SMPS IGBT PD - 95329 IRGP35B60PDPbF WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE VCES = 600V VCE(on) typ. = 1.85V @ VGE = 15V IC = 22A C Applications • • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies Lead-Free Features • • • • • • • Equivalent MOSFET Parameters RCE(on) typ. = 84mΩ ID (FET equivalent) = 35A G E NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability n-channel Benefits G • Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz C E TO-247AC Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 60 IC @ TC = 100°C Continuous Collector Current 34 ICM 120 ILM Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current IF @ TC = 25°C Diode Continous Forward Current 40 IF @ TC = 100°C IFRM Diode Continous Forward Current Maximum Repetitive Forward Current VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 308 W PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range d 120 A 15 e 60 123 -55 to +150 Soldering Temperature for 10 sec. °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.41 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 1.7 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 Weight ––– 6.0 (0.21) ––– g (oz) 6/2/04 IRGP35B60PDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. 600 — Temperature Coeff. of Breakdown Voltage — 0.78 — Internal Gate Resistance — 1.7 — — 1.85 2.15 — 2.25 2.55 — 2.37 2.80 V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ RG VCE(on) Collector-to-Emitter Saturation Voltage Max. Units — V Conditions V/°C VGE = 0V, IC = 1mA (25°C-125°C) Ω 1MHz, Open Collector IC = 22A, VGE = 15V V IC = 22A, VGE = 15V, TJ = 125°C IC = 35A, VGE = 15V, TJ = 125°C — 3.00 3.45 Gate Threshold Voltage 3.0 4.0 5.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -10 — gfe Forward Transconductance — 36 — S ICES Collector-to-Emitter Leakage Current — 3.0 375 µA VGE = 0V, VCE = 600V — 0.35 — mA VGE = 0V, VCE = 600V, TJ = 125°C — 1.30 1.70 V — 1.20 1.60 — — ±100 IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 4, 5,6,8,9 IC = 35A, VGE = 15V VGE(th) VFM Ref.Fig VGE = 0V, IC = 500µA V IC = 250µA 7,8,9 mV/°C VCE = VGE, IC = 1.0mA VCE = 50V, IC = 22A, PW = 80µs IF = 15A, VGE = 0V 10 IF = 15A, VGE = 0V, TJ = 125°C nA VGE = ±20V, VCE = 0V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Qgc Total Gate Charge (turn-on) Parameter — 160 Max. Units 240 Gate-to-Collector Charge (turn-on) — 55 83 Conditions nC 17 VCC = 400V CT1 VGE = 15V Qge Gate-to-Emitter Charge (turn-on) — 21 32 Eon Turn-On Switching Loss — 220 270 Eoff Turn-Off Switching Loss — 215 265 Etotal Total Switching Loss — 435 535 TJ = 25°C td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V tr Rise time — 6.0 8.0 td(off) Turn-Off delay time — 110 122 tf Fall time — 8.0 10 Eon Turn-On Switching Loss — 410 465 Eoff Turn-Off Switching Loss — 330 405 Etotal Total Switching Loss — 740 870 TJ = 125°C td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V tr Rise time — 8.0 11 td(off) Turn-Off delay time — 130 150 tf Fall time — 12 16 Cies Input Capacitance — 3715 — VGE = 0V Coes Output Capacitance — 265 — VCC = 30V Cres Coes eff. Reverse Transfer Capacitance Effective Output Capacitance (Time Related) Coes eff. (ER) Effective Output Capacitance (Energy Related) RBSOA Reverse Bias Safe Operating Area g g — 47 — — 135 — — 179 — Ref.Fig IC = 22A IC = 22A, VCC = 390V µJ ns CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f CT3 VGE = +15V, RG = 3.3Ω, L = 200µH TJ = 25°C f IC = 22A, VCC = 390V µJ ns CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f WF1,WF2 CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f TJ = 125°C pF 12,14 WF1,WF2 16 f = 1Mhz VGE = 0V, VCE = 0V to 480V FULL SQUARE 11,13 15 TJ = 150°C, IC = 120A 3 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V trr Diode Reverse Recovery Time Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current — 42 60 — 74 120 — 80 180 — 220 600 — 4.0 6.0 — 6.5 10 ns nC A TJ = 25°C IF = 15A, VR = 200V, TJ = 125°C di/dt = 200A/µs 19 TJ = 25°C IF = 15A, VR = 200V, 21 TJ = 125°C TJ = 25°C di/dt = 200A/µs IF = 15A, VR = 200V, 19,20,21,22 TJ = 125°C di/dt = 200A/µs CT5 Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 1.85V and IC =22A. ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06. Coes eff. is a fixed capacitance that gives the same charging time as Coes while V CE is rising from 0 to 80% VCES. Coes eff.(ER) is a fixed capacitance that stores the same energy as C oes while VCE is rising from 0 to 80% VCES. 2 www.irf.com 70 350 60 300 50 250 40 200 Ptot (W) IC (A) IRGP35B60PDPbF 30 150 20 100 10 50 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 70 1000 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 IC A) ICE (A) 100 10 40 30 20 10 0 1 10 100 0 1000 1 2 VCE (V) Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V 5 70 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 40 ICE (A) ICE (A) 4 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 70 30 40 30 20 20 10 10 0 0 0 1 2 3 4 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 VCE (V) 5 0 1 2 3 4 5 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 3 IRGP35B60PDPbF 800 10 700 600 T J = 25°C 9 T J = 125°C 8 7 VCE (V) ICE (A) 500 400 300 ICE = 11A 6 ICE = 22A 5 ICE = 35A 4 200 TJ = 125°C 3 100 T J = 25°C 2 0 1 0 5 10 15 20 0 5 VGE (V) 10 15 20 VGE (V) Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs Fig. 8 - Typical VCE vs. VGE TJ = 25°C 10 100 9 F InstantaneousF orw ardC urrent -I (A ) 8 VCE (V) 7 ICE = 11A 6 ICE = 22A 5 ICE = 35A 4 3 10 TJ = 150°C TJ = 125°C TJ = 25°C 2 1 0 5 10 15 1 0.8 20 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 125°C Fig. 10 - Typ. Diode Forward Characteristics tp = 80µs 800 1000 700 EON Swiching Time (ns) Energy (µJ) 600 500 400 EOFF 300 200 td OFF 100 tdON tF 10 tR 100 0 1 0 5 10 15 20 25 30 35 40 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) 4 0 10 20 30 40 IC (A) Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) www.irf.com IRGP35B60PDPbF 800 1000 700 tdOFF EON Swiching Time (ns) Energy (µJ) 600 500 400 EOFF 300 100 tdON tF 10 200 tR 100 0 1 0 10 20 30 40 50 0 10 20 30 Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) 50 Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) 30 10000 Cies 25 Capacitance (pF) 20 Eoes (µJ) 40 RG ( Ω) RG (Ω) 15 10 1000 Coes 100 Cres 5 0 0 100 200 300 400 500 600 10 700 0 20 VCE (V) 40 60 80 100 VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 16 1.4 14 Normalized V CE(on) (V) 400V 12 VGE (V) 10 8 6 4 1.2 1.0 2 0 0.8 0 50 100 150 200 Q G , Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 22A www.irf.com -50 0 50 100 150 200 T J (°C) Fig. 18 - Normalized Typ. VCE(on) vs. Junction Temperature IC = 22A, VGE= 15V 5 IRGP35B60PDPbF 100 100 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 80 I IRRM - (A) t rr - (ns) I F = 30A I F = 30A 60 I F = 15A IF = 15A 10 I F = 5.0A 40 I F = 5.0A 20 100 di f /dt - (A/µs) 1 100 1000 Fig. 19 - Typical Reverse Recovery vs. dif/dt 1000 di f /dt - (A/µs) Fig. 20 - Typical Recovery Current vs. dif/dt 800 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) 600 Q RR - (nC) IF = 30A 400 I F = 15A IF = 5.0A I F = 5.0A I F = 15A I F = 30A 200 0 100 di f /dt - (A/µs) 1000 Fig. 21 - Typical Stored Charge vs. dif/dt 6 100 100 1000 di f /dt - (A/µs) Fig. 22 - Typical di(rec)M/dt vs. dif/dt, www.irf.com IRGP35B60PDPbF Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.01 0.01 0.02 τJ R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ 0.077 0.194 τ3 Ci= τi/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.139 0.000257 0.001418 0.020178 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.01 0.02 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci i/Ri 0.01 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.363 0.000112 0.864 0.473 0.001184 0.032264 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGP35B60PDPbF L L VCC DUT 0 80 V DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) L PFC diode R= DUT / DRIVER VCC DUT Rg VCC ICM VCC Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGP35B60PDPbF 45 450 400 40 400 tf 300 90% ICE 200 350 30 300 20 5% VCE 150 15 100 5% ICE 50 0 -50 -0.20 Eoff Loss 0.00 0.20 0.40 30 25 90% test current 5 50 0 0 20 10% test current 150 100 35 tr 200 10 -5 0.80 0.60 40 TEST CURRENT 250 25 VCE (V) VCE (V) 250 35 ICE (A) 350 45 15 ICE (A) 450 10 5% VCE 5 0 Eon Loss -50 9.00 9.20 Time(µs) 9.40 -5 9.60 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 25°C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 25°C using Fig. CT.3 3 trr IF tb ta 0 2 Q rr I RRM 4 0.5 I RRM di(rec)M/dt 5 0.75 I RRM 1 di f /dt 1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M/dt - Peak rate of change of current during tb portion of trr Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGP35B60PDPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLEDONWW35, 2000 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 6/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/