IRF IRGP35B60PDPBF Warp2 series igbt with ultrafast soft recovery diode Datasheet

SMPS IGBT
PD - 95329
IRGP35B60PDPbF
WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
VCES = 600V
VCE(on) typ. = 1.85V
@ VGE = 15V IC = 22A
C
Applications
•
•
•
•
•
Telecom and Server SMPS
PFC and ZVS SMPS Circuits
Uninterruptable Power Supplies
Consumer Electronics Power Supplies
Lead-Free
Features
•
•
•
•
•
•
•
Equivalent MOSFET
Parameters
RCE(on) typ. = 84mΩ
ID (FET equivalent) = 35A
G
E
NPT Technology, Positive Temperature Coefficient
Lower VCE(SAT)
Lower Parasitic Capacitances
Minimal Tail Current
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
Tighter Distribution of Parameters
Higher Reliability
n-channel
Benefits
G
• Parallel Operation for Higher Current Applications
• Lower Conduction Losses and Switching Losses
• Higher Switching Frequency up to 150kHz
C
E
TO-247AC
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
60
IC @ TC = 100°C
Continuous Collector Current
34
ICM
120
ILM
Pulse Collector Current (Ref. Fig. C.T.4)
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
40
IF @ TC = 100°C
IFRM
Diode Continous Forward Current
Maximum Repetitive Forward Current
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
308
W
PD @ TC = 100°C
Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
d
120
A
15
e
60
123
-55 to +150
Soldering Temperature for 10 sec.
°C
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.41
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
1.7
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
Weight
–––
6.0 (0.21)
–––
g (oz)
6/2/04
IRGP35B60PDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
600
—
Temperature Coeff. of Breakdown Voltage
—
0.78
—
Internal Gate Resistance
—
1.7
—
—
1.85
2.15
—
2.25
2.55
—
2.37
2.80
V(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ
RG
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
—
V
Conditions
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
Ω
1MHz, Open Collector
IC = 22A, VGE = 15V
V
IC = 22A, VGE = 15V, TJ = 125°C
IC = 35A, VGE = 15V, TJ = 125°C
—
3.00
3.45
Gate Threshold Voltage
3.0
4.0
5.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-10
—
gfe
Forward Transconductance
—
36
—
S
ICES
Collector-to-Emitter Leakage Current
—
3.0
375
µA
VGE = 0V, VCE = 600V
—
0.35
—
mA
VGE = 0V, VCE = 600V, TJ = 125°C
—
1.30
1.70
V
—
1.20
1.60
—
—
±100
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
4, 5,6,8,9
IC = 35A, VGE = 15V
VGE(th)
VFM
Ref.Fig
VGE = 0V, IC = 500µA
V
IC = 250µA
7,8,9
mV/°C VCE = VGE, IC = 1.0mA
VCE = 50V, IC = 22A, PW = 80µs
IF = 15A, VGE = 0V
10
IF = 15A, VGE = 0V, TJ = 125°C
nA
VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Qgc
Total Gate Charge (turn-on)
Parameter
—
160
Max. Units
240
Gate-to-Collector Charge (turn-on)
—
55
83
Conditions
nC
17
VCC = 400V
CT1
VGE = 15V
Qge
Gate-to-Emitter Charge (turn-on)
—
21
32
Eon
Turn-On Switching Loss
—
220
270
Eoff
Turn-Off Switching Loss
—
215
265
Etotal
Total Switching Loss
—
435
535
TJ = 25°C
td(on)
Turn-On delay time
—
26
34
IC = 22A, VCC = 390V
tr
Rise time
—
6.0
8.0
td(off)
Turn-Off delay time
—
110
122
tf
Fall time
—
8.0
10
Eon
Turn-On Switching Loss
—
410
465
Eoff
Turn-Off Switching Loss
—
330
405
Etotal
Total Switching Loss
—
740
870
TJ = 125°C
td(on)
Turn-On delay time
—
26
34
IC = 22A, VCC = 390V
tr
Rise time
—
8.0
11
td(off)
Turn-Off delay time
—
130
150
tf
Fall time
—
12
16
Cies
Input Capacitance
—
3715
—
VGE = 0V
Coes
Output Capacitance
—
265
—
VCC = 30V
Cres
Coes eff.
Reverse Transfer Capacitance
Effective Output Capacitance (Time Related)
Coes eff. (ER)
Effective Output Capacitance (Energy Related)
RBSOA
Reverse Bias Safe Operating Area
g
g
—
47
—
—
135
—
—
179
—
Ref.Fig
IC = 22A
IC = 22A, VCC = 390V
µJ
ns
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
f
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
TJ = 25°C
f
IC = 22A, VCC = 390V
µJ
ns
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
f
WF1,WF2
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
f
TJ = 125°C
pF
12,14
WF1,WF2
16
f = 1Mhz
VGE = 0V, VCE = 0V to 480V
FULL SQUARE
11,13
15
TJ = 150°C, IC = 120A
3
VCC = 480V, Vp =600V
CT2
Rg = 22Ω, VGE = +15V to 0V
trr
Diode Reverse Recovery Time
Qrr
Diode Reverse Recovery Charge
Irr
Peak Reverse Recovery Current
—
42
60
—
74
120
—
80
180
—
220
600
—
4.0
6.0
—
6.5
10
ns
nC
A
TJ = 25°C
IF = 15A, VR = 200V,
TJ = 125°C
di/dt = 200A/µs
19
TJ = 25°C
IF = 15A, VR = 200V,
21
TJ = 125°C
TJ = 25°C
di/dt = 200A/µs
IF = 15A, VR = 200V,
19,20,21,22
TJ = 125°C
di/dt = 200A/µs
CT5
Notes:
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 1.85V and IC =22A. ID (FET Equivalent) is the equivalent MOSFET ID
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
‚ VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω.
ƒ Pulse width limited by max. junction temperature.
„ Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
Coes eff. is a fixed capacitance that gives the same charging time as Coes while V CE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as C oes while VCE is rising from 0 to 80% VCES.
2
www.irf.com
70
350
60
300
50
250
40
200
Ptot (W)
IC (A)
IRGP35B60PDPbF
30
150
20
100
10
50
0
0
0
20
40
60
80
0
100 120 140 160
20
40
60
80
100 120 140 160
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
70
1000
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
60
50
IC A)
ICE (A)
100
10
40
30
20
10
0
1
10
100
0
1000
1
2
VCE (V)
Fig. 3 - Reverse Bias SOA
TJ = 150°C; VGE =15V
5
70
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
60
50
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
60
50
40
ICE (A)
ICE (A)
4
Fig. 4 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
70
30
40
30
20
20
10
10
0
0
0
1
2
3
4
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
www.irf.com
3
VCE (V)
5
0
1
2
3
4
5
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
3
IRGP35B60PDPbF
800
10
700
600
T J = 25°C
9
T J = 125°C
8
7
VCE (V)
ICE (A)
500
400
300
ICE = 11A
6
ICE = 22A
5
ICE = 35A
4
200
TJ = 125°C
3
100
T J = 25°C
2
0
1
0
5
10
15
20
0
5
VGE (V)
10
15
20
VGE (V)
Fig. 7 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 8 - Typical VCE vs. VGE
TJ = 25°C
10
100
9
F
InstantaneousF
orw
ardC
urrent -I (A
)
8
VCE (V)
7
ICE = 11A
6
ICE = 22A
5
ICE = 35A
4
3
10
TJ = 150°C
TJ = 125°C
TJ =
25°C
2
1
0
5
10
15
1
0.8
20
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 125°C
Fig. 10 - Typ. Diode Forward Characteristics
tp = 80µs
800
1000
700
EON
Swiching Time (ns)
Energy (µJ)
600
500
400
EOFF
300
200
td OFF
100
tdON
tF
10
tR
100
0
1
0
5
10
15
20
25
30
35
40
IC (A)
Fig. 11 - Typ. Energy Loss vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
4
0
10
20
30
40
IC (A)
Fig. 12 - Typ. Switching Time vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
www.irf.com
IRGP35B60PDPbF
800
1000
700
tdOFF
EON
Swiching Time (ns)
Energy (µJ)
600
500
400
EOFF
300
100
tdON
tF
10
200
tR
100
0
1
0
10
20
30
40
50
0
10
20
30
Fig. 13 - Typ. Energy Loss vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
50
