PD - 95774A IRLR2905ZPbF IRLU2905ZPbF AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l l l Logic Level Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 55V RDS(on) = 13.5mΩ G ID = 42A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak IRLR2905Z I-Pak IRLU2905Z Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 60 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM 42 c VGS EAS (Thermally limited) EAS (Tested ) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range c d 240 h RθJA Junction-to-Ambient j A °C Parameter Junction-to-Ambient (PCB mount) mJ 85 300 (1.6mm from case ) y ij y 10 lbf in (1.1N m) Thermal Resistance RθJA 57 -55 to + 175 Mounting Torque, 6-32 or M3 screw j W W/°C V mJ Soldering Temperature, for 10 seconds Junction-to-Case 110 0.72 ± 16 See Fig.12a, 12b, 15, 16 g RθJC A 43 PD @TC = 25°C Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Units Typ. Max. ––– 1.38 ––– 40 ––– 110 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 12/07/04 IRLR/U2905ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.053 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 11 13.5 ––– ––– 20 ––– ––– 22.5 mΩ 1.0 ––– 3.0 V VDS = VGS, ID = 250µA VDS = 25V, ID = 36A ––– V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 36A mΩ VGS = 5.0V, ID = 30A VGS = 4.5V, ID e e = 15A e VGS(th) Gate Threshold Voltage gfs IDSS Forward Transconductance 25 ––– ––– S Drain-to-Source Leakage Current ––– ––– 20 µA ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 23 35 Qgs Gate-to-Source Charge ––– 8.5 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 12 ––– VGS = 5.0V td(on) Turn-On Delay Time ––– 14 ––– VDD = 28V tr Rise Time ––– 130 ––– td(off) Turn-Off Delay Time ––– 24 ––– tf Fall Time ––– 33 ––– VGS = 5.0V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package and center of die contact VGS = 0V IGSS VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C nA VGS = 16V VGS = -16V ID = 36A nC VDS = 44V e ID = 36A ns nH RG = 15 Ω e D G S Ciss Input Capacitance ––– 1570 ––– Coss Output Capacitance ––– 230 ––– Crss Reverse Transfer Capacitance ––– 130 ––– Coss Output Capacitance ––– 840 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 180 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 290 ––– VGS = 0V, VDS = 0V to 44V VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 42 ISM (Body Diode) Pulsed Source Current ––– ––– 240 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 trr Reverse Recovery Time ––– 22 33 ns Qrr Reverse Recovery Charge ––– 14 21 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A V showing the integral reverse p-n junction diode. TJ = 25°C, IS = 36A, VGS = 0V e TJ = 25°C, IF = 36A, VDD = 28V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRLR/U2905ZPbF 1000 1000 ID, Drain-to-Source Current (A) TOP 100 BOTTOM 10 3.0V ≤ 60µs PULSE WIDTH Tj = 25°C TOP ID, Drain-to-Source Current (A) VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V 1 100 BOTTOM 10 3.0V ≤ 60µs PULSE WIDTH Tj = 175°C 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 60 T J = 25°C 100.0 T J = 175°C 10.0 VDS = 10V ≤ 60µs PULSE WIDTH Gfs, Forward Transconductance (S) 1000.0 ID, Drain-to-Source Current (Α) VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V T J = 175°C 50 40 T J = 25°C 30 20 10 VDS = 8.0V 380µs PULSE WIDTH 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10.0 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRLR/U2905ZPbF 2500 VGS, Gate-to-Source Voltage (V) 2000 C, Capacitance (pF) 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss 1500 1000 500 Coss ID= 36A VDS= 44V VDS= 28V VDS= 11V 10 8 6 4 2 Crss 0 0 1 10 0 100 10 20 30 40 50 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 T J = 175°C 10.0 T J = 25°C 1.0 100 10 100µsec 1msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10msec 2.2 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRLR/U2905ZPbF 60 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 LIMITED BY PACKAGE ID , Drain Current (A) 50 40 30 20 10 0 25 50 75 100 125 150 175 ID = 30A VGS = 5.0V 1.5 1.0 0.5 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ1 τ2 τ Ri (°C/W) τi (sec) 0.765 0.000269 0.6141 τ2 0.001614 Ci= τi/Ri Ci= i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRLR/U2905ZPbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 240 15V ID 36A 6.2A BOTTOM 4.3A TOP 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 3.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 2.5 ID = 250µA 2.0 1.5 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRLR/U2905ZPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 60 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 36A 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRLR/U2905ZPbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRLR/U2905ZPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234 ASSEMBLED ON WW 16, 1999 IN T HE ASSEMBLY LINE "A" PART NUMBER INTERNATIONAL RECTIFIER LOGO Note: "P" in assembly line pos ition indicates "Lead-Free" IRFU120 12 916A 34 ASSEMBLY LOT CODE DATE CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFU120 12 ASSEMBLY LOT CODE www.irf.com 34 DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = ASSEMBLY SIT E CODE 9 IRLR/U2905ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: THIS IS AN IRF U120 WIT H AS SEMBLY LOT CODE 5678 ASS EMBLE D ON WW 19, 1999 IN T HE AS SEMBLY LINE "A" INTE RNAT IONAL RECTIF IER LOGO PART NUMBE R IRF U120 919A 56 78 AS SEMBLY LOT CODE Note: "P" in as s embly line pos ition indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEE K 19 LINE A OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 56 AS SEMB LY LOT CODE 10 78 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = ASS EMBLY SIT E CODE www.irf.com IRLR/U2905ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.089mH Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 36A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04 www.irf.com 11