IRF IRFHM8330PBF Compatible with existing surface mount technique Datasheet

IRFHM8330PbF
VDSS
30
V
VGS max
RDS(on) max
(@ VGS = 10V)
(@ VGS = 4.5V)
±20
V
Qg (typical)
ID
(@TC (Bottom) = 25°C)
9.3
6.6
HEXFET® Power MOSFET
m
9.9
S
S
G
D
nC
25
S
D
D
A
D
D
PQFN 3.3X3.3 mm
Applications

Charge and Discharge Switch for Notebook PC Battery Application

System/Load Switch

Control MOSFET for synchronous buck converter
Features
Low Thermal Resistance to PCB (<3.8°C/W)
Low Profile (<1.2mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Consumer Qualification
Base part number
Package Type
IRFHM8330PbF
PQFN 3.3 mm x 3.3 mm
Benefits
Enable better Thermal Dissipation
Increased Power Density
results in Multi-Vendor Compatibility
 Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Orderable Part Number
IRFHM8330TRPbF
Absolute Maximum Ratings
Parameter
Max.
Units
VGS
Gate-to-Source Voltage
± 20
V
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
16
A
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
13
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 10V
55
ID @ TC(Bottom) = 100°C
Continuous Drain Current, VGS @ 10V
35
ID @ TC = 25°C
25
IDM
Continuous Drain Current, VGS @ 10V
(Source Bonding Technology Limited)
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation 
2.7
PD @TC(Bottom) = 25°C
Power Dissipation
33
210
W
Linear Derating Factor
0.021
W/°C
TJ
Operating Junction and
-55 to + 150
°C
TSTG
Storage Temperature Range
Notes  through  are on page 10
1
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
BVDSS
Breakdown Voltage Temp. Coefficient
BVDSS/TJ
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
VGS(th)
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
gfs
Qg
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Min.
30
–––
–––
–––
1.35
–––
–––
–––
–––
–––
61
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
23
5.3
7.7
1.8
-6.3
–––
–––
–––
–––
–––
20
9.3
2.7
1.6
2.5
2.5
4.1
7.1
1.8
9.2
15
10
5.7
1450
250
110
Max.
–––
–––
6.6
9.9
2.35
–––
1.0
150
100
-100
–––
–––
14
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Units
Conditions
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1.0mA
m VGS = 10V, ID = 20A 
VGS = 4.5V, ID = 16A 
V
V = VGS, ID = 25µA
mV/°C DS
µA VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 20A
nC VGS = 10V, VDS = 15V, ID = 20A
nC
nC

VDS = 15V
VGS = 4.5V
ID = 20A
VDS = 16V, VGS = 0V
ns
VDD = 15V, VGS = 4.5V
ID = 20A
RG=1.8
pF
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
Single Pulse Avalanche Energy 
EAS
Diode Characteristics
Parameter
Continuous Source Current
IS
(Body Diode)
Pulsed Source Current
ISM
(Body Diode) 
VSD
Diode Forward Voltage
Reverse Recovery Time
trr
Qrr
Reverse Recovery Charge
Typ.
–––
Max.
42
Units
mJ
Min. Typ. Max. Units
–––
–––
–––
–––
–––
Conditions
MOSFET symbol
––– 25
showing the
A
integral reverse
––– 210
p-n junction diode.
––– 1.0
V TJ = 25°C, IS = 20A, VGS = 0V 
14
21
ns TJ = 25°C, IF = 20A, VDD = 15V
23
35
nC di/dt = 390A/µs 
D
G
S
Thermal Resistance
Parameter
RJC (Bottom) Junction-to-Case 
Junction-to-Case 
RJC (Top)
RJA
RJA (<10s)
2
Junction-to-Ambient 
Junction-to-Ambient 
www.irf.com
© 2014 International Rectifier
Typ.
–––
Max.
3.8
Units
–––
42
°C/W
–––
–––
47
32
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
1000
1000
VGS
10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
10
1
2.5V
BOTTOM
10
2.5V
60µs PULSE WIDTH
60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
0.1
1
10
100
0.1
1000
100
1000
1.8
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
T J = 150°C
100
10
T J = 25°C
VDS = 15V
60µs PULSE WIDTH
0
1
2
3
4
5
6
7
VGS = 10V
1.6
1.4
1.2
1.0
0.8
8
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
10000
ID = 20A
0.6
1.0
14.0
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
VGS, Gate-to-Source Voltage (V)
ID= 20A
Coss = Cds + Cgd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Ciss
1000
Coss
Crss
12.0
VDS = 24V
VDS = 15V
10.0
VDS = 6.0V
8.0
6.0
4.0
2.0
0.0
100
1
10
0
100
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
© 2014 International Rectifier
5
10
15
20
25
30
QG, Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
3
VGS
10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
T J = 25°C
10
VGS = 0V
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
1msec
10
Limited by package
10msec
1
DC
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
0.01
1.0
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1
1.6
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
2.6
60
VGS(th) , Gate threshold Voltage (V)
Limited By Source
Bonding Technology 
50
ID, Drain Current (A)
10
40
30
20
10
0
25
50
75
100
125
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
ID = 25µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
0.8
0.6
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 10. Drain-to–Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC ) °C/W
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
June 30, 2014
200
25
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m )
IRFHM8330PbF
ID = 20A
20
15
T J = 125°C
10
5
T J = 25°C
ID
TOP
4.0A
8.5A
BOTTOM 20A
150
100
50
0
0
25
0
5
10
15
20
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
Avalanche Current (A)
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width
5
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
L
VDS
D.U.T
RG
IAS
20V
tp
DRIVER
+
V
- DD
A
I AS
0.01
Fig 16a. Unclamped Inductive Test Circuit
Fig 16b. Unclamped Inductive Waveforms
Fig 17a. Switching Time Test Circuit
Fig 17b. Switching Time Waveforms
Id
Vds
Vgs
VDD
Vgs(th)
Qgs1 Qgs2
Fig 18a. Gate Charge Test Circuit
6
www.irf.com
© 2014 International Rectifier
Qgd
Qgodr
Fig 18b. Gate Charge Waveform
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
Placement and Layout Guidelines
The typical application topology for this product is the synchronous buck converter. These converters operate at high
frequencies (typically around 400 kHz). During turn-on and turn-off switching cycles, the high di/dt currents circulating in
the parasitic elements of the circuit induce high voltage ringing which may exceed the device rating and lead to
undesirable effects. One of the major contributors to the increase in parasitics is the PCB power circuit inductance.
This section introduces a simple guideline that mitigates the effect of these parasitics on the performance of the circuit
and provides reliable operation of the devices.
To reduce high frequency switching noise and the effects of Electromagnetic Interference (EMI) when the control
MOSFET (Q1) is turned on, the layout shown in Figure 19 is recommended. The input bypass capacitors, control
MOSFET and output capacitors are placed in a tight loop to minimize parasitic inductance which in turn lowers the
amplitude of the switch node ringing, and minimizes exposure of the MOSFETs to repetitive avalanche conditions.
When the synchronous MOSFET (Q2) is turned on, high average DC current flows through the path indicated in Figure
19. Therefore, the Q2 turn-on path should be laid out with a tight loop and wide traces at both ends of the inductor to
minimize loop resistance.
Fig 19. Placement and Layout Guidelines
7
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
PQFN 3.3mm x 3.3mm Outline Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to application note
AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 3.3mm x 3.3mm Outline Part Marking
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
PQFN 3.3mm x 3.3mm Outline Tape and Reel
REEL DIMENSIONS
TAPE DIMENSIONS
CODE
Ao
Bo
Ko
P1
W
W1
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
DIMENSION (MM)
MIN
MAX
3.50
3.70
3.50
1.10
7.90
11.80
3.70
1.30
8.10
12.20
12.30
12.50
Qty
Reel Diameter
CODE
Ao
Bo
Ko
W
P1
DIMENSION (INCH)
MIN
MAX
.138
.146
.138
.043
.311
.465
.146
.051
.319
.480
.484
.492
4000
13 Inches
DESCRIPTION
Dimension design to accommodate the component width
Dimension design to accommodate the component lenght
Dimension design to accommodate the component thickness
Overall width of the carrier tape
Pitch between successive cavity centers
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
June 30, 2014
IRFHM8330PbF
Qualification Information†
Consumer
(per JEDEC JESD47F†† guidelines)
Qualification Level
MSL1
(per JEDEC J-STD-020D††)
PQFN 3.3mm x 3.3mm
Moisture Sensitivity Level
Yes
RoHS Compliant
†
††
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability
Applicable version of JEDEC standard at the time of product release.
Notes:
 Starting TJ = 25°C, L = 0.21mH, RG = 50, IAS = 20A.
 Pulse width  400µs; duty cycle  2%.
 R is measured at TJ of approximately 90°C.
 When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details:
http://www.irf.com/technical-info/appnotes/an-994.pdf
 Calculated continuous current based on maximum allowable junction temperature.
 Current is limited to 25A by source bonding technology.
 Pulse drain current is limited by source bonding technology.
Revision History
Date
Comments
6/6/14


Updated schematic on page 1
Updated tape and reel on page 9
6/30/14

Remove “SAWN” package outline on page 8.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
June 30, 2014
Similar pages