Fig. 14 - Typ. Switching Time vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
30
10000
Cies
25
Capacitance (pF)
20
Eoes (µJ)
40
RG ( Ω)
RG (Ω)
15
10
1000
Coes
100
Cres
5
0
0
100
200
300
400
500
600
10
700
0
20
VCE (V)
40
60
80
100
VCE (V)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 15- Typ. Output Capacitance
Stored Energy vs. VCE
16
1.4
14
Normalized V CE(on) (V)
400V
12
VGE (V)
10
8
6
4
1.2
1.0
2
0
0.8
0
50
100
150
200
Q G , Total Gate Charge (nC)
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 22A
www.irf.com
-50
0
50
100
150
200
T J (°C)
Fig. 18 - Normalized Typ. VCE(on)
vs. Junction Temperature
IC = 22A, VGE= 15V
5
IRGP35B60PDPbF
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
80
I IRRM - (A)
t rr - (ns)
I F = 30A
I F = 30A
60
I F = 15A
IF = 15A
10
I F = 5.0A
40
I F = 5.0A
20
100
di f /dt - (A/µs)
1
100
1000
Fig. 19 - Typical Reverse Recovery vs. dif/dt
1000
di f /dt - (A/µs)
Fig. 20 - Typical Recovery Current vs. dif/dt
800
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
600
Q RR - (nC)
IF = 30A
400
I F = 15A
IF = 5.0A
I F = 5.0A
I F = 15A
I F = 30A
200
0
100
di f /dt - (A/µs)
1000
Fig. 21 - Typical Stored Charge vs. dif/dt
6
100
100
1000
di f /dt - (A/µs)
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
www.irf.com
IRGP35B60PDPbF
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.01
0.01
0.02
τJ
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
0.077
0.194
τ3
Ci= τi/Ri
Ci i/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W) τi (sec)
0.139
0.000257
0.001418
0.020178
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.01
0.02
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
Ci= τi/Ri
Ci i/Ri
0.01
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.363
0.000112
0.864
0.473
0.001184
0.032264
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGP35B60PDPbF
L
L
VCC
DUT
0
80 V
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
L
PFC diode
R=
DUT /
DRIVER
VCC
DUT
Rg
VCC
ICM
VCC
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
REVERSE RECOVERY CIRCUIT
VR = 200V
0.01 Ω
L = 70µH
D.U.T.
dif/dt
ADJUST
D
G
IRFP250
S
Fig. C.T.5 - Reverse Recovery Parameter
Test Circuit
8
www.irf.com
IRGP35B60PDPbF
45
450
400
40
400
tf
300
90% ICE
200
350
30
300
20
5% VCE
150
15
100
5% ICE
50
0
-50
-0.20
Eoff Loss
0.00
0.20
0.40
30
25
90% test current
5
50
0
0
20
10% test current
150
100
35
tr
200
10
-5
0.80
0.60
40
TEST CURRENT
250
25
VCE (V)
VCE (V)
250
35
ICE (A)
350
45
15
ICE (A)
450
10
5% VCE
5
0
Eon Loss
-50
9.00
9.20
Time(µs)
9.40
-5
9.60
Time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 25°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 25°C using Fig. CT.3
3
trr
IF
tb
ta
0
2
Q rr
I RRM
4
0.5 I RRM
di(rec)M/dt
5
0.75 I RRM
1
di f /dt
1. dif/dt - Rate of change of current
through zero crossing
2. I RRM - Peak reverse recovery current
3. trr - Reverse recovery time measured
from zero crossing point of negative
going IF to point where a line passing
through 0.75 IRRM and 0.50 IRRM
extrapolated to zero current
4. Qrr - Area under curve defined by trr
and IRRM
trr X IRRM
Qrr =
2
5. di(rec)M/dt - Peak rate of change of
current during tb portion of trr
Fig. WF3 - Reverse Recovery Waveform and
Definitions
www.irf.com
9
IRGP35B60PDPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLEDONWW35, 2000
IN THE ASSEMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
IRFPE30
56
035H
57
DATE CODE
YEAR 0 = 2000
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 6/04
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages