay 6 20 5 18 4 15 CL = 50pf S7 S_HPREQ# output valid delay 6 20 5 18 4 15 CL = 50pf S8 S_REQ# output valid delay 6 20 5 18 4 15 CL = 20pf S12 S_D[31:0] output float delay 15 13 10 S13 S_MSGEN# output float delay 15 13 10 S14 S_EOF# output float delay 15 13 10 S15 S_IRDY output float delay 15 13 10 S17 S_D[31:0] input set-up time 5 4.5 4 S18 S_D[31:0] input hold time 2 1.5 1.5 S19 S_MSGEN# input set-up time 5 4.5 4 S20 S_MSGEN# input hold time 2 1.5 1.5 S21 S_EOF# input set-up time 5 4.5 4 S22 S_EOF# input hold time 2 1.5 1.5 S23 S_IRDY input set-up time 5 4.5 4 S24 S_IRDY input hold time 2 1.5 1.5 S27 S_TABT# input set-up time 5 4.5 4 S28 S_TABT# input hold time 2 1.5 1.5 S29 S_HPREQ# input set-up time 5 4.5 4 S30 S_HPREQ# input hold time 2 1.5 1.5 S31 S_GNT# input set-up time 5 4.5 4 S32 S_GNT# input hold time 2 1.5 1.5 S33 S_OVLD# input set-up time 5 4.5 4 S34 S_OVLD# input hold time 2 1.5 1.5 AC Characteristics – XpressFlow Bus Interface © 1997 Zarlink Semiconductor Inc. Page: 23 Rev. 4.0 –December, 1997 P R E L I M I N XpressFlow-2001 Series – Ethernet Switch Chip-set A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller 6.2 CPU Bus Interface: P_CLK P_CLK P15 P16-min P1 P2 P_RST# P_D[31:0] P3 P4 CPU Bus Interface – Output float delay timing P_ADS# P5 P6 P_W/R# P_CLK P7 P8 P16-max P16-min P_CS# P_D[15:0] P9 P10 P17-max P17-min P_A[11:1] P_RDY# P11 P12 P18-max P18-min P_D[15:0] P_INT CPU Bus Interface – Input setup and hold timing CPU Bus Interface – Output valid delay timing -33 Symbol Parameter -40 -50 Min Max Min Max Min Max (ns) (ns) (ns) (ns) (ns) (ns) Note: P1 P_RST# input setup time 5 4.5 4 P2 P_RST# input hold time 2 1.5 1.5 P3 P_ADS# input set-up time 5 4.5 4 P4 P_ADS# input hold time 2 1.5 1.5 P5 P_W/R# input set-up time 5 4.5 4 P6 P_W/R# input hold time 2 1.5 1.5 P7 P_CS# input set-up time 5 4.5 4 P8 P_CS# input hold time 2 1.5 1.5 P9 P_A[11:1] input set-up time 5 4.5 4 P10 P_A[11:1] input hold time 2 1.5 1.5 P11 P_D[31:0]# input set-up time 5 4.5 4 P12 P_D[31:0]# input hold time 2 1.5 1.5 P15 P_D[31:0]# output float delay P16 P_D[31:0]# # output valid delay 6 20 5 18 4 15 CL = 60pf P17 P_RDY# output valid delay 6 20 5 18 4 15 CL = 60pf P18 P_INT# output valid delay 6 20 5 18 4 15 CL = 20pf 15 13 10 AC Characteristics -- CPU Bus Interface © 1997 Zarlink Semiconductor Inc. Page: 24 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set 6.3 Local Memory Interface: L_CLK L_CLK L1 L3-max L3-min L2 L_D[31:0] L_D[31:0] L4-max L4-min Local Memory Interface – Input setup and hold timing L_A[19:2] L5-max L5-min L_CS[3:0]# L_CLK L6-max L6-min L10 L3-min L_ADSC# L_D[31:0] L7-max L7-min L_BWE[3:0]# Local Memory Interface – Output float delay timing L8-max L8-min L_WE#] L9-max L9-min L_OE# Local Memory Interface – Output valid delay timing -33 Symbol Parameter -40 -50 Min Max Min Max Min Max (ns) (ns) (ns) (ns) (ns) (ns) Note: L1 L_D[31:0]# input set-up time 5 4.5 4 L2 L_D[31:0]# input hold time 2 1.5 1.5 L3 L_D[31:0]# output valid delay 6 20 5 18 4 15 CL = 30pf L4 L_A[19:2] output valid delay 6 20 5 18 4 15 CL = 30pf L5 L_CS[3:0]# output valid delay 6 20 5 18 4 15 L6 L_ADSC# output valid delay 6 20 5 18 4 15 CL = 30pf L7 L_BWE[3:0]# output valid delay 6 20 5 18 4 15 CL = 30pf L8 L_WE# output valid delay 6 20 5 18 4 15 CL = 10pf L9 L_OE# output valid delay 6 20 5 18 4 15 CL = 10pf L10 L_D[31:0]# output float delay 15 13 10 AC Characteristics – Local Memory Interface © 1997 Zarlink Semiconductor Inc. Page: 25 Rev. 4.0 –December, 1997 P R E L I M I N A R Y D A T A S H E E T EA-224 4-Port 10/100M Ethernet Access Controller XpressFlow-2001 Series – Ethernet Switch Chip-set 7. PACKAGING INFORMATION 352-PIN BGA (35x35x2.33mm) Pin 1 I.D. B 24 26 25 20 22 23 21 18 19 16 17 14 15 12 13 10 11 8 9 6 7 4 5 0.75 DIA +/- 0.15 (352X) 2 3 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF A 24.00 Ref 1.27 32.00 Ref 31.75 35.00 +/- 0.20 1.17 Ref C 0.56 2.33 Ref +/-0.13 0.60 +/-0.10 This Document contains advance information on a product under development. Zarlink Semiconductor Inc. reserves the right to make any changes without notice. 400 March Road Ottawa, Ontario, Canada K2K 3H4 Tel. 613 592 0200, FAX: 613 592 1010 Web Site: www.zarlink.com Rev. 4.0 December 1997 ¶1997 Zarlink Semiconductor Inc. E1 DIMENSION A A1 A2 D D1 E E1 b e MIN MAX 2.20 2.46 0.50 0.70 1.17 REF 35.20 34.80 30.00 REF 35.20 34.80 30.00 REF 0.60 0.90 1.27 352 Conforms to JEDEC MS - 034 E e D1 A2 D A1 A 1. CONTROLLING DIMENSIONS ARE IN MM 2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER 3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. N IS THE NUMBER OF SOLDER BALLS 5. NOT TO SCALE. 6. SUBSTRATE THICKNESS IS 0.56 MM Package Code c Zarlink Semiconductor 2002 All rights reserved. ISSUE ACN DATE APPRD. Previous package codes: For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE