Intersil HUF75542S3S 75a, 80v, 0.014 ohm, n-channel, ultrafet power mosfet Datasheet

HUF75542P3, HUF75542S3S
TM
Data Sheet
June 2000
File Number
4845.2
75A, 80V, 0.014 Ohm, N-Channel,
UltraFET Power MOSFETs
Packaging
JEDEC TO-220AB
JEDEC TO-263AB
SOURCE
DRAIN
GATE
Features
• Ultra Low On-Resistance
- rDS(ON) = 0.014Ω, VGS = 10V
GATE
SOURCE
DRAIN
(FLANGE)
DRAIN (FLANGE)
• Simulation Models
- Temperature Compensated PSPICE® and SABER©
Electrical Models
- Spice and SABER© Thermal Impedance Models
- www.intersil.com
HUF75542S3S
HUF75542P3
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Symbol
D
Ordering Information
PART NUMBER
G
S
Absolute Maximum Ratings
PACKAGE
BRAND
HUF75542P3
TO-220AB
75542P
HUF75542S3S
TO-263AB
75542S
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF75542S3ST.
TC = 25oC, Unless Otherwise Specified
HUF75542P3, HUF75542S3S
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
80
V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
80
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±20
V
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
75
58
Figure 4
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS
Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
230
1.54
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-55 to 175
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
300
260
oC
oC
NOTE:
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
1
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000
SABER© is a Copyright of Analogy Inc.
HUF75542P3, HUF75542S3S
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
80
-
-
V
VDS = 75V, VGS = 0V
-
-
1
µA
VDS = 70V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
BVDSS
IDSS
Gate to Source Leakage Current
IGSS
ID = 250µA, VGS = 0V (Figure 11)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 75A, VGS = 10V (Figure 9)
-
0.012
0.014
Ω
TO-220 and TO-263
-
-
0.65
oC/W
-
-
62
oC/W
-
-
195
ns
-
12.5
-
ns
-
117
-
ns
td(OFF)
-
50
-
ns
tf
-
80
-
ns
tOFF
-
-
195
ns
-
150
180
nC
-
80
96
nC
-
5.7
7
nC
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to
Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 40V, ID = 75A
VGS = 10V,
RGS = 3.9Ω
(Figures 18, 19)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
VDD = 40V,
ID = 75A,
Ig(REF) = 1.0mA
(Figures 13, 16, 17)
Gate to Source Gate Charge
Qgs
-
15
-
nC
Gate to Drain "Miller" Charge
Qgd
-
33
-
nC
-
2750
-
pF
-
700
-
pF
-
250
-
pF
MIN
TYP
MAX
UNITS
ISD = 75A
-
-
1.25
V
ISD = 37.5A
-
-
1.00
V
trr
ISD = 75A, dISD/dt = 100A/µs
-
-
102
ns
QRR
ISD = 75A, dISD/dt = 100A/µs
-
-
255
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
2
TEST CONDITIONS
HUF75542P3, HUF75542S3S
Typical Performance Curves
POWER DISSIPATION MULTIPLIER
1.2
80
VGS = 10V
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
60
40
20
0.2
0
0
25
0
25
50
75
100
125
150
50
175
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
ZθJC , NORMALIZED
THERMAL IMPEDANCE
1
0.1
PDM
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
t1
t2
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
IDM , PEAK CURRENT (A)
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I = I25
175 - TC
150
VGS = 10V
100
