PD - 97435 IRF7779L2TRPbF IRF7779L2TR1PbF DirectFET Power MOSFET RoHS Compliant, Halogen Free l Lead-Free (Qualified up to 260°C Reflow) l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l High Cdv/dt Immunity l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l Industrial Qualified l Typical values (unless otherwise specified) VDSS SC M2 RDS(on) 150V min ±20V max Qg D G S S S S S S S S Vgs(th) 33nC 4.0V D DirectFET ISOMETRIC L8 M4 9.0mΩ@ 10V Qgd tot 97nC Applicable DirectFET Outline and Substrate Outline SB VGS L4 L6 L8 Description The IRF7779L2TR/TR1PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems. The IRF7779L2TR/TR1PbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance power converters. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TC = 100°C ID @ TA = 25°C ID @ TC = 25°C IDM EAS IAR Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V (Silicon Limited)f Continuous Drain Current, VGS @ 10V (Silicon Limited)f Continuous Drain Current, VGS @ 10V (Silicon Limited)e Continuous Drain Current, VGS @ 10V (Package Limited) f g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Units 150 ±20 67 47 11 375 270 270 40 V A mJ A 20.00 50.00 TC= 25°C ( DS(on) mΩ) Typical R DS (on), (mΩ) ID = 40A 40.00 VGS = 7.0V 16.00 30.00 Typical R TJ = 125°C 20.00 10.00 TJ = 25°C 0.00 4.0 Notes: Max. 6.0 8.0 10.0 12.0 14.0 VGS, Gate-to-Source Voltage (V) 16.0 Fig 1. Typical On-Resistance vs. Gate Voltage Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com VGS = 8.0V VGS = 10V VGS = 15V 12.00 8.00 50 70 90 110 ID, Drain Current (A) Fig 2. Typical On-Resistance vs. Drain Current TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.33mH, RG = 25Ω, IAS = 40A. 1 11/17/09 IRF7779L2TR/TR1PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 150 ––– ––– ΔΒVDSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.13 ––– V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 2mA mΩ VGS = 10V, ID = 40A i RDS(on) Static Drain-to-Source On-Resistance ––– 9.0 11 VGS(th) Gate Threshold Voltage 3.0 4.0 5.0 V ΔVGS(th)/ΔTJ Gate Threshold Voltage Coefficient ––– -15 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 μA VDS = 150V, VGS = 0V ––– ––– 250 VDS = 120V, VGS = 0V, TJ = 125°C nA VGS = 20V IGSS gfs Qg Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 83 ––– ––– VDS = VGS, ID = 250μA VGS = -20V S VDS = 50V, ID = 40A Total Gate Charge ––– 97 150 Qgs1 Pre-Vth Gate-to-Source Charge ––– 27 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 6.9 ––– Qgd Gate-to-Drain Charge ––– 33 50 ID = 40A Qgodr ––– 30 ––– See Fig. 9 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 40 ––– Qoss Output Charge ––– 39 ––– nC RG Gate Resistance ––– 1.5 ––– Ω td(on) Turn-On Delay Time ––– 16 ––– VDD = 75V, VGS = 10Vi tr Rise Time ––– 19 ––– ID = 40A td(off) Turn-Off Delay Time ––– 36 ––– tf Fall Time ––– 12 ––– Ciss Input Capacitance ––– 6660 ––– Coss Output Capacitance ––– 840 ––– Crss Reverse Transfer Capacitance ––– 180 ––– Coss Output Capacitance ––– 5620 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 400 ––– VGS = 0V, VDS = 120V, f=1.0MHz Min. Typ. Max. Units ––– ––– VDS = 75V nC ns VGS = 10V VDS = 16V, VGS = 0V RG=1.8Ω VGS = 0V pF VDS = 25V Diode Characteristics Parameter IS Continuous Source Current ISM Pulsed Source Current MOSFET symbol 67 (Body Diode) A ––– ––– Conditions showing the 270 integral reverse VSD Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 40A, VGS = 0V i trr Reverse Recovery Time ––– 110 170 ns TJ = 25°C, IF = 40A, VDD = 75V Qrr Reverse Recovery Charge ––– 510 770 nC di/dt = 100A/μs i (Body Diode)g Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF7779L2TR/TR1PbF Absolute Maximum Ratings f f c Max. Units 125 63 3.3 270 -55 to + 175 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TC = 25°C PD @TC = 100°C PD @TA = 25°C TP TJ TSTG °C Thermal Resistance RθJA RθJA RθJA RθJ-Can RθJ-PCB e j k Parameter Typ. Max. Units ––– 12.5 20 ––– ––– 45 ––– ––– 1.2 0.5 °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Can Junction-to-PCB Mounted fl Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.1 0.01 0.001 0.0001 1E-006 0.10 0.05 0.02 0.01 τJ τJ τ1 R2 R2 τ2 τ1 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R1 R1 τ4 τ4 τi (sec) 0.1080 0.000171 0.6140 0.053914 0.4520 0.006099 1.47e-05 0.036168 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 3 IRF7779L2TR/TR1PbF 1000 1000 100 BOTTOM VGS 15V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 5.5V TOP 10 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 5.5V ≤ 60μs PULSE WIDTH Tj = 25°C BOTTOM 100 5.5V ≤ 60μs PULSE WIDTH Tj = 175°C 5.5V 1 10 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) VDS = 50V ≤ 60μs PULSE WIDTH 100 TJ = 175°C TJ = 25°C 10 TJ = -40°C 1 0.1 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 ID = 40A VGS = 10V 2.5 2.0 1.5 1.0 0.5 7.