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
50
10-5
10-4
10-3
10-2
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
3
10-1
100
101
HUF75542P3, HUF75542S3S
Typical Performance Curves
(Continued)
1000
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
100
100µs
1ms
10
10ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
1
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
IAS , AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
500
100
STARTING TJ = 25oC
STARTING TJ = 150oC
10
0.001
10
100
0.01
0.1
1
10
200
tAV, TIME IN AVALANCHE (ms)
VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
150
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
120
ID , DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
150
90
60
TJ = 175oC
30
TJ = 25oC
VGS = 20V
VGS = 10V
VGS = 7V
120
VGS = 6V
90
VGS = 5V
60
30
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
TJ = -55oC
0
0
2
3
4
5
0
6
VGS , GATE TO SOURCE VOLTAGE (V)
2
4
FIGURE 8. SATURATION CHARACTERISTICS
2.5
1.2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
2.0
1.5
VGS = 10V, ID = 75A
1.0
0.5
-80
3
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
1
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4
200
1.0
0.8
0.6
0.4
-80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
HUF75542P3, HUF75542S3S
Typical Performance Curves
(Continued)
10000
VGS = 0V, f = 1MHz
ID = 250µA
1.1
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
1.0
0.9
0.8
-80
-40
0
40
80
120
160
CISS = CGS + CGD
1000
COSS ≅ CDS + CGD
CRSS = CGD
100
0.1
200
1
TJ , JUNCTION TEMPERATURE (oC)
10
80
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VGS , GATE TO SOURCE VOLTAGE (V)
10
VDD = 40V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 75A
ID = 50A
ID = 25A
2
0
0
20
40
60
80
100
Qg, GATE CHARGE (nC)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
-
VGS
VDS
IAS
VDD
VDD
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
5
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
HUF75542P3, HUF75542S3S
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
-
VDD
VGS = 10V
VGS
DUT
VGS = 2V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
6
10%
50%
50%
PULSE WIDTH
FIGURE 19. SWITCHING TIME WAVEFORM
HUF75542P3, HUF75542S3S
PSPICE Electrical Model
.SUBCKT HUF75542P3 2 1 3 ;
rev 15 Feb 2000
CA 12 8 4.4e-9
CB 15 14 4.2e-9
CIN 6 8 2.5e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
DPLCAP
DRAIN
2
5
10
5
51
-
IT 8 17 1
GATE
1
6
8
EVTEMP
RGATE +
18 22
9
20
11
+
17
EBREAK 18
-
50
21
16
DBODY
MWEAK
6
MMED
MSTRO
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 5.5e-3
RGATE 9 20 1.0
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 3.3e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
EVTHRES
+ 19 8
RLGATE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
ESLC
RDRAIN
+
LGATE
DBREAK
+
RSLC2
ESG
LDRAIN 2 5 1.0e-9
LGATE 1 9 2.6e-9
LSOURCE 3 7 1.1e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 87.2
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLSOURCE
S2A
S1A
12
S1B
CA
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
IT
14
+
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RBREAK
15
14
13
13
8
-
+
8
22
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*230),2.5))}