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 100000 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature 14 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) 100 Fig 5. Typical Output Characteristics 1000 10000 Ciss Coss 1000 Crss ID= 40A VDS = 120V 12 VDS = 75V 10 VDS = 30V 8 6 4 2 0 100 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 10 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics ID, Drain-to-Source Current (A) 1 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) Fig 9. Typical Total Gate Charge vs Gate-to-Source Voltage www.irf.com IRF7779L2TR/TR1PbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 TJ = 175°C TJ = 25°C 100 TJ = -40°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100μsec 1msec 10 10msec DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 0 1.0 1 VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 100 1000 Fig11. Maximum Safe Operating Area 5.5 VGS(th) Gate threshold Voltage (V) 70 60 ID , Drain Current (A) 10 VDS , Drain-toSource Voltage (V) 50 40 30 20 10 0 ID = 1.0A ID = 1.0mA 5.0 ID = 250μA 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 25 50 75 100 125 150 175 -75 -50 -25 TC , CaseTemperature (°C) 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 1200 ID 7.8A 12A BOTTOM 40A TOP 1000 800 600 400 200 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF7779L2TR/TR1PbF 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) Duty Cycle = Single Pulse Avalanche Current (A) 100 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) 280 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 40A EAR , Avalanche Energy (mJ) 240 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·ta Fig 16. Maximum Avalanche Energy Vs. Temperature D.U.T Driver Gate Drive + + • • • • D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs 6 www.irf.com IRF7779L2TR/TR1PbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 18a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 18b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 19b. Unclamped Inductive Waveforms Fig 19a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 20a. Switching Time Test Circuit www.irf.com 10% VGS td(on) tr t d(off) tf Fig 20b. Switching Time Waveforms 7 IRF7779L2TR/TR1PbF DirectFET Board Footprint, L8 (Large Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G = GATE D = DRAIN S = SOURCE D D D 8 D S S S S G D S S S S D www.irf.com IRF7779L2TR/TR1PbF DirectFET Outline Dimension, L8 Outline (LargeSize Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS METRIC MAX CODE MIN 9.15 A 9.05 7.10 B 6.85 6.00 C 5.90 0.65 D 0.55 0.62 E 0.58 1.22 F 1.18 1.02 G 0.98 0.77 H 0.73 0.42 J 0.38 1.47 K 1.34 2.69 L 2.52 0.70 M 0.59 0.08 N 0.03 0.18 P 0.09 IMPERIAL MIN MAX 0.356 0.360 0.270 0.280 0.232 0.236 0.022 0.026 0.023 0.024 0.046 0.048 0.015 0.017 0.029 0.030 0.015 0.017 0.053 0.058 0.099 0.106 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com 9 IRF7779L2TR/TR1PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. (ordered as IRF7779L2PBF). REEL DIMENSIONS STANDARD OPTION (QTY 4000) METRIC IMPERIAL MIN CODE MAX MAX MIN 12.992 A N.C 330.0 N.C 0.795 B 20.2 N.C N.C 0.504 C 0.520 12.8 13.2 0.059 D 1.5 N.C N.C 3.937 E 100.0 N.C N.C F N.C N.C 0.889 22.4 G 0.646 16.4 0.724 18.4 H 0.626 15.9 0.724 18.4 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H 10 DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.469 0.476 11.90 12.10 0.154 0.161 3.90 4.10 0.626 0.642 15.90 16.30 0.291 0.299 7.40 7.60 0.284 0.291 7.20 7.40 0.390 0.398 9.90 10.10 0.059 NC 1.50 NC 0.059 0.063 1.50 1.60 www.irf.com IRF7779L2TR/TR1PbF Part number Package Type IRF7779L2TRPbF IRF7779L2TR1PbF DirectFET2 Large Can DirectFET2 Large Can Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 1000 Note "TR" suffix "TR1" suffix Qualification Information† Industrial †† Qualification level (per JEDEC JESD47F††† guidelines) Comments: This family of products has passed JEDEC’s Industrial qualification. IR’s Consumer qualification level is granted by extension of the higher Industrial level. Moisture Sensitivity Level MSL1 DFET2 (per JEDEC J-STD-020D†††) RoHS Compliant Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Data and specifications subject to change without notice. This product has been designed and qualified to MSL1 rating for the Industrial market. Additional storage requirement details for DirectFET products can be found in application note AN1035 on IRs Web site. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/09 www.irf.com 11