.MODEL DBODYMOD D (IS = 2.5e-12 RS = 2.85e-3 XTI = 5.5 TRS1 = 2e-3 TRS2 = 1e-6 CJO = 3.2e-9 TT = 5.5e-8 M = 0.6)
.MODEL DBREAKMOD D (RS = 2.9e-1 TRS1 = 1e-3 TRS2 = 1e-6)
.MODEL DPLCAPMOD D (CJO = 3.4e-9 IS = 1e-30 M = 0.8 N = 10)
.MODEL MMEDMOD NMOS (VTO = 3.06 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1)
.MODEL MSTROMOD NMOS (VTO = 3.5 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.67 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10)
.MODEL RBREAKMOD RES (TC1 =1.3e-3 TC2 = -9e-7)
.MODEL RDRAINMOD RES (TC1 = 1.1e-2 TC2 = 2.5e-5)
.MODEL RSLCMOD RES (TC1 = 4.5e-3 TC2 = 1e-5)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -2.5e-3 TC2 = -1.1e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -6.0 VOFF= -4.5)
VON = -4.5 VOFF= -6.0)
VON = -0.5 VOFF= 0.5)
VON = 0.5 VOFF= -0.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
HUF75542P3, HUF75542S3S
SABER Electrical Model
REV 15 Feb 00
template huf75542p3 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (is = 2.5e-12, rs = 2.85e-3, xti = 5.5, trs1 = 2e-3, trs2 = 1e-6, cjo = 3.2e-9, tt = 5.5e-8, m = 0.6)
dp..model dbreakmod = (rs = 2.9e-1, trs1 = 1e-3, trs2 = 1e-6)
dp..model dplcapmod = (cjo = 3.4e-9, is = 1e-30, m = 0.8, nl = 10)
m..model mmedmod = (type=_n, vto = 3.06, kp = 4.8, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.5, kp = 80, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.67, kp = 0.08, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -4.5)
DPLCAP 5
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -4.5, voff = -6.0)
10
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.5)
RSLC1
DRAIN
2
RLDRAIN
51
c.ca n12 n8 = 4.4e-9
c.cb n15 n14 = 4.2e-9
c.cin n6 n8 = 2.5e-9
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
RSLC2
ISCL
RDRAIN
6
8
ESG
i.it n8 n17 = 1
LGATE
GATE
1
EVTHRES
+ 19 8
EVTEMP
RGATE + 18 22
9
20
21
11
16
MWEAK
6
EBREAK
+
17
18
-
MMED
MSTRO
RLGATE
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -9e-7
res.rdrain n50 n16 = 5.5e-3, tc1 = 1.1e-2, tc2 = 2.5e-5
res.rgate n9 n20 = 1.0
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 26
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 = 1e-6, tc1 = 4.5e-3, tc2 = 1e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 3.3e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 0
res.rvthres n22 n8 = 1, tc1 = -2.5e-3, tc2 = -1.1e-5
DBREAK
50
-
+
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 2.6e-9
l.lsource n3 n7 = 1.1e-9
LDRAIN
CIN
8
DBODY
LSOURCE
7
RSOURCE
RLSOURCE
S1A
12
S2A
13
8
S1B
CA
RBREAK
15
14
13
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 87.2
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/230))** 2.5))
}
}
8
SOURCE
3
HUF75542P3, HUF75542S3S
SPICE Thermal Model
th
REV 15 Feb 00
JUNCTION
T75542
CTHERM1 th 6 4.1e-3
CTHERM2 6 5 5.5e-3
CTHERM3 5 4 8.6e-3
CTHERM4 4 3 1.5e-2
CTHERM5 3 2 1.6e-2
CTHERM6 2 tl 6.5e-2
RTHERM1
CTHERM1
6
RTHERM1 th 6 2.0e-4
RTHERM2 6 5 3.5e-3
RTHERM3 5 4 2.5e-2
RTHERM4 4 3 9.0e-2
RTHERM5 3 2 1.6e-1
RTHERM6 2 tl 2.3e-1
RTHERM2
CTHERM2
5
SABER Thermal Model
RTHERM3
CTHERM3
SABER thermal model t75542
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 4.1e-3
ctherm.ctherm2 6 5 = 5.5e-3
ctherm.ctherm3 5 4 = 8.6e-3
ctherm.ctherm4 4 3 = 1.5e-2
ctherm.ctherm5 3 2 = 1.6e-2
ctherm.ctherm6 2 tl = 6.5e-2
4
RTHERM4
CTHERM4
3
rtherm.rtherm1 th 6 = 2.0e-4
rtherm.rtherm2 6 5 = 3.5e-3
rtherm.rtherm3 5 4 = 2.5e-2
rtherm.rtherm4 4 3 = 9.0e-2
rtherm.rtherm5 3 2 = 1.6e-1
rtherm.rtherm6 2 tl = 2.3e-1
}
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
9
CASE
HUF75542P3, HUF75542S3S
TO-263AB
SURFACE MOUNT JEDEC TO-263AB PLASTIC PACKAGE
E
A
A1
H1
TERM. 4
D
L2
L1
L
1
3
b
b1
e
c
J1
e1
0.450
(11.43)
TERM. 4
L3
b2
3
0.350
(8.89)
0.700
(17.78)
0.150
(3.81)
1
0.080 TYP (2.03)
0.062 TYP (1.58)
MINIMUM PAD SIZE RECOMMENDED FOR
SURFACE-MOUNTED APPLICATIONS
1.5mm
DIA. HOLE
INCHES
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.170
0.180
4.32
4.57
A1
0.048
0.052
1.22
1.32
4, 5
b
0.030
0.034
0.77
0.86
4, 5
b1
0.045
0.055
1.15
1.39
4, 5
b2
0.310
7.88
2
c
0.018
0.022
0.46
0.55
4, 5
D
0.405
0.425
10.29
10.79
E
0.395
0.405
10.04
10.28
e
0.100 TYP
2.54 TYP
7
e1
0.200 BSC
5.08 BSC
7
H1
0.045
0.055
1.15
1.39
J1
0.095
0.105
2.42
2.66
L
0.175
0.195
4.45
4.95
L1
0.090
0.110
2.29
2.79
4, 6
L2
0.050
0.070
1.27
1.77
3
L3
0.315
8.01
2
NOTES:
1. These dimensions are within allowable dimensions of Rev. C of
JEDEC TO-263AB outline dated 2-92.
2. L3 and b2 dimensions established a minimum mounting surface
for terminal 4.
3. Solder finish uncontrolled in this area.
4. Dimension (without solder).
5. Add typically 0.002 inches (0.05mm) for solder plating.
6. L1 is the terminal length for soldering.
7. Position of lead to be measured 0.120 inches (3.05mm) from bottom
of dimension D.
8. Controlling dimension: Inch.
9. Revision 10 dated 5-99.
4.0mm
USER DIRECTION OF FEED
2.0mm
TO-263AB
1.75mm
C
L
24mm TAPE AND REEL
24mm
16mm
COVER TAPE
40mm MIN.
ACCESS HOLE
30.4mm
13mm
330mm
100mm
GENERAL INFORMATION
1. 800 PIECES PER REEL.
2. ORDER IN MULTIPLES OF FULL REELS ONLY.
3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.
10
24.4mm
HUF75542P3, HUF75542S3S
TO-220AB
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE
A
INCHES
E
ØP
A1
Q
H1
TERM. 4
D
45o
E1
D1
L1
b1
L
b
c
MIN
MAX
MIN
MAX
NOTES
A
0.170
0.180
4.32
4.57
-
A1
0.048
0.052
1.22
1.32
-
b
0.030
0.034
0.77
0.86
3, 4
b1
0.045
0.055
1.15
1.39
2, 3
c
0.014
0.019
0.36
0.48
2, 3, 4
D
0.590
0.610
14.99
15.49
-
4.06
-
10.41
-
D1
-
0.160
E
0.395
0.410
E1
-
0.030
e
60o
1
2
e1
3
e
J1
e1
MILLIMETERS
SYMBOL
H1
0.100 TYP
0.200 BSC
0.235
0.255
10.04
-
0.76
-
2.54 TYP
5
5.08 BSC
5
5.97
6.47
-
J1
0.100
0.110
2.54
2.79
6
L
0.530
0.550
13.47
13.97
-
L1
0.130
0.150
3.31
3.81
2
ØP
0.149
0.153
3.79
3.88
-
Q
0.102
0.112
2.60
2.84
-
NOTES:
1. These dimensions are within allowable dimensions of Rev. J of
JEDEC TO-220AB outline dated 3-24-87.
2. Lead dimension and finish uncontrolled in L1.
3. Lead dimension (without solder).
4. Add typically 0.002 inches (0.05mm) for solder coating.
5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.
7. Controlling dimension: Inch.
8. Revision 2 dated 7-97.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
11
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil Ltd.
8F-2, 96, Sec. 1, Chien-kuo North,
Taipei, Taiwan 104
Republic of China
TEL: 886-2-2515-8508
FAX: 886-2-2515-8369
Similar pages